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Inverse problems arising from Laplace transform inversion are ill-posed, and require suitable regularization strategies. Although the maximum entropy regularization approach usually appears as an adequate strategy due to its ability to recover regular positive valued signals, it was observed to lead to poor reconstruction results when the sought signal contains narrow peaks. In that case, a sparsity promoting penalty such as the 1 norm, combined with a positivity constraint, is more suitable. In order to derive a flexible resolution method, hybrid approaches combining both entropy and sparsity regularization strategies should be envisaged. However, the choice of an efficient optimization algorithm remains a challenging task. Among available optimization techniques, proximal methods have shown their efficiency in solving large scale possibly nonsmooth problems. This paper provides an extensive list of new proximity operators for the sum of entropy and sparsity penalties. The applicability of these results is illustrated by means of experiments, in the context of DOSY NMR signal reconstruction.

INTRODUCTION

The fast resolution of large size ill-posed linear inverse problems presents a big challenge in the context of biophysical data processing [START_REF] Pence | Big data and chemical education[END_REF]. A difficult inverse problem, arising for instance in the context of diffusion ordered nuclear magnetic resonance spectroscopy (DOSY NMR) [START_REF] Johnson | Diffusion ordered nuclear magnetic resonance spectroscopy: principles and applications[END_REF], consists in the estimation of an original unknown positive-valued signal x = (x n ) 1≤n≤N ∈ [0, +∞[ N , from degraded measurements y = (y m ) 1≤m≤M ∈ R M related to x through a linear model

y = Kx + w, (1) 
where K = (K m,n ) 1≤m≤M,1≤n≤N ∈ R M ×N is the observation matrix corresponding to a discretized version of a Laplace transform, and w = (w m ) 1≤m≤M ∈ R M represents some additive acquisition noise. An efficient resolution strategy is to employ a penalized approach that defines an estimate x ∈ R N of x as a solution to the following constrained minimization problem [START_REF] Idier | Bayesian Approach to Inverse Problems[END_REF]:

minimize x∈R N Ψ(x) subject to Kx -y ≤ τ, (2) 
where τ > 0 is a parameter depending on the noise characteristics, and Ψ is a regularization function that allows to add prior information on the sought signal and to impose the positivity of its entries. The so-called maximum entropy reconstruction approach [START_REF] Eggermont | Maximum entropy regularization for Fredholm integral equations of the first kind[END_REF], corresponding to the choice of the Shannon entropy function [START_REF] Gray | Entropy and Information Theory[END_REF][START_REF] Basseville | On entropies, divergences, and mean values[END_REF] for the penalization term Ψ, has been at the core of several papers dealing with regularized inverse Laplace transform [START_REF] Laue | Maximum entropy method in nuclear magnetic resonance spectroscopy[END_REF][START_REF] Livesey | Maximum entropy analysis of quasielastic light scattering from colloidal dispersions[END_REF][START_REF] Livesey | Analysing the distribution of decay constants in pulse fluorimetry using the maximum entropy method[END_REF][START_REF] Delsuc | Maximum entropy processing of DOSY NMR spectra[END_REF][START_REF] Mariette | Continuous relaxation time distribution decomposition by MEM[END_REF][START_REF] Daniell | Maximum entropy and bayesian methods: Cambridge, england[END_REF]. A more recent approach consists in adopting for Ψ a criterion enforcing both sparsity and positivity, with the aim to improve the resolution of narrow peaks possibly present in the sought signal [START_REF] Urbanczyk | Iterative thresholding algorithm for multiexponential decay applied to pgse nmr data[END_REF][START_REF] Kaipin | Trust-region algorithm for the inversion of molecular diffusion nmr data[END_REF][START_REF] Worley | Convex accelerated maximum entropy reconstruction[END_REF][START_REF] Berman | Laplace inversion of low-resolution NMR relaxometry data using sparse representation methods[END_REF], but this strategy may be at the price of loosing the smoothness of the solution. Hybrid regularization approaches combining both entropy and sparsity terms in Ψ should thus be envisaged so as to derive a flexible resolution method. However, the choice of an efficient optimization algorithm to solve the resulting constrained problem (2) (or its Lagrangian formulation) remains a challenging task. On the one hand, in the case of entropy regularization, the optimization techniques proposed in the literature are usually ad hoc and difficult to extend to other types of priors [START_REF] Gorodnitsky | An extension of an interior-point method for entropy minimization[END_REF][START_REF] Chouzenoux | Efficient maximum entropy reconstruction of nuclear magnetic resonance t1-t2 spectra[END_REF][START_REF] Willis | Maximum entropy image restoration revisited[END_REF]. On the other hand, in the case of sparsity regularization, the minimization step is usually handled by proximal optimization methods [START_REF] Combettes | Proximal splitting methods in signal processing[END_REF]. These methods, grounded on the use of the proximity operator [START_REF] Bauschke | Convex analysis and monotone operator theory in Hilbert spaces[END_REF] are highly flexible, and particularly efficient for handling functionals for which the proximity operators have a closed form expression. In this paper, we provide a comprehensive list of formula for the proximity operators of new hybrid regularization functions combining a non necessarily convex sparsity enhancing term and an entropy penalty. This list constitutes a very helpful tool for deriving fast resolution methods for the regularized inversion of [START_REF] Pence | Big data and chemical education[END_REF]. The applicability of our method is illustrated by means of an example in the context of DOSY NMR.

The paper is organized as follows: In section 2, we introduce our notation and recall the definition of the proximity operator. Section 3 presents our main contribution, that is the expression of the proximity operators of several combination of entropy and sparsity promoting penalties. Then, Section 4 presents an application of our results to the resolution of an inverse problem arising in DOSY NMR signal reconstruction. Finally, some conclusions are drawn in Section 5.

PROBLEM STATEMENT

Hybrid regularization

Let us define the following family of hybrid regularization functions of the form:

(∀x ∈ R N ) Ψ(x) = αΨ 1 (x) + βΨ 2 (x), (3) 
where Ψ 1 : R N →] -∞, +∞] and Ψ 2 : R N → R are lower semi continuous (lsc) and proper functions and (α, β) are some positive weights. In this paper, we focus on the case when Ψ 1 is either the Shannon or the Burg entropy [START_REF] Nityananda | Maximum entropy image reconstruction-a practical non-information-theoretic approach[END_REF] and Ψ 2 is a sparsity promoting prior. An efficient strategy to promote the sparsity of the sought signal is to choose Ψ 2 as the 0 penalty that counts the number of nonzeros in x. However, the later function is neither differentiable nor continuous at 0, so that its convex approximation, the 1 norm, that sums the absolute value of the signal entries is often used instead [START_REF] Candès | Enhancing sparsity by reweighted l1 minimization[END_REF]. Continuous, but non convex, approximations have also been proposed for the 0 penalty, namely the log-sum penalty [START_REF] Wipf | Iterative reweighted 1 and 2 methods for finding sparse solutions[END_REF] and the Cauchy penalty [START_REF] Antoniadis | Wavelet thresholding for some classes of non-Gaussian noise[END_REF]. Note that all the aforementioned regularization terms are separable, so that (3) can be rewritten as

(∀x ∈ R N ) Ψ(x) = N n=1 ψ(x n ), (4) 
with ψ = αψ 1 +βψ 2 , ψ 1 : R →]-∞, +∞] and ψ 2 : R → R.

Figures 1 and2 illustrate the considered functions, for the entropy and sparse penalty terms ψ 1 and ψ 2 , respectively.

Proximity Operator

When Ψ is convex on R N , its proximity operator at x ∈ R N is defined as the unique minimizer of Ψ+ 1 2

•-x 2 [START_REF] Moreau | Proximité et dualité dans un espace hilbertien[END_REF]. This operator has been generalized for lsc proper functions that are not necessarily convex in [27, Sec.XV-4], as the multi-valued operator: Fig. 2. Examples of sparsity promoting penalties, in the scalar case: 0 (continuous black line), 1 (dashed-dotted green line), log-sum (dashed red line) and Cauchy (dotted blue line) priors.

prox Ψ : x → Argmin y∈R N 1 2 y -x 2 + Ψ(y) . (5)
Since Ψ in (4) takes a separable form, its proximity operator ( 5) is given by ( [START_REF] Bauschke | Convex analysis and monotone operator theory in Hilbert spaces[END_REF]):

prox Ψ (x) = (p n (x n )) 1≤n≤N , (6) 
where, for every n ∈ {1, . . . , N },

p n (x n ) = prox αψ1+βψ2 (x n ). (7) 
In the sequel, we will focus our attention on the resolution of the scalar optimization problem [START_REF] Laue | Maximum entropy method in nuclear magnetic resonance spectroscopy[END_REF], when α ∈]0, +∞[ and β ∈ [0, +∞[.

PROXIMITY OPERATORS FOR HYBRID SPARSE + ENTROPY PRIORS

Shannon entropy

The Shannon entropy regularization is defined, for all x ∈ R, as

ψ 1 (x) =      x log x if x > 0 0 if x = 0 +∞ elsewhere. (8) 
According to [START_REF] Combettes | Proximal splitting methods in signal processing[END_REF], the proximity operator of αψ 1 at x ∈ R N , with α ∈]0, +∞[, reads:

prox αψ1 (x) = αW 1 α exp x α -1 , (9) 
where W states for the W Lambert function [START_REF] Corless | On the lambert W function[END_REF]. The remainder of this section shows how to generalize this expression in the case when β ∈]0, +∞[.

3.1.1. Shannon entropy + 1 Set (α, β) ∈]0, +∞[ 2 .
The hybrid Shannon entropy + 1 penalty is defined, for every x ∈ R, as

ψ(x) =      αx log x + βx if x > 0 0 if x = 0 +∞ elsewhere. (10) 
Its proximity operator reads, for every x ∈ R:

prox ψ (x) = αW 1 α exp x -β α -1 . (11) 

Shannon entropy + 0

Set (α, β) ∈]0, +∞[ 2 . The hybrid Shannon entropy + 0 penalty is defined, for every x ∈ R, as

ψ(x) =      αx log x + β if x > 0 0 if x = 0 +∞ elsewhere. ( 12 
)
Its proximity operator reads, for every x ∈ R:

prox ψ (x) =      p if β < β {0, p} if β = β 0 elsewhere, (13) 
where β = 1 2 p 2 + αp ∈]0, +∞[ and

p = αW 1 α exp x α -1 . ( 14 
)
Note that, due to the discontinuity of the 0 penalty in 0, prox ψ is multi-valued in the limit case when β = β.

Shannon + log-sum

Set (α, β, δ) ∈]0, +∞[ 3 . The hybrid Shannon entropy + logsum penalty is defined, for every x ∈ R, as

ψ(x) =      αx log x + β log(δ + x) if x > 0 β log(δ) if x = 0 +∞ elsewhere. ( 15 
)
For every x ∈ R, its proximity operator is given by

prox ψ (x) = Argmin p∈]0,+∞[ s.t. ϕ(p)=0 1 2 (x -p) 2 + ψ(p) ,
with ϕ(p) = p 2 +(δ-x+α)p+α(δ+p) log(p)+δ(α-x)+β.

Shannon + Cauchy

Set (α, β, δ) ∈]0, +∞[ 3 . The hybrid Shannon entropy + Cauchy penalty is defined, for every x ∈ R, as

ψ(x) =      αx log x + β log(δ + x 2 ) if x > 0 β log(δ) if x = 0 +∞ elsewhere. ( 16 
)
For every x ∈ R, its proximity operator is given by

prox ψ (x) = Argmin p∈]0,+∞[ s.t. ϕ(p)=0 1 2 (x -p) 2 + ψ(p) ,
with ϕ(p) = p 3 +(α-x)p 2 +(δ+2β)p+α(δ+p 2 ) log(p)+δ(α-x).

Case of Burg entropy

The Burg entropy regularization is defined, for all x ∈ R, as

ψ 1 (x) = -log x if x > 0 +∞ elsewhere. ( 17 
)
According to [START_REF] Chaux | A variational formulation for frame-based inverse problems[END_REF], the proximity operator of the Burg entropy function reads, for every x ∈ R N , for every α ∈]0, +∞[:

prox αψ1 (x) = x + √ x 2 + 4α 2 . ( 18 
)
Let us now present the extension of this result to the case when β ∈]0, +∞[.

Burg entropy + 1

Set (α, β) ∈]0, +∞[ 2 . The hybrid Burg entropy + 1 penalty is defined, for every x ∈ R, as

ψ(x) = -α log x + βx if x > 0 +∞ elsewhere. ( 19 
)
Its proximity operator reads, for every x ∈ R ( [START_REF] Chaux | A variational formulation for frame-based inverse problems[END_REF]):

prox ψ (x) = x -β + (β -x) 2 + 4α 2 . ( 20 
)

Burg + 0

Set (α, β) ∈]0, +∞[ 2 . The hybrid Burg entropy + 0 penalty is defined, for every x ∈ R, as

ψ(x) = -α log x + β if x > 0 +∞ elsewhere. ( 21 
)
Its proximity operator reads, for every x ∈ R:

prox ψ (x) = x + √ x 2 + 4α 2 . ( 22 
)

Burg + log-sum

Set (α, β, δ) ∈]0, +∞[ 3 . The hybrid Burg entropy +log-sum penalty is defined, for every x ∈ R, as

ψ(x) = -α log x + β log(δ + x) if x > 0 +∞ elsewhere. ( 23 
)
For every x ∈ R, its proximity operator is given by

prox ψ (x) = Argmin p∈]0,+∞[ s.t. ϕ(p)=0 1 2 (x -p) 2 + ψ(p) , with ϕ(p) = p 3 + (δ -x)p 2 + p(β -δx -α) -δα.

Burg + Cauchy

Set (α, β, δ) ∈]0, +∞[ 3 . The hybrid Burg entropy + Cauchy penalty is defined, for every x ∈ R, as

ψ(x) = -α log x + β log(δ + x 2 ) if x > 0 +∞ elsewhere. (24) 
For every x ∈ R, its proximity operator is given by

prox ψ (x) = Argmin p∈]0,+∞[ s.t. ϕ(p)=0 1 2 (x -p) 2 + ψ(p) , with ϕ(p) = p 4 -xp 3 + (δ + 2β -α)p 2 -δxp -δα.

APPLICATION TO NMR SIGNAL RECONSTRUCTION

Problem formulation

During the DOSY (Diffusion Order SpectroscopY) experiment, proposed by [START_REF] Morris | Diffusion-ordered 2D NMR spectroscopy[END_REF] to analyze the properties of complex chemical mixtures, a series of measurements are acquired for different pulsed field gradient strengths, the data are then processed with the aim to separate different species according to their diffusion coefficient. The DOSY NMR data y ∈ R M gathers the results of M ≥ 1 experiments corresponding to different acquisition settings characterized by the set of parameters t = (t m ) 1≤m≤M . The problem is then to estimate, from these measurements, the values of the true diffusion distribution χ(T ) at given positions T = (T n ) 1≤n≤N . The relation between y and the sought signal x = (χ(T n )) 1≤n≤N ∈ R N can be written under the form (1) where K ∈ R M ×N is given, for every m ∈ {1, . . . , M } and every n ∈ {1, . . . , N } by K m,n = exp(-T n t m ),

where w ∈ R M is a perturbation noise. In practice, the noise is assumed to be zero-mean Gaussian, i.i.d, with known standard deviation σ > 0 so that we propose to find an estimate x ∈ R N of x by solving (2) with τ = η √ M σ, where η > 0 is a weight closed to 1 [START_REF] Trussell | Convergence criteria for iterative restoration methods[END_REF].

Experimental results

We now present the experimental results obtained when, for every n ∈ {1, . . . , N }, for every m ∈ {1, . . . , M },

t m = t min + m-1 M t max , T n = T min exp -(n-1) N log Tmin Tmax , (26) 
with M = 50, N = 200, T min = 1, T max = 10 3 , t min = 0, t max = 1.5. We consider two synthetic signals A and B. The synthetic signal A models a monodisperse distribution with symmetric log-normal shape located at T = 16 while signal B corresponds to a polydisperse distribution that is the sum of two log-normal patterns located at T 1 = 4 and T 2 = 32. Table 1 presents the resulting signal to noise ratio (SNR) defined as 10 log 10 x 2 / x -x 2 which was obtained when solving Problem (2) for both datasets, for different values of σ, and several choices for the regularization term Ψ, namely (8), ( 10), ( 17) and [START_REF] Willis | Maximum entropy image restoration revisited[END_REF]. Here, we choose to focus only on convex priors so that the optimization problem can be efficiently solved with the PPXA+ algorithm [START_REF] Pesquet | A parallel inertial proximal optimization method[END_REF]. Parameter η is set equals to 1.2, since it was observed to lead to the best reconstruction results. Moreover, when hybrid penalties are considered, we fix β = 1 -α, and we optimize α ∈]0, 1] manually so as to obtain a minimal reconstruction error. One can observe that the addition of the 1 norm in the penalty functions improves significantly the quality of restoration results, especially in the case of the polydisperse signal B. The best results are obtained with the combination of Shannon entropy and 1 penalties. This is also confirmed by visual inspection, as it can be noticed in Figure 3 

CONCLUSION

This work expands the extensive list of proximity operators available in the litterature [START_REF] Combettes | Proximal splitting methods in signal processing[END_REF][START_REF] Chaux | A variational formulation for frame-based inverse problems[END_REF][START_REF] Gheche | A proximal approach for optimization problems involving kullback divergences[END_REF] by considering the case of separable functions combining entropy and sparsity promoting terms. Through numerical experiments, we show that these functions may serve as efficient hybrid penalties for solving ill-posed inverse problems in the context of DOSY NMR spectroscopy. Since only convex penalties were tested in our experiments, the PPXA+ algorithm was retained. It should however be emphasized that the novel proximity operators we derive could be applied in a variety of proximal algorithms, in the convex [START_REF] Komodakis | Playing with duality: An overview of recent primal-dual approaches for solving largescale optimization problems[END_REF] or the non-convex case [START_REF] Chouzenoux | Variable metric forward-backward algorithm for minimizing the sum of a differentiable function and a convex function[END_REF][START_REF] Chouzenoux | A block coordinate variable metric forward-backward algorithm[END_REF]. The latter case should be of particular interest in the context of blind signal restoration problems such as those encountered in [START_REF] Repetti | Euclid in a taxicab: Sparse blind deconvolution with smoothed 1/ 2 regularization[END_REF][START_REF] Toumi | A review of blind source separation in nmr spectroscopy[END_REF] where the proposed hybrid penalties could be beneficial.
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 1 Fig. 1. Examples of entropy based penalties, in the scalar case: Shannon (continuous red line) and Burg (dashed blue line) entropy priors. Note that ψ 1 = +∞ for negative values of x.

  displaying an example of reconstruction result we obtained in the case of dataset B, with σ = 10 -5 .

Fig. 3 .

 3 Fig. 3. Reconstruction results for dataset B and σ = 10 -5 .

Table 1 .

 1 SNR in dB of the restored signals A and B for various choices of the penalization function Ψ.

			Shannon Shannon	Burg	Burg
		σ	prior + 1 prior prior + 1 prior
	Dataset A	10 -2 12.45 10 -3 18.16 10 -4 20.87	13.16 20.86 25.95	12.92 12.11 12.03	12.92 13.44 15.53
	Dataset B	10 -3 11.14 10 -4 18.11 10 -5 19.05	18.52 20.23 26.30	6.20 7.41 7.54	9.54 10.95 10.98
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