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Abstract

When learning from instances whose output labels may be
partial, the problem of knowing which of these output labels
should be made precise to improve the accuracy of predic-
tions arises. This problem can be seen as the intersection of
two tasks: the one of learning from partial labels and the one
of active learning, where the goal is to provide the labels of
additional instances to improve the model accuracy. In this
paper, we propose querying strategies of partial labels for the
well-known K-nn classifier. We propose different criteria of
increasing complexity, using among other things the amount
of ambiguity that partial labels introduce in the K-nn deci-
sion rule. We then show that our strategies usually outperform
simple baseline schemes, and that more complex strategies
provide a faster improvement of the model accuracies.

1 Introduction
Recently, the problem of learning models from imprecise
output labels, where we only know the true label to be-
long to some set, has gained some interest. Such labels
appear for example in image labeling (Cour, Sapp, and
Taskar 2011) or language processing (Yang and Vozila
2014). The problem of learning from partial labels is known
under various names: “learning with partial labels” (Cour,
Sapp, and Taskar 2011), “learning with ambiguous labels”
(Hüllermeier and Beringer 2006) or “superset label learn-
ing” (Liu and Dietterich 2014). In these works, authors have
either proposed general schemes to learn from partial labels,
for instance by adapting the loss function to partial labels
(Cour, Sapp, and Taskar 2011), or to adapt specific algo-
rithms (such as K-nn or decision trees) to the case of partial
labels (Hüllermeier and Beringer 2006).

In general, the less partial are the labels, the better these
techniques will perform. In the spirit of active learning tech-
niques, this paper addresses the problem of finding which
partial labels should be disambiguated by an oracle (expert)
in order to achieve better performances. In active learning,
one classically starts from a set of labelled data, and queries
within a pool of data with missing labels. The case of par-
tial labels shares similarities with this task, but also has
some important differences. First, the information provided
by partial labels should be used in the learning process to
determine which one should be queried. Second, in active

learning the default assumption that labels are missing-at-
random (MAR) is reasonable, which is not necessarily the
case with partial labels. For example, the partiality of the la-
bels may be due to some specific values of features, or to
the fact that some situations are more ambiguous than oth-
ers for the labeller. A first possible solution is then to make
some assumptions about the incompleteness process gener-
ating partial labels (Cour, Sapp, and Taskar 2011), which
may be difficult to check in practice. A second approach
(adopted in this paper) is to adopt a robust view consisting
in considering all possible replacements of the partial labels.

More specifically, we look at the popular K-nn classifiers
(Wu et al. 2008), for which different algorithms handling
partial labels already exist (Hüllermeier and Beringer 2006;
Zhang and Yu 2015). In order to find which instance to
query, we propose in Section 2 a general scheme based on
measuring the potential impact of knowing the true label of a
given instance. We then propose specific measures to assess
this impact. The first one, explained in Section 3, is simply
based on the number of decisions in which the instance par-
ticipates, while the other ones explained in Section 4 also
consider whether a partial label introduces some ambiguity
in the decision, using some notions issued from social choice
theory (Moulin et al. 2016) to do so. Finally, some experi-
ments in Section 5 show the effectiveness of our proposals.

2 General setting and querying schema
This section introduces the basic notations used in this paper
as well as our general querying scheme.

Setting
In our setting, we assume that we have a training set D =
{(xn,yn)|n = 1, . . . , N} used to make predictions, with
xn ∈ RP the features and yn ⊆ Ω = {λ1, . . . , λM} po-
tentially imprecise labels. As usual when working with par-
tial labels (Cour et al. 2009; Cour, Sapp, and Taskar 2011;
Yang and Vozila 2014), we assume that yn contains the true
label. We also assume that we have one unlabelled target set
T = {tj |j = 1, . . . , T} that will be used to determine the
partial labels to query and can be defined differently based
on the usage purposes as point out latter in Section 5.

For a given instance t and a valueK, its set of neighbours
in D is denoted by Nt = {xt

k|k = 1, . . . ,K} where xt
k is

its kth nearest neighbour. We will also say that xn ∈ Nt if



Figure 1: Example: 3-nn classifiers.
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Table 1: Weights and neighbours of Example 1
t Nt wt

t1 {x1,x3,x2} (0.9,0.8,0.7)
t2 {x2,x3,x1} (0.8,0.8,0.4)
t3 {x6,x4,x5} (0.8,0.8,0.4)
t4 {x6,x4,x5} (0.7,0.7,0.7)
t5 {x4,x5,x6} (0.8,0.8,0.4)

xn is among the K nearest neighbours of a given instance t.
We also assume that we have a vector wt = (wt

1, . . . , w
t
K)

weighting each neighbour in Nt according to its distance
to the target. Similarly, for a training instance xn ∈ D, we
denote by Gxn

= {t|xn ∈ Nt} the set of target instances
of which xn is a nearest neighbour.

In the sequel, we will need a way to take a decision in
presence of partial labels. In this paper, we will consider the
simple yet efficient method (Hüllermeier and Beringer 2006)
that consists in predicting

h(t) = arg max
λ∈Ω

∑
xt
k∈Nt

wt
k1λ∈yt

k
, (1)

with 1A the indicator function of A (1A = 1 if A is true and
0 otherwise). The idea of the above method is to count one
(weighted) vote for λ whenever it is in the partial label yt

k.

Example 1. Let us consider the case illustrated on Figure 1,
where the training set contains 6 instances, the target set has
5 instances and Ω = {λ1, λ2, λ3}.

Assuming that we work with K = 3, the neighbours
of each target instance and their associated (illustrative)
weights are given in Table 1. And we have also:

Gx1
= Gx2

= Gx3
= {t1, t2}

Gx4 = Gx5 = Gx6 = {t3, t4, t5}.

Precise instances x5 and x6 cannot be queried, but which
label among x1,x2,x3 and x4 should be queried is not ob-
vious. Indeed, x4 is involved in more decisions than the three
other partial labels (as |Gx4 | is greater than all other sets),
but getting more information about x4 will not change these
decisions, as the result of Equation (1) will not change what-
ever the true label of x4. In contrast, knowing the true label
of x1, x2 or x3 may change our decision about t1 and t2,
hence from a decision viewpoint, querying these partial la-
bels seems more interesting.

In Sections 3 and 4, we will explore querying patterns
following both intuitions (neighbour-based and ambiguity-
based), but we first introduce a general querying scheme.

General querying scheme
Our general querying scheme follows a simple rule: for each
partial label instance xn and each target instance t, we will
define a function

fxn(t) (2)
called local effect score, whose exact definition will vary
for different criteria. The role of this function is to evaluate
whether querying xn can impact the result of the K-nn al-
gorithm for t. Since we want to improve the algorithm over
the whole target set, this will be done by simply summing
the effect of xn over all data in D, that is by computing

fxn(T) =
∑
t∈T

fxn(t), (3)

that we will call global score function. The chosen instance
to be queried, denoted by x̂i, will then simply be the one
with the highest effect score, or in other words

x̂i = arg max
xn∈D

fxn(T).

We will now propose different ways to define fxn(t), that
will be tested in the experimental section. Since the com-
putation of the global effect score from the local ones is
straightforward, we will focus in the next sections on com-
puting fxn

(t) for a single instance. Also, we will denote by
qn the query consisting in asking the true label of xn.

3 Neighbour-based querying criteria
Our first idea is quite simple and consists in evaluating
whether a partial label xn is among the neighbours of t,
hence if it will participate to its classification, and how
strongly it does so. This can be estimated by the simple func-
tion fMW

xn
(t) as follows

fMW
xn

(t) =
wn∑K
k=1 w

t
k

(4)

where wn is wt
k if xn is the kth neighbour of t, and zero

otherwise. The global effect score of xn can then be com-
puted using Equation (3). In the unweighted case, this score
is the number of target instances of which xn is a neigh-
bour. This strategy is similar to the one of querying data in
high-density regions in active learning techniques (Settles
and Craven 2008).

Table 2 summarizes the global effect scores for Exam-
ple 1. As expected, x4 is the one that should be queried ac-
cording to fMW , since it is the one participating to most
decisions.

4 Indecision-based querying criteria
This section presents other effect scores based on whether
a partially labelled instance xn introduces some ambiguity
in the decision about an instance t. We first define what we
mean by ambiguity.



Table 2: Effect scores obtained by using fMW in Example 1
fMW
xn

t1 t2 t3 t4 t5 T

x1 0.4 0.2 0 0 0 0.6
x2 0.3 0.4 0 0 0 0.7
x3 0.3 0.4 0 0 0 0.7
x4 0 0 0.4 0.3 0.4 1.1

Ambiguous instance: definition
In the K-nn algorithm, each neighbour can be seen as a
(weighted) voter in favor of his preferred class. Partial la-
bels can then be assimilated to voters providing incomplete
preferences. For this reason, we will define ambiguity by us-
ing ideas issued from plurality voting with incomplete pref-
erences (Konczak and Lang 2005). More precisely, we will
use the notions of necessary and possible winners of such a
voting to determine when a decision is ambiguous.

For an instance t with Nt = {xt
1, . . . ,x

t
K}, we will de-

note by Lt = {(lt1, . . . , l
t
K)|ltk ∈ yt

k} the set of possible
selections of Nt with cardinality |Lt | =

∏K
k=1 |y

t
k|. For a

given selection lt ∈ Lt , the corresponding winner(s) of the
voting procedure is (are)

λ̂lt = arg max
λ∈Ω

K∑
k=1

wt
k1ltk=λ

with wt
k the weight corresponding to the kth neighbor. Let

us note that the arg max can return multiple labels.
We can now define the possible (PLt ) and necessary label

sets (NLt ) of t as follows:

PLt = {λ ∈ Ω|∃lt ∈ Lt s.t λ ∈ λ̂lt} (5)
and

NLt = {λ ∈ Ω|∀lt ∈ Lt , λ ∈ λ̂lt}, (6)

which are nothing else but the set of possible and neces-
sary winners in social choice theory. By definition, we have
NLt ⊆ PLt . Given a target instance, we adopt the follow-
ing definition of ambiguity.
Definition 1. A target instance t is called ambiguous if
NLt 6= PLt .

By querying partial labels, we can reduce the ambiguity
of t by either reducing PLt or increasing NLt , eventually
getting PLt = NLt (see Proposition 3 further on).

Ambiguous instance: computation
A first issue is how to actually compute NLt and PLt .
The problem of determining NLt is very easy (Konczak
and Lang 2005). However, determining PLt is in practice
much more difficult. In the unweighted case, known results
indicate (Betzler and Dorn 2010; Xia and Conitzer 2011)
that PLt can be determined in cubic (hence polynomial)
time, solving a maximum flow problem and using the fact
that when votes are (made) unitary, the solution of this flow
problem is integer-valued (due to the submodularity of the
constraint matrix).

Table 3: Minimal and maximal scores for Example 1
λ Scores t1 t2 t3 t4 t5

λ1
Smin 0 0 1.2 1.4 1.2
Smax 0.7 0.8 2 2.1 2

λ2
Smin 0 0 0 0 0
Smax 1.7 1.2 0.8 0.7 0.8

λ3
Smin 0 0 0 0 0
Smax 2.4 2 0 0 0

However, when votes are non-unitary (when weights are
different), this result does not hold anymore, and the prob-
lem appears to be NP-hard. In addition to that, in our setting
we can have to evaluate PLt a high number of times (in
contrast with what happens in social choice, where PLt and
NLt have to be evaluated at most a few times), hence even a
cubic algorithm may have a prohibitive computational time.

We will then provide an easy-to-compute approximation
of it, denoted APLt . Let us first provide some definitions.

Given Nt , we denote by Ωt = ∪Kk=1y
t
k ⊆ Ω all labels

included in the neighbours of t. For each λ ∈ Ωt , we define
the minimum and maximum scores as

Smin(λ) =

K∑
k=1

wt
k1λ=yt

k
and Smax(λ) =

K∑
k=1

wt
k1λ∈yt

k
,

respectively. For a given selection lt, we also denote by
Slt (λ) =

∑K
k=1 w

t
k1λ=ltk

the score received by λ. For any
lt , we can see that

Smin(λ) ≤ Slt (λ) ≤ Smax(λ). (7)

Smin(λ) and Smax(λ) are therefore the minimal and maxi-
mal scores that the candidate λ can receive. Table 3 provides
the score bounds obtained for the different ti of Example 1.

From the minimal and maximal scores, we can easily get
NLt and an approximation (APLt ) of PLt , as indicated
in the next proposition and definition. All proofs are given
in the supplementary material.

Proposition 1. Given t, wt and Nt , λ ∈ NLt iff

Smin(λ) ≥ Smax(λ
′
),∀λ

′
6= λ, λ

′
∈ Ωt . (8)

Definition 2. Given t, wt and Nt , λ ∈ APLt iff

Smax(λ) ≥ max
λ′∈Ωt

Smin(λ
′
),∀λ

′
6= λ, λ

′
∈ Ωt . (9)

Example 2. According to Table 3, the sets obtained for Ex-
ample 1 with K = 3 are

NLt3 = NLt4 = NLt5 = APLt3

= APLt4 = APLt5 = {λ1}

and

NLt1 = NLt2 = ∅ APLt1 = APLt2 = {λ1, λ2, λ3},

showing, as expected, that only t1, t2 are ambiguous.



The next proposition states that APLt is an outer approx-
imation of PLt (therefore not missing any possible answer)
and that both coincide whenever NLt is non-empty (there-
fore guaranteeing that using APLt will not make some in-
stance artificially ambiguous).

Proposition 2. Given t , wt and Nt , the following proper-
ties hold

A1. APLt ⊇ PLt ⊇ NLt

A2. if NLt 6= ∅, then APLt = PLt .

Effect of a query on ambiguous instances
Now that we have defined how to identify an ambiguous in-
stance, the question arises as to how we can identify queries
that will help to reduce this ambiguity. This section provides
some answers by using the notions of necessary and (ap-
proximated) possible labels to define a local effect score.
More precisely, the local effect score fxn

(t) will take value
one if a query can modify the sets PLt or APLt , and
NLt . Additionally, as this local effect score aims at detect-
ing whether a query can affect the final decision, it will also
take value one if it can change the decision h(t) taken by
Equation (1). In some sense, such a strategy is close to ac-
tive learning techniques aiming to identify the instances for
which the decision is the most uncertain (uncertainty sam-
pling (Lewis and Catlett 1994), query-by-committee (Seung,
Opper, and Sompolinsky 1992)).

To define this score, we need to know when a query qn can
potentially change the values PLt , APLt , h(t) or NLt .
A first remark is that if xn 6∈ Nt , then a query qn cannot
change any of these values. Let us now investigate the con-
ditions under which qn can change the sets when xn ∈ Nt .
We first introduce some useful relations between the sets
PLt , APLt , or NLt . We will denote by PLqnt , APLqnt ,
and NLqnt the sets potentially obtained once xn is queried.

Proposition 3. Given t, Nt and qn, then the following prop-
erties hold

B1. APLqnt ⊆ APLt

B2. NLt ⊆ NLqnt ⊆ PLqnt ⊆ PLt

B3. Furthermore, if NLt = PLt = APLt , then

NLqnt = PLqnt = APLqnt = NLt ,

meaning that APLt , PLt , PLt cannot change after qn.

In this paper, a query will be considered interesting (i.e.,
having a local effect score of one) if at least one value λ ∈
yn can change NLt , PLt , APLt or h(t). Indeed, requiring
all possible values λ ∈ yn to change the sets NLt , PLt ,
APLt or h(t) is much too demanding, and is unlikely to
happen in practice.

We will go from the cases that are the most likely to hap-
pen in practice, that is changes in PLt or APLt , to the most
unlikely cases, that is changes in NLt . The next proposition
investigates conditions under which APLt will not change.

Proposition 4. Given t, Nt , APLt and wt , qn cannot
change APLt if the two following conditions hold

D1. for any λ ∈ APLt and λ 6∈ yn

Smax(λ) ≥ max
λ′∈yn

Smin(λ
′
) + wn.

D2. and for any λ ∈ APLt ∩ yn, we have

Smax(λ)− wn ≥

max
(

max
λ′∈yn\{λ}

Smin(λ
′
) + wn, max

λ′∈Ωt\yn

(Smin(λ
′
)
)
.

According to Equation (9), a label λ 6∈ APLt if there
is a label λ′ whose minimal score Smin(λ′) is higher than
Smax(λ). Proposition 4 identifies, for a label λ ∈ APLt ,
those conditions under which an increase of the minimal
score Smin(λ′) for other labels is not sufficient to become
higher than Smax(λ). Otherwise, λ could get out of APLt .

The case of PLt is more complex, and since estimating it
requires to enumerate selections, the same goes for evaluat-
ing whether a query can change it. In particular, we could not
find any simple-to-evaluate conditions (as those of Proposi-
tion 4) to check whether a query can change PLt , and we
are reduced to provide the following definition. This means
that evaluating whether a query can change the set PLt will
only be doable when K or the cardinality of partial labels
neighbours will be small.
Definition 3. Given yn, Nt , PLt , Ωt and wt , a query qn
on xn ∈ Nt is said to not affect PLt if, for every possible
answer λ ∈ yn of the query, we have PLqn,λt = PLt , where
PLqn,λt denotes the set PLt when yn = λ.

The next proposition investigates whether or not a query
can change the decision given by Equation (1) that we use
to make predictions from partially labelled neighbours.
Proposition 5. Given t, Nt , h(t), Ωt and wt , qn does not
affect h(t) if at least one of following conditions hold

E1. h(t) ∩ yn = ∅.
E2. ∀λ ∈ h(t) ∩ yn,

Smax(λ)− wn > max
λ′∈Ωt\{λ}

Smax(λ
′
) (10)

Since h takes decisions based on the maximal number of
votes a label can receive, this proposition simply identifies
the cases where the reduced score of Smax(λ) with λ ∈ h(t)
(or non-reduction in case E1) cannot become smaller than
another Smax(λ′). Finally, we give some conditions under
which NLt will not change, which may happen in practice.
Proposition 6. Given t, Nt , NLt and wt , then qn cannot
change NLt if the two following conditions hold

C1. for any λ 6∈ NLt and λ 6∈ yn,

Smin(λ) <max
(

max
λ′ 6=λ,λ′∈Ωt\yn

Smax(λ
′
),

max
λ′∈yn

Smax(λ
′
)− wn, min

λ′∈yn

Smax(λ
′
)
)
,

C2. for any λ 6∈ NLt and λ ∈ yn

Smin(λ) + wn <

max
(

max
λ′ 6∈yn

Smax(λ
′
), max
λ′∈yn\{λ}

Smax(λ
′
)− wn

)
.



Table 4: Check for propositions for Example 1.
APLt h(t) NLt PLt

Prop. 4 Prop. 5 Prop. 6 Def. 3
x1 No (λ3) No (λ2) No (λ3) No (λ3)

t1 x2 No (λ3) Yes Yes Yes
x3 No (λ2) No (λ2) Yes Yes
x1 Yes No (λ2) Yes Yes

t2 x2 Yes No (λ1) Yes No (λ3)
x3 No (λ3) No (λ3) No (λ3) No (λ3)

Table 5: Ambiguity effect for Example 1.
fPLxn

(t1) fAPLxn
(t1) fPLxn

(t2) fAPLxn
(t2)

x1 0.4 0.4 0.2 0.2
x2 0 0.3 0.4 0.4
x3 0.3 0.3 0.4 0.4

According to Equation (8), a label λ ∈ NLt if its minimal
score Smin(λ) is higher than the maximal scores of all the
other labels λ′. Proposition 6 identifies, for a given label λ ∈
Ωt , the conditions under which a decrease of the maximal
score Smax(λ′) of the other labels is not sufficient to become
lower than Smin(λ) (otherwise, λ could be included in NLt

after the query). Condition C1 covers the cases where λ is
not the true label of yn, while condition C2 covers the cases
where it is.

We can now use those propositions and definition to de-
fine the two local effect scores

fPLxn
(t) =

{
0 if Def. 3, Prop. 5, Prop. 6 hold

wn∑K
k=1 w

t
k

otherwise. (11)

and

fAPLxn
(t) =

{
0 if Prop. 4, Prop. 5, Prop. 6 hold

wn∑K
k=1 w

t
k

otherwise. (12)

In the next sections, query schemes corresponding to
fPLxn

(t) and fAPLxn
(t) are denoted shortly by PL and APL,

respectively. Since fPLxn
(t) uses exact information to iden-

tify the ambiguous instances, we can expect the model ac-
curacy to improve faster by using it, yet getting fPLxn

(t) is
computationally demanding. In practice, fAPLxn

(t) offers a
cheap approximation that can still provide good results (this
will be confirmed by our experiments).

Tables 4 and 5 provide an overview of the computations
associated to Example 1. Each time a proposition does not
hold, we provide between parenthesis the specific answer for
which it does not hold.

From Table 5, we can see that fAPLx2
(T) = fAPLx3

(T) =

0.7, but that fPLx2
(T) = 0.4 and fPLx3

(T) = 0.7, mean-
ing that the two effect scores given by Equations (12)
and (11) would provide different results. Finally, note that
since fPLxn

(t) and fAPLxn
(t) will be positive as soon as only

one Proposition or Definition does not hold, we do not need
to evaluate all of them if we know that one does not hold.

Table 6: Data set used in the experiments
Name # instances # features # labels

iris 150 4 3
wine 178 13 3
forest 198 27 4
seeds 210 7 3
glass 214 9 6
ecoli 336 7 8
libras 360 91 15

dermatology 385 34 6
vehicle 846 18 4
vowel 990 10 11
yeast 1484 8 12

winequality 1599 11 6
optdigits 1797 64 10
segment 2300 19 7

wall-following 5456 24 4

5 Experiments
This section presents the experimental setup and the results
obtained with benchmark data sets which are used to illus-
trate the behaviour of the proposed schemes.

Experimental setup
We do experiments on “contaminated” versions of standard,
precise benchmark data sets. To contaminate a given data
set, we used two methods:

Random model: Each training instance is contaminated
randomly with probability p. In case an example xn is con-
taminated, the set yn of candidate labels is initialized with
the original label λ, and all other labels λ

′ ∈ Ω \ {λ} are
added with probability q, independently of each other.

Bayes model: In order to take the dependencies between
labels (more likely to happen in practice) into account, a
second approach is used. First, a Naive Bayes classifier is
trained using the original data (precise labels) so that each
label is associated to a posterior probability Pr(λ|xn). As
before, each training instance will be contaminated ran-
domly at probability p. In case of contamination, the true
label is retained, the other labels are re-arranged according
to their probabilities and the kth label is included in the set
of labels with probability 2kq

|Ω| . For both approaches, the ex-
pected cardinality of the partial labels, in case of contamina-
tion, is 1 + (M − 1)q (Hüllermeier and Beringer 2006).

Results have been obtained for 15 UCI data sets described
in Table 6. Three different values for K (3, 6 and 9) have
been used for all experiments. The weightwt

k for an instance
t is wt

k = 1 − (dtk)/(
∑K
j=1 d

t
j ) with dtj the Euclidean dis-

tance between xt
j and t. As usual when working with Eu-

clidean distance based K-nn, data is normalized.
We use a three-fold cross-validation procedure: each data

set is randomly split into 3 folds. Each fold is in turn con-
sidered as the test set, the other folds are used for the train-
ing set. The training set is contaminated according to one of
the models with two combinations of (p, q) parameters:(p =
0.7, q = 0.5) and (p = 0.9, q = 0.9), which correspond to



Table 7: Complexities of query schemes
RD MP/ACT MW APL PL
O(1) O(T ) O(TK) O(TM(M+K)) O(TMK)

low and high levels of partiality. The error rate is computed
as the average error obtained from the 3 test sets. This pro-
cess is repeated 10 times and results are also averaged. For
each data set, the number of queries I has been fixed to 10%
of the number of training data.

Similarly to what is done in active learning, we pick T
(the pool of unlabelled data) as the set of partially labelled
instances.

To evaluate the efficiency of the proposed query schemes
(MW, PL and APL), we compare our results with 3 baseline
schemes:

- RD: a query is picked up at random from the pool;

- MP: the one with the largest partial label is picked up;

- ACT: partially labelled instances are considered as unla-
beled ones and ModFF, a classical active learning scheme
(Joshi, Porikli, and Papanikolopoulos 2012), is used to
query instances. ModFF selects the queries in such a way
that all target data have labelled samples at a bounded
maximum distance.

The complexity of each scheme for a single query is given
in Table 7. Note that the more computationally demanding
PL scheme was only tested for the case K = 3.

Results
For each scheme, the error rate after querying 10% of the
number of training data has been computed and the schemes
have been ranked according to this error rate. The average
error rates and the average ranks of the schemes over the 15
data sets are given in Table 8. Complete results, as well as
detailed results of all statistical tests are given in supplemen-
tary material.

A Friedman test done over the ranks indicates that, in all
settings, there are significant evidence that not all algorithms
are equivalent (except for the random setting with low par-
tiality that gave a p-value of 0.002, all other are below 10−5).
Nemenyi post-hoc test performed to identify the differences
between the schemes indicate that our proposed schemes
(MW, PL, APL) work almost systematically better than any
baseline, with APL having a significant positive difference
in pairwise tests. A noticeable exception is when the partial-
ity is low and K = 9. However in this case it can be seen
from Table 8 that all querying techniques only improve re-
sults in a very marginal way (with an accuracy gain around
1% for all methods).

A second look at Table 8 confirms that the proposed meth-
ods really provide an edge (in terms of average accuracy
gain) in the situations where ambiguous situations are the
most present, that is when:

• K is low, in which case even a few partial labels among
the neighbours may lead to ambiguous situations, a fact
that is much less likely when K gets higher.

Table 8: Average error rates % (average ranks) over the 15
data sets

Random Bayes Random Bayes
K Scheme p = 0.7 p = 0.7 p = 0.9 p = 0.9

q = 0.5 q = 0.5 q = 0.9 q = 0.9

3

no query 36.4 42.6 77.8 78.8
RD 30.8(4.60) 34.6(4.40) 61.6(3.73) 62.4(3.33)
MP 29.9(3.60) 34.3(4.20) 62.4(4.13) 63.1(3.93)
ACT 32.6(5.53) 37.5(5.73) 66.2(5.33) 66.5(5.07)
MW 27.6(2.33) 29.9(2.73) 54.0(2.20) 54.2(1.53)
APL 27.3(1.67) 29.4(1.67) 53.5(1.53) 54.1(1.60)
PL 27.2(1.27) 29.3(1.33) 53.5(1.33) 54.1(1.60)

6

no query 25.7 30.4 63.3 65.6
RD 24.0(3.40) 26.4(3.53) 44.9(3.27) 45.6(3.27)
MP 23.7(2.00) 26.0(3.00) 45.6(3.80) 46.6(3.60)
ACT 24.4(3.87) 27.8(4.87) 51.2(4.93) 52.7(4.93)
MW 23.6(2.40) 25.0(2.07) 37.8(1.87) 38.9(1.73)
APL 23.4(1.53) 24.6(1.07) 36.0(1.13) 37.5(1.20)

9

no query 25.4 27.9 53.7 57.5
RD 24.4(2.47) 25.5(2.67) 37.0(2.93) 38.2(2.80)
MP 24.1(1.53) 25.6(2.93) 38.3(3.73) 39.8(3.67)
ACT 24.6(3.07) 26.5(4.40) 43.4(4.73) 45.8(4.87)
MW 24.5(3.07) 25.8(2.47) 33.7(2.33) 34.8(2.33)
APL 24.3(2.40) 25.6(1.73) 31.7(1.13) 33.3(1.33)

• There is a large amount of partial labels, in which case
increasing the value of K will have a very limited effect
on the number of ambiguous cases.

Both cases are of practical interest, as even if picking a
higher value of K is desirable when having low partiality,
it may be computationally unaffordable.

Finally, we can notice that the Bayes contamination in-
duces slightly more ambiguity in the data sets, as more likely
class (hence similar labels in a given region of the input
space) have more chances to appear in the contaminated la-
bels. Bayes contamination also seem somehow more realis-
tic, as experts or labellers will have a tendency to provide
sets of likely labels as partial information.

6 Conclusion

This paper has adressed the problem of selecting the in-
stances that should be disambiguated in order to improve
the accuracy of a K-nn classifier, when several training in-
stances are characterized by imprecise labels. We have pro-
posed two querying schemes, both based on the computation
of an effect score quantifying the impact of a disambiguation
on the final result. A first strategy (neighbour-based) consists
in selecting an instance when it is involved in many deci-
sions. A more refined strategy (indecision-based) consists in
selecting an instance when it can potentially reduce the am-
biguity of one or several decisions. This second strategy is
more complex from a computational point of view, and we
have therefore proposed an approximate scheme leading to
very close performances. The experiments have shown that
the accuracy of K-nn classifiers is significantly improved
by querying partial label instances and that indecision-based
querying strategies are the best-performing schemes.
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