Enhancing the Infrared Response of Carbon Nanotubes From Oligo-Quaterthiophene Interactions
Résumé
Infrared response on a carbon nanotube is weak because this homonuclear allotrope of carbon does not bear permanent dipoles. Here, we report the discovery of an exaltation of the infrared absorption response in single-walled carbon nanotubes from dye molecule interactions. A study performed on dimethylquaterthiophene confined into the hollow core of single-walled carbon nanotubes or π-stacked at the outer surface of the latter leads to a symmetry breaking, allowing us to probe interactions between both subsystems. The nature of these interactions is discussed taking into account the tube diameter. This new phenomenon opens a new route to detect weak vibrations thanks to a confinement effect.