
HAL Id: hal-01421487
https://hal.science/hal-01421487v1

Submitted on 22 Dec 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Assisting the evolutionary development of SoS with
reconfiguration patterns

Franck Petitdemange, Isabelle Borne, Jeremy Buisson

To cite this version:
Franck Petitdemange, Isabelle Borne, Jeremy Buisson. Assisting the evolutionary development of SoS
with reconfiguration patterns. Sustainable Architecture: Global Collaboration, Requirements, Analy-
sis (SAGRA), Nov 2016, Copenhagen, Denmark. pp.9, �10.1145/2993412.3004845�. �hal-01421487�

https://hal.science/hal-01421487v1
https://hal.archives-ouvertes.fr

Assisting the Evolutionary Development of SoS with
Reconfiguration Patterns

Franck Petitdemange
IRISA University of South

Brittany
franck.petitdemange@irisa.fr

Isabelle Borne
IRISA University of South

Brittany
isabelle.borne@irisa.fr

Jérémy Buisson
IRISA Military Academy of

St-Cyr
jeremy.buisson@irisa.fr

ABSTRACT

System of systems (SoS) engineering is an emerging ap-
proach to deal with complex systems that have low or no
control over their constituents. An SoS must adapt itself
not only to the willingness of its constituents to participate
or disengage, but also to evolving needs. As reconfiguration
is a routine task, the SoS architect needs specific assistance,
especially to easily identify reusable solution principles and
to track her/his decisions in the design of reconfiguration.
To address these issues, we propose to introduce the concept
of reconfiguration pattern based on prior design and architec-
tural patterns. These patterns constitute well-documented,
principled and adaptable solution building blocks. We illus-
trate our approach with one reconfiguration pattern applied
on an example based on the French communication system
for emergency services.

1. INTRODUCTION
Systems of systems [13] are an emerging class of complex

systems characterized by the combination of the following
properties: (1) operational independence of the constituents;
(2) managerial independence of the constituents; (3) evolu-
tionary development; (4) emergent behavior; (5) geographi-
cal distribution of the constituents. Orthogonal to the above
characteristics, four categories are often used to classify the
SoS depending on the type of their management. A directed
SoS is built such that the SoS has coercive control over its
constituents. In anacknowledged SoS the design of the con-
stituents is based on a cooperative agreement between the
SoS and the constituents. In a collaborative SoS, the con-
stituents collaborate on their own will when they agree on
a common global service (called mission) they should pro-
vide. A virtual SoS gathers constituents that collaborate
regardless of any well-identified global service. Two char-
acteristics are challenging. First, the constituent systems
retain their own operational and managerial independence,
therefore the system of systems has low or no control over its
constituents. Second, the emergent behavior results in the

ACM ISBN 978-1-4503-4781-5/16/11.

DOI: http://dx.doi.org/10.1145/2993412.3004845

fact that architect cannot anticipate the interaction results
between constituents. Regarding sustainability aspects of
SoS, the architect needs to continuously evaluate the current
architecture regarding the requirements. If a SoS diverges
from requirements, the architect needs to compute a new ar-
chitecture and deploy it. This deployment comes at run-time
mainly. SoS usually involve critical systems or economic sys-
tems (e.g emergency services, transportation services) than
can not support the disruption or degradation of some ser-
vices. The SoS architecture continuously evolves: it is what
we call evolutionary development.

The SoS domain emphasizes the need for reconfiguration.
In component based systems, components are considered
with homogeneous reconfiguration semantics and a complete
control on operational behavior and connections. For ex-
ample in the Fractal component model1, components are
assumed to implement the same reconfiguration semantics
and a component can be stopped independently of its execu-
tion state. In a SoS, the reconfiguration semantics between
constituents is not uniform. Each constituent retains a par-
ticular reconfiguration semantics, and to stop an ongoing
operation is not the rule. Alternatives must be designed for
each need of reconfiguration at run-time. As a consequence
we advocate that specification, design and validation for re-
configuration become time consuming, and that it would be
useful to provide assistance to the architect.

To deal with SoS architecture complexity and to assist
architects, various kinds of architectural patterns were pro-
posed [11, 12, 15]. These patterns are suitable to assist
the architect with development, maintenance and evolution
steps. They are reusable units for specification, design and
analysis of architecture. We propose to use the same ab-
straction to address reconfiguration issues. Our approach
fosters the reuse of principled solutions and the documenta-
tion of the decisions made in the design of each SoS recon-
figuration.

Our contribution in this paper is the design of reconfigu-
ration patterns applied to system of systems architectures.
In the literature, reconfiguration patterns do not consider
SoS context. In [10] the reconfiguration patterns mainly
concern components and is based on the quiescent state of
components. The managerial independence of constituents
on a SoS does not allow to control their states. [14] pro-
pose to describe basic reconfiguration operations. It does
not address the complex interdependencies involved in the
reconfiguration. This could lead to inconsistencies on other
parts of the SoS.

1http://fractal.ow2.org/

In our proposition, reconfiguration patterns could be con-
sidered at various levels. Coarse-grained patterns describe
overall and global reconfiguration strategies. Fine-grained
patterns describe solutions to specific reconfiguration issues.
We advocate that patterns with coarse-grained identify the
technical issues that need to be solved by fine-grained pat-
terns. They will capture the context of managerial indepen-
dence. To illustrate our contribution we define a pattern and
we apply it to an SoS example. We show how this pattern
effectively helps the architect in the design of reconfigura-
tions.

The paper is organized as follows. The next section fur-
ther describes the systems of systems approach and its par-
ticularity with regard to reconfiguration. Section 3 presents
the concept of reconfiguration pattern based on its documen-
tation, reuse and composition aspects. Section 4 describes
one concrete reconfiguration pattern, as well as an exam-
ple of it use. Section 5 discusses related work. Finally we
conclude in Section 6 and give future directions.

2. APPROACH
Due to the intrinsic nature of SoS, the design and im-

plementation of reconfigurations are routine activities dur-
ing SoS operation, hence calling for a more effective and
streamlined engineering process. Proposing reconfiguration
patterns aims at improving in this regard. When the pat-
terns are well-documented, they provide principled solutions
to the most frequent situations with respect to the capabil-
ities and willingness of the constituents to contribute to the
reconfiguration. When no pattern matches the situation,
the architect is still able to design and implement an ad
hoc reconfiguration. The case for SoS is not a fundamental
shift in terms of dynamic reconfiguration, in that the basic
mechanisms can be similar to those in other adaptive sys-
tems. But an architect who needs to reconfigure a system
of systems faces several difficult tasks related to managerial
independence and emergence. She/he needs to define a new
architecture, but also to make design choices in accordance
with the constraints imposed by the SoS constituents, in
order to create a viable reconfiguration design, which can
later be implemented. The reconfiguration patterns we pro-
pose aim at providing the architect with assistance in these
tasks. Following the idea of design patterns, architectural
patterns, etc., the reconfiguration patterns capture typical
solutions to reconfiguration problems with well-known prop-
erties. Patterns help in reusing reconfiguration knowledge
and expertise in order to streamline this activity.

2.1 Issues in the design of a SoS reconfigura-
tion

The documenting aspect of the reconfiguration patterns
follows from the architect’s requirements expressed when-
ever a reconfiguration is considered. As usual, the architect
has to identify and express the changes that occur within the
architecture. The changes of a SoS architecture are made of
additions and removals of constituents, as well as changes
of connections between the constituents. Namely, Changes
describe how to go from the initial architecture to the target
architecture while preserving the coherence of the running
system. The architect must preserve transaction mechanism
during the reconfiguration, for instance, to ensure that any
transaction started ends and there is no deadlock.

Moreover, the managerial independence of constituents

in the SoS leads to consider that each constituent is de-
signed, deployed and managed independently of the other
constituents and of the SoS. Each constituent may expose
specific or restricted reconfiguration capabilities. As a con-
sequence the SoS architect needs to make the constituent re-
configuration model explicit to deal with constituents having
heterogeneous capabilities. An explicit model with formal
semantics helps to identify a situation in which applying a
pattern. For instance, the Stop operation does not have the
same semantics in a directed or a collaborative SoS: in the
former case, a constituent totally stops its activity; in the
latter case, a constituent stops its contribution to the SoS,
but it possibly still operates in other contexts. The more
control the SoS has over its constituents, the more cooper-
ative the constituents are, including with respect to recon-
figuration. Therefore, the solutions to reconfiguration issues
must be clearly settled in the context of a well-identified
type of SoS management.

Even if the SoS architect can influence the constituents
management, a SoS can not forcibly instantiate, stop, start
or use a given constituent. When the SoS delegates some
of the reconfiguration operations to its constituents, the lat-
ter decide how and when to perform these operations. We
introduced the mediators to manage interactions between
constituents. Thus we need a well-documented behavioral
model of the mediators.

Some architectural requirements can be translated into
architectural invariants. For instance, a requested invari-
ant can be: given two constituents, there is always one of
them being wired in the architecture, i.e., even during the
reconfiguration, a service remains continuously provided by
either one of the two constituents. The architect can fur-
ther quantify the acceptable service degradation or minimal
service preservation. Behavioral properties are also to be
considered during the reconfiguration. For instance, a mes-
sage order may or may not be preserved between two con-
stituents; real-time deadlines may or may not be relaxed;
failures may or may not be taken into consideration; and
so on. Such behavioral properties may require specific re-
configuration actions such as the inclusion of temporary con-
stituents in order to mitigate transient unavailability of some
other constituents. This can have an impact on constituent
implication in the SoS. Indeed, the operational independence
characteristics results in SoS constituents having competing
interests and priorities for their own services.

2.2 The reconfiguration pattern form
The description of a reconfiguration pattern is made of

the following fields. Some of them are usual general fields
found in any kind of pattern, such as the name, intent, re-
lated patterns, forces. Some other fields are specific to the
reconfiguration domain, such as the explicit reconfiguration
grammar, used to deal with managerial independence. The
fields we propose are:

• Name meaningfully identifies the pattern in catalogs.

• Intent informally describes the changes that are ad-
dressed by the pattern. It gives an indication about
when the pattern can be applied.

• Context indicates the situations whenever the pattern
can be considered, and the associated vocabulary used
within the pattern. As such, the context is further
refined by two main aspects:

– Related architectural pattern optionally refers to a
well-documented architectural context, including
specific terminology, structural constraints and
properties.

– Category of SoS management documents what
kind of SoS is considered.

• Problem refines the intention with the objectives and
goals of the pattern. It explains why the pattern ad-
dresses a non trivial situation. The problem field con-
tains the following items:

– Initial/target architectures describe the starting
and the ending points of the reconfiguration ad-
dressed by the pattern. While any ADL can be
used here, graph-grammar-based, e.g., [6] or logic-
based, e.g., [1, 3, 16] languages allow to abstract
over the unchanged parts of the architecture.

– Architectural invariant and Behavioral properties
explicit the conditions ensured by the pattern dur-
ing reconfiguration. They can be given as an in-
formal prose or formalized using, e.g., standard
[3, 16] or temporal logic [7, 14].

– Forces explain the general principles and points
adopted in the pattern solution. They motivate
these principles with respect to the objectives de-
picted in the problem.

• Solution is the advocated means by which the problem
can be solved. It may contain some artifacts like (tem-
plate) reconfiguration scripts, for instance. It includes
a Reconfiguration grammar that specifies the capabili-
ties of the reconfiguration mechanisms assumed by the
participants of the pattern. At first glance, a state-
chart is used to express the reconfiguration grammar.
Formal logical approaches [3, 16] provide a more pre-
cise specification with unambiguous semantics.

• Consequences discuss impacts of the solution, espe-
cially in terms of quality attributes.

3. EXAMPLE OF A RECONFIGURATION

PATTERN
To illustrate our approach, we first give the description of

a reconfiguration pattern. Then, we discuss how this pattern
is actually used to reconfigure a specific system of systems.

3.1 Co-evolution of configurations pattern

• Name: Co-evolution of configurations

• Intention: The co-evolution of configurations pattern
allows to deploy a target architecture concurrently to a
source architecture without stopping the running ser-
vices. It is possible to change a service provider in a
transparent way for consumers. Consumers progres-
sively migrate from the source to the target architec-
ture while states shared between source and target ar-
chitectures co-evolve.

• Context:

Figure 1: Architecture diagram for the co-evolution

pattern

C2 mediator

operator 1

operator n

...

new C2

switch to a new C2

reports

directives

– Related architectural pattern This reconfiguration
pattern is applied to the field of emergency SoS in
which a constituent called Command and Control
(C2) manages the other constituents called oper-
ators (cf. fig. 1). Emergency SoS (see fig. 4) usu-
ally contains two kinds of constituents. The C2
(a single one) oversees the realization of the mis-
sion (SoS global service) and provides the state of
the situation based on reports received from the
other constituents. It coordinates the individual
tasks of the other constituents, the operators, de-
pending on its view of the mission (see Fig. 1).
The operators achieve the tasks that are required
to fulfill the mission assigned in the directives sent
by the C2. They report their progress to the C2.
Placed in the middle, a mediator observes and
transmits the messages between the constituents.

– Category of SoS management This pattern fits
well to any directed or acknowledged SoS since it
requires that the C2 provides its internal state for
the purposes of the migration and a synchroniza-
tion mechanism during reconfiguration. More-
over the SoS offers capabilities to observe and
exchange control between systems. Despite the
transient phase, the pattern ensures that the new
C2 acquires a consistent view of the mission.

• Problem: The problem lies in the fact that the opera-
tors can hardly be reconnected atomically to the new
C2, exactly at the same time that mission knowledge
and supervision are transferred from the old C2 to the
new one. Because of their own managerial indepen-
dence, the operators freely choose when to disconnect
from the old C2 and start reporting to the new one.
Consequently, there is a transient phase during which
some of them still report to the old C2 while the other
ones have already switched to the new C2. If no spe-
cific action is taken, the two C2 have divergent views
of the mission, and after the reconfiguration, the view
of the new C2 is inconsistent. Due to this, the new C2
may order incorrect actions that can compromise the
mission. Moreover, the SoS can not force the operators
to change their connections in the SoS.

– Initial/target architectures The figure (see fig. 1)
shows the reconfiguration issue. The architect
wants to replace the C2 while preserving the ex-
ecuted mission.

– Architectural invariant and Behavioral properties

Figure 2: Behavior of the mediator in the co-

evolution pattern

synchronized

old desync

new desync

Migrate

Intercept/Forward to new
Synchronize old

Intercept
Forward to new

Intercept/Forward to old
Synchronize new

Intercept
Forward to old

Figure 3: Reconfiguration grammar for the C2 sys-

tems in the co-evolution pattern

synchronized desynchronized
Migrate

Synchronize

∗ Behavioral property: the two C2 have the
same view of the mission.

∗ Structural invariant: at least one of the two
C2 is connected.

new C2 shares the same state of the mission

– Forces of the pattern are:

∗ Maintaining the consistency of communica-
tions between the constituents.

∗ Preserving the status of constituent collabo-
rations in the SoS: until all the operators are
connected to the new C2, the old C2 preserves
its supervision capacity and knowledge on the
mission.

• Solution: In order to not suspend the mission, the so-
lution consists in concurrently deploy the initial and
final architectures. The operators are migrated indi-
vidually. During the transient phase, when the two
C2 are contributing to the SoS, they are synchronized
by means of scripts provided by the architect, in order
to share the same view of the mission. The synchro-
nization task is devoted to the mediator, such that the
pattern does not have to assume any specific collabo-
ration from the constituents.

– Reconfiguration grammar

The C2 constituent should provide the reconfiguration
grammar depicted by Fig 3:

– Migrate: transfers the internal state from the
old C2 to the new one. In the old C2, Migrate

means exporting the internal state; in the new C2,
it means importing the internal state. Because we
consider the case of directed and acknowledged
SoS, the SoS architect has to ensure that the two
C2 use compatible state representations.

– Synchronize: propagates the changes made to
the internal state from one C2 to the other one.
As for the Migrate operation, the SoS architect
is responsible to ensure that the two C2 use a
compatible encoding.

– The transition to the de-synchronized state does
not result from any specific action. The C2 are
unaware that their view of the mission is not con-
sistent anymore. Only the mediator can observe
the de-synchronized state.

This grammar ensures that the C2 may exchange state
during the reconfiguration. This allows the new C2 to
be initialized with the mission state of the old C2.
As depicted in figure 2 a mediator has the ability to in-
tercept the messages forwarded to C2s. This behavior
allows the two C2 to be continuously synchronized dur-
ing the reconfiguration. The solution is decomposed in
the following steps:

∗ Before any message can reach the new C2,
the mediator initiates a state migration from
the old C2 to the new one. The messages
to the C2 are postponed until migration is
completed. After migration all C2 have been
synchronized.

∗ When the mediator intercepts a message to a
synchronized C2, the other C2 is marked as
de-synchronized, and the intercepted message
is forwarded and delivered to its destination.

∗ When the destination of an intercepted mes-
sage is a desynchronized C2, the synchroniza-
tion script is triggered before message deliv-
ery.

This behavior is implemented by the mediator for
the time of the reconfiguration.

The reconfiguration completes when all the operators
are connected to the new C2. The architect can pro-
vide an additional protocol in order to deal with the
case where some operators are reluctant to connect to
the new C2.

• Consequences:

– Communication consistency is maintained. Oper-
ators preserve their connection to the old C2 until
they have not migrated to the new C2

– Availability is maintained. The SoS is still func-
tional during reconfiguration.

– Reliability is partially maintained, since informa-
tion reported by the operators to the C2 are pre-
served. Nevertheless, the pattern does not deal
with de-synchronized C2 sending contradictory or
inconsistent directives.

– Performance is affected depending on how many
times synchronization scripts should to be called.
The cost of the synchronization can be mitigated
by the use of techniques such as concurrent trans-
actions.

3.2 Reconfiguring with the help of reconfigu-
ration patterns

To illustrate our approach we chose the case study of the
National shared Infrastructure of Transmissions (INPT)2,
which is an information management SoS used by various
French emergency services in case of accidents. This system
is particularly used for the resolution of incidents involv-
ing interoperability of communications. In this context, the
SoS belongs to the category of acknowledged SoS: a SoS-
level coordinator (the Ministry of the Interior in our case)
defines how each service shares its communication infras-
tructure and information even if the service remains inde-
pendent.

Figure 4 is a possible instance of this architecture (white
elements only). Even if this instance is kept simple, it is
representative of the reality. The system constituents are:

• CODIS (Operational center) has the mission to coor-
dinate and to supervise operational activities.

• PC (Command Post) appears to assist CODIS mission
in big disasters. It manages operational activities for
a particular disaster.

• Relay is a communication infrastructure shared be-
tween emergency services. Its mission is to relay and
route information.

• Resource (R) is an emergency resource that operates in
the SoS as humans or vehicles (fire-car, ambulance, po-
lice car). Each resource follows its own mission bound
to its field of expertise. They receive a mission from
the CODIS and communicate mission report by using
the upCodis port.

• Mediator are mobile radios that define how PC, Re-
source and CODIS interact with Relay (communica-
tion protocol, data and interaction points).

Emergent behavior is defined by the capacity of constituents
to reduce disasters. It is produced by the involvement of dif-
ferent constituents from different emergency services which
are coordinated by the CODIS. Regarding the managerial in-
dependence each constituent is subordinated to the CODIS
but retains its own managerial independence.

A reconfiguration case can come from the operational en-
vironment. For instance, the CODIS receives a call from
citizens who notify a strange smell. The CODIS engages a
new mission with several constituent systems from various
emergency services. On the spot the constituents discover
a chemical disaster with loss of lives, goods and assets. Ad-
ditional resources are engaged and the CODIS must control
and command a lot of resources. To support this overload
the CODIS needs to delegate a part of the mission man-
agement to a PC, resulting in the new configuration shown
in Figure 4. In the reconfiguration pattern presented in the
previous section, CODIS and PC play the C2 role and Relay
is an operator.

The architecture evolution involves that the CODIS del-
egates its coordination mission to a PC, and that resources
delegated to the mission, switch to the PC channel. Partic-
ular protocols are designed to allow commandment delega-
tion in the SoS. The CODIS can share its channel security

2Infrastructure Nationale Partageable des Transmissions
http://crd.ensosp.fr/index.php?lvl=notice display&id=9395

key with the new commandment in order to talk with the re-
source. The CODIS can allow the PC to access to its service
mission.

To preserve the emergence, the architect has to maintain
the coordination of services available during the reconfig-
uration. He/she must identify what problems need to be
solved for ensuring this property (e.g does a deadlock can
occur? is the coordination service still reliable?). Then, the
architect must produce a specification in response to her/his
analysis. Finally the architect designs a reconfiguration in
accordance with the specification. The process of realization
of the reconfiguration is guided by the pattern.

• First, the architect has to identify a reconfiguration
strategy that matches with her/his intention (coarse-
grained pattern). The co-evolution pattern can be se-
lected.

• Next, the architect needs to check if the context is
similar to his/her architecture. Indeed, the architec-
ture pattern captures system inter-dependence. If the
architect is not an expert in reconfiguration problem,
the pattern provides explanations in the problem part.

• In the next step the architect must refine the reconfig-
uration strategy with the technical points identified in
the reconfiguration pattern : suspend communication,
synchronization script. We assume that the current
architecture provides all the conditions to apply the
solution. If it not the case, this implies that either
the reconfiguration pattern must be composed with
another reconfiguration, or the architect must choose
another pattern. Then, the architect produces a spec-
ification by taking into account invariants (explained
in the problem section) that is the mission of C2 is
synchronized during the reconfiguration. Finally, the
architect follows the solution to obtain his/her recon-
figuration.

To resume, the reconfiguration is a complex engineering
task. Indeed the architect can not impose a new configura-
tion to systems and the SoS mission is critical and requires
a safe reconfiguration. The pattern approach assists the ar-
chitect in the different reconfiguration steps: specification,
design.

4. RELATED WORK
The COMPASS and DANSE projects are the two major

EU-funded projects about the system-of-systems method-
ology for the 2010-2015 period. Only the DANSE project
studied the reconfiguration problem. In this project, the
proposed methodology [19] consists in renewing the needs
assigned to the system of systems whenever its behavior dif-
fers from prediction. Based on architectural patterns, many
architecture variants are generated considering all the possi-
ble combinations of rule application from a graph grammar.
Simulation and optimization allow to assess the generated
architectures in order to select the best one according to
the architect’s directives. In addition, the architect uses
timed temporal logic to define static and dynamic contracts
in order to specify acceptable architectures and evolution
of the system of systems [7]. While this method addresses
the issues of the target architecture and of the reconfigura-
tion specification, to the best of our knowledge, the DANSE

Figure 4: French Emergency SoS
system
CODIS

mediator
radio

system
relay

mediator
radio

mediator
radio

system
ambulance

system
police car

mediator
radio

system
PC

project does not prescribe how the reconfiguration is effec-
tively built. In this regard, we think that our work is or-
thogonal to the proposals of the DANSE project.

Several previous work draw general principles to address
dynamic reconfiguration. Among them, designed for user
interfaces, C2 [17] is an architectural style in which the com-
ponents are organized in layers separated by connectors. C2
assigns to the connectors a key role for dynamic reconfigu-
ration. Since the connectors are responsible of the message
routing policy, any reconfiguration action actually occurs
within the connectors. While C2 is not designed for sys-
tem of systems, its organization with respect to dynamic re-
configuration provides a potential solution to overcome the
lack of control over the constituents. In a different con-
text, Boyer et al [2] proposed a formally-verified algorithm
in order to issue a valid sequence of reconfiguration actions,
even in presence of component failures. The reconfiguration
is split in two phases: in the down phase, components are
stopped, unwired and destructed; in the up phase, they are
created, wired and started. Whenever failures are detected
in the process, the effects of failures are first propagated,
i.e., failed components are unwired, then the reconfiguration
process resumes to either recover the initial architecture or
reach the target one. A similar principle may address the
case when constituents choose to disengage from a system
of systems.

Other works define and analyze reconfiguration with ar-
chitectural styles [18, 5]. They focus on how the architec-
tural style affects reconfiguration. In none of these works,
the step towards capturing general principles for solving the
reconfiguration problem has been done. Though, their un-
derlying principles are of interest in the SoS area.

To build the standard form, our inspiration comes from
the work on patterns, including in other areas. Gomaa et
al [10, 9] collect several patterns targeted at reaching quies-
cence noticeably in client/server, master/slave and service-
oriented architectures. On the one hand, quiescence is no
more no less one possible solution to the specific problem
of lowering the coupling for the time of reconfiguration.
We think that reconfiguration patterns should have a wider
scope. On the other hand, the standard form of their pat-

terns contains only the state-charts that relate the opera-
tional states to the quiescent ones. They do not give an
explicit statement of the addressed problem, nor do they
provide explicit assumptions or properties of the patterns.

Ramirez et al [14] adopt a more complete form derived
from the one of Gamma et al [8] with an additional LTL-
based constraint entry. Their catalog mixes design patterns
to build monitoring and decision-making subsystems, as well
as reconfiguration patterns. However, having a single com-
mon form for everything leads to omit the specificities of
each area. For instance, their component insertion and com-
ponent removal patterns make undocumented assumptions
on the reconfiguration grammar that can hardly be guessed,
and which appears incompatible with the system of systems
approach. Our work may be less general, but, being specif-
ically targeted at reconfiguration, it does not suffer such
drawbacks.

In summary, in the current state of the art, the problem
of designing and building reconfigurations that accommo-
date the unique characteristics of systems of systems has
still to be addressed. Some work proposed general principles
that could be helpful in the context of systems of systems.
However, to be really reusable, their presentation must be
homogenized, like it is done for patterns in general. While
existing pattern catalogs in other areas gives insights, their
usual presentation does not fit the specificities of reconfigu-
ration patterns.

5. CONCLUSION
In summary, we think that reconfiguration requires well

documented design: we suggest a pattern approach. An im-
portant characteristic to be documented is the heterogene-
ity of the reconfiguration behavior of system. Moreover,
reconfiguration patterns for SoS should document how to
deal with the lack of coercion on systems. This characteris-
tics comes from operational and managerial independence.
The emergence characteristic regarding reconfiguration is
not specific. It involves to preserve particular configuration
during reconfiguration. This aspect is tackled by architec-
tural invariants and behavioral properties.

We consider that reconfiguration patterns have different
granularity. Coarse-grained patterns describe overall and
global reconfiguration strategies. Fine-grained patterns de-
scribe solutions to specific reconfiguration issues. As con-
sequence coarse-grained patterns identify technical issues
(variability point) and leave architecture to solve them with
fine-grained pattern for instance.

In this paper we proposed a new approach to address re-
configuration, taking into account the specific considerations
of SoS: we extend the pattern concept to reconfiguration.
Our underpinning idea consists in documenting reconfigura-
tion and providing principled solutions to well-identified re-
configuration problems. These patterns are adaptable build-
ing blocks that can be reused in different systems which
share a similar context and similar objectives, hence lower-
ing design time of SoS reconfiguration. With explicit archi-
tectural invariants and behavioral properties, the patterns
make it clear how the system behaves even during reconfig-
uration. The architectural invariants assist the architect in
providing specifications to the reconfiguration.

The patterns assist the design step. They describe prob-
lems involved by reconfiguration in a particular architectural
context and a solution.

This documentation will provide with solid ground in the
perspective of the analysis and verification of reconfigura-
tions.

From the verification perspective, patterns provide mod-
els. As consequence engineering effort to check a reconfig-
uration can be reused in other similar contexts. From a
validation perspective, the solution provides the operations
that led to maintain the invariant set in the problem.

In our future work, we intend to build a pattern system,
in the sense of [4]. Namely, it will be a collection of pat-
terns, which defines a language, along with guidelines on
how this language should be used in practice to design and
build reconfigurations. We foresee that this pattern sys-
tem will address several classes of reconfiguration problems,
ranging from effective changes to their management and co-
ordination. We ultimately aim at addressing all of them
consistently in a single pattern system.

6. REFERENCES

[1] Arshad, N., Heimbigner, D., Wolf, A.L.: Deployment
and dynamic reconfiguration planning for distributed
software systems. Software Quality Journal 15(3),
265–281 (2007)

[2] Boyer, F., Gruber, O., Pous, D.: Robust
reconfigurations of component assemblies. In:
Proceedings of the 2013 International Conference on
Software Engineering. pp. 13–22. IEEE Press (2013)

[3] Buisson, J., Dagnat, F., Leroux, E., Martinez, S.: Safe
reconfiguration of coqcots and pycots components.
Journal of Systems and Software pp. – (2015),
http://www.sciencedirect.com/science/article/pii/
S0164121215002630

[4] Bushchmann, F., Meunier, R., Rohnert, H.,
Sommerlad, P., Stal, M.: Pattern-oriented software
architecture: a system of patterns, vol. 1. Wiley (1996)

[5] Dorn, C., Taylor, R.N.: Analyzing runtime
adaptability of collaboration patterns. Concurrency
and Computation: Practice and Experience 27(11),
2725–2750 (2015)

[6] Eckardt, T., Heinzemann, C., Henkler, S., Hirsch, M.,
Priesterjahn, C., Schäfer, W.: Modeling and verifying
dynamic communication structures based on graph
transformations. Comput. Sci. 28(1), 3–22 (Feb 2013),
http://dx.doi.org/10.1007/s00450-011-0184-y

[7] Etzien, C., Gezgin, T., Froschle, S., Henkler, S.,
Rettberg, A.: Contracts for evolving systems. In:
Object/Component/Service-Oriented Real-Time
Distributed Computing (ISORC), 2013 IEEE 16th
International Symposium on. pp. 1–8 (June 2013)

[8] Gamma, E., Helm, R., Johnson, R., Vlissides, J.:
Design Patterns: Elements of Reusable
Object-oriented Software. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA (1995)

[9] Gomaa, H., Hashimoto, K., Kim, M., Malek, S.,
Menascé, D.A.: Software adaptation patterns for
service-oriented architectures. In: Proceedings of the
2010 ACM Symposium on Applied Computing. pp.
462–469. SAC ’10, ACM, New York, NY, USA (2010),
http://doi.acm.org/10.1145/1774088.1774185

[10] Gomaa, H., Hussein, M.: Software reconfiguration
patterns for dynamic evolution of software
architectures. In: Software Architecture, 2004.

WICSA 2004. Proceedings. Fourth Working
IEEE/IFIP Conference on. pp. 79–88. IEEE (2004)

[11] Ingram, C., Payne, R., Perry, S., Holt, J., Hansen,
F.O., Couto, L.D.: Modelling patterns for systems of
systems architectures. In: Systems Conference
(SysCon), 2014 8th Annual IEEE. pp. 146–153. IEEE
(2014)

[12] Kalawsky, R.S., Joannou, D., Tian, Y., Fayoumi, A.:
Using architecture patterns to architect and analyze
systems of systems. Procedia Computer Science 16,
283–292 (2013)

[13] Maier, M.W.: Architecting principles for
systems-of-systems. Systems Engineering 1(4),
267–284 (1998)

[14] Ramirez, A.J., Cheng, B.H.C.: Design patterns for
developing dynamically adaptive systems. In:
Proceedings of the 2010 ICSE Workshop on Software
Engineering for Adaptive and Self-Managing Systems.
pp. 49–58. SEAMS ’10, ACM, New York, NY, USA
(2010), http://doi.acm.org/10.1145/1808984.1808990

[15] Schmidt, D.C., Stal, M., Rohnert, H., Buschmann, F.:
Pattern-Oriented Software Architecture, Patterns for
Concurrent and Networked Objects, vol. 2. John
Wiley & Sons (2013)

[16] Simonot, M., Aponte, V.: A declarative formal
approach to dynamic reconfiguration. In: Proceedings
of the 1st International Workshop on Open
Component Ecosystems. pp. 1–10. IWOCE ’09, ACM,
New York, NY, USA (2009),
http://doi.acm.org/10.1145/1595800.1595802

[17] Taylor, R.N., Medvidovic, N., Anderson, K.M.,
Whitehead, Jr., E.J., Robbins, J.E.: A component-
and message-based architectural style for gui software.
In: Proceedings of the 17th International Conference
on Software Engineering. pp. 295–304. ICSE ’95,
ACM, New York, NY, USA (1995),
http://doi.acm.org/10.1145/225014.225042

[18] Taylor, R.N., Medvidovic, N., Oreizy, P.:
Architectural styles for runtime software adaptation.
In: Software Architecture, 2009 & European
Conference on Software Architecture. WICSA/ECSA
2009. Joint Working IEEE/IFIP Conference on. pp.
171–180. IEEE (2009)

[19] Winokur, M., Goldberg, R., Dov, N.B., Mangeruca,
L., Passerone, R., Senni, V., Etzien, C., Gezgin, T.,
Peikenkamp, T., Jung, M., Alexandre, A., Bullinga,
R., Imad, S., Honour, E., Paul, S., Klaas, S., Boyer,
B., Kemper, S.: Danse methodology v03. deliverable
D 4.4, DANSE (Feb 2015), http://www.danse-ip.eu/
home/pdf/danse\ d4.4\ danse\%20methodology.pdf,
consulted on 02/22/2016

