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We study three-body recombination in an ultracold Bose-Fermi mixture. We first show theoret-
ically that, for weak inter-species coupling, the loss rate is proportional to Tan’s contact. Second,
using a 7Li/6Li mixture we probe the recombination rate in both the thermal and dual superfluid
regimes. We find excellent agreement with our model in the BEC-BCS crossover. At unitarity where
the fermion-fermion scattering length diverges, we show that the loss rate is proportional the 4/3
power of the fermionic density. Our results demonstrate that impurity-induced losses can be used
as a quantitative probe of many-body correlations.

PACS numbers: 34.50.-s, 67.85.Pq

Understanding strongly-correlated quantum many-
body systems is one of the most daunting challenges
in modern physics. Thanks to a high degree of con-
trol and tunability, quantum gases have emerged as a
versatile platform for the exploration of a broad vari-
ety of many-body phenomena [1], such as the crossover
from Bose-Einstein condensation (BEC) to Bardeen-
Cooper-Schrieffer (BCS) superfluidity [2], quantum mag-
netism [3] or many-body localization [4]. At ultra-low
temperatures, atomic vapors are metastable systems and
are plagued by three-body recombination which repre-
sents a severe limitation for the study of some dense in-
teracting systems. A prominent example is the strongly
correlated Bose gas [5, 6] that bears the prospect of bridg-
ing the gap between dilute quantum gases and liquid He-
lium. However inelastic losses can also be turned into an
advantage. For instance, they can be used to control the
state of a system through Zeno effect [7–9], or serve as a
probe of non-trivial few-body states, as demonstrated by
the observation of Efimov trimers, originally predicted in
nuclear physics, but observed for the first time in Bose
gases as resonances in three-body loss spectra [10].

In this Letter, we study inelastic losses in a mixture of
spinless bosons and spin 1/2 fermions with tunable in-
teraction. We show that when the Bose-Fermi coupling
is weak, the loss rate can be related to the fermionic
contact parameter, a universal quantity overarching be-
tween microscopic and macroscopic properties of a many-
body system with zero-range interactions [3, 11, 13]. We
first check our prediction on the strongly attractive side
of the fermionic Feshbach resonance, where we recover
known results on atom-dimer inelastic scattering. We
then turn to the unitary limit where the fermion-fermion
scattering length is infinite. We demonstrate both theo-
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FIG. 1: Sketch of inelastic decay of an impurity immersed in
a tunable Fermi gas. On the BEC side, ↑ and ↓ fermions are
paired in tightly bound molecules and the decay mechanism
is a two-body process involving the impurity (green disk) and
a molecule. The loss rate scales as 1/aff [14, 15]. On the
BCS side, the loss occurs through a three body-process and
it scales as a2

ff in the mean-field limit [14]. The extrapola-
tion of these two asymptotic behaviors towards the strongly
correlated regime yields contradictory results (grey area).

retically and experimentally – with a 6Li/7Li Fermi-Bose
mixture – that the bosons decay at a rate proportional to

n
4/3
f , where nf is the fermion density. More generally our

work shows that the decay of an impurity immersed in a
strongly correlated many-body system is a quantitative
probe of its quantum correlations.

Inelastic decay of an impurity inside a two-component
Fermi gas has been studied previously both in the
weakly and strongly attractive limits of the BEC-BCS
crossover [14, 16–18]. When the fermion-fermion inter-
action is weak, the fermions behave almost as isolated
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particles and the recombination can be described as a
three-body process involving one spin-up (↑), one spin-
down (↓) fermion and the impurity (a boson in our exper-
iments). In this case, the impurity/boson density nb fol-
lows a rate equation ṅb = −L3n

2
f nb, with L3 ∝ a2

ff , where
aff is the fermion-fermion scattering length [14, 15, 17].
In contrast, on the strongly attractive side of the Fes-
hbach resonance, the fermions form halo-dimers of size
' aff and the relaxation occurs through two-body pro-
cesses between one such molecule and one boson. In this
case the rate equation for bosons reads ṅb = −L2nmnb,
where nm = nf/2 is the molecule density. Far from
the Feshbach resonance the two-body loss rate scales as
1/aff as a consequence of the enhanced overlap of the
halo-dimer wavefunction with the deeply bound prod-
uct molecules [14, 15]. However, these two scalings give
rise to a paradox in the central region of the BEC-BCS
crossover. Indeed, as depicted in Fig.1, the extrapolation
towards unitarity leads to contradictory results depend-
ing on whether we approach the resonance from the BEC
or the BCS side. In the former case, one would predict
an increasingly long lifetime at unitarity while it tends to
a vanishingly small value in the latter case. This paradox
has a fundamental origin: these two scalings are obtained
in the dilute limit where the recombination can be de-
scribed by a well-defined few-body process, whereas this
hypothesis fails in the strongly correlated regime where
nf |aff |3 � 1. There, it is not possible to single out two
fermions from the whole many-body system. Instead, the
inelastic loss involving a boson and two fermions is tied
to the correlations of the whole ensemble. A first hint
towards reconciling these two behaviors near unitarity is

to assume that they saturate for aff ' n
−1/3
f , yielding

the same scaling ṅb ∝ n4/3
f nb.

The three asymptotic regimes – BEC, BCS, and uni-
tary – were obtained using different theoretical ap-
proaches and we now show that, using Tan’s contact, they
can be unified within the same framework. The recom-
bination rate is proportional to the probability of having
the three particles within a distance b from each other,
where b is the typical size of the deeply-bound molecule
formed during the collision[2, 19]. Take ρ3(r↑, r↓, rb) the
three-body probability distribution of the system. When
the bosons are weakly coupled to the fermions, we can
factor it as ρ3(r↑, r↓, rb) = ρf(r↑, r↓)ρb(rb). Integrating
over the positions of the three atoms we readily see that
the three-body loss rate is proportional to Tan’s Contact
parameter C2 of the fermions that gives the probability
of having two fermions close to each-other [11]. C2 is cal-
culated using the equation of state of the system thanks
to the adiabatic-sweep theorem

C2 = −4πmf

~2

∂F

∂(1/aff)
. (1)

where mf is the fermion mass and F is the free-energy of
the fermionic gas per unit-volume [3, 13]. The asymptotic
expressions of C2 in the BEC, BCS and unitary regimes

BEC Unitary BCS

C2 8π
nm

aff

2ζ

5π
k4
F 4π2a2

ffn
2
f

ṅb

nb
∝ nm

aff
[14] ∝ n4/3

f ∝ a2
ffn

2
f [14]

TABLE I: Scaling of Tan’s contact [11] and of the bo-
son/fermion mixture loss rate in the BEC-BCS crossover.
Both scalings are identical in the weakly and strongly attrac-

tive limits. As kF = (3π2nf)
1/3, at unitarity C2 scales as n

4/3
f .

ζ is a dimensionless constant, ζ = 0.87(3) [22, 25].

are listed in Table I. In the deep BEC limit, the free en-
ergy is dominated by the binding energy of the molecules
~2/mfa

2
ff ; in the BCS regime C2 is derived using the

mean-field approximation [11]. At unitary, the expres-
sion of the contact stems from the absence of any length
scale other than the inter-particle distance. The dimen-
sionless parameter ζ = 0.87(3) was determined both the-
oretically [21] and experimentally [22–24]. Expressions
listed in Table I confirm that the contact parameter and
the bosonic loss rate follow the same scalings with density
and scattering length.

We support this relationship between inelastic losses
and Tan’s contact by considering a microscopic model
where the recombination is described by a three-body
Hamiltonian

Ĥ3 =

∫
d3rbd

3r↑d
3r↓g(rb, r↑, r↓)×

Ψ̂†m

(
r↑ + r↓

2

)
Ψ̂†b(rb)Ψ̂b(rb)Ψ̂↑(r↑)Ψ̂↓(r↓)

+ h.c.,

(2)

where Ψ̂α is the field operator for the species α and the
coupling g takes significant values only when the three
particles are within a distance b[41]. Assuming that b is
the smallest distance scale in the problem and that this
Hamiltonian can be treated within Born’s approximation
we find that (see [26])

ṅb = −γC2nb, (3)

The constant γ depends on the coupling g and describes
the coupling to deeply bound non-resonant states; hence
γ has essentially no variation with magnetic field across
the fermionic Feshbach resonance.

Eq. (3) is the main prediction of this Letter and we ex-
plore the consequences of this equation by measuring the
lifetime of an ultracold Fermi-Bose mixture of 6Li and
7Li atoms. Our experimental setup is described in [27].
The 6Li atoms are prepared in a spin mixture ↑, ↓ of
|F = 1/2,mF = ±1/2〉 for which there is a broad Fes-
hbach resonance at 832 G [4]. The 7Li atoms are trans-
ferred into the |F = 1,mF = 0〉 featuring two Feshbach
resonances, a narrow one at 845.5 G and a broad one at
893.7 G [26]. The scattering length between bosons and
fermions is abf = 40.8 a0 and is equal for the ↑, ↓ states.
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FIG. 2: Remaining fraction of bosons (blue symbols) and
fermions (red symbols, inset) after a 1 s and 1.5 s waiting time
for spin-balanced (filled symbols), resp. 90% polarized (open
symbols) fermions. The blue dash-dotted (red dashed, inset)
curve is a coupled loss model describing the competition be-
tween boson fermion-dimer decay (∝ 1/aff) and dimer-dimer
decay (∝ 1/a2.55

ff ) [2, 26]. The blue-shaded area represents
the 1σ fluctuations for the remaining fraction of bosons with
spin-polarized fermions. The initial atom numbers are 3×105

for 6Li and 1.5×105 for 7Li at a temperature T ' 1.6µK with
trap frequencies νz = 26 Hz and νr = 2.0 kHz.

It can be considered constant in the magnetic field range
that we explored, 680-832 G. The atoms are confined in a
hybrid magnetic/optical trap and are evaporated at the
6Li Feshbach resonance until we reach dual superfluidity
or any target temperature. We ramp the magnetic field
to an adjustable value in 200 ms and wait for a variable
time t. We then measure the atom numbers of the two
species by in situ imaging or after time of flight.

We first show that the dominant boson loss mechanism
on the BEC side of the resonance involves one boson,
one fermion ↑, and one fermion ↓. This is easily done by
comparing the boson losses for spin-balanced and spin-
polarized fermionic samples. Fig. 2 displays the remain-
ing fraction of bosons and fermions after a waiting time
of 1 s for balanced fermions and 1.5 s for spin-polarized
fermions with 90 % polarization. We observe that the
losses for high spin polarization are strongly suppressed
indicating that fermions of both spin components are re-
quired to eliminate one boson.

Second we show that the losses in the weakly interact-
ing regime na3

ff � 1 (deep BEC side of the resonance,
720 G) are proportional to the fraction of molecules in
the sample, η = 2Nm/(Nf + 2Nm). This fraction is var-
ied by changing the temperature from 1µK to 4µK and
6Li densities from 2 × 1012 cm−3 to 1.0 × 1013 cm−3. In
these temperature and density ranges, both gases are
well described by Maxwell-Boltzmann position and ve-
locity distributions. The molecular fraction is calculated
using the law of mass-action [7, 26] and is assumed to
be time-independent owing to the high formation rate
of halo-dimers (' ~a4

ff/mf)[30]. We extract the inter-
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FIG. 3: a) Boson-fermion loss rate vs molecule fraction. Cir-
cles: experimental data. The vertical error bars represent
the statistical errors for Lbf from fitting the loss curves. The
horizontal error bars represent the statistical errors on the
molecule fraction due to 6Li number fluctuations. The red
dashed line is a linear fit to the data. b) Boson-dimer loss
rate vs inverse scattering length. The blue dot-dashed line
is a linear fit to the data with nfa

3
ff ≤ 0.025 (black circles),

providing γ = 1.17(11)× 10−27 m4.s−1, see Eq. 3.

species decay rate by fitting the time evolution of the
bosonic population

Ṅb = −Lbf〈nf〉Nb − ΓvNb. (4)

where 〈·〉 represents the trap-average, and Γv is the one-
body residual gas loss rate (0.015 s−1).

The data in Fig. 3a shows that the boson loss-rate
is proportional to the molecule fraction of the fermionic
cloud. Introducing the boson-fermion dimer molecule
loss rate Lbm defined by Lbm〈nm〉 = Lbf〈nf〉, we check
the proportionality of Lbm with 1/aff predicted in ta-
ble I by repeating the loss measurements for different
magnetic fields in the interval 690-800 G, see Fig. 3b.
From a linear fit to the data where interaction effects
are negligible (nfa

3
ff ≤ 0.025), we extract the slope

γ = 1.17(11)× 10−27 m4.s−1 entering in Eq. (3).
Since γ doesn’t depend on the magnetic field we can
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FIG. 4: Boson loss rate versus fermion central density at uni-
tarity, nf = nf(0). Circles: experimental data. The red line

is the n
4/3
f prediction of Eq. (6) without any adjustable pa-

rameter. The red shaded area represents the 1σ uncertainty
resulting from the error on γ.

now predict the loss rate anywhere in the BEC-BCS
crossover using Eq. (3). The strongly interacting unitary
regime (1/aff = 0) is particularly interesting and we mea-
sure the boson decay rate at 832 G in the low temperature
dual superfluid regime [27]. The mixture is initially com-
posed of about 40 × 103 fully condensed 7Li bosons and
150 × 103 6Li spin-balanced fermions at a temperature
T ' 100 nK which corresponds to T/TF ' 0.1 where TF

is the Fermi temperature. At this magnetic field value,
the atoms are now closer to the boson Feshbach reso-
nance located at 845.5 G and bosonic three-body losses
are no longer negligible. The time dependence of the
boson number is then given by

Ṅb = −Lb〈n2
b〉Nb − ΓbfNb − ΓvNb. (5)

To extract Γbf we measure independently Lb with
a BEC without fermions in the same trap and inject
it in Eq. (5), see [26]. We typically have Lb〈n2

b〉 =
0.1 − 0.4 s−1, and Lb = 0.11(1) × 1026 cm6. s−1 consis-
tent with the model of [6]. Repeating such measure-
ments for different fermion numbers and trap confine-

ment, we now test the expected n
4/3
f dependence of the

Bose-Fermi loss rate at unitarity (central column in Ta-
ble I). In this dual superfluid regime, the size of the BEC
is much smaller than that of the fermionic superfluid and
the BEC will mainly probe the central density region
nf(r = 0). However, it is not truly a point-like probe,
and introducing the ratio ρ of the Thomas-Fermi radii
for bosons and fermions, we obtain the finite size correc-
tion for Eq. (3) [26]:

Γbf = γ C2(0) (1− 6

7
ρ2), (6)

where C2(0) = 2ζ
5πξ (3π2nf(0))4/3, ξ = 0.376(4) is the

Bertsch parameter [32], and the last factor in parenthesis
amounts to 0.9. The prediction of Eq. (6) is plotted as a
red line in Fig. 4 and is in excellent agreement with our
measurements without any adjustable parameter. Alter-
natively, a power-law fit Anp to the data yields an ex-

ponent p = 1.36(15) which confirms the n
4/3
f predicted

scaling at unitarity. Finally fixing p to 4/3 provides the
coefficient A and a value of the homogeneous contact
ζ = 0.82(9) in excellent agreement with previous mea-
surements, ζ = 0.87(3) [22, 25]. This demonstrates that
impurity losses act as a microscopic probe of many-body
correlations.

The bosonic or fermionic nature of the probe is of no
importance. Provided the coupling between the impu-
rity and the resonant gas is weak, our method can also
be applied to other mixtures. It gives a framework to
interpret the experimental data on 6Li/40K [17] and, in
particular, to test our prediction on the BCS side of the
Feshbach resonance. It can also be applied to the recently
observed 6Li/174Yb [33], 6Li/41K [34] and 6Li/7Li [35]
dual-superfluid Bose-Fermi mixtures. Our observation of

a loss rate scaling ∝ n4/3
f at unitarity is in stark contrast

with the generic case np, where the integer p is the num-
ber of particles involved in the recombination process.
A fractional exponent is also predicted to occur for the
resonant Bose gas [5, 6].

A first extension of this work is to investigate regimes
where abf ' aff � n−1/3 and Born approximation breaks
down. In this case Efimovian features are expected to
occur [36, 37]. Second, our method provides a unique
microscopic way to measure the contact quasi-locally in
a harmonic trap. An important perspective is to deter-
mine the homogeneous contact of the unitary Fermi gas
at finite temperature, whose behavior is largely debated
near the normal-superfluid transition [38]. Our approach
can also be extended to the measurement of the three-
body contact which is unknown for the two component
Fermi gas at unitarity [15, 39, 40].
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SUPPLEMENTARY INFORMATION

I. MICROSCOPIC THREE-BODY LOSS MODEL

We derive here the relationship between the contact
and the bosonic loss rate using a microscopic model. We
consider the three-body Hamiltonian

Ĥ3 =

∫
d3r1d

3r2d
3r3g(ρ1,ρ2)×

Ψ̂†M

(
r1 + r2

2

)
Ψ̂†3(r3)Ψ̂3(r3)Ψ̂2(r2)Ψ̂1(r1)

+ hc,

(S7)

where Ψ̂α are the field operators for the atoms (α =
1, 2, 3) and the molecule (α = M). g(ρ1,ρ2) is a ker-
nel describing the molecule formation and is expressed
in term of Jacobi’s coordinates ρ1 = r1 − r2 and ρ2 =
r3−(r1 +r2)/2. Its characteristic width is of the order of
the typical size b of deeply bound molecules (' Van Der
Waals length) and is assumed to be much smaller than
the other relevant length scales of the problem (scattering
length and inter-particle distance). Finally we assume for
the sake of simplicity that all atomic species (α = 1, 2, 3)
have the same mass.

We now recast Ĥ3 in momentum space by taking

Ψ̂α(r) =
1√
Ω

∑
k

eik·râα(k) (S8)

where Ω is a quantization volume. We then have

Ĥ3 =
1

Ω3/2

∑
k1,k2

k3,k
′
3

g̃((k1 − k2)/2, (k′3 − k3))×

âM (kM )†â3(k′3)†â3(k3)â2(k2)â1(k1) + h.c.,

(S9)

with

g̃(q, q′) =

∫
d3ρ1d

3ρ2e
−i(q·ρ1+q′·ρ2)g(ρ1,ρ2),

and kM = k1 + k2 + k3 − k′3 owing to momentum con-
servation.

We treat the 1-2 atoms as a strongly correlated many-
body system and we neglect their interactions with the
3-atoms or the molecules. We consider the initial state
|i〉 = |0〉12 ⊗ |k3〉3 ⊗ |∅〉M where |0〉12 is the ground-
state of the many-body 1-2 system, |k3〉3 corresponds
to a single 3-particle with momentum k3 and |∅〉M is the

molecule-vacuum. Assuming that the Hamiltonian Ĥ3

can be treated perturbatively, the molecule formation-
rate Γ is given by Fermi’s Golden Rule

Γ =
2π

~
∑
f

|〈f |Ĥ3|i〉|2δ(Ef − Ei). (S10)

Here, the final state takes the form |f〉 = |ψf 〉12⊗|k′3〉3⊗
|kM 〉M , where |ψf 〉12 is an arbitrary eigenstate of the
many-body Hamiltonian for species 1 and 2 and |kM〉M
describes the state of a single molecule with momentum
kM.

Assuming that the binding energy ∆ of the molecule
is much larger than the typical single-particle energies
of the initial state (chemical potential, temperature...),
the momentum and energy-conservation conditions are
dominated by the state of the atom 3 and of the molecule
after the decay. We therefore have kM ' −k′3 and Ef −
Ei ' ~2k′3

2
/2m+ ~2k2

M/4m−∆.
The decay rate takes the form

Γ ' 2π

~Ω3

∑
ψf ,k′

3

∣∣∣∣∣∣
∑
k1,k2

g̃(k1 − k2,k
′
3)12〈ψf |â2(k2)â1(k1)|0〉12

∣∣∣∣∣∣
2

×

δ

(
3~2k′3

2

4m
−∆

)
.

(S11)

Using the closure relation
∑
ψf
|ψf 〉〈ψf | = 1, we obtain

Γ ' 2π

~Ω2

∑
k1,k2

k′
1,k

′
2

χ(k1 − k2,k
′
1 − k′2)×

12〈0|â1(k′1)†â2(k′2)†â2(k2)â1(k1)|0〉12,

(S12)

with

χ(q, q′) =
1

Ω

∑
k′
3

δ

(
3~2k′3

2

4m
−∆

)
g̃(q,k′3)g̃(q′,k′3)∗

(S13)
Going back into real space and using the fact that thanks
to momentum conservation, we must have k1 + k2 =
k′1 + k′2, we obtain

Γ ' 2π

~

∫
d3ρ1d

3ρ2G(ρ1,ρ2)×

12〈0|Ψ̂†1(ρ1)Ψ̂†2(−ρ1)Ψ̂2(ρ2)Ψ̂1(−ρ2)|0〉12,

(S14)

with

G(ρ,ρ′) =
1

Ω2

∑
q,q′

χ(q, q′)e−i(q·ρ+q′·ρ′). (S15)

Since G takes significant values for ρ1, ρ2 . R∗, we
care only about the values of the correlation function

12〈0|Ψ̂†1(ρ1)Ψ̂†2(ρ2)Ψ̂2(ρ3)Ψ̂1(ρ4)|0〉12 for small values of
the ρα.

Following the argument proposed in [1, 2], the short
distance behaviour is dominated by two-body physics,
leading to a scaling
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FIG. S5: Magnetic fields dependence for the different scat-
tering lengths abb(blue), aff(red, divided by 100), abf(green)
and effective range re,b (yellow) involved in our system.

12〈0|Ψ̂†1(ρ1)Ψ̂†2(ρ2)Ψ̂2(ρ3)Ψ̂1(ρ4)|0〉12 ' ϕ(ρ1−ρ2)∗ϕ(ρ3−ρ4),
(S16)

where ϕ is the two-body function in a scattering state.
According to Bethe-Peierls’ condition, we have ϕ(r) '
A/r at short distance, hence

12〈0|Ψ̂†1(ρ1)Ψ̂†2(ρ2)Ψ̂2(ρ3)Ψ̂1(ρ4)|0〉12 '
|A|2

|ρ1 − ρ2||ρ3 − ρ4|
.

(S17)
The value of |A|2 is obtained by taking ρ1 = ρ4 and
ρ2 = ρ4 and, according to Tan’s relation for the density-
density correlation function [3], we have

12〈0|Ψ̂†1(ρ1)Ψ̂†2(ρ2)Ψ̂2(ρ2)Ψ̂1(ρ1)|0〉12 '
C2

4π|ρ1 − ρ2|2
,

(S18)
where C2 is the contact. Therefore |A|2 = C2/4π hence

Γ =
C2

8~

∫
d3ρ1d

3ρ2
G(ρ1,ρ2)

ρ1ρ2
. (S19)

leading to equation 1 in the main text.

II. FESHBACH RESONANCES

In Fig. S5 we present the relevant s-wave scattering
lengths characterizing the 6Li-6Li, 7Li-7Li, and 6Li-7Li
interactions (aff , abb, and abf respectively). 6Li exhibits
a broad Feshbach resonance at 832.18 G [4]. 7Li-7Li in-
teractions exhibits two Feshbach resonances located at
845.5 G and 894 G [5]. Also plotted is the effective range
for the 7Li-7Li interactions (re,b) in the 700 G-900 G mag-
netic field region of interest. In this region re,b is rela-
tively large and contributes to the 7Li three-body loss

��� ��� ��� ��� ��� ��� ���
�

���
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FIG. S6: Example of atom losses at B = 720 G for a non de-
generate Bose-Fermi mixture at T = 1.25µK. Red circles:
fermion decay. Blue circles: boson decay. Each circle is
the average of 3 to 5 data points with their standard devi-
ation. The red dashed curve is a fit of the fermion decay
using Eq. S21 to estimate nf(t). The blue dashed curve is a
fit to the boson decay using Eq. S20 and the previously fitted
nf(t) to extract Lbf .

dependence with magnetic field [6]. For the 6Li-7Li in-
teraction, the scattering length abf = 40.8 a0 is identical
for the two 6Li spin states and does not depend on the
magnetic field.

III. LOSS COEFFICIENT EXTRACTION ON
THE BEC SIDE

In Fig. S6, we show a typical loss rate measurement
at 720 G for a cold thermal Bose-Fermi mixture. On the
BEC side of the 6Li resonance, several processes con-
tribute to the loss of 6Li atoms: atom-dimer and dimer-
dimer inelastic collisions, evaporation losses and Bose-
Fermi losses, resulting in a non-trivial time dependence.
On the contrary, the 7Li cloud will mainly loose atoms via
Bose-Fermi losses, since evaporation loss and three-body
losses are negligible due to the small 7Li-7Li scattering
length in this region of magnetic field. We thus use the
boson decay rate to extract Lbf using

ṅb = −Lbfnfnb − Γvnb (S20)

where the local densities follow Boltzmann distributions
and Γv = 0.015 s−1 is the residual background gas loss
rate measured independently. For nf(t), we use a two-
body decay function

nf(t) = n0/(1 + αt) (S21)



9

IV. MOLECULE FRACTION

To compute the molecule fraction of the 6Li cloud, η =
2Nm/(Nf + 2Nm) we model the fermionic ensemble as
a non-interacting mixture of Nm molecules and Nf free
atoms. This assumption is only valid far on the BEC side
of the resonance (nfa

3
ff � 1) and for a non-degenerate

thermal gas. Following [7], we simply write a chemical
equilibrium condition between atoms and molecules in
the trap at temperature T :

Nf = 2
(
kBT
~ω̄
)3
Li3(z) (S22)

Nm =
(
kBT
~ω̄
)3
Li3(z2e−Eb/kBT ) (S23)

where Li is a polylogarithm function, z = eµ/kBT the
fugacity and Eb = −~2/mfa

2
ff the molecule’s binding en-

ergy. The fugacity is calculated by imposing the total
number of atoms in the trap Ntot = Nf +Nm.

V. BOSE-FERMI LOSS COEFFICIENT AT
UNITARITY

In Fig. S7, we show a typical loss rate measurement
in the dual superfluid regime at unitarity. As stated in
the main text the three-body recombination in the Bose
gas itself also contribute to the boson decay. In order
to measure the Bose-Fermi loss rate Γbf we first measure
the three-body loss coefficient Lb for a BEC alone using
the following equation,

ṅb = −Lbn
3
b − Γvnb (S24)

We restrict the measurement over a period of time for
which the thermal fraction surrounding the BEC is not
visible. We thus assume that the 7Li cloud density is
given by a Thomas-Fermi distribution. Knowing Lb, we
extract Γbf for a BEC in presence of fermions in the same
trap using

ṅb = −Lbn
3
b − Γvnb − Γbfnb. (S25)

Since nf does not vary significantly over the measurement
duration, see Fig.S7, Γbf is now assumed constant.

VI. REDUCTION OF THE BOSE-FERMI
LOSSES DUE TO THE FINITE SIZE OF THE

BEC

In the dual superfluid regime, the bosonic sample is not
a perfect point-like impurity probing the central density

of the Fermi gas. The finite size of the BEC leads to a
slight reduction of the Bose-Fermi losses that we compute
using the local density approximation:

〈n4/3
f (r)〉BEC

n
4/3
f (0)

=

∫
d3rnb(r)n

4/3
f (r)

n
4/3
f (0)

∫
d3rnb(r)

(S26)
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FIG. S7: Example of atom loss at B = 832.1 G in the dual su-
perfluid regime. Green circles: BEC without fermions. Blue
circles: BEC in presence of the fermionic superfluid. Each
circle is the average of 3 to 5 data points with their standard
deviation. Green dashed curve: fit to the decay of the BEC
alone using Eq. S24 providing the three body loss coefficient
Lb. Blue dashed curve: fit to the BEC with fermions using
Eq. S25 which gives Γbf = 0.14(4) s−1. Light blue dashed
curve: expected BEC decay without Bose-Fermi losses. In-
set: the number of 6Li atoms for the same time duration (red
circles). As it is nearly constant we use the mean number of
6Li atoms shown as a red dashed line to compute the peak
density of the fermionic superfluid during the losses.

where nb and nf are respectively the boson and fermion
densities. Introducing the Thomas-Fermi radii RTF,b and
RTF,f , we find

〈n4/3
f (r)〉BEC

n
4/3
f (0)

= 1− 6

7

(
RTF,b

RTF,f

)2

+
5

21

(
RTF,b

RTF,f

)4

.

(S27)
With RTF,b = 0.4RTF,f , the reduction factor amounts to
0.9.
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