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Abstract: In this work we determine a process-level Large Deviation Prin-
ciple (LDP) for a model of interacting neurons indexed by a lattice Zd. The
neurons are subject to noise, which is modelled as a correlated martingale.
The probability law governing the noise is strictly stationary, and we are
therefore able to find a LDP for the probability laws Πn governing the sta-
tionary empirical measure µ̂n generated by the neurons in a cube of length
(2n + 1). We use this LDP to determine an LDP for the neural network
model. The connection weights between the neurons evolve according to a
learning rule / neuronal plasticity, and these results are adaptable to a large
variety of neural network models. This LDP is of great use in the mathe-
matical modelling of neural networks, because it allows a quantification of
the likelihood of the system deviating from its limit, and also a determi-
nation of which direction the system is likely to deviate. The work is also
of interest because there are nontrivial correlations between the neurons
even in the asymptotic limit, thereby presenting itself as a generalisation
of traditional mean-field models.
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Keywords and phrases: Large Deviations, ergodic, neural network, learn-
ing, SDE, lattice, interacting particles, stationary, process level, level 3,
empirical measure, periodic.

1. Introduction

In this paper we determine a Large Deviation Principle for a strictly station-
ary model of interacting processes on a lattice. We are motivated in particular
by the study of interacting neurons in neuroscience, but this work ought to be
adaptable to other phenomena such as mathematical finance, population genet-
ics or insect swarms. In neuroscience, neurons form complicated networks which
may be studied on many levels. On the macroscopic level, neural field equations
model the density of activity per space / time. They have been very successful
in understanding many phenomena in the brain, including visual hallucinations
[23, 9], motion perception [37], feature selectivity in the visual cortex [46] and
traveling waves [24, 68, 59, 48, 30, 8]. On the microscopic level, models such
as that of Hodgkin and Huxley explain the dynamics of action-potentials very
accurately. One of the most important outstanding questions in mathematical
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neuroscience is a detailed and mathematically rigorous derivation of the macro-
scopic from the microscopic equations [7, 66]. In particular, perhaps two of the
most difficult phenomena to model are the nature of the connection strengths
between the neurons, and the stochastic noise. We will discuss these further be-
low, but before we do this we provide a brief introduction to mean-field models
of neuroscience.

Classical mean-field models are perhaps the most common method used to
scale up from the level of individual neurons to the level of populations of
neurons [2, 66]. For a group of neurons indexed from 1 to N , the evolution
equation of a mean field model is typically of the following form (an RN -valued
SDE)

dXj
t =

[
g(Xj

t ) +
1

N

N∑
k=1

ht(X
j , Xk)

]
dt+ σ(Xj

t )dW j
t . (1)

We set Xj
0 = 0. Here g is Lipschitz, h is Lipschitz and bounded, and σ is Lips-

chitz. (W j) are independent Brownian Motions representing internal / external
noise. Asymptoting N to ∞, we find that in the limit Xj is independent of
Xk (for j 6= k), and each Xj is governed by the same law [65]. Since the (Xj)
become more and more independent, it is meaningful to talk of their mean as
being representative of the group as a whole. In reaching this limit, three crucial
assumptions have been made: that the external synaptic noise is uncorrelated,
that the connections between the neurons are homogeneous and that the con-
nections are scaled by the inverse of the size of the system. We will relax each
of these assumptions in our model (which is outlined in Section 2.2).

The noise has a large effect on the limiting behavior, but as already noted it
is not necessarily easy to model. Manwani and Koch [53] distinguish three main
types of noise in the brain: thermal, channel noise and synaptic noise coming
from other parts of the brain. With synaptic noise in particular, it is not clear
to what extent this is indeed ‘noise’, or whether there are correlations or neural
coding that we are not yet aware of. At the very least, we expect that the
correlation in the synaptic noise affecting two neurons close together should be
higher than the correlation in the synaptic noise affecting two neurons a long
way apart. The signal output of neurons has certainly been observed to be highly
correlated [64, 62, 1]. In our model for the synaptic noise in Section 4, the noise
is correlated, with the correlation determined by the lattice distance between
the neurons. Indeed the probability law for the noise is stationary relative to
the toroidal topology of our neural network, meaning that it is invariant under
rotations of the torus.

The other major difference between the model in Section 2.2 and the mean
field model outlined above is the model of the synaptic connections. In the study
of emergent phenomena of interacting particles, the nature of the connections
between the particles is often more important than the particular dynamics
governing each individual [45]. One of the reasons the synaptic connections are
scaled by the inverse of the number of neurons is to ensure that the mean-field
equation (1) has a limit as N → ∞. However this assumption, while useful,
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appears a little ad hoc. One might expect that the strength of the synaptic
connections is independent of the population size, and rather the system does
not ‘blowup’ for large populations because the strength of the connections decays
with increasing distance. This is certainly the standard assumption in models
of the synaptic kernel in neural field models [7]. Furthermore the asymptotic
behaviour in the mean-field model is extremely sensitive to the scaling. For
example, if we were to scale the synaptic strength by N−β for any β > 1,
then the limiting asymptotic behaviour would be quite different (the limiting
law would not be McKean-Vlasov). Finally there is a lot of evidence that the
strength of connection evolves in time through a learning rule / neural plasticity
[40, 36]. We will incorporate these effects into our model of the synaptic weights,
and ensure in addition that they are such that the probability law is stationary
relative to the toroidal topology. We note that there already exists a literature
on the asymptotic analysis of interacting diffusions, including [16, 50, 44]. Most
of this literature is concerned with the ergodic behaviour in time of a countably
infinite set of interacting diffusions, whereas this paper is more focussed on
understanding the behaviour over a fixed time interval of an asymptotically
large network of interacting neurons.

The main result of this paper is a Large Deviation Principle (LDP) for the
neural network model in Section 2.2. This essentially gives the exponential rate
of convergence towards the limit. A Large Deviation Principle is a very useful
mathematical technique which allows us to estimate finite-size deviations of the
system from its limit behaviour. There has been much effort in recent years
to understand such finite-size phenomena in mathematical models of neural
networks - see for instance [6, 13, 67, 26, 27]. More generally, there has already
been considerable work in the Large Deviations of ergodic phenomena. Donsker
and Varadhan obtained a Large Deviations estimate for the law governing the
empirical process generated by a Markov Process [22]. They then determined a
Large Deviations Principle for an (integer-indexed) stationary Gaussian Process,
obtaining a particularly elegant expression for the rate function using spectral
theory. [15, 21, 11] obtain a Large Deviations estimate for the empirical measure
generated by processes satisfying various mixing conditions and [38] obtain an
LDP for stationary Gibbs Measures. [3] obtain a variety of results for Large
Deviations of ergodic phenomena, including one for the Large Deviations of
Z-indexed RT -valued stationary Gaussian processes. [60, 49, 35] obtain large
deviation principles for a random walk in a random environment. There also
exists a literature modelling the Large Deviations and other asymptotics of
weakly-interacting particle systems (see for example [18, 4, 43, 17, 12, 31, 41, 51,
52, 28, 29, 14, 5]). These are systems of N particles, each evolving stochastically,
and usually only interacting via the empirical measure.

The correlations in the noise together with the inhomogeneity of the synaptic
weight model mean that the limit equation as n→∞ of (3) is not asynchronous,
unlike (1) (see [42] for a discussion of (a)synchronicity). Indeed the neurons
are potentially highly correlated, even in the large system limit. This means
that the results of this paper would be well-suited for further investigation of
stochastic resonance [10, 58, 54, 41]. Furthermore, one could obtain an LDP for
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the asymptotics of the synaptic weight connections Λks(U j , U j+k) through an
application of the contraction principle (see [19, Theorem 4.2.1]) to Theorem
1. This would be of interest in understanding the asymptotics of the network
architecture in the large size limit.

This paper is structured as follows. In Section 2 we outline a general model
of interacting neurons on a lattice, and state a large deviation principle under a
set of assumptions. In Section 3 we prove this theorem. In Section 4 we outline a
model of the noise as a correlated martingale, and prove a large deviation prin-
ciple for the law of the empirical measure. In Section 5 we outline an extended
example of this theory which satisfies the assumptions of Section 2. This exam-
ple considers a Fitzhugh-Nagumo model of interacting neurons, with Hebbian
learning on the synaptic weights and subject to the correlated noise of Section
4.

2. Outline of Model and Preliminary Definitions

In this section we start by outlining our finite model of (2n + 1)d stationary
interacting neurons indexed over Vn. In Section 2.3 we outline our assumptions
on the model. The main result of this paper is in Theorem 1.

2.1. Preliminaries

We must first make some preliminary definitions. Let (Ω,F ,P) be a complete
probability space. If X is some separable topological space, then we denote the
σ-algebra generated by the open sets by B(X), and the set of all probability
measures on (X,B(X)) by P(X). We endow P(X) with the topology of weak
convergence.

Elements of the processes in this paper are indexed by the lattice points Zd:
for j ∈ Zd we write j = (j(1), . . . , j(d)). Let Vn ⊂ Z

d be such that j ∈ Vn
if |j(m)| ≤ n for all 1 ≤ m ≤ d. The number of elements in Vn is written as
|Vn| := (2n+ 1)d.

We assume that the state space for each neuron isR. For any s ∈ [0, T ], we en-
dow C([0, s],R) with the norm ‖U‖s := supr∈[0,s] |Ur|. Write T := C

(
[0, T ],R

)
.

Let {λj}j∈Zd be a set of weights, satisfying λj > 0 and
∑
j∈Zd λ

j = 1. We make

further assumptions about {λj} at the start of Section 3. Let T Zdλ be the sep-

arable Banach Space of all U := (U j)j∈Zd ∈ T Z
d

such that the following norm
is finite

‖U‖T,λ :=

√∑
j∈Zd

λj ‖U j‖2T <∞. (2)

Let πVm : T Zd → T Vm be the projection πVm(X) := (Xj)j∈Vm . It can be

checked that the embedding T Zdλ ↪→ T Zd is continuous when T Zd is endowed

with the cylindrical topology (generated by sets O ⊂ T Zd such that πVmO is

open in T Vm). Let dλ,P be the Levy-Prokhorov metric on P(T Zdλ ) generated by

the norm ‖·‖T,λ on T Zdλ .



O. Faugeras et al./Large Deviations of a Network of Interacting Neurons 5

2.2. Outline of Model and Main Result

For n ∈ Z+, there are |Vn| neurons in our network. There are three components
to the dynamics of our neural network model: the internal dynamics term bs, the
interaction term Λks(U j , U (j+k) mod Vn) and the noise termWn,j

t . The form of our
interaction term differs from standard mean-field models in that it is not scaled
by some function of |Vn|, and it is not homogenous throughout the network.
Rather the function itself depends on the lattice distance k between the neurons
(the distance being taken modulo Vn). We must make some assumptions on the
behaviour of Λkt when |k| is large to ensure that the system is convergent (see
Assumption 3). The interaction Λkt can also be a function of the past activity,
which allows us to incorporate both delays in the signal transmission and a
learning model for the synaptic weights.

The form of the interaction explains why we work in the weighted space

T Zdλ rather than T Zd . We will choose the weights (λj)j∈Zd carefully so that
they dominate the interaction terms (in a certain sense). The mapping from
Wn → U of the noise to the solution (which we define to be Ψn in (22)) will

then be Lipschitz, uniformly in n, relative to the topology of T Zdλ . If we were to

work in the space T Zd endowed with the cylindrical topology, then the mappings
Ψn and Ψ (Ψ is the limit as n→∞ of Ψn) would not (in general) be continuous,
even if the interactions were zero beyond some fixed lattice distance. We thus

choose to work in T Zdλ because we can take advantage of the fact that LDPs are

preserved under continuous maps . In any case the LDP over T Zdλ of Theorem

1 is a stronger result; the LDP over T Zd under the cylindrical topology is an
immediate corollary of this, as we note in Remark 3.

The system we study in this paper is governed by the following evolution
equation: for j ∈ Vn,

U jt = Uini +

∫ t

0

(
bs(U

j) +
∑
k∈Vn

Λks(U j , U (j+k) mod Vn)

)
ds+Wn,j

t . (3)

Here (j + k) mod Vn := l ∈ Vn, such that (j(p) + k(p)) mod (2n+ 1) = l(p)
for all 1 ≤ p ≤ d. Thus one may think of the neurons as existing on a torus.
This is what we meant when we stated in the introduction that the network has
a ‘toroidal topology’. Uini ∈ R is some constant. It follows from Lemmas 6 and
11 further below that there exists a unique solution to (3) P-almost surely. The
thrust of this article is to understand the asymptotic behaviour of the network
as n→∞.

We assume that Wn :=
(
Wn,j
t

)
j∈Vn,t∈[0,T ]

is a T Vn -valued random variable

such that Wn,j
0 = 0. In Section 4, we outline an example model for the (Wn,j

t )

where for any two j, k ∈ Vn, Wn,j
t is correlated with Wn,k

t , and each Wn,j
t is

a martingale in time. However this model is not necessary for Theorem 1 to
be valid. It is important to be aware that for some fixed m ∈ Z+, the law of
(Wn,j)j∈Vm may vary with n (which is the case for the example in Section 4,
where the correlations are modulo Vn).
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Let Sk : T Zd → T Zd (for some k ∈ Zd) be the shift operator (i.e. (Skx)m :=

xm+k). Denote the empirical measure µ̂n : T Vn → P(T Zdλ ) by

µ̂n(X) :=
1

|Vn|
∑
j∈Vn

δSjX̃ , (4)

where X̃ ∈ T Zdλ is the Vn-periodic interpolant, i.e. X̃j := X̃j mod Vn . If X ∈ T Zd ,
then in a slight abuse of notation we write µ̂n(X) := µ̂n(πVnX). It may be noted
that µ̂n is stationary, i.e. µ̂n(X) ◦ (Sj)−1 = µ̂n(X) for any j ∈ Zd.

We now outline our main result.

Theorem 1. Let the law of µ̂n(U) be Πn ∈ P(P(T Zdλ )). Under the assumptions
outlined in Section 2.3, (Πn)n∈Z+ satisfy a Large Deviation Principle with good
rate function I (i.e. I has compact level sets). That is, for all closed subsets A

of P
(
T Zdλ

)
,

lim
n→∞

1

|Vn|
log Πn(A) ≤ − inf

γ∈A
I(γ). (5)

For all open subsets O of P
(
T Zdλ

)
,

lim
n→∞

1

|Vn|
log Πn(O) ≥ − inf

γ∈O
I(γ). (6)

The rate function is given by I(µ) := IW (µ◦Ψ−1), where IW is the rate function

of Assumption 1 and Ψ : T Zdλ → T Zdλ is given in (22).

From now on, if a sequence of probability laws satisfies (5) and (6) for some
I with compact level sets, then to economise space we say that it satisfies an
LDP with a good rate function.

Remark 2. The rate function I is infinite outside the set of all stationary

measures: that is if µ ∈ P(T Zdλ ) is such that µ ◦ (Sj)−1 6= µ for some shift Sj,
then I(µ) =∞. This is because µ̂n(U) is stationary and the set of all stationary
measures is closed. In many circumstances one could use results concerning the
specific relative entropy to obtain a convenient expression for the rate function
I: see for example [38]. If the rate function IW were to have a unique zero,
then I must also have a unique zero µ∗, and it is standard to show that µ̂n(U)
converges almost surely to µ∗.

Remark 3. Because of the continuity of the embeddings T Zdλ ↪→ T Zd and

P(T Zdλ ) ↪→ P(T Zd), we may infer an LDP for (Πn)n∈Z+ relative to the weak

topology on P(T Zd) induced by the cylindrical topology on T Zd . This follows
directly from an application of the Contraction Principle [19, Theorem 4.2.21]
to Theorem 1.

Remark 4. It is worth noting that the modulo Vn form of the interaction is
not essential to get an LDP of this type. One could for example obtain a similar
result to Theorem 1 through replacing Λks(U j , U (j+k) mod Vn) in (3) with 0 if
(j + k) /∈ Vn. We have chosen this form because we find it more elegant.
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2.3. Assumptions

We employ the following assumptions.

Let the law of µ̂n(Wn) be Πn
W ∈ P

(
P(T Zdλ )

)
. We will obtain the LDP for

(Πn)n∈Z+ by applying a series of transformations to the LDP for (Πn
W )n∈Z+

(which we assume below). In Section 4 we outline an example of a model of the
noise which satisfies these assumptions (refer in particular to Theorem 13). In
particular, the condition (7) is proved in Lemma 18 in Section 4 .

Assumption 1. The series of laws (Πn
W )n∈Z+ is assumed to satisfy a Large

Deviation Principle with good rate function IW : P(T Zdλ ) → P(T Zdλ ). It is
assumed that

lim
a→∞

lim
n→∞

1

|Vn|
logP

∑
j∈Vn

∥∥Wn,j
∥∥
T
> a|Vn|

 = −∞. (7)

In many neural models, such as the Fitzhugh-Nagumo model in Section 5, the
internal dynamics term bs is not Lipschitz. In particular, bs is usually strongly
decaying when the activity is greatly elevated, so that bs always acts to restore
the neuron to its resting state. This decay is necessary in order for the neurons
to exhibit their characteristic ‘spiking’ behaviour. The following assumptions
can accommodate this non-Lipschitz behaviour.

Assumption 2. Assume that bt is continuous on [0, T ]× T , that it is
B(R)/B

(
C([0, t],R)

)
measurable and that for each positive constant A,

sup
t∈[0,T ],{X∈T :‖X‖T≤A}

|bt(X)| <∞. (8)

There exists a positive constant C̃ such that if Zjt ≥ 0, then

bt(Z
j) ≤ C̃

∥∥Zj∥∥
t

and if Zjt ≤ 0, then
bt(Z

j) ≥ −C̃
∥∥Zj∥∥

t
.

If Xj
t ≥ Z

j
t , then

bt(X
j)− bt(Z

j) ≤ C̃
∥∥Xj − Zj

∥∥
t
,

and if Xj
t ≤ Z

j
t , then

bt(X
j)− bt(Z

j) ≥ −C̃
∥∥Xj − Zj

∥∥
t
.

The interactions Λks(·, ·) are also typically nonlinear. See for example the
model of the interactions in [2], and also the example model in Section 5. Unlike
in mean-field models, the interaction between any two neurons is independent of
the size of the network. However the interactions must ultimately decay as the
lattice distance between the pre and post synaptic neurons increases. We use the
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positive constants (κk)k∈Zd to bound the interaction terms Λks . The constants
must satisfy ∑

k∈Zd
κk := κ∗ <∞, (9)

as well as the following assumptions. We assume that κk > 0 for all k ∈ Zd. We
also assume that if j(p) = ±k(p) for all p ∈ 1, . . . , d, then

κj = κk. (10)

The following assumptions on the interactions are the reason why we work

in T Zdλ (rather than for example T Zd endowed with the cylindrical topology).
We will choose the weights (λj)j∈Zd carefully so that, in a certain sense, they
dominate the bounds (κk)k∈Zd on the interaction strength. This is the content
of Lemma 5 further below.

Assumption 3. Assume that for all k ∈ Zd, Λks(·, ·) is continuous on [0, T ]×
T × T , and for each s ∈ [0, T ], Λks is B(R)/B

(
C([0, s],R)

)
× B

(
C([0, s],R)

)
-

measurable. For all U,X,Z ∈ T and k ∈ Zd∣∣Λkt (U,X)− Λkt (U,Z)
∣∣ ≤ κk ‖X − Z‖t .∣∣Λkt (U,X)− Λkt (Z,X)
∣∣ ≤ κk ‖U − Z‖t .

We assume the following absolute bound on the weights,∣∣Λkt (Zj , Zj+k)
∣∣ ≤ κk(1 +

∥∥Zj∥∥
t

+
∥∥Zj+k∥∥

t

)
.

Let κ̄n =
∑
k/∈Vn κ

k. By (9), κ̄n → 0 as n→∞. For notational ease we assume

that C̃ + κ∗ ≤ C. We may therefore infer the following identities directly from
the above assumptions. If Zjt ≥ 0,

bt(Z
j) +

∑
k∈Zd

Λkt (Zj , Zj+k) ≤ C
∥∥Zj∥∥

t
+ κ∗ +

∑
k∈Zd

κk
∥∥Zj+k∥∥

t
, (11)

and if Zjt ≤ 0,

bt(Z
j) +

∑
k∈Zd

Λkt (Zj , Zj+k) ≥ −C
∥∥Zj∥∥

t
− κ∗ −

∑
k∈Zd

κk
∥∥Zj+k∥∥

t
. (12)

Similarly, if Xj
t − Z

j
t ≥ 0, then

bt(X
j)−bt(Zj)+

∑
k∈Zd

(
Λkt (Xj , Xj+k)−Λkt (Zj , Xj+k)

)
≤ C

∥∥Xj − Zj
∥∥
t
. (13)

If Xj
t − Z

j
t ≤ 0, then

bt(X
j)− bt(Z

j) +
∑
k∈Zd

(
Λkt (Xj , Xj+k)− Λkt (Zj , Xj+k)

)
≥ −C

∥∥Xj − Zj
∥∥
t
.

(14)
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3. Proofs

We start by carefully defining the weights (λj)j∈Zd . The weights must be chosen
so that they ‘commute’ with the bounds κk of Section 2.3. This is the main
content of Lemma 5. After this we will prove Theorem 1, using [19, Corollary
4.2.21]. We will be able to use this result because the maps Ψn and Ψ which map
the noise Wn to the neural activity U , as defined in (21)-(22), are uniformly

Lipschitz with respect to the norm on T Zdλ .
We denote the Fourier transform with a tilde; hence we write for example

κ̃(θ) =
∑
j∈Zd exp (−i〈θ, j〉)κj (for θ ∈ [−π, π]d). It follows from (10) that

κ̃(θ) ∈ R. For θ ∈ [−π, π]d, and recalling that κ∗ =
∑
j∈Zd κ

j , define

λ̃(θ) = h (2κ∗ − κ̃(θ))
−1
, and let (15)

λj =
1

(2π)d

∫
[−π,π]d

exp (i〈θ, j〉) λ̃(θ)dθ, (16)

assuming that h is scaled such that

1

(2π)d

∫
[−π,π]d

λ̃(θ)dθ = 1. (17)

Note that the Fourier Series decomposition means that for θ ∈ [−π, π]d, λ̃(θ) =∑
j∈Zd exp (−i〈θ, j〉)λj .
The one-dimensional version of inequality (18) in the following Lemma has

been proved in [63, Lemma 4.2].

Lemma 5. For all j ∈ Zd, λj > 0, and∑
k∈Zd

λj−kκk ≤ 2κ∗λ
j . (18)

Finally, ∑
j∈Zd

λj = 1. (19)

Proof. We start with the first statement. Through a Taylor Expansion, we see
that

λ̃(θ) =
h

2κ∗

∞∑
k=0

2−kκ−k∗ (κ̃(θ))
k
. (20)

Now for any two functions f̃ , g̃ with absolutely convergent Fourier Series, if for
all j ∈ Zd f j > 0 and gj > 0, then each Fourier coefficient of the multiplication
(f̃ g̃) is also strictly greater than zero. This is because of the convolution formula,
with the jth Fourier coefficient of f̃ g̃ equal to∑

k∈Zd
f j−kgk > 0.
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Hence the Fourier Coefficients of each term in (20) of the form κ̃(θ)k are greater
than zero (because κk > 0 for all k ∈ Zd). This means that the Fourier Coeffi-
cients of λ̃ are greater than zero.

The second identity (18) follows from taking the jth Fourier Coefficient of
both sides of the equation

−λ̃(θ) (2κ∗ − κ̃(θ)) = −h,

which derives from (15). Upon doing this, we find that
∑
k∈Zd λ

j−kκk − 2κ∗λ
j

is the jth Fourier coefficient of −h, which by definition is strictly less than zero
if j = 0, else otherwise is zero.

The final identity (19) follows directly from (17).

Let T̄ Zdλ = {w ∈ T Zdλ |w
j
0 = 0}. Define Ψn,Ψ : T̄ Zdλ → T Zdλ as follows. Writing

Ψn(w) := X and Ψ(w) := Z, for any j ∈ Zd and t ∈ [0, T ],

Xj
t := Uini +

∫ t

0

(
bs(X

j) +
∑
k∈Vn

Λks(Xj , Xj+k)

)
ds+ wjt (21)

Zjt := Uini +

∫ t

0

(
bs(Z

j) +
∑
k∈Zd

Λks(Zj , Zj+k)

)
ds+ wjt . (22)

Lemma 6. Ψ,Ψn : T̄ Zdλ → T Zdλ are well-defined and unique.

Proof. Fix w ∈ T̄ Zdλ . We prove the existence of Ψ(w) satisfying (22) by using
periodic approximations of w and Lemma 7. The uniqueness is a direct conse-
quence of Lemma 9. The proof for Ψn is analogous.

Fix q ∈ Z+ and let p ∈ Z+ be such that
∑
j /∈Vp λ

j
∥∥wj∥∥2

T
≤ 1

4q . Let K =

supj∈Vp
∥∥wj∥∥2

T
and m ∈ Z+ be such that K

∑
j /∈Vm λ

j ≤ 1
4q . Define w̃(q) ∈ T Zdλ

to be such that

w̃(q)j = wj for j ∈ Vp
w̃(q)j = 0 for j ∈ Vm/Vp
w̃(q)j = w̃(q)j mod Vm otherwise.

We observe that∑
j∈Zd

λj
∥∥wj − w̃(q)j

∥∥2

T
≤
∑
j /∈Vp

λj
( ∥∥wj∥∥

T
+
∥∥w̃(q)j

∥∥
T

)2
≤ 2

∑
j /∈Vp

λj
( ∥∥wj∥∥2

T
+
∥∥w̃(q)j

∥∥2

T

)
≤ 2

(
1

4q
+
∑
j /∈Vm

λjK

)
≤ q−1. (23)
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By Lemma 7, there exists a solution Z(q) := Ψ(w̃(q)) to (22). If r > q, then by
Lemma 9, for a positive constant ΨC ,∥∥∥Z(q) − Z(r)

∥∥∥
T,λ
≤ ΨC ‖w̃(q)− w̃(r)‖T,λ . (24)

Since, by (23),

‖w̃(q)− w̃(r)‖T,λ ≤ ‖w̃(q)− w‖T,λ + ‖w − w̃(r)‖T,λ

≤ 2
√
q
,

we may infer from (24) that the sequence (Z(q))q∈Z+ converges to a limit Z∗ ∈
T Zdλ as q → ∞. To finish, it suffices for us to prove that for all t ∈ [0, T ] and
j ∈ Zd,

lim
q→∞

∫ t

0

bs(Z
(q)j) +

∑
k∈Zd

Λks(Z(q)j , Z(q)j+k)ds

=

∫ t

0

bs(Z
∗j) +

∑
k∈Zd

Λks(Z∗j , Z∗j+k)ds. (25)

Now since Z(q) converges as q → ∞, for each j, there must be some positive
constant K such that

sup
q∈Z+

∥∥∥Z(q)j
∥∥∥
T
≤ K.

But by Assumption 2, this means that supq∈Z+,t∈[0,T ]

∣∣bt(Z(q)j)
∣∣ <∞. Since bt

is continuous, bt(Z
(q)j)→ bt(Z

∗j), so that we may conclude by the dominated
convergence theorem that∫ t

0

bs(Z
(q)j)ds→

∫ t

0

bs(Z
∗j)ds.

For the other terms, we see that∣∣∣∣ ∫ t

0

∑
k∈Zd

(
Λks(Z(q)j , Z(q)j+k)− Λks(Z∗j , Z∗j+k)

)
ds

∣∣∣∣
≤
∫ t

0

∑
k∈Zd

∣∣∣∣Λks(Z(q)j , Z(q)j+k)− Λks(Z∗j , Z(q)j+k)

∣∣∣∣
+
∑
k∈Zd

∣∣∣∣Λks(Z∗j , Z(q)j+k)− Λks(Z∗j , Z∗j+k)

∣∣∣∣ds
≤
∫ t

0

∑
k∈Zd

κk
(∥∥∥Z(q)j − Z∗j

∥∥∥
s

+
∥∥∥Z(q)j+k − Z∗j+k

∥∥∥
s

)
ds.
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Summing over j,∑
j∈Zd

λj
∣∣∣∣ ∫ t

0

∑
k∈Zd

(
Λks(Z(q)j , Z(q)j+k)− Λks(Z∗j , Z∗j+k)

)
ds

∣∣∣∣
≤
∫ t

0

(
κ∗
∑
j∈Zd

λj
∥∥∥Z(q)j − Z∗j

∥∥∥
s

+
∑

j,k∈Zd
λjκk

∥∥∥Z(q)j+k − Z∗j+k
∥∥∥
s

)
ds

≤
∫ t

0

(
3κ∗

∑
j∈Zd

λj
∥∥∥Z(q)j − Z∗j

∥∥∥
s

)
ds

≤
∫ t

0

3κ∗

∥∥∥Z(q)j − Z∗j
∥∥∥
s,λ

ds,

by Lemma 5 and the Cauchy-Schwarz Inequality. Since
∥∥Z(q)j − Z∗j

∥∥
s,λ
→ 0

as q →∞, it must be that as q →∞, for each j ∈ Zd,∫ t

0

∑
k∈Zd

(
Λks(Z(q)j , Z(q)j+k)− Λks(Z∗j , Z∗j+k)

)
ds→ 0.

We have thus established (25).

Lemma 7. Suppose that w ∈ T̄ Zdλ is Vm periodic, i.e. wk = wk mod Vm for all
k ∈ Zd. Then there exist Ψn(w) and Ψ(w) satisfying (21)-(22).

Proof. We prove the result for Ψ(w) (the case Ψn(w) is analogous). It suffices
for us to show existence to the following finite-dimensional ODE: for j ∈ Vm,

U jt := Uini +

∫ t

0

(
bs(U

j) +
∑
k∈Zd

Λks(U j , U (j+k) mod Vm)

)
ds+ wjt . (26)

Once existence to the above equation has been shown, we may define Ψ(w) to
be the Vm-periodic extension of this solution, i.e. Ψ(w)j := U j mod Vm .

Define Y jt = U jt − w
j
t . It can be seen that the existence of a solution to (26)

is equivalent to the existence of a solution to the finite-dimensional differential
equation, for all j ∈ Vm,

d

dt
Y jt = bt(Y

j +wj) +
∑
k∈Zd

Λkt
(
Y j +wj , Y (j+k) mod Vm +w(j+k) mod Vm

)
, (27)

such that Y j0 = Uini. Suppose for the moment that there were to exist a solution
to (27) over some time interval [0, α]. Then

∥∥Y j∥∥
t
≤
∥∥U j∥∥

t
+
∥∥wj∥∥

t
and therefore

by Lemma 10∑
j∈Vm

∥∥Y j∥∥
α
≤ζα (28)

ζα =

(
|Vm|

(
|Uini|+ ακ∗

)
+ 3

∑
j∈Vm

∥∥wj∥∥
α

)
exp

(
(C + κ∗)α

)
.
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We will now use the generalisation of the Cauchy-Peano Theorem in Lemma
8 to prove the existence of a solution to (27). Let Ωt be the set of all Y ∈
C
(
[0, t],RVm

)
satisfying

∥∥Y j∥∥
t
≤ 2ζt for all j ∈ Vm. It may be observed using

the triangle inequality that{
Y ∈ C

(
[0, t],RVm

)
:
∥∥Y j − Uini∥∥t ≤ ζt} ⊆ Ωt.

Let M ∈ [0,∞], be

M := sup
t∈[0,T ],Y ∈ΩT ,j∈Vm

∣∣∣∣bt(Y j + wj)

+
∑
k∈Zd

Λkt
(
Y j + wj , Y (j+k) mod Vm + w(j+k) mod Vm

)∣∣∣∣. (29)

We claim that M <∞. This is because for each j ∈ Vm, supY ∈ΩT

∥∥Y j + wj
∥∥
T
<

∞, which means that supt∈[0,T ],Y ∈ΩT ,j∈Vm
∣∣bt(Y j + wj)

∣∣ < ∞ (thanks to As-
sumption 2). For the other term, it may be observed that the sum over over j
is finite, i.e.∑

j∈Vm

∣∣∣∣ ∑
k∈Zd

Λkt (Y j + wj , Y (j+k) mod Vm + w(j+k) mod Vm)

∣∣∣∣
≤

∑
j∈Vm,k∈Zd

κk
( ∥∥Y j + wj

∥∥
T

+
∥∥∥Y (j+k) mod Vm + w(j+k) mod Vm

∥∥∥
T

+ 1
)

= κ∗|Vm|+ 2κ∗
∑
j∈Vm

∥∥Y j + wj
∥∥
T
<∞.

We thus see that M < ∞. We may therefore use Lemma 8 to conclude that
there exists a solution Y ∗ to (27) over the time interval [0, α], where α =
min

(
T, ζT /M

)
. Furthermore, from (28), this solution must satisfy∑

j∈Vm

∥∥Y ∗j∥∥
α
≤ ζα, (30)

so that Y ∗ ∈ Ωt. If α 6= T we may continue this process iteratively. It follows
from the triangle inequality that

Ω̄2α :=
{
Z ∈ C([0, 2α],RVm) : Zjt = Y ∗jt for all t ∈ [0, α]

and sup
t∈[α,T ],j∈Vm

∣∣Zjt − Y ∗jα ∣∣ ≤ ζT
}
⊆ ΩT .

Note also that bt and Λt, when restricted to Ω̄2α, may be interpreted as contin-
uous functions on C([α, T ],RVm). Hence by Lemma 8 (we replace the interval
[0, T ] in this lemma by [α, T ]), there exists a solution Z∗ ∈ Ω̄2α which satisfies
(27) for all t ∈ [α, 2α].
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We may continue this process iteratively to find a solution over the entire
time interval [0, T ]. The reason that this works is that the solution must always
be in Ω, and the bound in (29) is over all of Ω, which is why the increment in
the time interval is always α.

We use the following generalisation of the Cauchy-Peano Existence theorem.

Lemma 8. Let Ω be a closed subset of T Vm such that for some Xini ∈ R,

{X ∈ T Vm : Xj
0 = Xini and

∥∥Xj −Xini

∥∥
T
≤ β for all j ∈ Vm} ⊆ Ω.

Suppose that f ∈ C
(
[0, T ] × Ω,RVm

)
is such that for all t ∈ [0, T ], f(t, ·) is

B
(
R
Vm
)
/B(C([0, t],RVm)) measurable and

sup
t∈[0,T ],X∈Ω,j∈Vm

|f(t,X)j | = M. (31)

Then there exists X ∈ Ω such that for all t ∈ [0, α] (where α = min(T, β/M))
and j ∈ Vm,

Xj
t = Xini +

∫ t

0

f(s,X)jds.

Proof. Divide [0, α] into k + 1 points t0 := 0, t1 := α/k, t2 := 2α/k, . . . , tk := α.
Let Ω′ = {X ∈ C([0, α],RVm) :

∥∥Xj −Xini

∥∥
α
≤ β for all j ∈ Vm}. Let X(k) ∈

C([0, α],RVm) be such that

X
(k)j
0 = Xini

X
(k)j
t = X(k)j

s + (t− s)f(s,X(k))j ,

where s = sup{tq : tq ≤ t}. We note that X(k) ∈ Ω′, because

∣∣X(k)j
tp −Xini

∣∣ ≤ p∑
l=1

∣∣X(k)j
tl
−X(k)j

tl−1

∣∣
≤

p∑
l=1

α

k

∥∥∥f(tl−1, X
(k))j

∥∥∥
≤ αM ≤ β.

We see that in general
∥∥X(k)j

∥∥
α
≤ β, and for t ∈ [tl, tl+1],

∣∣X(k)j
t − X(k)j

tl

∣∣ ≤
Mα
k . This means that the sequence {X(k)}∞k=1 is equicontinuous, and therefore

compact by the Arzela-Ascoli Theorem. Thus there exists a subsequence (kp)
∞
p=1

and X∗ ∈ C([0, α],Rm) such that for each j ∈ Vm, X
(kp)j
t → X∗jt uniformly in

t. We have that

X
(kp)j
t = Xini +

∫ t

0

f(s(kp), X(kp))jds,

where s(kp) = sup{tq : tq ≤ s}, the supremum being taken over the partition
with kp + 1 points. Now as p → ∞, s(kp) → s, and by the continuity of f ,
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f(s(kp), X(kp))→ f(s,X∗). Since f is bounded on [0, T ]×Ω′, by the dominated

convergence theorem,
∫ t

0
f(s(kp), X(kp))jds →

∫ t
0
f(s,X∗)jds. We thus see that

as p→∞,

X∗jt = Xini +

∫ t

0

f(s,X∗)jds.

Lemma 9. There exists a constant ΨC satisfying the following. If Ψn(w) and
Ψn(v) are solutions to (21), then

‖Ψn(w)−Ψn(v)‖T,λ ≤ ΨC ‖w − v‖T,λ .

If Ψ(w) and Ψ(v) are solutions to (22) then

‖Ψ(w)−Ψ(v)‖T,λ ≤ ΨC ‖w − v‖T,λ .

Proof. We prove the result for Ψ (the other case follows analogously). Let v, w ∈
T Zdλ , and write X = Ψ(w) and Z = Ψ(v).

Let [τ, γ] ⊂ [0, T ] be such that Xj
τ = Zjτ , and Xj

t −Z
j
t is of the same sign for

all t ∈ [τ, γ]. We see that for all t ∈ [τ, γ],

Xj
t − Z

j
t

=

∫ t

τ

(
bs(X

j)− bs(Z
j) +

∑
k∈Zd

Λks(Xj , Xj+k)− Λks(Zj , Zj+k)

)
ds

+ wjt − wjτ − v
j
t + vjτ +Xj

τ − Zjτ .

If Xj
t ≥ Z

j
t for all t ∈ [τ, γ], since Xj

τ = Zjτ ,

Xj
t − Z

j
t

≤
∫ t

τ

(
C
∥∥Xj − Zj

∥∥
s

+
∑
k∈Zd

Λks(Zj , Xj+k)− Λks(Zj , Zj+k
)
ds+ 2

∥∥wj − vj∥∥
T
,

using (13). Because the left side is positive, this means that∣∣Xj
t − Z

j
t

∣∣
≤
∫ t

τ

(
C
∥∥Xj − Zj

∥∥
s

+
∑
k∈Zd

κk
∥∥Xj+k − Zj+k

∥∥
s

)
ds+ 2

∥∥wj − vj∥∥
T
,

using Assumption 3. The case Xj
t ≤ Zjt is handled similarly. We may thus

conclude that for any t ∈ [0, T ],

∥∥Xj − Zj
∥∥
t
≤ 2

∥∥wj − vj∥∥
T

+

∫ t

0

(
C
∥∥Xj − Zj

∥∥
s
+
∑
k∈Zd

κk
∥∥Xj+k − Zj+k

∥∥
s

)
ds.
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Through an application of Gronwall’s Inequality to the above, for all t ∈ [0, T ],

∥∥Xj − Zj
∥∥
t
≤
(

2
∥∥wj − vj∥∥

T
+

∫ t

0

∑
k∈Zd

κk
∥∥Xj+k − Zj+k

∥∥
s
ds

)
exp

(
CT
)
.

Since (A + B)2 ≤ 2(A2 + B2), we thus see that through two applications of
Jensen’s Inequality,∑
j∈Zd

λj
∥∥Xj − Zj

∥∥2

t

≤ 2 exp
(
2CT

)[
4
∑
j∈Zd

λj
∥∥wj − vj∥∥2

t
+
∑
j∈Zd

λj
(∫ t

0

∑
k∈Zd

κk
∥∥Xj+k − Zj+k

∥∥
s
ds

)2]

≤ 2 exp
(
2CT

)[
4
∑
j∈Zd

λj
∥∥wj − vj∥∥2

t
+ t

∫ t

0

∑
j∈Zd

λj
( ∑
k∈Zd

κk
∥∥Xj+k − Zj+k

∥∥
s

)2
ds

]

≤ 2 exp
(
2CT

)[
4
∑
j∈Zd

λj
∥∥wj − vj∥∥2

t
+ tκ∗

∫ t

0

∑
j,k∈Zd

λjκk
∥∥Xj+k − Zj+k

∥∥2

s
ds

]

≤ 2 exp
(
2CT

)[
4
∑
j∈Zd

λj
∥∥wj − vj∥∥2

t
+ 2tκ2

∗

∫ t

0

∑
j∈Zd

λj
∥∥Xj − Zj

∥∥2

s
ds

]
,

where we have used Lemma 5. We apply Gronwall’s Inequality to the above to
find that there exists a positive constant Ψc, with
Ψ2
c := 8 exp

(
4T 2κ2

∗ exp(2CT ) + 2CT
)
, and such that for all t ∈ [0, T ],∑

j∈Zd
λj
∥∥Xj − Zj

∥∥2

t
≤ Ψ2

C

∑
j∈Zd

λj
∥∥wj − vj∥∥2

t
.

This gives us the lemma.

Lemma 10. Suppose that w ∈ T̄ Zdλ is Vm-periodic, i.e. wj = wj mod Vm . If
Ψn(w) is a solution to (21) over some time interval [0, α] ⊆ [0, T ], then∑
j∈Vm

∥∥Ψn(w)j
∥∥
α
≤ exp

(
(C + κ∗)α

)(
|Vm|

(
|Uini|+ ακ∗

)
+ 2

∑
j∈Vm

∥∥wj∥∥
α

)
.

If Ψ(w) is a solution to (22), then∑
j∈Vm

∥∥Ψ(w)j
∥∥
α
≤ exp

(
(C + κ∗)α

)(
|Vm|

(
|Uini|+ ακ∗

)
+ 2

∑
j∈Vm

∥∥wj∥∥
α

)
.

Proof. The proof is very similar to that of Lemma 9, but we make use of (11)-
(12) instead of (13)-(14).

The following lemma notes that Ψn and Ψ preserve the periodicity of w.
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Lemma 11. Suppose that w ∈ T̄ Zdλ is Vm-periodic. Then for all j ∈ Zd,

Ψn(w)j = Ψn(w)j mod Vm

Ψ(w)j = Ψ(w)j mod Vm

Ψn(W̃n)j = U j mod Vn ,

where U is defined in (3). Furthermore

µ̂n(U) = µ̂n(Wn) ◦ (Ψn)−1. (32)

Proof. It follows from the definition that for all j ∈ Zd, Ψ(Sjw) = SjΨ(w) and
Ψn(Sjw) = SjΨn(w). If k ∈ Vm is such that j mod Vm = k, then from the
definition Sjw = Skw, which gives us the first two results. (32) follows directly
from this and the definition of the empirical measure.

We now prove the main result: Theorem 1. The proof uses parts of [3, Theo-
rem 4.9].

Proof of Theorem 1. From Lemma 11, the law of µ̂n(Wn) ◦ (Ψn)−1 is Πn. By
Lemma 9, the maps µ→ µ◦Ψ−1 and µ→ µ◦ (Ψn)−1 are continuous. Therefore
using [19, Corollary 4.2.41], and our assumption that Πn

W satisfies an LDP with
good rate function, it suffices to prove that for any δ > 0,

lim
n→∞

1

|Vn|
logP

(
dλ,P

(
µ̂n(Wn) ◦ (Ψn)−1, µ̂n(Wn) ◦Ψ−1

)
> δ

)
= −∞. (33)

Let W̃n ∈ T Zdλ be the Vn-periodic interpolation of (Wn,j)j∈Vn - i.e. such that

W̃n,k := W k mod Vn for all k ∈ Zd. Let Xn = Ψ(W̃n)−Ψn(W̃n), Y n = Ψ(W̃n)

and Zn = Ψn(W̃n). For A ∈ B(T Zdλ ), let Aδ = {x ∈ T Zdλ : ‖x− y‖T,λ ≤
δ for some y ∈ A} be the closed blowup of A, and let Z(δ) be the closed
blowup of {0}. Then, letting 1 denote the indicator function, and noting that
SjΨ(W̃n) = Ψ(SjW̃n) and SjΨn(W̃ ) = Ψn(SjW̃ ) (as stated in Lemma 11), we
see that

µ̂n(Wn) ◦Ψ−1(A) =
1

|Vn|
∑
j∈Vn

1A
(
SjZn + SjXn

)
≤ 1

|Vn|
∑
j∈Vn

[
1A
(
SjZn + SjXn

)
1Z(δ)(S

jXn)

+ 1Z(δ)c
(
SjXn

) ]
.

Now if SjXn ∈ Z(δ) and
(
SjZn + SjXn

)
∈ A, then SjZn ∈ Aδ. This means

that
1A
(
SjZn + SjXn

)
1Z(δ)(S

jXn) ≤ 1Aδ(S
jZn).



O. Faugeras et al./Large Deviations of a Network of Interacting Neurons 18

We may therefore conclude that, after letting #{·} denote the cardinality of a
finite set,

µ̂n(Wn) ◦Ψ−1(A) ≤ 1

|Vn|
∑
j∈Vn

1Aδ(S
jZn) +

1

|Vn|
#
{
j ∈ Vn :

∥∥SjXn
∥∥
T,λ

> δ
}

=µ̂n(Wn) ◦ (Ψn)−1(Aδ) +
1

|Vn|
#
{
j ∈ Vn :

∥∥SjXn
∥∥
T,λ

> δ
}
.

Therefore, using the definition of the Levy-Prokhorov Metric,

dλ,P
(
µ̂n(Wn) ◦ (Ψn)−1, µ̂n(Wn) ◦Ψ−1

)
≤ max

{
δ,

1

|Vn|
#{j ∈ Vn :

∥∥SjXn
∥∥
T,λ

> δ}
}
.

Hence

P
(
dλ,P

(
µ̂n(Wn) ◦ (Ψn)−1, µ̂n(Wn) ◦Ψ−1

)
> δ

)
≤ P

(
1

|Vn|
#
{
j ∈ Vn :

∥∥SjXn
∥∥
T,λ

> δ
}
> δ

)
≤ P

(
1

|Vn|
∑
j∈Vn

∥∥SjXn
∥∥
T,λ

> δ2

)

= P
(

1

|Vn|
∑

j∈Vn,k∈Zd
λk
∥∥∥Xn,(j+k) mod Vn

∥∥∥
T
> δ2

)
,

since Xn,m = Xn,m mod Vn for all m ∈ Zd. Now we claim that∑
j∈Vn,k∈Zd

λk
∥∥∥Xn,(j+k) mod Vn

∥∥∥
T

=
∑
l∈Vn

∥∥Xn,l
∥∥
T
. (34)

This is because for any l ∈ Vn and k ∈ Zd, there exists a unique j ∈ Vn
such that (j + k) mod Vn = l. Hence the coefficient of

∥∥Xn,l
∥∥
T

on the right is∑
k∈Zd λ

k = 1. Thus, making use of the previous two results,

P
(
dλ,P

(
µ̂n(Wn) ◦ (Ψn)−1, µ̂n(Wn) ◦Ψ−1

)
> δ

)

≤ P

∑
j∈Vn

∥∥Xn,j
∥∥
T
> |Vn|δ2

 . (35)

Using Lemma 12 we may thus conclude that (33) is satisfied, i.e. that

lim
n→∞

1

|Vn|
logP

(
dλ,P

(
µ̂n(Wn) ◦ (Ψn)−1, µ̂n(Wn) ◦Ψ−1

)
> δ

)
= −∞. (36)
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Recall that W̃n ∈ T Zd is the periodic interpolant of Wn, i.e. such that
W̃n,j = Wn,j mod Vn .

Lemma 12. For any δ > 0,

lim
n→∞

1

|Vn|
logP

∑
j∈Vn

∥∥∥Ψ(W̃n)j −Ψn(W̃n)j
∥∥∥
T
> |Vn|δ2

 = −∞. (37)

Proof. Write Y n = Ψ(W̃n) and Zn = Ψn(W̃n). Suppose that τ, t are such
that Y n,jτ = Zn,jτ and

∥∥Y n,j − Zn,j∥∥
T

= |Y n,jt − Zn,jt |. We may assume that

Y n,js − Zn,js is of the same sign for all s ∈ [τ, t]. We then see, making use of
(13)-(14) and Assumption 3, that

|Y n,jt − Zn,jt | =
∫ t

τ

[
bs(Y

n,j)− bs(Z
n,j) +

∑
k∈Zd

(
Λks(Y n,j , Y n,j+k)

− Λks(Zn,j , Zn,j+k)
)

+
∑
k/∈Vn

Λks(Zn,j , Zn,j+k)

]
ds

≤
∫ t

τ

[
C
∥∥Y n,j − Zn,j∥∥

s
+
∑
k∈Zd

κk
∥∥Y n,j+k − Zn,j+k∥∥

s

+
∑
k/∈Vn

κk
(
1 +

∥∥Zn,j∥∥
s

+
∥∥Zn,j+k∥∥

s

)]
ds

≤
∫ t

0

[
C
∥∥Y n,j − Zn,j∥∥

s
+
∑
k∈Zd

κk
∥∥Y n,j+k − Zn,j+k∥∥

s

+
∑
k/∈Vn

κk
( ∥∥Zn,j∥∥

s
+
∥∥Zn,j+k∥∥

s

)]
ds+ tκ̄n.

We may thus conclude that

∥∥Y n,j − Zn,j∥∥
t
≤
∫ t

0

[
C
∥∥Y n,j − Zn,j∥∥

s
+
∑
k∈Zd

κk
∥∥Y n,j+k − Zn,j+k∥∥

s

+
∑
k/∈Vn

κk
( ∥∥Zn,j∥∥

s
+
∥∥Zn,j+k∥∥

s

)]
ds+ tκ̄n.
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Hence summing over j, we see that

∑
j∈Vn

∥∥Y n,j − Zn,j∥∥
t
≤
∫ t

0

[
C
∑
j∈Vn

∥∥Y n,j − Zn,j∥∥
s

+
∑

j∈Vn,k∈Zd
κk
∥∥Y n,j+k − Zn,j+k∥∥

s

+
∑

j∈Vn,k/∈Vn

κk
( ∥∥Zn,j∥∥

s
+
∥∥Zn,j+k∥∥

s

)]
ds+ t|Vn|κ̄n,

=

∫ t

0

[
C
∑
j∈Vn

∥∥Y n,j − Zn,j∥∥
s

+ κ∗
∑
j∈Vn

∥∥Y n,j − Zn,j∥∥
s

+ 2κ̄n
∑
j∈Vn

∥∥Zn,j∥∥
s

]
ds+ t|Vn|κ̄n,

where we have used the Vn-periodicity of Y n and Zn, i.e. Y n,j = Y n,j mod Vn

and Zn,j = Zn,j mod Vn (as noted in Lemma 11). By Gronwall’s Inequality,∑
j∈Vn

∥∥Y n,j − Zn,j∥∥
T
≤ C2κ̄n

(
|Vn|+

∑
j∈Vn

∥∥Zn,j∥∥
T

)
, (38)

for some constant C2. We may thus infer using Lemma 10 that for some constant
C3, ∑

j∈Vn

∥∥Y n,j − Zn,j∥∥
T
≤ κ̄nC3

(
|Vn|+

∑
j∈Vn

∥∥Wn,j
∥∥
T

)
.

Thus

P

∑
j∈Vn

∥∥Y n,j − Zn,j∥∥
T
> |Vn|δ2


≤ P

κ̄nC3

∑
j∈Vn

∥∥Wn,j
∥∥
T
> δ2|Vn| − κ̄nC3|Vn|


= P

∑
j∈Vn

∥∥Wn,j
∥∥
T
> |Vn|

(
δ2

κ̄nC3
− 1

) . (39)

For any a > 0, since κ̄n → 0 as n→∞, for n sufficiently large,

P

∑
j∈Vn

∥∥Wn,j
∥∥
T
> |Vn|

(
δ2

κ̄nC3
− 1

) ≤ P

∑
j∈Vn

∥∥Wn,j
∥∥
T
> a|Vn|

 .

The lemma now follows through Assumption 1.
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4. Large Deviation Principle for a Gaussian Process which is a
Martingale Correlated Modulo Vn

In this section we give an example of a model of correlated noise, where the noise
is a martingale with Gaussian marginals and the correlations are ‘modulo Vn’.
We explained why we expect the noise to be correlated in the introduction. We
will prove that the noise satisfies Assumption 1: in particular, that the laws of
the empirical measure µ̂n(Wn) satisfy a Large Deviation Principle. This model
of the noise is used in the Fitzhugh-Nagumo neural network example of Section
5. The Large Deviation Principle is stated in the main result of this section:
Theorem 13. It is important to note that the LDP for the law of µ̂n(Wn) is

relative to the topology on P(T Zdλ ) induced by the norm ‖·‖T,λ: this is not the

standard cylindrical topology on T Zd . An LDP for the law of µ̂n(Wn) relative

to the weak topology on P(T Zd) induced by the cylindrical topology on T Zd

is an immediate consequence of Theorem 13 through the Contraction Principle
[19, Theorem 4.2.21]. We now outline our model in more detail.

The noise Wn := (Wn,j
t )j∈Vn,t∈[0,T ] is a correlated martingale over T Vn ,

which we define as follows. The correlation is specified to be ‘modulo Vn’, in
keeping with the general tenor of this paper. The noise

(
Wn,j

)
j∈Vn

is taken to be

a continuous Gaussian process, i.e. such that for any finite set of times
(
tq
)M
p=1
⊂

[0, T ],
(
Wn,j
tq

)
j∈Vn,p∈[1,M ]

have a finite-dimensional Gaussian distribution, and

Wn,j ∈ T . Let (aj)j∈Zd ⊂ C([0, T ],R) be constants such that∑
j∈Zd

∥∥aj∥∥
T
<∞. (40)

We stipulate that for j, k ∈ Vn, 0 ≤ s ≤ t ≤ T ,

E[Wn,j
t ] =0 and (41)

E
[
Wn,j
s Wn,k

t

]
=

∫ s

0

a(k−j) mod Vn(r)dr. (42)

The fact that a process with the above properties exists (subject to Assumption
4 below) may be inferred from the proof of Lemma 16: one could define Wn

to be
(
Zn,j

)
j∈Vn

in (58). Zn is a moving-average (modulo Vn) transformation

of |Vn| independent Brownian motions. Define, respectively, the discrete and
continuous Fourier Transforms, for k ∈ Vn and θ ∈ [−π, π]d,

ãn,k(t) :=
∑
j∈Vn

exp

(
− 2πi〈j, k〉

2n+ 1

)
aj(t) (43)

ã(t, θ) :=
∑
j∈Zd

exp
(
− i〈j, θ〉

)
aj(t). (44)

The following assumptions are needed to guarantee that the process Wn,j
t exists

and is well-behaved.
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Assumption 4. Assume that if j(p) = ±k(p) for all p ∈ {1, . . . , d}, then
aj = ak. It follows from this that ãn,k(t), ã(t, θ) ∈ R and if j(p) = ±k(p) for all
p ∈ {1, . . . , d}, then ãn,j = ãn,k. We assume that there exists a constant ãmax

such that for all n ∈ Z+, k ∈ Vn and t ∈ [0, T ], 0 ≤ ãn,k(t) ≤ ãmax. We also
assume that for all t ∈ [0, T ] and θ ∈ [−π, π]d, 0 ≤ ã(t, θ) ≤ ãmax.

Define, for θ ∈ [−π, π]d and j ∈ Zd,

c̃(t, θ) =
√
ã(t, θ)

cj(t) =
1

(2π)d

∫
[−π,π]d

exp
(
ijω
)
c̃(t, ω)dω,

noting that these variables are in T . We assume that∑
j∈Zd

∥∥cj∥∥
T
<∞. (45)

We also assume that d
dt c̃(t, θ) ∈ T exists for all θ ∈ [−π, π]d, and that it has an

absolutely convergent Fourier Series, i.e. the following properties are satisfied:
for k ∈ Zd, θ ∈ [−π, π]d and t ∈ [0, T ],

fk :=
d

dt
ck ∈ T (46)

fk(t) =
1

(2π)d

∫
[−π,π]d

exp
(
i〈k, ω〉

) d
dt
c̃(t, ω)dω (47)

d

dt
c̃(t, θ) =

∑
k∈Zd

exp
(
− i〈k, θ〉

)
fk(t) and (48)

∑
k∈Zd

∥∥fk∥∥
T
<∞. (49)

For k ∈ Vn, define c̃n,k(t) =
√
ãn,k(t). Then define, for j ∈ Vn,

cn,j(t) =
1

|Vn|
∑
k∈Vn

exp

(
2πi〈j, k〉
2n+ 1

)
c̃n,k(t).

Define cn,k as follows. If k ∈ Vn, then

cn,k(t) = cn,k(t)− ck(t), (50)

otherwise if k /∈ Vn, then
cn,k(t) = −ck(t). (51)

Let

ηn,j =
∥∥cn,j∥∥

T
+ T

∥∥∥∥ ddt cn,j
∥∥∥∥
T

, (52)

and ηn,∗ =
∑
j∈Zd ηn,j .
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Assumption 5. We assume (45) and (46)- (49) hold, and that

lim
n→∞

ηn,∗ = 0.

Since
∑
k∈Zd

( ∥∥ck∥∥
T

+
∥∥fk∥∥

T

)
< ∞, and recalling that κk = κ−k (as noted

in (10)), we may assume that∥∥ck∥∥
T

+
∥∥fk∥∥

T
≤ κk, κ−k (53)

(if necessary we can make the change of definition κk → max
{
κk,
( ∥∥ck∥∥

T
+∥∥fk∥∥

T

)}
). By Lemma 5,∑
j∈Zd

λj
∥∥cm−j∥∥

T
≤ 2κ∗λ

m and
∑
j∈Zd

λj
∥∥fm−j∥∥

T
≤ 2κ∗λ

m. (54)

Let Πn
W be the law of µ̂n(Wn). The main result of this section is the following.

Theorem 13. Under Assumptions 4 and 5, the laws (Πn
W )n∈Z+ ⊂ P

(
P(T Zdλ )

)
satisfy a Large Deviation Principle with good rate function. This LDP is relative

to the topology on P(T Zdλ ) generated by the Levy-Prokhorov metric dλ,P(·, ·)
defined in Section 2.1.

Before we prove this theorem, we make some more definitions and prove

some introductory results. Define Γn,Γ : T Zdλ → T Zdλ as follows. For w ∈ T Zdλ ,
Γn(w) := Zn and Γ(w) := Y , where for t ∈ [0, T ]

Zn,jt =
∑
k∈Vn

(
cn,k(t)wj−kt −

∫ t

0

wj−ks

d

ds
cn,k(s)ds

)
for j ∈ Vn, (55)

Zn,j = Zn,j mod Vn for j /∈ Vn, (56)

Y jt =
∑
k∈Zd

(
ck(t)wj−kt −

∫ t

0

wj−ks

d

ds
ck(s)ds

)
for j ∈ Zd. (57)

Define ΓnP ,ΓP : P(T Zdλ )→ P(T Zdλ ) by

ΓnP(µ) :=µ ◦ (Γn)−1

ΓP(µ) :=µ ◦ Γ−1.

Lemma 14. The maps Γ,Γn : T Zdλ → T Zdλ , as well as the maps ΓP ,Γ
n
P :

T Zdλ → T Zdλ , are well-defined and continuous.

Proof. After one has noted that the support of Γn lies in T V2n , it is not too dif-
ficult to see that it is well-defined and continuous. The existence and continuity
of ΓP and ΓnP follows immediately from that of Γ and Γn.
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The existence and continuity of the map Γ follows from the following consid-

eration. Suppose that for w, v ∈ T Zdλ ,

Y jt =
∑
k∈Zd

(
ck(t)wj−kt −

∫ t

0

wj−ks

d

ds
ck(s)ds

)

Xj
t =

∑
k∈Zd

(
ck(t)vj−kt −

∫ t

0

vj−ks

d

ds
ck(s)ds

)
.

Then, using (53), Jensen’s Inequality, and recalling that κ∗ =
∑
j∈Zd κ

j ,∑
j∈Zd

λj
∥∥Y j −Xj

∥∥2

t

≤
∑

j,k∈Zd
λj
(∥∥ck∥∥

t

∥∥wj−k − vj−k∥∥
t

+

∫ t

0

∥∥wj−k − vj−k∥∥
s

∥∥∥∥ ddsck
∥∥∥∥
s

ds

)2

≤
∑
j∈Zd

λj
(
(1 + t)

∑
k∈Zd

κ−k
∥∥wj−k − vj−k∥∥

t

)2
≤κ∗(1 + t)2

∑
j,k∈Zd

λjκ−k
∥∥wj−k − vj−k∥∥2

t

≤2κ2
∗(1 + t)2

∑
j∈Zd

λj
∥∥wj − vj∥∥2

t
,

using (54). If we take vj = 0 for all j ∈ Zd, then we see that Γ(w) ∈ T Zdλ is
well-defined. The above identity also demonstrates that Γ is Lipschitz.

Let (Bj)j∈Zd be independent R-valued Wiener Processes on [0, T ]. Let Πn
B

be the law of µ̂n(B) ∈ P
(
T Zdλ

)
.

Theorem 15. The laws (Πn
B)n∈Z+ ⊂ P

(
P(T Zdλ )

)
satisfy a Large Deviation

Principle (LDP) with good rate function. This LDP is relative to the topology

on P(T Zdλ ) generated by the Levy-Prokhorov Metric dλ,P(·, ·) defined in Section
2.1.

This theorem is proved in Section 4.1 below.

Lemma 16.
Πn
W = Πn

B ◦ (ΓnP)−1.

Proof. We fix n throughout this proof. Let B̃ ∈ T Zdλ be the Vn-periodic inter-

polant of (Bj)j∈Vn , i.e. such that for all k ∈ Zd, B̃k := Bk mod Vn .

Claim: The law of 1
|Vn|

∑
j∈Vn δSj(Γn(B̃)) is Πn

B ◦ (ΓnP)−1.

Write Zn = Γn(B̃) and notice that for all j ∈ Zd

Zn,jt =
∑
k∈Vn

(
cn,k(t)B

(j−k) mod Vn
t −

∫ t

0

B(j−k) mod Vn
s

d

ds
cn,k(s)ds

)
. (58)
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We thus observe that for j ∈ Vn,

SjΓn
(
B̃
)

= Γn
(
SjB̃

)
. (59)

The claim follows from this observation.
Since Zn and Wn are Vn-periodic, it thus suffices to show that

(
Zn,j

)
j∈Vn

has the same law as
(
Wn,j

)
j∈Vn

. Now
(
Zn,j

)
j∈Vn

and Wn are both Gaussian,

and therefore we merely need to show that the mean and variance are the same.
Both of these processes have zero mean. An application of Ito’s Lemma yields
that P-almost-surely,

Zn,jt =
∑
k∈Vn

∫ t

0

cn,k(s)dB(j−k) mod Vn
s . (60)

We observe that the covariances are invariant under shifts modulo Vn, i.e. for
j, k, l ∈ Vn and s, t ∈ [0, T ],

E
[
Zn,js Zn,kt

]
= E

[
Zn,(j+l) mod Vn
s Z

n,(k+l) mod Vn
t

]
E
[
Wn,j
s Wn,k

t

]
= E

[
Wn,(j+l) mod Vn
s W

n,(k+l) mod Vn
t

]
.

Thus, it suffices for us to show that for all m ∈ Vn and t, u ∈ [0, T ],

E
[
Wn,0
t Wn,m

u

]
= E

[
Zn,0t Zn,mu

]
.

We note also that (Zn,j)j∈Vn and Wn are both martingales. This means that,
we only need to verify the above expression in the case that t = u. In sum, our
remaining task is to prove that for all m ∈ Vn and t ∈ [0, T ],

E
[
Wn,0
t Wn,m

t

]
=
∑
k,l∈Vn

E
[∫ t

0

cn,k(s)dB−ks

∫ t

0

cn,l(r)dB(m−l) mod Vn
r

]
.

Now E
[∫ t

0
cn,k(s)dB−ks

∫ t
0
cn,l(r)dBm−lr

]
is nonzero if and only if −k mod Vn =

(m − l) mod Vn. Furthermore −k mod Vn = (m − l) mod Vn if and only if
l mod Vn = (m+ k) mod Vn. We thus see, using the Ito Isometry, that

E
[
Zn,0t Zn,mt

]
=
∑
k∈Vn

∫ t

0

cn,k(s)cn,(k+m) mod Vn(s)ds

=

∫ t

0

∑
k∈Vn

cn,−k(s)cn,(k+m) mod Vn(s)ds,

since cn,k(s) = cn,−k(s). It follows from the convolution formula for the discrete
Fourier Transform that

∑
k∈Vn c

n,−k(s)cn,(k+m) mod Vn(s) is the mth discrete
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Fourier coefficient of
(
(c̃n,k(s))2

)
k∈Vn

. That is,
∑
k∈Vn c

n,−k(s)cn,(k+m) mod Vn(s) =

am(s). In light of (42), we thus see that

E
[
Zn,0t Zn,mt

]
= E

[
Wn,0
t Wn,m

t

]
,

as required.

The following proof uses some ideas from [3, Theorem 4.9].

Proof of Theorem 13. From Lemma 16, Πn
W is the law of µ̂n(B)◦(Γn)−1. There-

fore from [19, Corollary 4.2.21], and the fact that the maps µ→ µ ◦ (Γn)−1 and

µ → µ ◦ Γ−1 are continuous on P(T Zdλ ) (thanks to Lemma 14), it suffices to
prove that for any δ > 0,

lim
n→∞

1

|Vn|
logP

(
dλ,P

(
µ̂n(B) ◦ (Γn)−1, µ̂n(B) ◦ Γ−1

)
> δ

)
= −∞. (61)

Let B̃ ∈ T Zdλ be the Vn-periodic interpolation of (Bj)j∈Vn - i.e. such that B̃k :=

Bk mod Vn for all k ∈ Zd. Note that B̃ clearly depends on n. Let Xn = Γ(B̃)−
Γn(B̃). Then, very similarly to the proof of Theorem 1,

dλ,P
(
µ̂n(B) ◦ (Γn)−1, µ̂n(B) ◦ Γ−1

)
≤ max

{
δ,

1

|Vn|
#{j ∈ Vn :

∥∥SjXn
∥∥
T,λ

> δ}
}

= max

{
δ,

1

|Vn|
#
{
j ∈ Vn :

∥∥SjXn
∥∥2

T,λ
> δ2

}}
.

Hence

P
(
dλ,P

(
µ̂n(B) ◦ (Γn)−1, µ̂n(B) ◦ Γ−1

)
> δ

)
≤ P

(
1

|Vn|
#{j ∈ Vn :

∥∥SjXn
∥∥2

T,λ
> δ2} > δ

)
≤ P

(
1

|Vn|
∑
j∈Vn

∥∥SjXn
∥∥2

T,λ
> δ3

)

= P
(

1

|Vn|
∑

j∈Vn,k∈Zd
λk
∥∥∥Xn,(j+k) mod Vn

∥∥∥2

T
> δ3

)
,

since Xn,m = Xn,m mod Vn for all m ∈ Zd. Now we claim that∑
j∈Vn,k∈Zd

λk
∥∥∥Xn,(j+k) mod Vn

∥∥∥2

T
=
∑
l∈Vn

∥∥Xn,l
∥∥2

T
. (62)

This is because for any l ∈ Vn and k ∈ Zd, there exists a unique j ∈ Vn
such that (j + k) mod Vn = l. Hence the coefficient of

∥∥Xn,l
∥∥2

T
on the right is
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k∈Zd λ

k = 1. Thus, making use of the previous two results,

P
(
dλ,P

(
µ̂n(B) ◦ (Γn)−1, µ̂n(B) ◦ Γ−1

)
> δ

)

≤ P

∑
j∈Vn

∥∥Xn,j
∥∥2

T
> |Vn|δ3


≤ exp

(
−b|Vn|δ3

)
E
[

exp

(
b
∑
j∈Vn

∥∥Xn,j
∥∥2

T

)]
(63)

for some b > 0, through Chebyshev’s Inequality.
We thus see that, after noting the definition of Γn and Γ in (55)-(57), and

the definition cn,k in (50)-(51) that for any j ∈ Zd,

Xn,j
t =

∑
k∈Zd

(
cn,k(t)B

(j−k) mod Vn
t −

∫ t

0

B(j−k) mod Vn
s

d

ds
cn,k(s)ds

)
,

∥∥Xn,j
∥∥
T
≤
∑
k∈Zd

ηn,k

∥∥∥B(j−k) mod Vn
∥∥∥
T∥∥Xn,j

∥∥2

T
≤ηn,∗

∑
k∈Zd

ηn,k

∥∥∥B(j−k) mod Vn
∥∥∥2

T
,

where this last step follows by the Cauchy-Schwarz Inequality, ηn,k is defined in
(52) and ηn,∗ =

∑
m∈Zd ηn,m. Thus, for some positive constant b, assuming for

the moment that the following integrals are well-defined, we find that

E
[

exp
(
b
∑
j∈Vn

∥∥Xn,j
∥∥2

T

)]
≤ E

[
exp

(
bηn,∗

∑
j∈Vn,k∈Zd

ηn,k

∥∥∥B(j−k) mod Vn
∥∥∥2

T

)]
.

Now similarly to (62),∑
j∈Vn,k∈Zd

ηn,k

∥∥∥B(j−k) mod Vn
∥∥∥2

T
=
∑
k∈Zd

ηn,k
∑
l∈Vn

∥∥Bl∥∥2

T
= ηn,∗

∑
l∈Vn

∥∥Bl∥∥2

T
.

The above two results imply that

E
[

exp
(
b
∑
j∈Vn

∥∥Xn,j
∥∥2

T

)]
≤ E

[
exp

(
bη2
n,∗

∑
m∈Vn

‖Bm‖2T

)]
.

Observe that the coefficient of each ‖Bm‖2T is less than or equal to bη2
n,∗, which

goes to zero as n→∞ by Assumption 5. Hence for n large enough, by Lemma
17 the previous expectation is finite, and satisfies the bound

E
[

exp

(
bη2
n,∗

∑
m∈Vn

‖Bm‖2T

)]
≤ exp

(
|Vn|C̀bη2

n,∗
)
. (64)
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Combining (63) and (64), since ηn,∗ → 0 as n→∞, we see that

lim
n→∞

1

|Vn|
logP

(
dλ,P

(
µ̂n(B) ◦ (Γn)−1, µ̂n(B) ◦ Γ−1

)
> δ

)
≤ −bδ3.

We take b→∞ to obtain (61).

Lemma 17. There exists a constant C̀ such that for all a ∈ [0, 1
4T ],

E
[
exp

(
a
∥∥Bj∥∥2

T

)]
≤ 1 + C̀a ≤ exp

(
C̀a
)
.

Proof. Now the reflection principle [47, Section 2.6] dictates that, for any b ≥ 0,

P(supt∈[0,T ]B
j
t ≥ b) =

∫∞
b

2(2πT )−
1
2 exp

(
− x2

2T

)
dx. Hence, since (−Bt)t∈[0,T ]

has the same law as (Bt)t∈[0,T ],

P(
∥∥Bj∥∥

T
≥ b) ≤

∫ ∞
b

4(2πT )−
1
2 exp

(
− x2

2T

)
dx. (65)

We obtain an upper bound for the expectation of exp
(
a
∥∥Bj∥∥2

T
) by assuming

that the above density assumes its maximal value for all b ≥ L, where L > 0 is
chosen to ensure that the integral of the density upper bound is one. That is,
we find that

E
[
exp

(
a
∥∥Bj∥∥2

T

)]
≤
∫ ∞
L

4(2πT )−
1
2 exp

(
− x2

2T
+ ax2

)
dx. (66)

The limit L is defined such that∫ ∞
L

4(2πT )−
1
2 exp

(
− x2

2T

)
dx = 1.

Note that the above is equivalent to requiring that erf
(
L(2T)−

1
2

)
= 1

2 , where

erf(x) := 2π−
1
2

∫ x

0
exp(−t2)dt. Now through a change of variable, we see that if

L̄ = L
√

(2T )−1 − a, then∫ ∞
L

4(2πT )−
1
2 exp

(
− x2

2T
+ ax2

)
dx = (1− 2aT )−

1
2

∫ ∞
L̄

2√
π

exp(−y2)dy (67)

= h(a), (68)

where h(a) := (1−2aT )−
1
2

(
1−erf(L̄)

)
(note the dependence of L̄ on a). Now for

a ∈ [0, 1
4T ], the function h(a) is differentiable, with |h′(a)| uniformly bounded

on this interval. Hence by the Mean Value Theorem, since h(0) = 1, there exists
a constant C̀ such that for all a ∈ [0, 1

4T ],∫ ∞
L

4(2πT )−
1
2 exp

(
− x2

2T
+ ax2

)
dx ≤ 1 + C̀a. (69)

We may finally note that 1 + C̀a ≤ exp
(
C̀a
)

as a consequence of Taylor’s
Theorem. This gives us the lemma.



O. Faugeras et al./Large Deviations of a Network of Interacting Neurons 29

The following lemma is needed in order that Assumption 1 is satisfied.

Lemma 18.

lim
a→∞

lim
n→∞

1

|Vn|
logP

∑
j∈Vn

∥∥Wn,j
∥∥
T
> a|Vn|

 = −∞.

Proof. We noted in the proof of Lemma 16 that Wn has the same law as Zn in
(58). For the purpose of taking the expectation in the lemma, we may therefore
assume that for independent Brownian motions (Bj)j∈Vn ,

Wn,j
t =

∑
k∈Vn

(
cn,k(t)B

(j−k) mod Vn
t −

∫ t

0

B(j−k) mod Vn
s

d

ds
cn,k(s)ds

)
. (70)

We first establish that there exists a constant C̆ such that for all n ∈ Z+,

E
[

exp
(
C̆
∑
j∈Vn

∥∥Wn,j
∥∥2

T

)]
≤ exp

(
C̀|Vn|

)
, (71)

where C̀ is the constant in Lemma 17. Let

υn,j :=
∥∥cn,j∥∥

T
+ T

∥∥∥∥ ddtcn,j
∥∥∥∥
T

,

K = sup
n≥1

∑
j∈Vn

υn,j .

K <∞ thanks to (45), (49) and Assumption 5. We observe from (70) that∥∥Wn,j
∥∥
T
≤
∑
k∈Vn

υn,k
∥∥∥B(j−k) mod Vn

∥∥∥
T∥∥Wn,j

∥∥2

T
≤K

∑
k∈Vn

υn,k
∥∥∥B(j−k) mod Vn

∥∥∥2

T
,

using Jensen’s Inequality. Thus

exp

(
1

4TK2

∑
j∈Vn

∥∥Wn,j
∥∥2

T

)
≤ exp

(
1

4TK

∑
j,k∈Vn

υn,k
∥∥∥B(j−k) mod Vn

∥∥∥2

T

)

≤ exp

(
1

4T

∑
j∈Vn

∥∥Bj∥∥2

T

)
.

Hence, making use of Lemma 17,

E
[

exp

(
1

4TK2

∑
j∈Vn

∥∥Wn,j
∥∥2

T

)]
≤ exp

(
C̀|Vn|

)
.

We have thus established (71).
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We observe from (71) that for all n ∈ Z+,

P
( ∑
j∈Vn

∥∥Wn,j
∥∥
T
− a|Vn| > 0

)
≤ exp

(
− aC̆|Vn|

)
E
[

exp
(
C̆
∑
j∈Vn

∥∥Wn,j
∥∥2

T

)]

≤ exp

(
|Vn|

(
C̀ − aC̆

))
,

from which the lemma follows.

4.1. Proof of Theorem 15

Recall that (Bj)j∈Zd are independent Brownian Motions on [0, T ] and µ̂n(B) is

the empirical measure. We denote the weak topology on P(T Zdλ ) (generated by

the norm ‖·‖λ on T Zdλ ) by τλ. We recall the cylindrical topology on T Zd , which is

generated by sets O ⊂ T Zd such that πVmO is open in T Vm for somem ∈ Z+. We

let τW be the weak topology on P(T Zd) generated by the cylindrical topology on

T Zd . It may be seen that the embedding T Zdλ ↪→ T Zd is continuous and injective,

and induces a continuous and injective embedding P(T Zdλ ) ↪→ P(T Zd). Note
that these embeddings are not necessarily closed. In a slight abuse of notation
we identify Πn

B with its image law under this embedding, so that in other words

we may also consider Πn
B to be in P(P(T Zd)).

The following result is essentially already known.

Theorem 19. (Πn
B)n∈Z+ satisfy an LDP on P(T Zd) with good rate function

(with respect to the cylindrical topology τW ).

Proof. Recall that Πn
B is the law of the periodic empirical measure µ̂n(B) =

1
|Vn|

∑
j∈Vn δSjB̃ ∈ P(T Zd), where B̃j := Bj mod Vn . Let Π̄n

B be the law of

µ̄n(B) := 1
|Vn|

∑
j∈Vn δSjB , where B = (Bj)j∈Zd ∈ T Z

d

. Notice that µ̄n(B) is

not periodically interpolated and not (in general) invariant under shifts of the
lattice. Since the (Bj)j∈Zd are independent, it is a consequence of [21, Theorem
1.3] that (Π̄n

B)n∈Z+ satisfy an LDP with good rate function (with respect to the
cylindrical topology τW ).

The equivalence of the LDPs (relative to the topology τW ) for µ̄n(B) and
µ̂n(B) when d = 1 is already known (see for instance [61, Exercise 6.15]). The
proof easily generalises to the case d 6= 1.

Since, the embedding P(T Zdλ ) ↪→ P(T Zd) is continuous and injective, to
prove Theorem 15 it suffices in light of Theorem 19 and [19, Theorem 4.2.4]
that we prove that (Πn

B)n∈Z+ are exponentially tight relative to the topology

τλ on P(T Zdλ ). This is stated in the following proposition.

Proposition 20. For every α > 0, there exists a compact (relative to the topol-

ogy τλ) set K̄ ⊂ P(T Zdλ ) such that

lim
n→∞

1

|Vn|
log Πn

B(K̄c) ≤ −α. (72)
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The rest of this section is directed towards the proof of Proposition 20. We
introduce the following alternative set of weights (βm)m∈Z+ , βm := (βjm)j∈Zd ,
which put less and less weight on cubes in Zd centred at 0. For m ∈ Z+, let
(βjm)j∈Zd be such that βjm > 0 for all j ∈ Zd, and for some sequence ξ(m) ⊂ R+

with ξ(m)→∞ as m→∞,

βjm = ξ(m)λj for all j /∈ Vm, (73)

βjm = |Vm|−1

(
1− ξ(m)

∑
k/∈Vm

λk
)

for all j ∈ Vm, (74)

∑
j∈Zd

βjm = 1. (75)

Note that (75) follows directly from (73)-(74). We note that it is possible to find
the required sequence ξ(m) for the following reason. For any M ∈ Z+, choose
k, l ∈ Z+, k ≤ l − 1 such that

∑
j /∈Vk λ

j ≤ 1
2M and

∑
j /∈Vl λ

j ≤ 1
2(M+1) . We

may then stipulate that for all p ∈ [k, l− 1], ξ(p) = M , and ξ(l) = M + 1. This
process may be continued iteratively as M →∞.

For r > 0, define

Yrm = {X ∈ T Z
d

λ | ‖X‖
2
T,βm

≤ r}, (76)

where ‖X‖2T,βm :=
∑
j∈Zd β

j
m

∥∥Xj
∥∥2

T
. This set is closed in T Zdλ because the

norms ‖·‖λ and ‖·‖βm are equivalent - i.e. for each m there must exist constants

Cm, C̄m such that Cm ‖·‖T,λ ≤ ‖·‖T,βm ≤ C̄m ‖·‖T,λ. Define

Yr = ∩m∈Z+Yrm.

Being the intersection of closed sets, Yr is also closed (in the topology of T Zdλ ).
Let δ := (δi)i∈Z+ and γ := (γi)i∈Z+ , be such that δi → 0, δi < 1/2 for all i ∈ Z+

and γi →∞. Let

C(δ, γ) =
{
µ ∈ P(T Z

d

λ ) : µ
(
Yγi
)
≥ 1− δi for all i ∈ Z+

}
. (77)

It is straightforward to show that B(T Zdλ ) ⊂ B(T Zd) (the latter is the σ-

algebra generated by the cylindrical topology). Hence any µ ∈ P(T Zd) such

that µ(T Zdλ ) = 1 may be considered to be in P(T Zdλ ).

Lemma 21. Suppose that U ⊂ P(T Zd) is compact in τW and that U ∩ C(δ, γ)
is nonempty. Then there exists a set V such that U ∩ C(δ, γ) ⊆ V ⊆ C(δ, γ) ⊂
P(T Zdλ ), and V is compact in the topology τλ.

Proof. By Prokhorov’s Theorem, since U is compact in τW , there must exist

compact subsets (Ki)i∈Z+ , Ki ⊂ T Z
d

such that for all µ ∈ U , µ(Kc
i ) < δi.

Define
K̃i = Ki ∩ Yγi ⊂ T Z

d

λ .
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Since U ∩C(δ, γ) is nonempty by assumption, for some µ ∈ U ∩C(δ, γ), µ(Ki) ≥
1− δi and µ

(
Yγi
)
≥ 1− δi. Since δi < 1/2, this means that K̃i is nonempty.

Define V = {µ ∈ P(T Zdλ ) : µ(K̃i) ≥ 1 − 2δi for all i ∈ Z+}. It follows from
the definitions that U ∩C(δ, γ) ⊆ V. We first prove that V is tight, and then that
it is closed. It follows from these two facts (in light of Prokhorov’s Theorem)
that V is compact.

Step 1: V is tight.
It suffices by Prokhorov’s Theorem for us to prove that K̃i is compact in the

topology of T Zdλ . Let {Xk}∞k=1 be a sequence in K̃i. Fix ε > 0, and choose m
large enough that γi/ξ(m) ≤ ε/8. Then for all k ∈ Z+, since Xk ∈ Yγim∑

j /∈Vm

λj
∥∥∥Xj

k

∥∥∥2

T
=

1

ξ(m)

∑
j /∈Vm

βjm

∥∥∥Xj
k

∥∥∥2

T

≤ 1

ξ(m)
‖Xk‖2T,βm

≤ γi
ξ(m)

≤ ε

8
.

Since Ki is compact in the cylindrical topology of T Zd , we can choose a subse-
quence

(
X̃k

)
k∈Z+ such that

sup
k1,k2∈Z+,j∈Vm

∥∥∥X̃j
k1
− X̃j

k2

∥∥∥2

T
≤ ε

2
.

It follows that

sup
k1,k2∈Z+

∥∥∥X̃k1 − X̃k2

∥∥∥2

T,λ
≤
∑
j∈Vm

λj sup
k1,k2∈Z+

∥∥∥X̃j
k1
− X̃j

k2

∥∥∥2

T
+
∑
j /∈Vm

λj
∥∥∥X̃j

k1
− X̃j

k2

∥∥∥2

T

≤ ε

2

∑
j∈Vm

λj + 2
∑
j /∈Vm

λj
( ∥∥∥X̃j

k1

∥∥∥2

T
+
∥∥∥X̃j

k2

∥∥∥2

T

)
≤ ε

2
+
ε

2
= ε.

We may then repeat this process, obtaining a subsequence (X̄j)j∈Z+ of (X̃k)k∈Z+ ,
such that

sup
j1,j2∈Z+

∥∥X̄j1 − X̄j2

∥∥2

T,λ
≤ ε

2
.

In this way we obtain a Cauchy sequence X̃1, X̄1, . . ., which must converge to a

limit in T Zdλ .

It therefore remains for us to prove that K̃i is closed in the topology of T Zdλ .

Since Yγi is closed in this topology, it suffices for us to prove that Ki ∩ T Z
d

λ is

closed in the topology of T Zdλ . Now let Lm = {x ∈ T Zd : πVmx ∈ πVmKi}. The
compactness of Ki means that Lm must be closed in the cylindrical topology

on T Zd . In turn, it is not too difficult to see that Lm ∩ T Z
d

λ is closed in T Zdλ .



O. Faugeras et al./Large Deviations of a Network of Interacting Neurons 33

Therefore Ki ∩ T Z
d

λ = ∩m∈Z+

(
Lm ∩ T Z

d

λ

)
, being the infinite intersection of

closed sets in T Zdλ , is closed.
Step 2: V is closed.
We see from the definition that V is the intersection of sets of the form

Vi := {µ ∈ P(T Zdλ ) : µ(K̃i) ≥ 1 − 2δi}. Since K̃i is closed in the topology of

T Zdλ , each Vi is closed in the topology of P(T Zdλ ), and therefore the infinite
intersection is closed.

Proof of Proposition 20. Since, thanks to Theorem 19, (Πn
B)n∈Z+ satisfy an

LDP relative to the topology τW over P(T Zd), through [19, Exercise 1.2.19],
they must be exponentially tight relative to this topology. This means that for

each α > 0, there must exist a set K ⊂ P(T Zd), compact in the topology τW ,
such that

lim
n→∞

1

|Vn|
log Πn(Kc) = lim

n→∞

1

|Vn|
logP(µ̂n(B) /∈ K) ≤ −α. (78)

Let (δi, γi)i∈Z+ be two sequences such that δi ∈ (0, 1/2), δi → 0 and γi → ∞.
Assuming for the moment that K ∩ C(δ, γ) is nonempty (recall that C(δ, γ) is

defined in (77)), define K̃ ⊂ P(T Zdλ ) to be the compact set given in Lemma 21

such that K ∩ C(δ, γ) ⊆ K̃ ⊆ C(δ, γ). Our aim is to show that

lim
n→∞

1

|Vn|
logP(µ̂n(B) /∈ K̃) ≤ −α. (79)

Observe that

P(µ̂n(B) /∈ K̃) ≤ P(µ̂n(B) /∈ K) + P(µ̂n(B) /∈ C(δ, γ)). (80)

Now P(µ̂n(B) /∈ K) → 0 as n → ∞ by (78), and we will see that P(µ̂n(B) /∈
C(δ, γ))→ 0 as n→∞. This means that K ∩ C(δ, γ) must be nonempty: which
justifies our previous assumption of this.

We now find a more precise bound on P(µ̂n(B) /∈ C(δ, γ)). We claim that

P
(
µ̂n(B) /∈ C(δ, γ)

)
≤
∞∑
i=1

P
( ∑
j∈Vn

∥∥Bj∥∥2

T
> |Vn|δiγi

)
. (81)

As previously, write B̃ ∈ T Zdλ to be the Vn-periodic interpolant of (Bj)j∈Vn , i.e.

such that B̃k := Bk mod Vn for all k ∈ Zd. Now if µ̂n(B) /∈ C(δ, γ), then there

must exist i,m ∈ Z+ such that 1
|Vn|

{
#j ∈ Vn s.t

∥∥∥SjB̃∥∥∥2

T,βm
> γi

}
> δi. This

implies that ∑
j∈Vn

∥∥∥SjB̃∥∥∥2

T,βm
> |Vn|δiγi. (82)

Now, for any m ∈ Z+,∑
l∈Vn

∥∥∥SlB̃∥∥∥2

T,βm
=
∑
j∈Vn

∑
k∈Zd

βkm

∥∥∥B(j+k) mod Vn
∥∥∥2

T
.
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Now for any l ∈ Vn and k ∈ Zd, there is a unique j ∈ Vn such that (j +
k) mod Vn = l. What this means is that∑

j∈Vn,k∈Zd
βkm

∥∥∥B(j+k) mod Vn
∥∥∥2

T
=

∑
l∈Vn,k∈Zd

βkm
∥∥Bl∥∥2

T
=
∑
l∈Vn

∥∥Bl∥∥2

T
.

Observe that the last equation is independent of m. We may thus infer that

P (µ̂n(B) /∈ C(δ, γ)) ≤
∞∑
i=1

P

∑
j∈Vn

∥∥∥SjB̃∥∥∥2

T,βm
> |Vn|δiγi


=

∞∑
i=1

P
( ∑
j∈Vn

∥∥Bj∥∥2

T
> |Vn|δiγi

)
. (83)

We have thus established our claim (81).
Let γpδp = νp. Then, letting a = 1

4T , by Chebyshev’s Inequality,

P
( ∑
j∈Vn

∥∥Bj∥∥2

T
> |Vn|νp

)
= P

(
a
∑
j∈Vn

∥∥Bj∥∥2

T
> a|Vn|νp

)

≤ exp(−a|Vn|νp)E

exp
(
a
∑
j∈Vn

∥∥Bj∥∥2

T

)
≤ exp

(
a|Vn|

(
C̀ − νp

))
,

thanks to Lemma 17. We may assume that δp and γp are such that νp = C̀+ pα
a .

We then find that for all p ≥ 1,

P
( ∑
j∈Vn

∥∥Bj∥∥2

T
> |Vn|δpγp

)
≤ exp

(
− pα|Vn|

)
.

Hence using the formula for the summation of a geometric sequence,
∞∑
p=1

P
( ∑
j∈Vn

∥∥Bj∥∥2

T
> |Vn|δpγp

)
≤
∞∑
p=1

exp
(
− pα|Vn|

)
≤
(

1− exp(−α|Vn|)
)−1

exp(−α|Vn|)

≤ 2 exp(−α|Vn|), (84)

for large enough n. This means that, through (78), (80) and (84),

lim
n→∞

1

|Vn|
logP(µ̂n(B) /∈ K̃)

≤ lim
n→∞

1

|Vn|
log

(
Πn(Kc) + Πn

(
µ̂n(B) /∈ C(δ, γ)

))
≤ lim
n→∞

1

|Vn|
log (3 exp(−|Vn|α)) = −α.

We have thus proved (72), as required.
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5. An Application: A Fitzhugh-Nagumo Neural Network with
Chemical Synapses, subject to Correlated Noise

In this section we outline an example of a model satisfying (3) and the assump-
tions of Section 2.3. We take the internal dynamics to be that of the Fitzhugh-
Nagumo model, the interaction terms to be driven by the firing rates of the pre
and post synaptic neurons, the maximal synaptic weights evolving according to
a learning rule, and the noise to be the correlated martingale of the previous
section. We take d ∈ {1, 2, 3}. For j ∈ Vn, we have

dvjt = dWn,j
t (85)

+

(
vjt −

1

3
(vjt )

3 − wjt +
∑
k∈Vn

Jkt (vj , v(j+k) mod Vn)f(vjt )f(v
(j+k) mod Vn
t )

)
dt,

dwjt =
(
vjt + a− cwjt

)
dt. (86)

We take wj0 = vj0 = 0 as initial conditions. Here a and c are positive constants.
The internal dynamics of the above equation is that of the famous Fitzhugh-
Nagumo model [32, 56, 33, 34]. This model distils the essential mathemati-
cal features of the Hodgkin-Huxley model, yielding excitation and transmission
properties from the analysis of the biophysics of sodium and potassium flows.
The variable v is the ‘fast’ variable which corresponds approximately to the volt-
age, and w is the ‘slow’ recovery variable which is dominant after the generation
of an action potential.

We may reduce this to a one-dimensional equation by noticing that the so-
lution of (86) is

wjt = c−1

∫ t

0

exp
(
− c(t− s)

)(
vjs + a

)
ds.

Hence we identify U jt := vjt and

bt(U
j) := U jt −

1

3
(U jt )3 + c−1

∫ t

0

exp
(
− c(t− s)

)(
U js + a

)
ds. (87)

The interaction term is a simplification of the chemical synapse models in
[20, 25]. It can be seen that the interaction has been decomposed into the multi-
plication of three terms. The terms (Jk(·, ·))k∈Vn represent the maximal synaptic
weights, which are assumed to evolve according to the learning rule outlined in
the following section. Jks (·, ·) is taken to be globally Lipschitz and bounded by
J̄k (which satisfies (88)). The function f is the response function and corre-
sponds to the firing rate of a neuron: it is taken to be positive, bounded by f̄
and globally Lipschitz. We assume that the ‘activity’ of neuron j is given by
f(vjt ).

The noise Wn := (Wn,j
t )j∈Vn,t∈[0,T ] is taken to be the same as in Section 4.

In Theorem 13 we proved a Large Deviation Principle for the sequence of laws
(Πn

W )n∈Z+ of µ̂n
(
Wn

)
. It is easy to check that the rest of the assumptions of

Section 2.3 are satisfied.
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5.1. Learning Model of Synaptic Connections

One of the strengths of this paper is that the synaptic connections may evolve in
time according to a learning rule. This is one way in which our work is different
from mean-field models. An example of a possible model is the following classical
Hebbian Learning model (refer to [39] for a more detailed description, and in
particular Equation 10.6).

As stipulated previously, suppose that the maximal connection strength be-
tween neurons j and (j + k) is given by J̄k ≥ 0. This is assumed to satisfy the
condition ∑

k∈Zd
J̄k <∞. (88)

We assume that the ‘activity’ of neuron j at time t is given as v(U jt ). Here v :
R

2 → R is Lipschitz continuous, positive and bounded. The evolution equation
is defined to be

d

dt
Jkt (U j , U j+k) = Jcorr

(
J̄k − Jkt (U j , U j+k)

)
v(U jt )v(U j+kt )−JdecJkt (U j , U j+k).

(89)
Here Jcorr, Jdec are non-negative constants (if we let them be zero then we
obtain weights which are constant in time). Initially, we stipulate that

Jk0 (U j , U j+k) := Jkini (90)

where Jkini ∈ [0, J̄k] are constants stipulating the initial strength of the weights.
It is straightforward to show that there is a unique solution to the above differ-
ential equation for all U j , U j+k ∈ C([0, T ],R2). One may show that Jkt ≤ J̄k. In
effect, the solution defines Jkt as a function Jkt : C([0, t],R2)×C([0, t],R2)→ R,
which can be shown to be uniformly Lipschitz in both of its variables, where
C([0, t],R2) is endowed with the supremum norm.

Other nonlocal learning rules are possible: for a neuroscientific motivation
see for example [57, 55, 36]. In brief, one may assume that the synaptic con-
nection from presynaptic neuron k to postsnaptic neuron j is a function of
{U l}l−j∈Vm or l−k∈Vm , for some fixed m > 0. We must then redefine the state
variable at index point j ∈ Zd to be the states of all the neurons in the cube
centred at j and of side length (2m+ 1). One would then have to generalise the
result of this paper to having a multidimensional state vector (which would be
straightforward).
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[52] E. Luçon and W. Stannat, Mean field limit for disordered diffusions
with singular interactions, The Annals of Applied Probability, 24 (2014),
pp. 1946–1993.

[53] A. Manwani and C. Koch, Detecting and estimating signals in noisy
cable structures i: Neuronal noise sources, Neural Computation, (1999).

[54] M. D. McDonnell and L. M. Ward, The benefits of noise in neural
systems: bridging theory and experiment, Nature Reviews: Neuroscience, 12
(2011).

[55] K. Miller and D. MacKay, The role of constraints in hebbian learning.,
Neural Comp, 6 (1996), pp. 100–126.

[56] J. Nagumo, S. Arimoto, and S. Yoshizawa, An active pulse trans-



O. Faugeras et al./Large Deviations of a Network of Interacting Neurons 40

mission line simulating nerve axon, Proceedings of the IRE, 50 (1962),
pp. 2061–2070.

[57] E. Oja, A simplified neuron model as a principal component analyzer, J.
Math. Biology, 15 (1982), pp. 267–273.

[58] S. Ostojic, N. Brunel, and V. Hakim, Synchronization properties of
networks of electrically coupled neurons in the presence of noise and het-
erogeneities, Journal of Computational Neuroscience, 26 (2009).

[59] D. Pinto and G. Ermentrout, Spatially structured activity in synap-
tically coupled neuronal networks: 1. traveling fronts and pulses., SIAM
Journal on Applied Mathematics, 62 (2001), pp. 206–225.

[60] F. Rassoul-Agha and T. Seppäläinen, Process-level quenched large
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