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Chapter 1

Introduction

In this book, we study equidistribution and counting problems concerning locally geodesic arcs
in negatively curved spaces endowed with potentials, and we deduce, from the special case of
tree quotients, various arithmetic applications to equidistribution and counting problems in
non-Archimedean local fields.

For several decades, tools in ergodic theory and dynamical systems have been used to ob-
tain geometric equidistribution and counting results on manifolds, both inspired by and with
applications to arithmetic and number theoretic problems, in particular in Diophantine ap-
proximation. Especially pioneered by Margulis, this field has produced a huge corpus of works,
by Bowen, Cosentino, Clozel, Dani, Einseidler, Eskin, Gorodnik, Ghosh, Guivarc’h, Kim,
Kleinbock, Kontorovich, Lindenstraus, Margulis, McMullen, Michel, Mohammadi, Mozes,
Nevo, Oh, Pollicott, Roblin, Shah, Sharp, Sullivan, Ullmo, Weiss and the last two authors, just
to mention a few contributors. We refer for now to the surveys | , , , |
and we will explain in more details in this introduction the relation of our work with previous
works.

In this text, we consider geometric equidistribution and counting problems weighted with
a potential function in quotient spaces of CAT(—1) spaces by discrete groups of isometries.
The CAT(—1) spaces form a huge class of metric spaces that contains (but is not restricted to)
metric trees, hyperbolic buildings and simply connected Riemannian manifolds with sectional
curvature bounded above by —1. See | | and Chapter 2 for a review of some basic
properties of these spaces. Although some of the equidistribution and counting results with
potentials on negatively curved manifolds are known (see for instance | |), as well as
some of such results on CAT(—1) spaces without potential (see for instance | |), bringing
together these two aspects and producing new results and applications is one of the goals of
this book.

We extend the theory of Patterson-Sullivan, Bowen-Margulis and skinning measures to
CAT(—1) spaces with potentials, with a special emphasis on trees endowed with a system of
conductances. We prove that under natural nondegeneracy, mixing and finiteness assump-
tions, the pushforward under the geodesic flow of the skinning measure of properly immersed
locally convex closed subsets of CAT(—1) spaces equidistributes to the Gibbs measure, gen-
eralising the main result of | |

We also prove that the (appropriate generalisations of) the initial and terminal tangent
vectors of the common perpendiculars to any two properly immersed locally convex closed
subsets jointly equidistribute to the skinning measures when the lengths of the common per-
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pendiculars tend to +oco. This result is then used to prove asymptotic results on weighted
counting functions of common perpendiculars whose lengths tend to +00. Common perpendic-
ulars have been studied, in various particular cases, sometimes not explicitly, by Basmajian,
Bridgeman, Bridgeman-Kahn, Eskin-McMullen, Herrmann, Huber, Kontorovich-Oh, Mar-
gulis, Martin-McKee-Wambach, Meyerhoff, Mirzakhani, Oh-Shah, Pollicott, Roblin, Shah,
the last two authors and many others. See the comments after Theorem 1.5 below, and the
survey | | for references.

In the Part III of this book, we apply the geometric results obtained for trees to deduce
arithmetic applications in non-Archimedean local fields. In particular, we prove equidistri-
bution and counting results for rationals and quadratic irrationals in any completion of any
function field over a finite field.

Let us now describe more precisely the content of this book, restricted to special cases for
the sake of the exposition.

Geometric and dynamical tools

Let Y be a geodesically complete connected proper locally CAT(—1) space (or good orbispace),
such that the fundamental group of Y is not virtually nilpotent. In this introduction, we will
mainly concentrate on the cases where Y is either a metric graph (or graph of finite groups
in the sense of Bass and Serre, see | |) or a Riemannian manifold (or good orbifold) of
dimension at least 2 with sectional curvature at most —1. Let 4Y be the space of locally
geodesic lines of Y, on which the geodesic flow (g!)cr acts by real translations on the source.
When Y is a simplicial' graph (of finite groups), we consider the discrete time geodesic flow
(g%)iez, see Section 2.7. If Y is a Riemannian manifold, then 4Y is naturally identified with
the unit tangent bundle 7Y by the map that associates to a locally geodesic line its tangent
vector at time 0. In general, we define T'Y as the space of germs of locally geodesic lines in
Y, and Y maps onto T'Y with possibly uncountable fibers.

Let F : T'Y — R be a continuous map, called a potential, which plays the same role
in the construction of Gibbs measures/equilibrium states as the energy function in Bowen’s
treatment of the thermodynamic formalism of symbolic dynamical systems in | , Sect. 1].
In this introduction, we assume that F' is bounded in order to simplify the statements. We
define in Section 3.3 the critical exponent éF associated with F', which describes the loga-
rithmic growth of an orbit of the fundamental group on the universal cover of Y weighted
by the (lifted) potential F', and which coincides with the classical critical exponent when
F = 0. When Y is a metric graph, we associate in Section 3.5 a potential F, to a system
of conductances ¢ (that is, a map from the set of edges of Y to R), in such a way that the
correspondence ¢ — F¢ is bijective at the level of cohomology classes, and we denote df, by
dc. We assume in the remainder of this introduction that dp is finite and positive.

We say that the pair (Y, F') satisfies the HC-property if the integral of F' on compact locally
geodesic segments of Y varies in a Holder-continuous way on its extremities (see Definition
3.4). The pairs which have the HC-property include Riemannian manifolds with pinched
sectional curvature at most —1 and Hoélder-continuous potentials, and metric graphs with any
potential. This HC-property is the new technical idea compared to | | which allows the
extensions to our very general framework. See also | |, under the strong assumption
that Y is compact.

Lthat is, if its edges all have lengths 1
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In Chapter 4, building on the works of | | when F' = 0 and of | ] when Y is a
Riemannian manifold, we generalise, to locally CAT(—1) spaces Y endowed with a potential
F satisfying the HC-property, the construction and basic properties of the Patterson densities
at infinity of the universal cover of Y associated with F' and the Gibbs measure mp on 4Y
associated with F'.

Using the Patterson-Sullivan-Bowen-Margulis approach, the Patterson densities are limits
of renormalised measures on the orbit points of the fundamental group, weighted by the
potential, and the Gibbs measures on 4Y are local products of Patterson densities on the
endpoints of the geodesic line, with the Lebesgue measure on the time parameter, weighted
by the Gibbs cocycle defined by the potential.

Generalizing a result of | |, we prove in Section 6.2 that when Y is a regular simpli-
cial graph and c is an anti-reversible system of conductances, then the Patterson measures,
normalized to be probability measures, are harmonic measures (or hitting measures) on d,Y
for a transient random walk on the vertices, whose transition probabilities are constructed
using the total mass of the Patterson measures.

Gibbs measures were first introduced in statistical mechanics, and are naturally associated
via the thermodynamic formalism® with symbolic dynamics. We prove in Section 4.2 that our
Gibbs measures satisfy a Gibbs property analogous to the one in symbolic dynamics. If F' = 0,
the Gibbs measure mp is the Bowen-Margulis measure mgy. If Y is a compact Riemannian
manifold and F' is the strong unstable Jacobian v — — %nzo In Jac (gt‘w_(v))(v), then mp is

the Liouville measure and dp = 0 (see | , Chap. 7| for more general assumptions on Y').
Thus, one interesting aspect of Gibbs measure is that they form a natural family of measures
invariant under the geodesic flow that interpolates between the Liouville measure and the
Bowen-Margulis measure (which in variable curvature are in general not in the same measure
class). Another interesting point is that such measures are plentiful: a recent result of Belarif
[Bel] proves that when Y is a geometrically finite Riemannian manifold with pinched nega-
tive curvature and topologically mixing geodesic flow, the finite and mixing Gibbs measures
associated with bounded Hoélder-continuous potentials are, once normalised, dense (for the
weak-star topology) in the whole space of probability measures invariant under the geodesic
flow.

The Gibbs measures are remarkable measures for CAT(—1) spaces endowed with poten-
tials due to their unique ergodic-theoretic properties. Let (Z, (¢¢)ier) be a topological space
endowed with a continuous one-parameter group of homeomorphisms and let ¢/ : Z — R be a
bounded continuous map. Let .# be the set of Borel probability measures m on Z invariant
under the flow (¢¢)cr. Let hp(¢!) be the (metric) entropy of the geodesic flow with respect to
m € M. The metric pressure for 1) of a measure m € .# and the pressure of ¢ are respectively

Py(m) = hp(o1) + fZ Ypdm and Py = szf/;/ Py(m) .

An element m € .# is an equilibrium state for 1) if the least upper bound defining Py is
attained on m.

Let F*: 4Y — R be the composition of the canonical map Y — T'Y with F, and note
that F* = F if Y is a Riemannian manifold. When F = 0 and Y is a Riemannian manifold,
whose sectional curvatures and their first derivatives are bounded, by [OP, Thm. 2|, the

%itself building on the works of Ledrappier [Led], Hamenstédt, Coudéne, Mohsen
3see for instance [ , ,
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pressure Pr coincides with the entropy of the geodesic flow, it is equal to the critical exponent
of the fundamental group of Y, and the Bowen-Margulis measure mp = mpy, normalised
to be a probability measure, is the measure of maximal entropy. When Y is a Riemannian
manifold whose sectional curvatures and their first derivatives are bounded and F' is Holder-
continuous, by | , Thm. 6.1], we have Pr = dp. If furthermore the Gibbs measure mp
is finite and normalised to be a probability measure, then m g is an equilibrium state for F'.

We prove an analog of these results for the potential F¥ when Y is a metric graph of groups.
The case when Y is a finite simplicial graph? is classical by the work of Bowen | |, as
it reduces to arguments of subshifts of finite type (see for instance | |). When Y is a
compact® locally CAT(—1)-space,’ a complete statement about existence, uniqueness and
Gibbs property of equilibrium states for any Holder-continuous potential is given in | ].

Theorem 1.1 (The variational principle for metric graphs of groups). Assume that 'Y is a
metric graph of finite groups, with a positive lower bound and finite upper bound on the lengths
of edges. If the critical exponent 0 is finite, if the Gibbs measure mp is finite, then Pps = 6p
and the Gibbs measure normalised to be a probability measure is the unique equilibrium state
for F*.

The main tool is a natural coding of the discrete time geodesic flow by a topological Markov
shift (see Section 5.1). This coding is delicate when the vertex stabilisers are nontrivial, as
in particular it does not satisfy in general the Markovian property of dependence only on
the immediate past (see Section 5.2). We then apply results of Buzzi and Sarig in symbolic
dynamics over a countable alphabet (see Appendix A written by J. Buzzi), and suspension
techniques introduced in Section 5.3.

In Chapter 7, we generalise for nonconstant potentials on any geodesically complete con-
nected proper locally CAT(—1) space Y the construction of the skinning measures azg and
o on the outer and inner unit normal bundles of a connected proper nonempty properly
immersed closed locally convex subset D of Y. By definition, D is the image, by the universal
covering map, of a proper nonempty closed convex subset of the universal cover of Y, whose
family of images under the universal covering group is locally finite. We refer to Section 2.5 for
the appropriate definition of the outer and inner unit normal bundles of D when the boundary
of D is not smooth. We construct these measures O’B and o, as the induced measures on
Y of appropriate pushforwards of the Patterson densities associated with the potential F' to
the outer and inner unit normal bundles of the lift of D in the universal cover of Y. This
construction generalises the one in | | when F' = 0, which itself generalises the one in
[ , | when M has constant curvature and D is a ball, a horoball or a totally geodesic
submanifold.

In Section 10.1, we prove the following result on the equidistribution of equidistant hyper-
surfaces in CAT(—1) spaces. This result is a generalisation of | , Theo. 1| (valid in Rie-
mannian manifolds with zero potential) which itself generalised the ones in | , EM, |
when Y has constant curvature, F' = 0 and D is a ball, a horoball or a totally geodesic sub-
manifold. See also | | when Y is a CAT(—1) space, F' = 0 and D is a ball or a horoball.

4that is, a finite graph of trivial groups with edge lengths 1

Sa very strong assumption that we do not want to make in this text

5not in the orbifold sense, hence this excludes for instance the case of graphs of groups with some nontrivial
vertex stabiliser
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Theorem 1.2. Let (Y, F') be a locally CAT(—1) space endowed with a potential satisfying the
HC-property. Assume that the Gibbs measure mp on 9Y is finite and mizing for the geodesic
flow (g')ter, and that the skinning measure ozg is finite and nonzero. Then, as t tends to
+00, the pushforwards (gt)*crj{) of the skinning measure of D by the geodesic flow weak-star
converges towards the Gibbs measure mp (after normalisation as probability measures).

We prove in Theorem 10.4 an analog of Theorem 1.2 for the discrete time geodesic flow
on simplicial graphs and, more generally, simplicial graphs of groups. As a special case,
we recover known results on nonbacktracking simple random walks on regular graphs. The
equidistribution of the pushforward of the skinning measure of a subgraph is a weighted version
of the following classical result, see for instance | |, which under further assumptions on
the spectral properties on the graph gives precise rates of convergence.

Corollary 1.3. Let Y be a finite reqular graph which is not bipartite. Let Y' be a nonempty
connected subgraph. Then the n-th vertex of the non-backtracking simple random walk on Y
starting transversally to Y' converges in distribution to the uniform distribution as n — +00.

See Chapter 10 for more details and for the extensions to nonzero potential and to graphs
of groups, as well as Section 10.4 for error terms.

The distribution of common perpendiculars

Let D~ and D" be connected proper nonempty properly immersed locally convex closed
subsets of Y. A common perpendicular from D~ to DV is a locally geodesic path in Y starting
perpendicularly from D~ and arriving perpendicularly to D*.” We denote the length of a
common perpendicular a from D~ to Dt by A(«a), and its initial and terminal unit tangent
vectors by v, and v}. In the general CAT(—1) case, v are two different parametrisations
(by F[0, A()]) of a, considered as elements of the space 9Y of generalised locally geodesic
lines in Y, see | | or Section 2.3. For all t > 0, we denote by Perp(D~, D%, t) the set of
common perpendiculars from D~ to Dt with length at most ¢ (considered with multiplicities),
and we define the counting function with weights by

Np- p+,p(t) = Z ot

aePerp(D—, Dt,1t)

where | F = SS‘ (@) p(gtvz) dt. We refer to Section 12.1 for the definition of the multiplicities
in the manifold case, which are equal to 1 if D~ and D% are embedded and disjoint. Higher
multiplicities for common perpendiculars o can occur for instance when D™ is a non-simple
closed geodesic and the initial point of « is a multiple point of D~.

Let Perp(D~, D") be the set of all common perpendiculars from D~ to D" (considered
with multiplicities). The family (A(a))qeperp(p—, p+) 18 called the marked ortholength spec-
trum from D~ to D*. The set of lengths (with multiplicities) of elements of Perp(D~, D%)
is called the ortholength spectrum of D~, D*. This second set has been introduced by Bas-
majian | | (under the name “full orthogonal spectrum”) when M has constant curvature,
and D~ and D™ are disjoint or equal embedded totally geodesic hypersurfaces or embedded
horospherical cusp neighbourhoods or embedded balls. We refer to the paper | | which

"See Section 2.6 for explanations when the boundary of D~ or DV is not smooth.
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proves that the ortholength spectrum with D¥ = 0M determines the volume of a compact
hyperbolic manifold M with totally geodesic boundary (see also [C'al] and | D).

We prove in Chapter 12 that the critical exponent §r of F' is the exponential growth rate
of Ap- p+ r(t), and we give an asymptotic formula of the form Ap- p+ p(t) ~ cedrt as
t — 400, with error term estimates in appropriate situations. The constants ¢ that will appear
in such asymptotic formulas will be explicit, in terms of the measures naturally associated
with the (normalised) potential F': the Gibbs measure mp and the skinning measures of D™
and D,

When F = 0 and Y is a Riemannian manifold with pinched sectional curvature and finite
and mixing Bowen-Margulis measure, the asymptotics of the counting function A7 p+ o(t)
are described in | , Thm. 1]. The only restriction on the two convex sets DT is that
their skinning measures are finite. Here, we generalise that result by allowing for nonzero
potential and more general CAT(—1) spaces than just manifolds.

The counting function .#p- p+ ¢(t) has been studied in negatively curved manifolds since
the 1950’s and in a number of more recent works, sometimes in a different guise. A number

of special cases (all with F' = 0 and covered by the results of | |) were known:

e D~ and D% are reduced to points, by for instance | I, | | and | ],

e D~ and D™ are horoballs, by | |, [ |, [Cos] and | | without an explicit form
of the constant in the asymptotic expression,

e D~ is a point and D7 is a totally geodesic submanifold, by [Her|, [EM] and | | in
constant curvature,

e D~ is a point and D7 is a horoball, by [[<on| and | | in constant curvature, and [Kin]
in rank one symmetric spaces,

e D~ is a horoball and D7 is a totally geodesic submanifold, by | | and | | in

constant curvature, and
e D~ and D7 are (properly immersed) locally geodesic lines in constant curvature and

dimension 3, by [Pol2].

We refer to the survey | | for more details on the manifold case.

When X is a compact metric or simplicial graph and DT are points, the asymptotics of
Np-,p+,0(t) as t — 400 is treated in [Gui], as well as | |. Under the same setting, see
also the work of Kiro-Smilansky-Smilansky announced in | | for a counting result of paths
(not assumed to be locally geodesic) in finite metric graphs with rationally independent edge
lengths and vanishing potential.

The proofs of the asymptotic results on the counting function A5~ p+ p are based on
the following simultaneous equidistribution result that shows that the initial and terminal
tangent vectors of the common perpendiculars equidistribute to the skinning measures of D™
and D*. We denote the unit Dirac mass at a point z by A, and the total mass of any measure
m by [m].

Theorem 1.4. Assume that Y is a nonelementary Riemannian manifold with pinched sec-
tional curvature at most —1 or a metric graph. Let F : T'Y — R be a potential, with finite
and positive critical exponent dp, which is bounded and Holder-continuous when Y is a man-
ifold. Let D* be as above. Assume that the Gibbs measure mp is finite and mizing for the

geodesic flow. For the weak-star convergence of measures on GY x GY , we have

: —opt Z S F _ + _
tEI+nOO oF |mp| e e A-®A+ =0, Qop, .
aePerp(D—, D+, t)
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There is a similar statement for nonbipartite simplicial graphs and for more general graphs
of groups on which the discrete time geodesic flow is mixing for the Gibbs measure, see the
end of Chapter 11 and Section 12.4. Again, the results can then be interpreted in terms of
nonbacktracking random walk.

In Section 12.2, we deduce our counting results for common perpendiculars of the subsets
D~ and D% from the above simultaneous equidistribution theorem.

Theorem 1.5. (1) Let Y, F, D* be as in Theorem 1.). Assume that the Gibbs measure mp
is finite and mizing for the continuous time geodesic flow and that the skinning measures UB_
and o, are finite and nonzero. Then, as s — +o0,

lof - lop.| edrs
Imp| oF

Np-, D+, F(8) ~
(2) If Y is a finite nonbipartite simplicial graph, then

ol lopell 5pm

Ao 00 a1

The above Assertion (1) is valid when Y is a good orbifold instead of a manifold or
a metric graph of finite groups instead of a metric graph (for the appropriate notion of
multiplicities), and when D~ and D™ are replaced by locally finite families. See Section 12.4
for generalisations of Assertion (2) to (possibly infinite) simplicial graphs of finite groups and
Sections 12.3 and 12.6 for error terms.

We avoid any compactness assumption on Y, we only assume that the Gibbs measure mp
of F is finite and that it is mixing for the geodesic flow. By Babillot’s theorem | |, if
the length spectrum of Y is not contained in a discrete subgroup of R, then mpg is mixing if
finite. If Y is a Riemannian manifold, this condition is satisfied for instance if the limit set
of a fundamental group of Y is not totally disconnected, see for instance | , |. When
Y is a metric graph, Babillot’s mixing condition is in particular satisfied if the lengths of the
edges of Y are rationally independent.

As in | |, we have very weak finiteness and curvature assumptions on the space
and the convex subsets we consider. Furthermore, the space Y is no longer required to be a
manifold and we extend the theory to non-constant weights using equilibrium states. Such
weighted counting has only been used in the orbit-counting problem in manifolds with pinched
negative curvature in | |. The approach is based on ideas from Margulis’s thesis to use
the mixing of the geodesic flow. Our measures are much more general. As in | |, we
push simultaneously the unit normal vectors to the two convex sets D~ and D™ in opposite
directions.

Classically, an important characterization of the Bowen-Margulis measure on closed neg-
atively curved Riemannian manifolds (F' = 0) is that it coincides with the weak-star limit
of properly normalised sums of Lebesgue measures supported on periodic orbits. The result
was extended to CAT(—1) spaces with zero potential in | | and to Gibbs measures in
the manifold case in | , Thm. 9.11]. As a corollary of the simultaneous equidistribution
result Theorem 1.4, we obtain a weighted version for simplicial and metric graphs of groups.
The following is a simplified version of such a result for Gibbs measures of metric graphs.

Let et/ (¢) be the set of prime periodic orbits of the geodesic flow on Y. Let A(g) denote
the length of a closed orbit g. Let .Zj, be the Lebesgue measure along g and let .Zj(F 5 be
the period of g for the potential F'.
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Theorem 1.6. Assume thatY is a finite metric graph, that the critical exponent dp is positive
and that the Gibbs measure mp is mixing for the (continuous time) geodesic flow. Ast — +o0,
the measures

S et 2 e”Z‘J(F).i”g

gePer! (t)
and
Sptedrt Z eZo () ;ig;)
gePer’(t)
converge to ﬁ for the weak-star convergence of measures.

See Section 13.2 for the proof of the full result and for a similar statement for (possibly
infinite) simplicial graphs of finite groups. As a corollary, we obtain counting results of simple
loops in metric and simplicial graphs, generalising results of | |, [Gui].

Corollary 1.7. Assume that Y is a finite metric graph with all vertices of degree at least 3
such that the critical exponent dp is positive.

(1) If the Gibbs measure is mizing for the geodesic flow, then

eéFt

S Bl L
gePer’ (t) Ort

ast — +o0.

(2) IfY is simplicial and if the Gibbs measure is mixing for the discrete time geodesic flow,

then
p Ort

Z egg(F) ~ ¢ -
eSF —1 ¢t
gePer’ (t)
ast — +o0.

In the cases when error bounds are known for the mixing property of the continuous time or
discrete time geodesic flow on 4Y , we obtain corresponding error terms in the equidistribution

result of Theorem 1.2 generalising | , Theo. 20| (where F' = 0) and in the approximation
of the counting function .#p- p+ ¢ by the expression introduced in Theorem 1.5. In the
manifold case, see | |, [Clo], | |, [Sto], [Live], | |, and Section 12.3 for definitions

and precise references. Here is an example of such a result in the manifold case.

Theorem 1.8. Assume that Y is a compact Riemannian manifold and mp is exponentially
mizing under the geodesic flow for the Hoélder regularity, or that Y is a locally symmetric
space, the boundary of D¥ is smooth, mp is finite, smooth, and exponentially mizing under
the geodesic flow for the Sobolev reqularity. Assume that the strong stable/unstable ball masses
by the conditionals of mg are Holder-continuous in their radius.

(1) As t tends to +oo, the pushforwards (gt)*azg, of the skinning measure of D~ by the
geodesic flow equidistribute towards the Gibbs measure mp with exponential speed.

(2) There exists k > 0 such that, as t — +00,

o=l lop. St it
Np-, p+ p(t) = “or el P (14 0(e™™)) .
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See Section 12.3 for a discussion of the assumptions and the dependence of O(-) on the
data. Similar (sometimes more precise) error estimates were known earlier for the counting
function in special cases of D¥ in constant curvature geometrically finite manifolds (often in
small dimension) through the work of Huber, Selberg, Patterson, Lax and Phillips | ],
Cosentino [Cos|, Kontorovich and Oh | |, Lee and Oh [LcO)].

When Y is a finite volume hyperbolic manifold and the potential F is constant 0, the Gibbs
measure is proportional to the Liouville measure and the skinning measures of totally geodesic
submanifolds, balls and horoballs are proportional to the induced Riemannian measures of
the unit normal bundles of their boundaries. In this situation, there are very explicit forms
of the counting results in finite-volume hyperbolic manifolds, see | , Cor.21], | ]
These results are extended to complex hyperbolic space in | |.

As an example of this result, if D~ and D% are closed geodesics of Y of lengths /_ and ¢,
respectively, then the number .#(s) of common perpendiculars (counted with multiplicity)
from D~ to DT of length at most s satisfies, as s — +00,

Np— p+.o(s) ~ e(n=Ds (1.1)

Counting in weighted graphs of groups

From now on in this introduction, we only consider metric or simplicial graphs or graphs of
groups.

Let Y be a connected finite graph with set of vertices V'Y and set of edges EY (see [Ser3]
for the conventions). We assume that the degree of the graph at each vertex is at least 3. Let
A EY — 0, +oo[ with A(€) = A(e) for every e € EY) be an edge length map, let Y = Y]y
be the geometric realisation of Y where the geometric realisation of every edge e € EY has
length A(e), and let ¢ : EY — R be a map, called a (logarithmic) system of conductances in
the analogy between graphs and electrical networks, see for instance | |.

Let Y* be proper nonempty subgraphs of Y. For every ¢ > 0, we denote by Perp(Y~, Y ¢)
the set of edge paths a = (eq,...,ex) in Y without backtracking, of length A(a) = Zle A(e;)
at most ¢, of conductance c(a) = Zf;l c(e;), starting from a vertex of Y~ but not by an edge
of Y™, ending at a vertex of Y* but not by an edge of Y*. Let

Sy = Y@

aePerp(Y—,Y+,¢)

be the number of paths without backtracking from Y~ to Y™ of length at most ¢, counted
with weights defined by the system of conductances.

Recall that a real number x is Diophantine if it is badly approximable by rational numbers,
that is, if there exist a, 8 > 0 such that |z — %] > aq P for all p,q € Z with ¢ > 0. We obtain
the following result, which is a very simplified version of our results for the sake of this
introduction.

Theorem 1.9. (1) IfY has two cycles whose ratio of lengths is Diophantine, then there exists
C > 0 such that for every k € N — {0}, as t — +00,

M-y () = C (1 +0@t)) .
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(2) If A\ =1, then there exists C',k > 0 such that, as n € N tends to +o0,
Ng-y+(n) =C" 656”(1 +0(e™™M)) .

Note that the Diophantine assumption on Y in Theorem 1.9 (1) is standard in the theory
of quantum graphs (see for instance | D).

The constants C' = Cy+ ., > 0 and C' = é{i,c > 0 in the above asymptotic formulas
are explicit. When ¢ = 0 and A = 1, the constants can often be determined concretely,
as indicated in the two examples below.® Among the ingredients in these computations are
the explicit expressions of the total mass of many Bowen-Margulis measures and skinning
measures obtained in Chapter 8.

See Sections 12.4, 12.5 and 12.6 for generalisations of Theorem 1.9 when the graphs Y=+
are not embedded in Y, and for versions in (possibly infinite) metric graphs of finite groups.
In particular, Assertion (2) remains valid if Y is the quotient of a uniform simplicial tree by
a geometrically finite lattice in the sense of | |, such as an arithmetic lattice in PGLy
over a non-Archimedian local field, see | |. Recall that a locally finite metric tree X is
uniform if it admits a discrete and cocompact group of isometries, and that a lattice I' of X
is a lattice in the locally compact group of isometries of X preserving without inversions the
simplicial structure. We refer for instance to | , | for uncountably many examples
of tree lattices.

Example 1.10. (1) When Y is a (¢ + 1)-regular finite graph with constant edge length map
A = 1 and vanishing system of conductances ¢ = 0, then d. = In ¢, and if furthermore Y* and
Y~ are vertices, then (see Equation (12.10))

’ q+1
(g —1)Card(VY)

(2) When Y is biregular of degrees p+ 1 and g + 1 with p,q > 2, when A =1 and ¢ = 0, then

dc = In/pq, and if furthermore the subgraphs Y* are simple cycles of lengths LT, then (see
Equation (12.11))

(Va++p)? L™ L"

2(pg — 1) Card(EY)

The main tool in order to obtain the error terms in Theorem 1.9 and its more general
versions is to study the error terms in the mixing property of the geodesic flow. Using the
already mentioned coding (given in Section 5.2) of the discrete time geodesic flow by a two-
sided topological Markov shift, classical reduction to one-sided topological Markov shift, and
results of Young | | on the decay of correlations for Young towers with exponentially
small tails, we in particular obtain the following simple criteria for the exponential decay of
correlation of the discrete time geodesic flow. See Theorem 9.1 for the complete result. In
particular, we do not assume Y to be finite.

C =

Theorem 1.11. Assume that the Gibbs measure mg is finite and mixing for the discrete time
geodesic flow on Y. Assume moreover that there exist a finite subset E of VY and C', k' >0
such that for all n € N, we have

mp({{e9Y : £(0)e Eand V¥ ke {1,...,n}, (k)¢ B}) <C' e ™.

Then the discrete time geodesic flow has exponential decay of Holder correlations for mp.

8See Section 12.4 for more examples.
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The assumption of having exponentially small mass of geodesic lines which have a big
return time to a given finite subset of V'Y is in particular satisfied (see Section 9.2) if Y is the
quotient of a uniform simplicial tree by a geometrically finite lattice in the sense of | ],
such as an arithmetic lattice in PGLy over a non-Archimedian local field, see | |, but also
by many other examples of Y.

These results allow to prove in Section 9.3, under Diophantine assumptions, the rapid
mixing property for the continuous time geodesic flow, that leads to Assertion (1) of Theorem
1.9, see Section 12.6. The proof uses suspension techniques due to Dolgopyat | | when Y
is a compact metric tree, and to Melbourne | | otherwise.

As a corollary of the general version of the counting result Theorem 1.5, we have the
following asymptotic for the orbital counting function in conjugacy classes for groups acting
on trees. Given zg € X and a nontrivial conjugacy class K in a discrete group I' of isometries
of X, we consider the counting function

Ng, z,(t) = Card{y e 8 : d(zo,vz0) <t} ,

introduced by Huber | | when X is replaced by the real hyperbolic plane and T is a
lattice. We refer to | | for many results on the asymptotic growth of such orbital counting
functions in conjugacy classes, when X is replaced by a finitely generated group with a word
metric, or a complete simply connected pinched negatively curved Riemannian manifold. See
also | , |.

Theorem 1.12. Let X be a uniform metric tree with vertices of degree = 3, let § be the
Hausdorff dimension of 05, X, let ' be a discrete group of isometries of X, let xg be a vertex
of X with trivial stabiliser in I', and let R be a loxodromic conjugacy class in T'.

(1) If the metric graph T\X is compact and has two cycles whose ratio of lengths is Diophan-
tine, then there exists C' > 0 such that for every k € N — {0}, as t — 400,

N zo(t) = C et (1+0(F)) .

(2) If X is simplicial and T is a geometrically finite lattice of X, then there exist C',k > 0
such that, as n € N tends to 400,

</I(ﬁ7 o (n) = Cl 66 l(ni)\(PY))/2J (1 + O(efﬁn)) '

We refer to Theorem 13.1 for a more general version, including a version with a system
of conductances in the counting function, and when £ is elliptic. When T'\X is compact
and T is torsion free,” Assertion (1) of this result is due to Kenison and Sharp [[KeS], who
proved it using transfer operator techniques for suspensions of subshifts of finite type. Up
to strengthening the Diophantine assumption, using work of Melbourne | | on the decay
of correlations of suspensions of Young towers, we are able to extend Assertion (1) to all
geometrically finite lattices I' of X in Chapter 13.1.

The constants C' = Cy 4, and C" = Cf , - are explicit. For instance in Assertion (2), if X
is the geometric realisation of a regular simplicial tree X of degree q + 1, if zg is a vertex of
X, if R is the conjugacy class of 79 with translation length \(vp) on X, if

VolT\X) = ) Fl

[z]eM\VX U]

%n particular I then has the very restricted structure of a free group

17 19/12/2016



is the volume'" of the quotient graph of groups I'\X , then

C' = A7)
[Zr(70) : 7§] Vol(T\X) ’

where Zr(7p) is the centraliser of 79 in I'." When furthermore I" is torsion free and I'\X is
finite, as § = Ingq, we get

_ A0 meage) (1) /2

as n € N tends to +00, thus recovering the result of [Dou] who used the spectral theory of the
discrete Laplacian.

Selected arithmetic applications

We end this introduction by giving a sample of our arithmetic applications (see Part I1I of this
book) of the ergodic and dynamical results on the discrete time geodesic flow on simplicial
trees described in Part II of this book, as summarized above. Our equidistribution and
counting results of common perpendiculars between subtrees indeed produce equidistribution
and counting results of rationals and quadratic irrationals in non-Archimedean local fields.
We refer to | | for an announcement of the results of Part I1I, with a presentation different
from the one in this introduction.

To motivate what follows, consider R = Z the ring of integers, K = Q its field of fractions,
K = R the completion of Q for the usual Archimedean absolute value |- |, and Haarp the
Lebesgue measure of R (which is the Haar measure of the additive group R normalised so
that Haar([0,1]) = 1).

The followmg equidistribution result of rationals, due to Neville [Nev], is a quantitative
statement on the density of K in K: For the weak-star convergence of measures on K as
s — 400, we have -

. -2
lim —s Z A§ = Haar

s—+0w0 6 K -
p,qeR : pR+qR=R, |q|<s

Furthermore, there exists £ € N such that for every smooth function v : K — C with
compact support, there is an error term in the above equidistribution claim evaluated on
1, of the form O(s(lns)|v|¢) where |¢], is the Sobolev norm of 1. The following counting
result due to Mertens on the asymptotic behaviour of the average of Euler’s totient function
¢ : k— Card(R/kR)*, follows from the above equidistribution one:

n

Z = — n + O(nlnn) .
See | | for an approach using methods similar to the ones in this text, and for instance
| , Th. 330] for a more traditional proof, as well as [\Wal] for a better error term.

Let us now switch to a non-Archimedean setting, restricting to positive characteristic in
this introduction. See Part III for analogous applications in characteristic zero.

19Gee for instance | ) ].
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Let F, be a finite field of order ¢q. Let R = F,[Y] be the ring of polynomials in one
variable Y with coefficients in F,. Let K = F,(Y") be the field of rational fractions in Y with
coefficients in IF,, which is the field of fractions of R. Let K = F,((Y™1)) be the field of formal
Laurent series in the variable Y ~! with coefficients in F,, which is the completion of K for
the (ultrametric) absolute value |g| = qlesP~deeQ et ¢ = F,[[Y!]] be the ring of formal

power series in Y ~! with coefficients in IF, which is the ball of centre 0 and radius 1 in K for
this absolute value.

Note that K is locally compact, and we endow the additive group K with the Haar measure
Haarp normalised so that Haarz (&) = 1. The following results extend (with appropriate
constants) when K is replaced by any function field of a nonsingular projective curve over F,
and K any completion of K, see Part III.

The following equidistribution result'' of elements of K in K gives an analog of Neville’s
equidistribution results for function fields. Note that when G = GL2(R), we have (P, Q) €
G(1,0) if and only if (P,@) = R. We denote by H, the stabiliser of any element x of any set

endowed with any action of any group H.

Theorem 1.13. Let G be any finite index subgroup of GLa(R). For the weak-star convergence
of measures on K, we have

@+D[CLR):C] oy,

lim q = Haarp
t—+0 (q—1) ¢* [GL2(R)1,0) : G(1,0)]

R

Qlv

(P,Q)eG(1,0), deg Q<t

We emphazise the fact that we are not assuming G to be a congruence subgroup of GLa(R).
This is made possible by our geometric and ergodic methods.

The following variation of this result is more interesting when the class number of the
function field K is larger than 1 (see Corollary 16.7 in Chapter 16).

Theorem 1.14. Let m be a nonzero fractional ideal of R with norm N(m). For the weak-star
convergence of measures on K, we have

1
lim gt 572 Z A

— Haar-~
e (= 1) ¢

R

< |8

(z,y)emxm
N(m)~!N(y)<s, Rx+Ry=m
In the next two statements, we assume that the characteristic of K is different from 2. If
a € K is quadratic irrational over K,'? let a” be the Galois conjugate of a,'? let tr(a) = a+a’
and n(a) = aa?, and let
1

h(a) = o a7
This is an appropriate complexity for quadratic irrationals in a given orbit by homographies
under PGLy(R). See Section 17.2 and for instance | , §6] for motivations and results.
Note that although there are only finitely many orbits by homographies of PGL2(R) on K
(and exactly one in the particular case of this introduction), there are infinitely many orbits
of PGLy(R) in the set of quadratic irrationals in K over K. The following result gives in
particular that any orbit of quadratic irrationals under PGL2(R) equidistributes in K , when
the complexity tends to infinity. See Theorem 17.5 in Section 17.2 for a more general version.

We denote by - the action by homographies of GLy(K) on P1(K) = K U {00 = [1:0]}.

'1See Theorem 16.4 in Chapter 16 for a more general version.
2that is, a does not belong to K and satisfies a quadratic equation with coefficients in K
13that is, the other root of the polynomial defining a
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Theorem 1.15. Let G be a finite index subgroup of GLa(R). Let ag € K be a quadratic
wrrational over K. For the weak-star convergence of measures on K, we have

(Ing) (¢ +1) mo [GL2(R) : G| o1 Z

A, = Haars
s—>+00 2¢%(g—1)3 ‘ln]trgoH ¢ g

r -

aeG-ag, h(a)<s
where gy € G fizes ag with |tr go| > 1, and myg is the index of g&§ in Ga,.

Another equidistribution result of an orbit of quadratic irrationals under PGL2(R) is

obtained by taking another complexity, constructed using crossratios with a fixed quadratic

irrational. We denote by [a, b, ¢, d] = % the crossratio of four pairwise distinct elements

in K. If o, B e K are two quadratic irrationals over K such that o ¢ {3, 37}, let

hs(a) = max{|[a, 8,67, a7]|, |[a”, 8, 87, a][} ,

which is also an appropriate complexity when « varies in a given orbit of quadratic irra-
tionals by homographies under PGLy(R). See Section 18.1 and for instance | , §4] for
motivations and results in the Archimedean case.

Theorem 1.16. Let G be a finite index subgroup of GLo(R). Let o, S € K be two quadratic
irrationals over K. For the weak-star convergence of measures on K — {3, 3%}, we have, with
go and mg as in the statement of Theorem 1.15,

(lnq) (q + 1) mo [GLQ(R) : G] o1 Z A M
S 2 (1P B Il | B A ]

The fact that the measure towards which we have an equidistribution is only absolutely
continuous with respect to the Haar measure is explained by the invariance of a — hg(a)
under the (infinite) stabiliser of 8 in PGL2(R). See Theorem 18.4 in Section 18.1 for a more
general version.

The last statement of this introduction is an equidistribution result for the integral repre-
sentations of quadratic norm forms

(z,y) = n(z — ya)

on K x K, where o € Kisa quadratic irrational over K. See Theorem 19.1 in Section 19
for a more general version, and for instance | , §5.3] for motivations and results in the
Archimedean case.

There is an extensive bibliography on the integral representation of norm forms and more
generally decomposable forms over function fields, we only refer to | ) , , ].
These references mostly consider higher degrees, with an algebraically closed ground field of
characteristic 0, instead of F,.

Theorem 1.17. Let G be a finite index subgroup of GLa(R) and let B € Ky be a quadratic
irrational over K. For the weak-star convergence of measures on K — {B, 7}, we have

g+ V[CLa(R) Gy _dHaarg(s)
2, o Al P

lim
s—+o ¢% (¢ —1)3 [GL2(Rv)(1,0) : G(l,o)]

<8

(=,y)€G(1,0),
|z? —zy tr(8)+y? n(B)|<s

14Gee Section 18.1 when this condition is not satisfied.
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Furthermore, we have error estimates in the arithmetic applications: There exists k > 0
such that for every locally constant function with compact support v : K — C in Theorems
1.13, 1.14 and 1.15, or ¢ : K- {B,57} — C in Theorems 1.16 and 1.17, there are error terms
in the above equidistribution claims evaluated on 1, of the form O(s™*) where s = ¢’ in
Theorem 1.13, with for each result an explicit control on the test function v involving only
some norm of 1, see in particular Section 15.4.

The link between the geometry described in the first part of this introduction and the
above arithmetic statements is provided by the Bruhat-Tits tree of (PGLa, K ), see [Ser3| and
Section 15.1 for background. We refer to Part III for more general arithmetic applications.
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Chapter 2

Negatively curved geometry

2.1 General notation

Here is some general notation that will be used in this text. We recommend the use of the
List of symbols (mostly in alphabetical order by the first letter) and of the Index for easy
references to the definitions in the text.

Let A be a subset of a set E. We denote by 14 : E — {0,1} the characteristic (or
indicator) function of A: 14(z) = 1if x € A, and 14(z) = 0 otherwise. We denote by
‘A = F — A the complementary subset of A in F.

We denote by In the natural logarithm (with In(e) = 1).

We denote by ||| the total mass of a finite positive measure pu.

If (X,4) and (Y, %) are measurable spaces, f : X — Y a measurable map, and p a
measure on X, we denote by f,u the image measure of p by f, with fuu(B) = u(f~1(B)) for
every B e #.

If (X,d) is a metric space, then B(z,7) is the closed ball with centre x € X and radius
r > 0.

For every subset A of a metric space and for every ¢ > 0, we denote by .4, A the closed
e-neighbourhood of A, and by convention A4pA = A.

If X is a uniquely geodesic space and z,y € X, then [z, y] is the unique geodesic segment
from x to y.

Given a topological space Z, we denote by %.(Z) the vector space of continuous maps
from Z to R with compact support.

The negative part of a real-valued map f is f~ = max{0, —f}.

We denote by A, the unit Dirac mass at a point = in any measurable space.

Finally, the symbol [] right at the end of a statement indicates that this statement won’t
be given a proof, either since a reference is given or since it is an immediate consequence of
previous statements.

2.2 Background on CAT(—1) spaces

Let X be a geodesically complete proper CAT(—1) space, let g € X be an arbitrary basepoint,
and let I' be a nonelementary discrete group of isometries of X.

We refer for example to | | for the relevant definitions and complements on these
notions. Recall that a geodesic metric space X is geodesically complete (or has extendible
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geodesics) if any isometric map from an interval in R to X extends to at least one isometric
map from R to X. We will put a special emphasis on the case when X is a (proper, geodesi-
cally complete) R-tree, that is, a uniquely arcwise connected geodesic metric space. In the
Introduction, we have denoted by Y the geodesically complete proper locally CAT(—1) good
orbispace I'\ X, see for instance |11, Ch. 11| for the terminology.

We denote by 05, X the space at infinity of X, which consists of the asymptotic classes of
geodesic rays in X. It coincides with the space of (Freudenthal’s) ends of X when X is an
R-tree. We denote by AT the limit set of I" and by €' AT" the convex hull in X of AT.

When X is an R-tree, then a subset D of X is convex if and only if it is connected, and
we will call it a subtree. In particular, if X is an R-tree, then €Al is equal to the union of
the geodesic lines between pairs of distinct points in AT, since this union is connected and
contained in €Al

A point £ € 05, X is called a conical limit point if there exists a sequence of orbit points of
o under I' converging to £ while staying at bounded distance from a geodesic ray ending at
&. The set of conical limit points is the conical limit set A.I" of T'.

A point p € AT is a bounded parabolic limit point of I if its stabiliser I', in I" acts properly
discontinuously with compact quotient on AT' — {p}. The discrete nonelementary group of
isometries I' of X is said to be geometrically finite if every element of AL is either a conical
limit point or a bounded parabolic limit point of I' (see for instance | |, as well as | |
when X is an R-tree, and | | for a very interesting study of equivalent conditions in an
even greater generality).

For all x € X U 0 X and A X, the shadow of A seen from x is the subset 0, A of 0 X
consisting of the positive endpoints of the geodesic rays starting at « and meeting A if z € X,
and of the geodesic lines starting at x and meeting A if z € 0, X.

We denote by Isom(X) the isometry group of X. The translation length of an isometry
v € Isom(X) is

Aly) = inf d(z,yz).

Recall that v € Isom(X) is lozodromic if A(y) > 0, and that then
Axy ={ze X @ d(z,vz) = A(7)}

is (the image of) a geodesic line in X, called the translation axis of .
We will need the following well-known lemma later on. An element of ' is primitive if
there is no o € I and k € N — {0, 1} such that v = ~§.

Lemma 2.1. (1) For every loxodromic element v € T', there exists a primitive loxodromic
element vo € I and k € N — {0} such that v = .

(2) If a,y € I are lozodromic with Ax, = Axq, then there exists p,q € Z and a primitive
lozodromic element vy € I' such that o = 4% and v = 4.

(3) For all a,y € T such that « is lovodromic, if v centralises' «, then either v pointwise
fizes the translation axis of o, or vy is loxodromic, with Ax, = Ax,.

(4) For every loxodromic element v € T, for all A > 0 and r > 0, there exists L > 0 such
that for every lozodromic element a € T, if Ma) = A(y) < A and if Axy and Ax, have
segments of length at least L at Hausdorff distance at most r, then Ax, = Ax,.

Lthat is, commutes with a
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Proof. We only give a proof of Claim (4) and refer to for instance | | for proofs of the
first three classical assertions.

Since the action of I' on X is properly discontinuous, and by the compactness of v*\ Ax,,
there exists N > 1 such that for all € Ax,, the cardinality of {3 € I' : d(z,fz) < 2r}
is at most N. Let L = AN. For every loxodromic element o € I" with A(a) = A(y) < A,
assume that [z,y] and [2/,y'] are segments in Ax, and Ax, respectively, with length exactly
L such that d(z,2'),d(y,y’) < r. We may assume, up to replacing them by their inverses,
that ~ translates from z towards y and « translates from z’ towards ¢/. In particular for
k=0,...,N, we have d(a *v*z,2) < d(v*z,a*2") + d(2',x) < 2r since v¥z and o¥2’ are
respectively the points at distance kA(y) < kA < L from z and 2’ on the segments [z, y]
and [2/,1]. Hence by the definition of N, there exists k # k' such that a 7% = a=FF.
Therefore v¥=% = o#=¥ which implies by Assertion (3) that Ax, = Ax,. O

For every x € X, recall that the Gromov-Bourdon visual distance d, on d»X seen from z
(see [Bou]) is defined by

. 1 _ _

d$(£7?7) = tEIE@eQ(d(ghnt) d(m7£t) d(mﬂlt)) , (2'1)

where £, € 0 X and t — &, my_are any geodesic rays ending at &, 7 respectively. By the
triangle inequality, for all x,y € M and &, € 0pn M, we have

_ dz(&a 77)
d(z,y) »~ 22\ ") d(z,y)
e < dy(f,n) <e . (2.2)

In particular, the identity map from (05X, d;) to (05X, dy) is a bilipschitz homeomorphism.
Under our assumptions, (05X, dy,) is hence a compact metric space, on which Isom(X) acts
by bilipschitz homeomorphisms. The following well-known result compares shadows of balls
to balls for the visual distance.

Lemma 2.2. For every geodesic ray p in X, starting from x € X and ending at € € 0, X, for
all R=0 and t € |R,+o[, we have

By, (& Re™) © OuB(p(t), R) © B, (&, e™).

Proof. The lower bound is for instance the lower bound in | , Lem. 3.1] (which only
uses the CAT(—1) property). In order to prove the upper bound, let ¢’ € 0, B(p(t), R) and
let p’ be the geodesic ray from x to &’'. The closest point p to p(t) on the image of p’ satisfies
d(p, p(t)) < R, hence d(z,p) =t — R. Then

do(€,€) < limsup e3(APE).p0)+d(plt).p)+dp, o/ (1)) —¢
t'—+00

. 14 ’_ 4 _
< lim 62((t t)+R+(t'—t+R))—t' _ R t
t'—+00

Therefore & € By, (€, efe™). O
The Busemann cocycle of X is the map §: 0, X x X x X — R defined by
(57 z, y) — /Bé(x7 y) = tEr—Poo d(fta 33') - d(&fa y) )
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where t — &, is any geodesic ray ending at £&. The above limit exists and is independent of
g, and we have

| Be(@,y) | < d(z,y) . (2.3)

The horosphere with centre £ € 0 X through z € X is {y € X : fe(x,y) = 0}, and
{ye X : Pe(x,y) < 0} is the (closed) horoball centred at & bounded by this horosphere.
Horoballs are nonempty proper closed (strictly) convex subsets of X. Given a horoball 7
and t > 0, we denote by 7[t] = {x € S : d(z,04¢) > t} the horoball contained in J#
(hence centred at the same point at infinity as ") whose boundary is at distance ¢ from the
boundary of J#

2.3 Generalised geodesic lines

Let 4 X be the space of 1-Lipschitz maps w : R — X which are isometric on a closed interval
and locally constant outside it.? This space has been introduced by Bartels and Liick in

[ |, to which we refer for the following basic properties. The elements of G X are called
the generalised geodesic lines of X. We endow & X with the distance d = d{Z/X defined by

Vw,w e4X, dww)= f m d(w(t),w'(t)) e 2 dt . (2.4)

—0o0

The group Isom(X) acts isometrically on GX by postcomposition. The distance d induces
the topology of uniform convergence on compact subsets on GX,and 9X is a proper metric
space.

The geodesic flow (g')er on & X is the one-parameter group of homeomorphisms of the

space 9X defined by glw : s — w(s +t) for all w € X and ¢t € R. It commutes with the
action of Isom(X). If w is isometric exactly on the interval I, then g~‘w is isometric exactly

on the interval ¢ + I. Note that for all w € X and s € R, we have
d(w,g’w) < |s|, (2.5)

with equality if we 4 X.

The footpoint projection is the Isom(X)-equivariant %—Hélder—continuous map 7 : GX —
X defined by 7(w) = w(0) for all w € X. The antipodal map of 4X is the Isom(X)-
equivariant isometric map ¢ : X — X defined by ww : s — w(—s) for all w e 4 X, which
satisfies Logl = gt o for every t e R and mo1 = 7.

The positive and negative endpoint maps are the continuous maps from GX to X UdpX
defined by
= 1l .
W Wy t_}rinoow(t)

The space 49X of geodesic lines in X is the Isom(X)-invariant closed subspace of 2%
consisting of the elements £ € 4 X with {1 € 05X . Note that the distances on 4 X considered
in | | and | | are topologically equivalent, although slightly different from the re-
striction to 4 X of the distance defined in Equation (2.4). The factor e~ in this equation,

Zthat is, constant on each complementary component
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sufficient in order to deal with Hélder-continuity issues, is replaced by e~ /y/7 in | |
and by e~ /2 in | | (so that the above 3-Hélder-continuity claim of  does follow from
the one in | D.

We will also consider the Isom(X)-invariant closed subspaces

G X ={weGX :ws € 0pX},

and their Isom(X)-invariant closed subspaces ¢4 (X consisting of the elements p € ¥+ X
which are isometric exactly on +[0, +o0[.

The subspaces ¢ X and ¥4 X satisfy ¥ X n ¥, X = 4 X and they are invariant under the
geodesic flow. The antipodal map ¢ preserves ¢ X, and maps 4+ X to ¥+ X as well as 41 ¢ X
to %+ 0X. We denote again by + : T\%X — I'\%X and by g' : T\¢X — I'\¢X the quotient
maps of ¢ and gt, for every t € R.

Let w € 9X be isometric exactly on an interval I of R. If I is compact then w is a
(generalised) geodesic segment, and if [ = |—o0,a] or I = [a,+[ for some a € R, then w
is a (generalised) (negative or positive) geodesic ray in X. Any geodesic line @ € ¥X such
that @|; = w|s is an extension of w. Note that @ is an extension of w if and only if v is an
extension of yw for any « € Isom(X), if and only if ¢@ is an extension of tw, and if and only
if g% is an extension of g'w for any s € R. For any subset € of 4 X and any subset A of R,
let

Q’AZ{’LU‘A:’LUEQ}.

Remark 2.3. Let (¢;);en be a sequence of generalised geodesic lines such that [¢;,¢F] is
the maximal segment on which ¢; is isometric. Let (s;);eny be a sequence in R such that
tf —s; — o0 as i — 400 and /(s;) stays in a compact subset of X, then d(¢;,9X) — 0
as i — +00. Furthermore if (s;)en is bounded, then up to extracting a subsequence, (¢;)en
converges to an element in 4 X.

This conceptually important observation explains how it is conceivable that long common
perpendicular segments may equidistribute towards measures supported on geodesic lines. See
Chapter 11 for further developments of these ideas.

2.4 The unit tangent bundle

In this work, we define the unit tangent bundle T'X of X as the space of germs at 0 of the
geodesic lines in X, that is the quotient space

T'X =9X/ ~

where ¢ ~ ¢ if and only if there exists € > 0 such that U—eq = €’|[_€7€]. The canonical
projection from ¢4X to T'X will be denoted by £ +— v,. When X is a Riemannian manifold,
the spaces 4 X and T' X canonically identify with the usual unit tangent bundle of X, but in
general, the map ¢ — v, has infinite fibers.

We endow T X with the quotient distance d = d1 ¢ of the distance of ¥ X, defined by:

Vo, o e T'X, dpx(v,0) = inf e, ). (2.6)

LUEGX  v=uy, v =vy
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It is easy to check that this distance is indeed Hausdorff, hence that 71X is locally compact,
and that it induces on T X the quotient topology of the compact-open topology of 4X. The
map £ — vy is 1-Lipschitz.

The action of Isom(X) on ¥X induces an isometric action of Isom(X) on T'X. The
antipodal map and the footpoint projection restricted to ¢4 X respectively induce an Isom(X)-
equivariant isometric map ¢ : T'X — T'X and an Isom(X)-equivariant %—Hé’)lder—continuous
map 7 : T' X — X called the antipodal map and footpoint projection of T*X. The canonical
projection from X to T X is Isom(X)-equivariant and commutes with the antipodal map:
For all v € Isom(X) and ¢ € 9 X, we have yvy = vy, tvg = vy and 7(vg) = w(¢). We denote
again by ¢ : I\T'X — I'\T'X the quotient map of .

Let 02 X be the subset of 0o X x oo X which consists of pairs of distinct points at infinity of
X. Hopf’s parametrisation of 4 X is the homeomorphism which identifies ¢ X with 02 X x R,
by the map ¢ — (¢_,04,t), where ¢ is the signed distance from the closest point to the
basepoint x on the geodesic line £ to £(0).> We have g(¢_, ¢4, t) = ({_,l4,t + s) for all
s € R, and for all v € T', we have y({_,0l1,t) = (yl—,vly,t +1ty ¢ ¢, ) Wheret,, o, €R
depends only on v, £_ and ¢,. In Hopf’s parametrisation, the restriction of the antipodal
map to 4 X is the map (0_, 04, t) — ({4, 0_, —1).

The strong stable leaf of we ¥, X is

WHw)={te¥X : lim d(l(t),w(t)) =0},

t—+00

and the strong unstable leaf of w e ¥_X is
W= (w) =W (w) ={le¥9X : tlir_noo d(e(t), w(t)) = 0}.

For every w € 94 X, let dyy+(,,) be Hamenstidt’s distance on W*(w) defined as follows:* for

all £,0' e W*(w), let

dyy+ () (€ 0) = tETweéd(z(;t% )t

The above limits exist, and Hamenstadt’s distances are distances inducing the original topol-
ogy on W*(w). For all £, € W*(w) and v € Isom(X), we have

dWi('yw) (767 76/) = dWi(w) (675,) = dW¢(Lw)<L€7 Lf’) :

Furthermore, for every s € R, we have for all £,/ € W= (w)

Ay + (gou) (870, 8°0) = €T dyys () (£, 1) . (2.7)

If X is an R-tree, for all w € 4, X and ¢,¢' € W+ (w), if [s,400[ is the maximal interval
on which £ and ¢’ agree, then dyy+ () (¢, ¢) = €°.

The following lemma compares the distance in ¢ X with Hamenstédt’s distance for two
leaves in the same strong (un)stable leaf.

Lemma 2.4. There exists a universal constant ¢ > 0 such that for all w € 9+ X and (, V' €
W*(w), wa have
d(f, él) <c dWi(w) (f, K/) .

3More precisely, £(t) is the closest point to o on £.
“See | , Appendix| and compare with | |
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Proof. We refer to | , Lem. 3] for a proof of this result. Note that the distance on
¢ X considered in loc. cit. is slightly different from the one in this text, but the proof adapts
easily. L]

Let 7 be a horoball in X, centred at £ € 0, X. The strong stable leaves W (w) are
equal for all geodesic rays w starting at time ¢ = 0 from a point of dH and converging to
€. Using the homeomorphism £ — £_ from W (w) to dnX — {¢}, Hamenstadt’s distance on
W (w) defines a distance d_» on d,X — {¢} that we also call Hamenstidt’s distance. For all
0,0 e Wt (w), we have

d,%ﬂ<£—7e+) = dW*(w) <€7€/) )

and for all 7,7 € 0, X — {£}, we have

dp(nf) = lim ez (0 by (=)=t (2.8)

t——+00

where /), £,y are the geodesic lines starting from 7,7’ respectively, ending at £, and passing
through the boundary of J# at time ¢ = 0. Note that for every ¢ > 0, if JZ[t] is the horoball
contained in ¢ whose boundary is at distance ¢ from the boundary of .57, then we have

d;f[t] — et dy . (2.9)

Let w e 9+ X and 1 > 0. We define B*(w, 1) as the set of £ € W*(w) such that there
exists an extension @ € 4X of w with dy+(,)(¢, @) < 7. In particular, B*(w,7’) contains
all the extensions of w, and is the union of the open balls centred at the extensions of w, of
radius 7/, for Hamenstiidt’s distance on W= (w).

The union over t € R of the images under g of the strong stable leaf of w € ¢, X is the
stable leaf

WO (w) = | g W (w)
teR

of w, which consists of the elements £ € ¥ X with ¢, = w,. Similarly, the unstable leaf of
weYbd X

WO (w) = JeW ™ (w),
teR

consists of the elements ¢ € ¥X with /_ = w_. Note that the (strong) (un)stable leaves are
subsets of the space of geodesic lines ¥X.

The unstable horosphere H_(w) of w € 4_X is the horosphere in X centred at w_ and
passing through w(0) for any extension w € 4X of w. The stable horosphere H. (w) of
w € 4. X is the horosphere in X centred at wy and passing through @w(0) for any extension
w € X of w. These horospheres Hi(w) do not depend on the chosen extensions @w of
w € 91 X. The unstable horoball HB_(w) of w € ¥_X and stable horoball HB, (w) of
w € 9. X are the horoballs bounded by these horospheres. Note that 7(W*(w)) = H(w)
for every w € 94 X, and that w(0) belongs to Hy(w) if and only if w is isometric at least on
+[0, +oof.
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2.5 Normal bundles and dynamical neighbourhoods

In this Section, adapting | , §2.2] to the present context, we define spaces of geodesic
rays that generalise the unit normal bundles of submanifolds of negatively curved Riemannian
manifolds. When X is a manifold, these normal bundles are submanifolds of the unit tangent
bundle of X, which identifies with ¢ X . In general and in particular in trees, it is essential to
use geodesic rays to define normal bundles, and not geodesic lines.

Let D be a nonempty proper (that is, different from X) closed convex subset in X. We
denote by @D its boundary in X and by 0o D its set of points at infinity. Let

be the (continuous) closest point map to D, defined on £ € 0, X — 0D by setting Pp(§) to
be the unique point in D that minimises the function y — fB¢(y, zg) from D to R. The outer
unit normal bundle 01 D of (the boundary of) D is

0LD ={pe% oX : Polpy) = p(0)}.
The inner unit normal bundle 6* D of (the boundary of) D is
LD =1wtD={pe9 X : Pp(p-)=p(0)}.

Note that 0iD and 0! D are spaces of geodesic rays. If X is a smooth manifold, then these
spaces have a natural identification with subsets of ¢ X because every geodesic ray is the
restriction of a unique geodesic line. But this does not hold in general.

Remark 2.5. As X is assumed to be proper with extendible geodesics, we have ﬂ(@}iD) =0D.
To see this, let z € dD and let (zx)reny be a sequence of points in the complement of D
converging to z. For all k € N, let pj, € 01 D be a geodesic ray with px(0) = Pp(xx) and such
that the image of pi contains xj. As the closest point map does not increase distances, the
sequence (Pp(zk))ken converges to z. Since X is proper, the space 05X is compact and the
sequence ((px)+)ken has a subsequence that converges to a point £ € 05, X. The claim follows
from the continuity of the closest point map.

The failure of the equality when X is not proper is easy to see for example, when X is
the R-tree constructed by starting with the Euclidean line D = R and attaching a copy of the
halfline [0, +o0[ to each € D such that z > 0. Then 0 € 0D — (91 D).

The restriction of the positive (respectively negative) endpoint map to é’iD (respectively
0! D) is a homeomorphism to its image 0, X — 0 D. We denote its inverse map by Pg. Note
that Pp = WOPDi. For every isometry v of X, we have a}t (vD) =~ a}iD and P;—rDo'y = VOPBL.
In particular, 6}£D is invariant under the isometries of X that preserve D.

For every w € ¥+ X, we have a canonical homeomorphism N : W*(w) — 0L HB4+ (w),
that associates to each geodesic line £ € W (w) the unique geodesic ray p € H%HBJ_F (w) such
that = = p¢, or, equivalently, such that £(t) = p(t) for every t € R with F¢ > 0. It is easy to
check that N;iw oy =~oNZE for every v € Isom(X).

We define
Uy ={leGX : Ly ¢dpD}. (2.10)

Note that %7 is an open subset of ¥X, invariant under the geodesic flow. We have %, =
D p S) ~D
’y%];—r for every isometry v of X and, in particular, %l;—r is invariant under the isometries of X
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preserving D. Define fg : @/Di — 6}iD as the composition of the continuous endpoint map
£ — ¢y from %Di onto 0 X — 0y D and the homeomorphism Pj%” from 0n X — 0y D to 6}iD
The continuous map fg takes £ € %[J)—F to the unique element p € &iD such that py = 4.
The fiber of p € GiD for f} is exactly the stable leaf WO (p), and the fiber of p € 9L D for
[p is the unstable leaf W9 (p). For all v € Isom(X) and ¢ € R, we have

fipev=yofp and fhog'=ff. (2.11)
Let w € 9+ X and 1,1 > 0. We define the dynamical (n,n')-neighbourhood of w by
Vvui n,n = U gsBi(wa 77,) : (212)
Se]—ﬂﬂl[

Example 2.6. If X is an R-tree, w € 4, X and n < In7/, then VJr 18 as in the following
picture.

—— CW4 = ’l/,l}_i_
w
Clearly, B*(w,n') = «BT (1w, n’), and hence we have Vw—77 » =V - Furthermore, for
every s € R,
g°B* (w,n) = B*(g°w, e**1’) hence SVJH y = ngw oo - (2.13)
For every v € Isom(X), we have yBE(w,n') = B (yw,n’) and qujn g = V;{U p.ay - The map
from ]—n,n[ x BE(w,n’) to VJTI , defined by (s,£') — g’ is a homeomorphism.
For all subsets 2~ of 4, X and Q1 of ¥_ X, let
e = J Vi, (2.14)

weQF
that we call the dynamical neighbourhoods of QF. Note that they are subsets of X, not of
¢, X. The families (7/7;57], (27))y.y=0 are nondecreasing in 7 and in 7’. For every ~ € Isom(X),
we have v”Vnin,(Qi) = V/T]J—rn, (vQ2F) and for every ¢ > 0, we have

g5 OF) = 7k (65107 (215)

U %nj_rn’(&}_rD) = %Di )

n,n'>0

and that (), /- Vo * (01.D) is the set of all extensions in X of the elements of 01 D. Assume
that Q7 is a subset of G}iD. The restriction of f 5 to “//fn,(ﬂﬂ is a continuous map onto QF,
with fiber over w € QF the open subset Vwi77  of W% (w).

Note that

We will need the following elementary lemma in Section 10.4.
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Lemma 2.7. There exists a universal constant ¢ > 0 such that for every w € 9+ X which is
isometric on Sy, +0| and every £ € VJTI o We have

d(l,w) < (n+n +e™).

Proof. By Equation (2.12) and by the definition of Bt (w,n’) in Section 2.3, there exist
s € | —n,+n[ and an extension @ € ¥X of w such that dy+(,(g°¢, @) < n'. By Equation
(2.5), we have d(¢,g°() < |s| < n. By Lemma 2.4, we have d(g*/, @) < ¢ dy+ () (g0, W) < c 7.

By the definition of the distance on 4X (see Equation (2.4)), we have

d(, w) < f 150 — ¢ =211 dt — O(e™) |

—00

Therefore the result follows from the triangle inequality

d(l,w) < d(l,g°0) + d(g°¢, w) + d(w,w) . [

2.6 Creating common perpendiculars

Let D~ and D' be two nonempty proper closed convex subsets of X, where X is as in
the beginning of Section 2.2. A geodesic arc « : [0,T] — X, where T' > 0, is a common
perpendicular of length T from D~ to D if there exist w¥ € 01 D¥ such that w™|p 77 =
g_Tw+|[07T] = «. Since X is CAT(—1), this geodesic arc « is the unique shortest geodesic
segment from a point of D~ to a point of D*. There is a common perpendicular from D~ to
D7 if and only if the closures of D~ and D" in X U 05X are disjoint. When X is an R-tree,
then two closed subtrees of X have a common perpendicular if and only if they are nonempty
and disjoint.

One of the aims of this text is to count orbits of common perpendiculars between two
equivariant families of closed convex subsets of X. The crucial remark is that two nonempty
proper closed convex subsets D~ and DV of X have a common perpendicular « of length
a given T > 0 if and only if the subsets gT/zaiD_“_%%] and g_T/25£D+\[_1 7 of 9X

272

intersect. This intersection then consists of the common perpendicular from D~ to D¥
reparametrised by [—%, %] As a controlled perturbation of this remark, we now give an

effective creation result of common perpendiculars in R-trees. It has a version satisfied for X
in the generality of Section 2.2, see the end of this Section.

Lemma 2.8. Assume that X is an R-tree. For all R > 1, n € ]0,1] and t = 2In R + 4,
for all nonempty closed connected subsets D~, D% in X, and for every geodesic line £ €
gt/2”//nTR(8}rD*) N g*t/2”f/n7_R(0lD+), there exist s € |—2n,2n[ and a common perpendicular ¢
from D~ to DT such that

e the length of C ist + s,

o the endpoint of € in D¥ is wT(0) where wT = f5_(0),

e the footpoint £(0) of £ lies on ¢, and

34 19/12/2016



Proof. Let R,n,t, D%,/ be as in the statement. By the definition of the sets ”f/fR(&}—rDi),
there exist geodesic rays w* e 0}¢Di, geodesic lines ©WF € 4X extending w*, and st €

]—n, +n[, such that /4 = (w¥)+ and

Let 2+ be the closest point to w*(0) on £. By the definition of Hamenstidt’s distances, we

have
d(wi(()),mi) =d(l(£

and in particular z+ = w*(0) if and only if /(+% + s*) = w*(0). Ast > 2InR + 4 and
|sT| < 2n < 2, the points (=5 — s7), x—, £(0), #*, {(£ + s) are in this order on £. In
particular, the segment [w™(0),z~ | U [z, 2%] U [T, wT(0)] is a nontrivial geodesic segment
from a point of D~ to a point of DT that meets DT only at an endpoint. Hence, D~ and D™
are disjoint, and [w™(0),w™(0)] is the image of the common perpendicular from D~ to D*.

Let s = s_ + s;. The length of ¢is (£ + s7) — (=4 — s7) = t + 5. The point £(0) lies on
¢, we have wT = f;i (¢) and the endpoints of ¢ are w*(0). Furthermore,

(4l F(£1), wF(0)) — d(0(0), (T

+5 Fs)|=1lsTI<n. O

N |+

When X is as in the beginning of Section 2.2, the statement and the proof of the following
analog of Lemma 2.8 is slightly more technical. We refer to | , Lem. 7] for a proof in
the Riemannian case, and we leave the extension to the reader, since we will not need it in

this book.

Lemma 2.9. Let X be as in the beginning of Section 2.2. For every R > 0, there exist
to,co > 0 such that for all n € 10,1] and all t € [tg,+0[, for all nonempty closed convex
subsets D=, D" in X, and for all w € gt/Q”//nTR(('J’iD_) N g_t/Q"f/n,_R(al_DJr), there exist s €
| —2n,2n[ and a common perpendicular ¢ from D~ to DT such that

o the length of ¢ is contained in [t + s — ¢ efé,t +s+c 67%],

o ifwt = f;i (w) and if p* is the endpoint of € in D*, then d(m(w?), pT) < ¢ e_%,

e the basepoint w(w) of w is at distance at most cg e 2 from a point of ¢, and

t

max{ d(r(g2w”),7(w)), d(n(g 2w"),7(w)) } <n+cez. O

2.7 Metric and simplicial trees, and graphs of groups

Metric and simplicial trees and graphs of groups are important examples throughout the rest
of this work. In this Section, we recall the definitions and basic properties of these objects.
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We use Serre’s definitions in | , §2.1] concerning a graph X, with VX and EX its set of
vertices and edges, and o(e), t(e) and € the initial vertex, terminal vertex and opposite edge
of an edge e € EX. Recall that a connected graph is bipartite if it is endowed with a partition
of its set of vertices into two nonempty subsets such that any two elements of either subset
are not related by an edge.

The degree of a vertex z € VX is the cardinality of the set {e € EX : o(e) = z}. For all
J,k € N, a graph X is k-regular if the degree of each vertex x € VXis k, and it is (j, k)-biregular
if it is bipartite with the partition of its vertices into the two subsets consisting of vertices
with degree j and with degree k respectively.

A metric graph (X, \) is a pair consisting of a graph X and a map A : EX — ]0, +00[ with
a positive lower bound® such that A(€) = A(e), called its edge length map. A simplicial graph
X is a metric graph whose edge length map is constant equal to 1.

The topological realisation of a graph X is the topological space obtained from the collection
(I¢)eerx of closed unit intervals I. by the finest equivalence relation that identifies intervals
corresponding to an edge and its opposite edge by the map ¢t — 1 —t and identifies the origins
of the intervals I, and I, if and only if o(e1) = o(ez), see [Ser3, Sect. 2.1].

The geometric realisation of a metric tree (X, A) is the topological realisation of X endowed
with the maximal geodesic metric that gives length A(e) to the topological realisation of each
edge e € EX, and we denote it by X = |X]|,. We identify VX with its image in X. The metric
space X determines (X, \) up to subdivision of edges, hence we will often not make a strict
distinction between X and (X, ). In particular, we will refer to convex subsets of (X, \) as
convex subsets of X, etc.

If X is a tree, the metric space X is an R-tree, hence it is a CAT(—1) space. Since A is
bounded from below by a positive constant, the R-tree X is geodesically complete if and only
if X has no terminal vertez (that is, no vertex of degree 1).

We will denote by Aut(X, \), and Aut X in the simplicial case, the group of edge-preserving
isometries of X that have no inversions.® Since the edge length map has a positive lower bound,
the metric space X is proper if and only if X is locally finite. In this case, the nonelementary
discrete subgroups I' of isometries of X we will consider will always be edge-preserving and
without inversion.

A locally finite metric tree (X', \) is uniform if there exists some discrete subgroup I' of
Aut(X’, \) such that I"\X' is a finite graph. See | , | for characterisations of this
property in the case of simplicial trees.

The space of generalised discrete geodesic lines of a locally finite simplicial tree X is the
locally compact space GX of 1-Lipschitz mappings w from R to its geometric realisation
X = |X|; which are isometric on a closed interval with endpoints in Z u {—o0, +00} and
locally constant outside it, such that w(0) € VX (or equivalently w(Z) c VX). Note that ¢X
is hence a proper subset of GX.

By restriction to X, or intersection with ¢X, of the objects defined in Sections 2.3 and
2.5 for E?X, we define the distance d on S?X, the subspaces 9+X, ¥X, ¥, oX, the strong
stable /unstable leaves W*(w) of w € 4:X and their Hamenstadt distances dyy+(,, the
stable/unstable leaves W% (w) of w € %, X, the outer and inner unit normal bundles 01D
of a nonempty proper simplicial subtree D of X, the dynamical neighbourhoods “//njﬁ?,(ij) of

5This assumption, though not necessary at this stage, will be used repeatedly in this text, hence we prefer
to add it to the definition.
5An automorphism g of a graph has an inversion if there exists an edge e of the graph such that ge = €.
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subsets QT of 8@1)) as well as the fibrations
fo U ={e9X : by ¢ 0D} > LD,

whose fiber over p € 6}iD is WY%(p). Note that some definitions actually simplify when
considering generalised discrete geodesic lines. For instance, for all w € 4.X, ' > 0 and n €
10, 1[, the dynamical neighbourhood fo, o, 18 equal to B*(w,n’), and is hence independent
of ne]0,1].

Besides the map 7 : 4X — VX defined as in the continuous case by ¢ — ¢(0), we have
another natural map 77 : ¥X — EX, which associates to ¢ the edge e with o(e) = £(0) and
t(e) = £(1). This map is equivariant under the group of automorphisms (without inversions)
Aut(X) of X, and we also denote by T : ['\¥X — I'\ EX its quotient map, for every subgroup
[ of Aut(X).

If X has no terminal vertex, for every e € EX, let
0 X={ly : Le9X, Tn(l) =¢}

be the set of points at infinity of the geodesic rays whose initial (oriented) edge is e.

Given z¢ € VX, the discrete Hopf parametrisation now identifies ¥X with 02 X x Z by the
map ¢ — ({_, 0, t) where t € Z is the signed distance from the closest vertex to the basepoint
xo on the geodesic line ¢ to the vertex £(0).

The discrete time geodesic flow (g')icz on &X is the one-(discrete-)parameter group of

homeomorphisms of gxX consisting of (the restriction to gxX of) the integral time maps of the
continuous time geodesic flow of the geometric realisation of X: we have glw : s — w(s + t)

for all w € X and t € Z.
Recall (see for instance | ) |) that a graph of groups (Y, Gy) consists of

e a graph Y, which is connected unless otherwise stated,

e a group G, for every vertex v € VY,

e a group G, for every edge e € EY such that G, = Gg,

e an injective group morphism pe : Ge — Gy for every edge e € VY.

We will identify G with its image in Gy by pe, unless the meaning is not clear (which might
be the case for instance if o(e) = t(e)).

A subgraph of subgroups of (Y,Gy) is a graph of groups (Y', G) where

e Y is a subgraph of Y,

e for every v € VY, the group G is a subgroup of G,

e for every e € EY, the group G, is a subgroup of G., and the monomorphism G, — G;(e)
is the restriction of the monomorphism Ge — Gy ), and

G:&(e) N pe(Ge) = pe<G/e) :

This condition, first introduced in | , Coro. 1.14], is equivalent to the injectivity of the
natural map G;(e)/pe(G'e) — Gy(e)/pe(Ge). Tt implies by | , 2.15] that when the underlying
basepoint is chosen in Y, the fundamental group of (Y’, G%,) injects in the fundamental group
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of (Y,Gy), and the Bass-Serre tree X' of (Y, G%) injects in an equivariant way in the Bass-
Serre tree X of (Y, Gy).

Note that the fundamental group of (Y, G) does not always act faithfully on its Bass-Serre
tree X, that is, the kernel of its action might be nontrivial.

The edge-indexed graph (Y,i) of the graph of groups (Y, Gy) is the graph Y endowed with
the map i : EY — N — {0} defined by i(e) =[G : Ge] (see for instance | ) D-

In Section 12.4, we will consider metric graphs of groups (Y, Gy, \) which are graphs of
groups endowed with an edge length function A : EY — ]0, +oo[ (with A(€) = A(e) for every
e € EY).

Example 2.10. The main examples of graphs of groups that we will consider in this text
are the following ones. Let X be a simplicial tree and let I' be a subgroup of Aut(X). The
quotient graph of groups T'\X is the following graph of groups (Y,Gy) (having finite vertex
groups if X is locally finite and I' is discrete). Its underlying graph Y is the quotient graph
IN\X. Fix a lift 2 € VX U EX for every z € VY u EY. For every e € EY, assume that & = e,
and fix an element g, € T" such that ge{(\e/) = t(€). For every y € VY U EY, take as G the
stabiliser I'y in I" of the fixed lift y. Take as monomorphism p. : Ge — Gy the restriction
to I's of the conjugation v +— g 'vg. by g.!.

The volume form of a graph of finite groups (Y, G) is the measure vol(y ¢, ) on the discrete
set VY, such that for every y € VY,

1
voley, G () = 15
Y

where |G| is the order of the finite group G,. Its total mass, called the volume of (Y, Gy), is

1
Vol(Y, Ga) = [voliy, gy | = D, Tl
yeV'Y Y

We denote by L2(Y,G,) = LA(VY, vol(y ¢,)) the Hilbert space of square integrable maps
VY — C for this measure vol(y ¢, and by f — | fll, and (f, g) = {f, g), its norm and scalar
product. Let

L(Y.G) = (£ €L2(V.G) 5 [ [ dvoligc,y = 0}.

When Vol(Y, Gy) is finite, (Y, G4) is the orthogonal subspace to the constant functions.
We also consider a (edge-)volume form Tvolyy ¢, ) on the discrete set E'Y such that for
every ee EY,

TVO](Y,G*)({e}) = |G | ;

with total mass .

TVol(Y, Gx) = [Tvolyy, gyl = )| @l

eeEY

The (edge-)volume form of a metric graph of groups (Y, Gy, A) is given by

Tvol(Y, Gy, A) =

|Gel
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on each edge e of Y parameterised by its arclength s, so that its total mass is

Ale
TVol(Y, G, A) = [Tvoliy, g, = D, y(g?
ee EY €

For A =1, this total mass agrees with that of the discrete definition above.
Remark 2.11. Note that TVol(Y, G,) = Card(EY) when the edge groups are trivial. We

have
1 1 Gy deg(y)
TVol(Y = E = E _— E AR E
ollY, G) |Gl Gyl G| |Gyl ’
yeVY

ee EY ecEY, o(e):y yeV'yY

where 7 is any lift of y in the Bass-Serre tree of (Y,G). In particular, if X is a uniform
simplicial tree and I' is discrete subgroup of AutX, then the finiteness of Vol(I'\\X) and of
TVol(I'\\X) are equivalent. Defining the volume form on V'Y by {y} — dee@) gometimes makes

|Gyl
formulas simpler, but we will follow the convention which occurs in they classical references
(see for instance | D).
If the Bass-Serre tree of (Y, Gy) is (¢ + 1)-regular, then
mxTvoly ¢, = (¢ +1)voly g, and TVol(Y, Gi) = (¢+ 1) Vol(Y, Gy) . (2.16)

We say that a discrete group of isometries I' of a locally finite metric or simplicial tree
(X, A) is a (tree) lattice of (X, \) if the quotient graph of groups I'\X has finite volume. If X
is simplicial, then this implies that I is a lattice in the locally compact group Aut(X) (hence
that Aut(X) is unimodular), the converse being true for instance if X is regular or biregular
(see | |). For instance, if T is a uniform lattice of X (or (X, \)), that is, if I' is a discrete
subgroup of Aut(X, \) and if the quotient graph T'\X is finite, then T" is a lattice of (X, \).

A graph of finite groups (Y, Gy) is a cuspidal ray if Y is a simplicial ray such that the
homomorphisms G., — G(,) are surjective for its sequence of consecutive edges (e;)ien
oriented towards the unique end of Y. By | |, a discrete group I'" of Aut(X) (hence of
Isom(|X];)) is geometrically finite if and only if it is nonelementary and if the quotient graph of
groups by IV of its minimal nonempty invariant subtree is the union of a finite graph of groups
and a finite number of cuspidal rays attached to the finite graph at their finite endpoints.

Remark 2.12. If X is a locally finite simplicial tree and if I is a geometrically finite discrete
group of Aut(X) such that the convex hull of its limit set €AI"” is a uniform tree, then I" is
a lattice of €AT”.

Proof. Since €Al” is uniform, there is a uniform upper bound on the length of an edge
path in €AT” which injects in I"\% AT” such that the stabiliser of each edge of this edge path
is equal to the stabilisers of both endpoints of this edge. It is hence easy to see that the
volume of each of the (finitely many) cuspidal rays in I"\¢AT"” is finite, by a geometric series
argument. Hence the volume of I"\@AI" is finite. O

Note that contrarily to the case of Riemannian manifolds, there are many more (tree)
lattices than there are geometrically finite (tree) lattices, even in regular trees, see for instance

[BasL].
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In Part III of this text, we will consider simplicial graphs of groups that arise from arith-
metics of non-Archimedean local fields. We say that I' is algebraic if there exists a non-
Archimedean local field K (a finite extension of Q, for some prime p or the field of formal
Laurent series over a finite field) and a connected semi-simple algebraic group G with finite
centre defined over K , of K-rank one, such that X identifies with the Bruhat-Tits tree of G
in such a way that I' identifies with a lattice of Q(IA( ). If T is algebraic, then I' is geometri-
cally finite by | |. Note that X is then bipartite, see Section 2 of op. cit. for a discussion
and references. See Sections 14 and 15.1 for more details, and the subsequent Sections for
arithmetic applications arising from algebraic lattices.
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Chapter 3

Potentials, critical exponents and
(Gibbs cocycles

Let X be a geodesically complete proper CAT(—1) space, let g € X be an arbitrary basepoint,
and let I' be a nonelementary discrete group of isometries of X.

In this Chapter, we define potentials on 7' X, which are new data on X in addition to
its geometry. We introduce the fundamental tools associated with potentials, and we give
some of their basic properties. The development follows | | with modifications to fit the
present more general context.

In Section 3.5, we introduce a natural method to associate a (I'-invariant) potential F.:
T'X — R to a I'-invariant function ¢ : EX — R defined on the set of edges of a simplicial
or metric tree X, with geometric realisation X, that we call a system of conductances on X.
This construction gives a nonsymmetric generalisation of electric networks.

3.1 Background on (uniformly local) Hélder-continuity

In this preliminary Section, we recall the notion of Hélder-continuity we will use in this text,
which needs to be defined appropriately in order to deal with noncompactness issues. The
Hoélder-continuity will be used on one hand for potentials when X is a Riemannian manifold
in Section 3.2, and on the other hand for error term estimates in Chapters 9, 10 and 11.

As in | |, we will use the following uniformly local definition of Holder-continuous
maps. Let E and E’ be two metric spaces, and let « € ]0,1]. A map f: E — E' is
e «-Hoélder-continuous if there exist ¢,e > 0 such that for all z,y € F with d(z,y) < ¢, we
have

d(f(x), f(y)) < cd(z,y)* .

e locally a-Hélder-continuous if for every x € E, there exists a neighbourhood U of x such
that the restriction of f to U is a-Hoélder-continuous;

e Hilder-continuous (respectively locally Hélder-continuous) if there exists a € 0, 1] such
that f is a-Hoélder-continuous (respectively locally a-Holder-continuous);

e Lipschitzif it is 1-Holder-continuous and locally Lipschitzif it is locally 1-Holder-continuous.

Let E and E’ be two metric spaces. We say that a map f: E — E’ has
e at most linear growth if there exists a,b = 0 such that d(f(x), f(y)) < ad(z,y) + b for all
z,ye k),
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e subexponential growth if for every a > 0, there exists b > 0 such that d(f(z), f(y)) <
betdY) for all z,y € E.

Remark 3.1. When E is a geodesic space, a consequence of the (uniformly local) Holder-
continuous property of f : E — E’ is that f then has at most linear growth: the definition
implies that d(f(x), f(y)) < ce* Ld(z,y) + ce® for all z,y in X, by subdividing the geodesic
segment in E from x to y in [@] segments of equal lengths at most € and using the triangle
inequality in E’.

For any metric space Z and « € ]0, 1], the Hélder norm of a bounded a-Hélder-continuous

function f: Z - R is
Ul =Flo+  sup LB =IWL

T, yez d(l‘, y)a
0<d(z,y)<1

When the diameter of Z is bounded by 1, this coincides with the usual definition. Note that
even if the constant € in the above definition of a a-Hdélder-continuous map is less than 1, this

norm is finite, since
) = 1)

T, yez d(l‘, y)a
e<d(z,y)<1

<26 [flloo -

Note that for all bounded a-Holder-continuous maps f,g: Z — R, we have

[£9la < 1l [glloo + [ flleo gl - (3.1)

We denote by ¢ (Z) (respectively ¢*(Z)) the space of a-Hélder-continuous real-valued
functions with compact support (respectively which are bounded) on Z, endowed with this
norm. Note that 4%(Z) is a Banach space.”

A stronger assumption than the Holder regularity is the locally constant regularity, that
we now define. Alhough it is only useful for totally disconnected metric spaces, several error
terms estimates in the literature use this stronger regularity (see for instance | ) |
and Part I1I of this text).

Let € > 0. For every metric space E and every set FE’, we say that a map f: E — E’ is
e-locally constant if f is constant on every closed ball of radius € (or equivalently of radius at
most €) in E. We say that f : E — E’ is locally constant if there exists ¢ > 0 such that f is
e-locally constant.

Note that if E is a geodesic metric space and f : E — E’ is locally constant, then f is
constant. But when FE is for instance an ultrametric space, since two distinct closed balls
of the same radius are disjoint, the above definition turns out to be very interesting (and
much used in representation theory in positive characteristic, for instance). For example, the
characteristic function 14 of a subset A of E is e-locally constant if and only if for every
x € A, the closed ball B(z,¢€) is contained in A. In particular, the characteristic function of a
closed ball of radius € in an ultrametric space is e-locally constant.

The next result says that the Holder regularity is indeed stronger than the locally constant
one.

IThis is in particular the case for the sequence spaces of symbolic dynamical systems, see Sections 5.2 and
9.2.

2The standard proof using Arzela- Ascoli’s theorem applies with our slightly different definition of the Holder
norms.
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Remark 3.2. Let E and E’ be two metric spaces. If a map f: E — E’ is e-locally constant,
then it is a-Holder-continuous for every « € 0, 1]. Indeed, for all z,y € E, if d(z,y) < € then
d(f(z), f(y)) =0 < cd(z,y) for all ¢ > 0. If furthermore £’ = R and f is bounded, then

1f(z) = F)l _ If(@) = fl _ 2
$7y€SflEl}?v¢y d(z,y)* x7y€E,Sg(Iz)v,y)>e d(x, y)* < O‘”f”oc'

For all € € ]0,1] and 8 > 0, we denote by % 1C”B(E) the vector space® of e-locally constant
functions f : E — R endowed with the elc-norm of exponent 8 defined by

[ £lletc,p = €7 1f e -

The above remark proves that if 5 € ]0,1], the inclusion map from %, le, 8 (E) into ‘fbﬁ (E) is
continuous. We will only use the €lc-norms in Section 15.4.

3.2 Potentials

In this text, a potential for ' is a continuous I'-invariant function F : T1X — R. Ths
quotient function ' : T\T'X — R of F is called a potential on F\Tl)g. The function F
defines a continuous I'-invariant function from 4 X to R, also denoted by F', by F'(¢) = F(uvy).

For all z,y € X, and any geodesic line £ € 4 X such that ¢(0) = z and ¢(d(z,y)) = y, let

7 s

Note that for all ¢ € ]0,d(z,y)[, the germ vy, is independent on the choice of such a line /,
hence Sg F does not depend on the extension ¢ of the geodesic segment [z, y]. The following

properties are easy to check using the I'-invariance of F' and the basic properties of integrals:

For all yeT’
Y U
Jr=Lr
YT T
$~ y~
J F—f Fou, (3.2)
Yy €T
Yoo Z Y o
fF—JF—i—fF. (3.3)
x x z

The period of a loxodromic isometry v of X for the potential Fis

for the antipodal map ¢

and, for any z € [z, y],

YT

st~ [

T

for any x in the translation axis of 7. Note that, for all @ € I" and n € N — {0}, we have

Perp(aya™) = Perp(y), Perp(y") =n Perp(y) and Perp(y™') = Perpo,(y) . (3.4)

In trees, we have the following Lipschitz-type control on the integrals of the potentials
along segments.

3Note that a linear combination of e-locally constant functions is again a e-locally constant function.
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Lemma 3.3. When F is constant or when X is an R-tree, for all z,2',y,y’ € X, we have

v oL v ~ ~
J F—J F|< d(z,2) sup |F| + d(y,y') sup |F].
T ! 7 1([z,2']) [y, y'])

Proof. When F is constant, the result follows from the triangle inequality.

Assume that X is an R-tree. Consider the case z = z/. Let z € X be such that [z, z] =
[z,y] N [z,9y']. Using Equation (3.3) and the fact that d(y, z) + d(z,vy') = d(y,y’), the claim
follows. The general case follows by combining this case x = z’ and a similar estimate for the
case y = 1. O

Some form of uniform Hoélder-type control of the potential, analogous to the Lipschitz-

type one in the previous lemma, will be crucial throughout the present work. The following
Definition 3.4 formalises this (weaker) assumption.

Definition 3.4. The triple (X, T, ﬁ’) satisfies the HC-property (Hdélder-type control) Zfﬁ has
subexponential growth when X is not an R-tree and if there exists k1 = 0 and ko € ]0,1] such
that for all x,y,2’',y" € X with d(z,2"),d(y,y") <1, we have

jﬁfﬁ\ (HO)

< (k1 + max F|) d(z,z')* + (k1 + max F|) d(y,y)" .
(o1t By 1) A )™ (e 1) 409)

By Equation (3.2), (X,F,ﬁ o) satisfies the HC-property if and only if (X,I’,ﬁ) does.
By Equation (2.3), for every k € R, the triple (X, T, F+ k) satisfies the HC-property (up to
changing the constant 1) if and only if (X,T, F) does.

When X is assumed to be a Riemannian manifold with pinched sectional curvature, requir-
ing the potentials to be Holder-continuous as in | | is sufficient to have the HC-property,
as we will see below.

Proposition 3.5. The triple (X,I’,ﬁ’) satisfies the HC-property if one of the following con-
ditions is satisfied:

o [ is constant,

e X is an R-tree,

o X is a Riemannian manifold with pinched sectional curvature and F is Hélder-continuous.

Proof. The first two cases are treated in Lemma 3.3, and we may take for them «; = 0 and
ko = 1 in the definition of the HC-property.
The claim for Riemannian manifolds follows from the property of at most linear growth

of the Hélder-continuous maps (see Remark 3.1) and from | , Lem. 3.2|, with constants
k1 > 0 and kg € ]0,1] depending only on the Holder-continuity constants of F' and on the
bounds on the sectional curvature of X. ]

Remark 3.6. (1) If X = M is a Riemannian manifold, then 71X is naturally identified with
the usual Riemannian unit tangent bundle of X. If the potential F:T'M — R is Holder-
continuous for Sasaki’s Riemannian metric on T, it is a potential as defined in [ | and
| |. Furthermore, the definition of {¥ F coincides with the one in these references.

(2) The quotient function F' is Holder-continuous when F is Holder-continuous.
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Let }NW, F*:T'X — R be potentials for I'. We say that F* is cohomologous to F (see for
instance [Liv]) if there exists a continuous I-invariant function G : 7' X — R, such that, for
every £ € 9 X, the map t — G(vg) is differentiable and

~

F*(ve) — F(vg) = G(vgte) - (3.5)

dt |t=0

A potential F is said to be reversible if F+ and F~ are cohomologous.

When working with Holder-continuous potentials, the regularity requirement is for G to
also be Holder-continuous. Note that the right-hand side of Equation (3.5) does not depend
on the choice of the representative £ of its germ v;. In particular, Perp(7y) = Perpx(y) for any
loxodromic isometry - if F and F* are cohomologous potentials.

3.3 Poincaré series and critical exponents

Let us fix a potential F:T'X >R for I'and z,y € X.
The critical exponent of (I, F') is the element ¢ = o r of the extended real line [—o0, +00]
defined by
1 ~
0 = limsup —In 2 el F

n
n—to vel, n—1<d(z,yy)<n

The Poincaré series of (I', F) is the map @ = Qr r 5, : R — [0, +00] defined by

Q:s— Zesly(ﬁ_s).

vyel

If § < 400, we say that (I', F) is of divergence type if the series Qr, F 4 4(0) diverges, and of
convergence type otherwise.

When F' = 0, the critical exponent Jr ¢ is the usual critical exponent or € ]0, +oo] of T,
the Poincaré series Qr, o, z,4 is the usual Poincaré series of I', and we recover the usual notion
of divergence or convergence type of I'.

The Poincaré series of (I', F') and its critical exponent make sense even if I' is elementary
(see for instance Lemma 3.7 (10)). The following result collects some of the basic properties
of the critical exponent. The proofs from | , Lem. 3.3| generalise to the current setting,
replacing the use of | , Lem. 3.2] by the HC-property.

Lemma 3.7. Assume that (X, T, ﬁ) satisfies the HC-property. Then,

(1) the critical exponent ér p and the divergence or convergence of Qr,F, «,y(s) are inde-
pendent of the points x,y € X; they depend only on the cohomology class of F';

(2) Qr,Foi,z,y = Qr,F,y,2 and dr Fo, = Or,F ; in particular, (I', F') is of divergence type if
and only if (T', F o) is of divergence type ;

(3) the Poincaré series Q(s) diverges if s < op, p and converges if s > or p ;

(4) Or, pyx = Or, p+k for any k € R, and (I', F') is of divergence type if and only if (I', F +k)
1s of divergence type ;

(5) if I is a nonelementary subgroup of T, denoting by F" : I"\T'X — R the map induced
by F, then 5F’,F’ < (51“717;
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~

(6) if or < 40, then dp +  inf F< or,rp <dr+ sup F;
7= 1(ZAT) 7—1(4AT)

(7) (5F,F > —00

(8) the map F s or, F is convex, sub-additive, and 1-Lipschitz for the uniform norm on the
vector space of real continuous maps on m—(FAL) ;

(9) if T is a discrete cocompact group of isometries of X such that F is I -invariant,
denoting by F" : T"\T'X — R the map induced by F, then

or, F < Opv Fr

(10) if T is infinite cyclic, generated by a lozodromic isometry v of X, then (I',F) is of
divergence type and

O

Perp(v) PerFOL(*y)}
AT A()

Examples 3.8. (1) If Jr is finite and Fis bounded, then the critical exponent ¢ is finite by
Lemma 3.7 (6).

(2) If X is a Riemannian manifold with pinched negative curvature or when X has a compact
quotient, then Jr is finite. See for instance [Bou.

(3) There are examples of (X,T") with ép = +00 (and hence § = +o0 if F is constant), for
instance when X is the complete ideal hyperbolic triangle complex with 3 ideal triangles along
each edge, see | |, and T its isometry group. Hence the finiteness assumption of the critical
exponent is nonempty in general. For the type of results treated in this book, it is however
natural and essential.

5F,F = max{

We may replace upper limits by limits in the definition of the critical exponents, as follows.

Theorem 3.9. Assume that (X,F,ﬁ’) satisfies the HC-property. If ¢ > 0 is large enough,
then

1 ~
6= lim —In Z o' I
n—+o n
~vel', n—c<d(z,yy)<n
If 6 > 0, then
1 ~
0= lim —In Z el I
n—+w n
vel, d(z,yy)<n
Proof.N The proofs of | , Theo. 4.2], either using the original arguments of | | valid
when F' is constant, or the super-multiplicativity arguments of | |, extend, using the
HC-property (see Definition 3.4) instead of | , Lem. 3.2]. O

In what follows, we fix a potential F for T such that (X,T, F ) satisfies the HC-property.
We define F* = Fand F~ = Fo t, we denote by F* : I'\T'X — R their induced maps, and
we assume that § = dp p+ = op p- is finite.

4That is, if ]5, F*:T'X — R are potentials for T satisfying the HC-property, inducing F, F* : T\T*X — R,
and if or, F, Op, px < 400, then op ;pyq_yrx < tr, F + (1 —1t) op px for every t € [0, 1],
Or, pypx <O, F +0p, px
| 6r px —Orp | < sup | F¥(v) = F(v) | .

ver—1(€AT)
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3.4 Gibbs cocycles

The (normalised) Gibbs cocycle associated with the group I' and the potential F* is the map
C* =C%,. 10X x X x X — R defined by

N &t ~ &t N
(6,2,) — CE(z,y) = lim <F——6>—f ("~ 5),

t—+00 y T

where t — & is any geodesic ray with endpoint £ € 0, X.

We will prove in Proposition 3.10 below that this map is well defined, that is, the above
limits exist for all (£, x,y) € 0 X x X x X and they are independent of the choice of the
geodesic rays t — &. If Ft = 0, then C~ = C* = 4rf3, where 3 is the Busemann cocycle. If
X is an R-tree, then ) )

CE(x,y) :J (FE —9) —J (F*—96), (3.6)
Yy x
where p € X is the point for which [ p, [ = [z, &[ » [y, &[; in particular, the map & — Cgi (z,y)
is locally constant on the totally discontinuous space 0y X .

The Gibbs cocycles satisfy the following equivariance and cocycle properties: For all £ €

00X and z,y, z € X, and for every isometry v of X, we have

C(ya,vy) = CE(z,y) and CF (z,2) + CF(2,y) = CF (x,y). (3.7)

For every £ € ¢ X, for all z and y on the image of the geodesic line ¢, with ¢_, x,y, £, in this
order on ¢, we have

Cir w9) = G () = ~Cf () = [ (FF =5) (3.5)

xT
Proposition 3.10. Assume that (X, T, ﬁ’) satisfies the HC-property and that 6 < +00.
(1) The maps C* : 0,X x X x X — R are well-defined.

(2) Forallz,ye X and £ € 0, X, if d(x,y) < 1, then

CH(z, < (k1 +0+ max F d(x,y)*?,
CE@) < G+ 8+ max |F])d(zy)

with the constants k1, ko of the HC-property. If X is an R-tree, then for all x,y € X
and £ € 0 X, we have

CH(z, < d(z, max |F* —§].
| Cg (z,y) | < d( y)ﬂ_l([x’y])l |

(3) The maps C* : 0, X x X x X — R are locally Holder-continuous (and locally Lipschitz
when X is an R-tree). In particular, they are continuous.

(4) For allr > 0, x,y € X and £ € 0, X, if £ belongs to the shadow O, B(y,r) of the ball
B(y,r) seen from x, then with the constants k1, ke of the HC-property,

Yo ~
CH(x, —i—J Ff—68)|<2(ki+6+ max |F|)r.
Ciwy)+ | (FE=d)|<2m +d+ _max | |F)
If X is an R-tree, then

Y~
CE(x, +f Ft—§)|<2r max [|F*—4].
Ciwy)+ | (FE=d)|<or max |F* -0
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Proof. (1) The fact that Cg—r (x,y) is well defined when X is an R-tree follows from Equation
(3.6).

When X is not an R-tree, let p : t — & be any geodesic ray with endpoint £ € 0 X, let
t — x4 (respectively t — ;) be the geodesic ray from z (respectively y) to . Let t, = Be(x, &)
and t, = B¢(y,&o), so that the quantity 8 = t, —t, is equal to S¢(y, x) (which is independent
of p), and for every ¢ big enough, we have B¢ (&, 244+, ) = Be(&ts Yert,) = 0.

Since X is CAT(—1), if ¢ is big enough, then the distances d(&;, z¢4¢,) and d(&, ye4¢,) are
at most one, and converge, in a nonincreasing way, exponentially fast to 0 as t — +o0. For
s =0, let as = st (F* —6) — S;S’B(FN’i — 9) (which is independent of p). We have, using
Equation (HC),

([ [ o)

) x
& Yttty Tttty &
([ a [ o) ([0 [0-a)
Yy Yy x x
<2 ﬁ S d , ’d , K2 ,
(k1 +7r_1%%?§1))| ) max{d(&, Te+t, ), d(&e, Yere, )}

which converges to 0 since F has subexponential growth by the assumptions of the HC-
property. Hence in order to prove Assertion (1), we only have to prove that limg_, o as
exists.

For all s = t > ||, we have, by the additivity of the integral along geodesics (see Equation
(3.3)) and by using again Equation (HC),

Ys ~ Ts—p ~.
o —al =| [0 - [ @ -5
Yt Ti—p
< F —68]) d(w, z4—5)" F —68])d(ys, 1s:5)" .
(H1+w*1(g(lai)fﬁ,1))’ ) e, 72-5) +(/<;1+7r71(rg2(1y>;1))! 1) 8y o1p)

Again by the subexponential growth of F , the above expression converges to 0 as t — +00
uniformly in s, hence limg_, o a5 exists by a Cauchy type of argument.

2) Let (&, z,y) € 00X x X x X. Assertion (2) of Proposition 3.10 follows from Equation
3.6) when X is an R-tree, since [x,y]| = [z,p] U [p,y] where p be the closest point to y on

(
(
[,§[. When X is not an R-tree, Assertion (2) follows immediately from the HC-property of
(X,T, Ft —9).

(

3) Let (&, z,v), (£, 2',y) € 0oX x X x X. By the cocycle property (3.7), we have
G (z,y) — Car (2, y)| < |CF (2, y) — C(,y)| + |Cgr (w,2) | + |Cer (y, )] - (3.9)
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First assume that X is an R-tree. Let K be a compact subset of X, and let

inf e d@z0)—dx,y) 5

K= z,ye K
1
Q—Iy—Ié—Q
T p q .

Let p,q be the points in X such that [z,&[ n[y,&[ = [p,&[ and [z, & N[z, &[ = [z,q]. If
dyo (€, &) < €k, then by the definition of the visual distance and by Equation (2.2), we have

e~ @0 — g (&,¢) < e @Y L emU@P)
In particular ¢ € [p, [, so that [z,&'[ n [y, [ = [p,&'[. Thus by Equation (3.6), we have

Therefore, by Equation (3.9) and by the R-tree case of Assertion (2), if dy,(§,&') < ek, if
x,y € K and d(z,2'),d(y,y") < 1, then

Cf(z,y) — C& (2, y)| < d(z,2') max Ft_s +d(y,y’) max Ff 5.
| ¢ (0) ¢ ( ) ( )ﬂ‘l([w’])| | ( )w—l([y,y’])‘ |

Since F' is bounded on compact subsets of 71X, this proves that C* is locally Lipschitz.

Let us now consider the case when X is general. For all distinct £, € 0, X, let t — &
and t — &, be the geodesic rays from xg to £ and &’ respectively. By the end of the proof of
Assertion (1), for every compact subset K of X, there exists aj,as > 0 such that for every
x,y € K, we have for n € {¢,¢'},

U LI
i~ ([ @ =0~ ["F* - 0) | cme.
y
Let T = —% Ind,,(&,&). T = 0, by the properties of CAT(—1)-spaces, there exist constants
ag,aq > 0 such that d(&or, &) < as and d(ér,€y) < age™?. Hence by Assertion (2), if
dyo (€,8) < min{a%, 1} (so that T'> 0 and d(é7, &) < 1), we have
4

< \fT(ﬁi - fT(ﬁi )|+

Y

nE ! \K —asT
<2 (k1 + rl(?(?f,ag) |F'= —6])d(ér, &)™ +2a1 e %27 .

Er &
J (Fi—é)—f (Fi—é)‘+2a16_“2T

x T

By the subexponential growth of F , there exists as > 0 such that

L ag

|CF (2,) — CE(m.y) | <ase™ T T+ 2a1 72T < (a5 + 2a1) doy (€, €)M

We now conclude from Equation (3.9) and Assertion (2) as in the end of the above tree case
that C* is locally Holder-continuous.
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(4) Let r > 0, z,y € X and £ € 0, X be such that £ € 0,B(y,r). Let p be the closest point
to y on [z,£[, so that d(p,y) < r. By Equations (3.8) and (3.7), we have

‘cgnm+fy

x

(7 = 8)| =| )~ Can) - [ (= 0)+ [ (- 9)

x

fﬁﬁ+—5y—f%ﬁ+—5w. (3.10)

<|CEp )l +

First assume that X is an R-tree. Then by Assertion (2) and by Lemma 3.3, we deduce
from Equation (3.10) that

yN ~ ~
CH(x, —i—f FE—6)| <2d(y, max |F¥—6/<2r max |Ff—§]|.
‘ ¢ (@) x( w (yp%r%wmﬂ | rJ@@m»| |

In the general case, the result then follows similarly from Equation (3.10) by using Asser-
tion (2) and the HC-property. OJ

3.5 Systems of conductances on trees and generalised electrical
networks

Let (X, A) be a locally finite metric tree without terminal vertices, let X = |X], be its geometric
realisation, and let I" be a nonelementary discrete subgroup of Isom(X, \).

Let ¢: EX — R be a I'-invariant function, called a system of (logarithmic) conductances
for I'. We denote by ¢ : I'\EX — R the function induced by ¢ : EX — R, which we also call
a system of conductances on I'\X.

Classically, an electric network’ (without sources or reactive elements) is a pair (G, e°),
where G is a graph and ¢ : EG — R a function, such that ¢ is reversible: c(e) = c(€)
for all e € EG, see for example | |, [Zem]. In this text, we do not assume our system
of conductances ¢ to be reversible. In Chapter 6, we will even sometimes assume that the
system of conductances is anti-reversible, that is, satisfying c(€) = — c(e) for every e € EX.

Two systems of conductances ¢, ¢ : EX — R are said to be cohomologous, if there exists
a [-invariant map f: VX — R such that

Jd—Z=df,

where for all e € EX, we have

Propositiwon 3.11. Let ¢ : EX — R be a system of conductances for I'. There exists a
potential F' on T'X for T such that for all z,y € VX, if (e1,...,e,) is the edge path in X
without backtracking such that x = o(e1) and y = t(ey), then

fﬁ—iawxw.

z i=1

A potential in this work is not the analog of a potential in an electric network, we follow the dynamical
systems terminology as in for example | |-
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Proof. Any germ v € T' X determines a unique edge e, of the tree X, the first one into which
it enters: if ¢ is any geodesic line whose class in T X is v, the edge e, is the unique edge of X
containing 7(v) whose terminal vertex is the first vertex of X encountered at a positive time
by £. The function F:T'X — R defined by

F(v) = 4}\5((:))) mi

n {d(r(v), o(ey)), d(m(v), t(ey))} (3.11)

is a potential on the R-tree X, with F(v) =0if 7(v) € VX.
Let us now compute SZ F, for all z,y € X. For every A\ > 0, let ¢, : [0, A\] > R be the

continuous map defined by ¥, (t) = % if t € [0, %] and ¥, (t) = ’\4—2 - % ifte [%, Al. Let
(eg,€1,...,6,) be the edge path in X without backtracking such that x € ey — {t(ep)} and

y € e, — {o(en)}. An easy computation shows that

. 45(60)
Aleo)

wk(en) (d(yv O(@n))) 1/})\(60) (d(l‘, 0(60))) :

If x and y are vertices, the expression simplifies to the sum of the lengths of the edges weighted
by the conductances. O

We denote by l?’c the potential defined by Equation (3.11) in the above proof, and by
F.: F\TlX — R the induced potential. Note that F, is bounded if ¢ is bounded. We call
}NWC and F, the potentials associated with the system of conductances ¢ and ¢. This is by no
means the unique potential with the property required in Proposition 3.11. The following
result proves that the choice is unimportant.

Given a potential F:T'X >R for T, let us define a map ¢p : EX — R by

N N 1 t(e)
cF:eHcF(e)zm J()F. (3.12)

Note that ¢g is I-invariant, hence it is a system of conductances for I'.  We denote by
cp : T\EX — R the function induced by ¢r : EX — R. Note that ¢pi, = ¢p + K for every
constant x € R, that ¢r is bounded if F' is bounded, and that cg, = ¢ by the above proposition.

Proposition 3.12. (1) Ewvery potential for I" is cohomologous to a potential associated with
a system of conductances for T'.

(2) If two systems of conductances d and ¢ are cohomologous, then their associated poten-
tials Fo and F,. are cohomologous.

(3) If X has no vertex of degree 2, if two potentials F* and F for ' are cohomologous, then
the systems of conductances Cpx and ¢g for I' are cohomologous.

Hence if X has no vertex of degree 2, the map [F'] — [cr] from the set of cohomology
classes of potentials for I' to the set of cohomology classes of systems of conductances for I'
is bijective, with inverse [c] — [F¢].

Proof. (1) Let F be a potential for I', and let F* = ﬁcF be the potential associated with
the system of conductances ¢p. For all e € EX and t € 0, A(e)[, let v+ € T1X be the germ
of any geodesic line passing at time 0 through the point of e at distance t from o(e). Let
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G : T'X — R be the map defined by G(v) = 0 if 7(v) € VX and such that for all e € EX and

te]0,A(e), ,

G(ve,r) :L(ﬁ*(vw)—ﬁ(ve,s))ds.

Since SZ((Z)) F = Ae) &p(e) by construction and A(e) &p(e) = SZ((?) F* by Proposition 3.11, the
map G :T'X — R is continuous. Let £ be a geodesic line. The map t — CNJ(vgz ¢) is obviously
differentiable at time ¢ = 0 if 7(¢) ¢ VX, with derivative F* (v¢) — F(vg). Since F*(v) vanishes

if m(v) € VX by Equation (3.11), and by continuity of I’ at such a point, this is still true if
m(¢) € VX. Hence F* and F are cohomologous, and this proves the first claim.

(2) Assume that ¢ and ¢ are cohomologous systems of conductances for I', and let f : VX — R
be a I'-invariant function such that ¢/ — ¢ = df. For all e € EX and t € |0, A(e)[, define

Gi(ver) = Ae) fo (o (ve,) — Folve, ) ds + F(o(e)) .

which is I'-invariant, whose limit as t — 0 is f(o(e)) (independent of the edge e with given
origin), and whose limit as t — A(e) is

Ae) (d(e) = &(e)) + flo(e)) = Ale) df(e) + f(o(e)) = f(t(e))

(independent of the edge e with given extremity). As above, this proves that G is continuous,
and that F. and F,. are cohomologous.

(3) In order to prove the third claim, assume that F* and F are two cohomologous potentials
for I', and let G : T'X — R be as in the definition of cohomologous potentials, see Equation
(3.5). By the continuity of G, for all elements v and v’ in T*X such that 7(v) = 7(¢/) € VX,
we have G(v) = G(v'), since (by the assumption on the degrees of vertices) the two edges
(possibly equal) into which v and v’ enter can be extended to geodesic lines with a common
negative subray. Hence for every z € VX, the value f(z) = G(uvy) for every v, € T X such
that m(v;) = x does not depend on the choice of v,. The map f : VX — R thus defined
is I-invariant. With the above notation and by Equation (3.12), we hence have, for every
e e EX,

A ~ A g o
Crx(e) — Cr(e) = )\(16) L (F*(ve,t) — F(ve,¢) dt = )\(16) fo %G(vm) di
= )\(16) (é(vt(e)) - Cj(vo(e))) = f(t(e>))\z€)f(0(e)> - df(e) '
Hence ¢p+ and ¢p are cohomologous. 0

Given a metric tree (X, ), we define the critical exponent of a I'-invariant system of
conductances ¢ : EX — R (or of the induced system of conductances ¢ : I'\EX — R) as the
critical exponent of (', F,) where F is the potential for I" associated with ¢ :

0. = Or,F, -

By Proposition 3.12 (2) and Lemma 3.7 (1), this does not depend on the choice of a potential
F, satisfying Proposition 3.11.
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Chapter 4

Patterson-Sullivan and
Bowen-Margulis measures with
potential on CAT(—1) spaces

Let X, o, be as in the beginning of Section 2.2, and let F be a potential for I'. From now
on, we assume that the triple (X ,F,f’ ) satisfies the HC-property of Definition 3.4 and that
the critical exponent d = dp p=+ is finite.

In this chapter, we discuss geometrically and dynamically relevant measures on the bound-
ary at infinity of X and on the space of geodesic lines ¥ X. We extend the theory of Gibbs
measures from the case of manifolds with pinched negative sectional curvature treated in
| ] 2 to CAT(—1) spaces with the HC-property.

4.1 Patterson densities

A family (1).cx of finite nonzero (positive Borel) measures on do, X, whose support is AT,
is a (normalised) Patterson density for the pair (T, F'%) if

Velly = My (4.1)

for all v € I" and = € X, and if the following Radon-Nikodym derivatives exist for all z,y € X
and satisfy for (almost) all £ € 00 X

dpz

+
(€) =e Y, (4.2)
dpi;

In particular, the measures p, are in the same measure class for all x € X, and, by Proposition
3.10, they depend continuously on z for the weak-star convergence of measures. Note that
a Patterson density for (I', F*) is also a Patterson density for (I, F* + s) for every s € R,
since the definition involves only the normalised potential F*r_§. IfF = 0, we get the usual
notion of a Patterson-Sullivan density (of dimension dr) for the group I', see for instance

[ ? ? ? ? ? ]

!That is, X is a geodesically complete proper CAT(—1) space, zo € X is a basepoint, and T is a nonele-
mentary discrete group of isometries of X.
2See also the previous works [Led, , , |
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Proposition 4.1. There ezists at least one Patterson density for the pair (T, ﬁi)

Proof. The Patterson construction (see | |, [Coo]) modified as in | , Section 3.6|

gives the result. ]
We refer to Theorem 4.5 for the uniqueness up to scalar multiple of the Patterson density

when (T, F'¥) is of divergence type and to | , Coro. 17.1.8] for a characterisation of the

uniqueness.

The Patterson densities satisfy the following extension of the classical Sullivan shadow
lemma (which gives the claim when F is constant, see | ]), and its corollaries.

If i is a Borel positive measure on a metric space (X,d), the triple (X, d, u) is called a
metric measure space. A metric measure space (X, d, u) is doubling if there exists ¢ = 1 such
that for all z € X and r > 0

w(B(x,27)) < cu(Blz,r)).

Note that, up to changing ¢, the number 2 may be replaced by any constant larger than

1. See for instance [Hei]) for more details on doubling metric measure spaces. We refer for
instance to | , Ex. 17.4.12] for examples of non-doubling Patterson(-Sullivan) measures,
and to | , Prop. 17.4.4] for a characterisation of the doubling property of the Patterson

measures when I' is geometrically finite and F' = 0.
A family (X, p;, d;)ier of Borel positive measures p; and distances d; on a common set X
is called uniformly doubling if there exists ¢ = 1 such that for allie I, z € X and r > 0

Mi(Bdi(xv 2T>) < C:U'i(Bdi(xﬂ 7’)) .

Lemma 4.2. Let (uf).ex be a Patterson density for the pair (I', F*), and let K be a compact

subset of X.

(1) [Mohsen’s shadow lemma| If R is large enough, there exists C > 0 such that for all
vyel and x,ye K,

1 ~ v
ol ela’ (FF=0) < s (0.B(yy,R)) < C el (FE=0)

(2) For all x,y € X, there exists ¢ > 0 such that for every n € N

Z eSzy(ﬁifé) g c.

~vel' : n—1<d(z,yy)<n

(3) For every R > 0 large enough, there exists C = C(R) > 0 such that for all v € T and
all z,ye K

115 (0 B(vy,5R)) < C 1 (0, B(vy, R)) .

(4) If T is conves-cocompact, then the metric measure space (AT, dy, s is doubling for
every x inX, and the family of metric measure spaces (AT, dy, u¥)zecar is uniformly
doubling.
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Proof. For the first assertion, the proof of | , Lem. 3.10] (see also [Cou, Lem. 4] with the
multiplicative rather than additive convention, as well as | |) extends, using Proposition
3.10 (2), (4) instead of | , Lem. 3.4 (i), (ii)]. The second assertion is similar to the one of
| , Lem. 3.11 (i)], and the proof of the last two assertions is similar to the one of | ,
Prop. 3.12], using Lemma 2.2 instead of | , Lem. 2.1]. The uniformity in the last assertion
follows from the compactness of I\C'AT" and the invariance and continuity properties of the
Patterson densities. O

4.2 Gibbs measures

We fix from now on two Patterson densities (uL).ex for the pairs (T, F'4).
The Gibbs measure mp on ¥ X (associated with this ordered pair of Patterson densities)
is the measure mp on ¥ X given by the density

C, (960,5(0))+CZr (w0, €(0))

dinp(6) = e dpig, (0-) dpity (04) dt (4.3)

in Hopf’s parametrisation with respect to the basepoint xg. The Gibbs measure mp is inde-
pendent of xg, and it is invariant under the actions of the group I' and of the geodesic flow.
Thus, it defines a measure mp on I'\¢ X which is invariant under the quotient geodesic flow,
called the Gibbs measure on I'\¢ X. The proofs of these claims are analogous to the ones
of | , §3.7]. If F = 0 and the Patterson densities (u)).ex and (uy )zex coincide, the
Gibbs measure mp coincides with the Bowen-Margulis measure mpy (associated with this
Patterson density), see for instance | |.

Remark 4.3. The (Borel positive) measure given by the density

- (x +(x —
(&, ) = % P O w0r) gy (e) dyt () (4.4)

on 02X is independent of p €]&, [, locally finite and invariant under the diagonal action
of I' on 02 X. It is a geodesic current for the action of I on the Gromov-hyperbolic proper
metric space X in the sense of Ruelle-Sullivan-Bonahon, see for instance [Bon| and references
therein.

Let us now indicate why the terminology of Gibbs measures is indeed appropriate. This
explanation will be the point of Proposition 4.4, but we need to give some definitions first.

For all e 4X and r > 0, T,T' = 0, the dynamical (or Bowen) ball around ¢ is

B(G;T, T r)={¢€9X : sup d({(t),0'(t)<r}.
te[—T",T]

Bowen balls have the following invariance properties: for all s € [-T",T] and vy € T,
g’B(; T, T',r) = B(g°0;T — s, T+ s,7) and ~B({;T,T',r) = B(v4;T,T,r) .

The following inclusion properties of the dynamical balls are immediate: If r < s, T > S,
T > S’ then B(¢;T,T',r) is contained in B(¢;S,S’,s). The dynamical balls are almost
independent on r (see | , Lem. 3.14]): For all 7 > r > 0, there exists T} ,» = 0 such that
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for all ¢ € X and T,T" > 0, the dynamical ball B(¢;T + T, ,», 7" + T, ,+,r') is contained in
BT, T, 7).

For every £ € T\¥ X, let us define B(¢;T,T’,r') as the image by the canonical projection
X > T\9X of B(Z T,T',r"), for any preimage {of ¢ in9X.

A (g')ier-invariant measure m’ on T\@X satisfies the Gibbs property for the potential F
with constant c(F') € R if for every compact subset K of I'\¢ X, there exist » > 0 and ¢k , > 1
such that for all large enough T, 7" > 0, for every ¢ € T\¥ X with g*TIE, gl't e K, we have

L _ (BT, )

K N (F(vgeg)—c(F)) dt

< CKR,r -

We refer to | , Sect. 3.8] for equivalent variations on the definition of the Gibbs
property. The following result shows that the Gibbs measures indeed satisfy the Gibbs prop-
erty on the dynamical balls of the geodesic flow, thereby justifying their names. We refer for
instance to | , Sect. 3.8] for the explanations of the connection with symbolic dynamics
mentioned in the introduction. See also Proposition 4.12 for a discussion of the case when X
is a simplicial tree — here the correspondence with symbolic dynamics is particularly clear.

Proposition 4.4. Let mp_be the Gibbs measure on T\Y X associated with a pair of Patterson
densities (u%)meﬁ for (T, F%). Then mp satisfies the Gibbs property for the potential F, with
constant ¢(F) = 4.

Proof. The proof is similar to the one of | , Prop. 3.16] (in which the key Lemma 3.17
uses only CAT(—1) arguments), up to replacing the use of | , Lem. 3.4 (1)] by finitely
many applications of Proposition 3.10 (2). OJ

The basic ergodic properties of the Gibbs measures are summarised in the following result.
The case when F' is constant is due to | |, see also | , §6].

Theorem 4.5 (Hopf-Tsuji-Sullivan-Roblin). The following conditions are equivalent
(i)  The pair (I', F') is of divergence type.

(ii))~ The conical limit set of I has positive measure with respect to u, for some (equivalently
every) v € X.

(i)™ The conical limit set of T has positive measure with respect to u} for some (equivalently
every) x € X.

(iii) The dynamical system (62X,T, (u; ® 113) 62, x) 1 ergodic and conservative for some
(equivalently every) x € X.

(iv) The dynamical system (D\YX, (g')ier, mr) is ergodic and conservative.

If one of the above conditions is satisfied, then
(1) the measures puE have no atoms for any v € X,
(2) the diagonal of 05X X 0 X has measure 0 for p; & u;,

(3) the Patterson densities (u)zex are unique up to a scalar multiple, and
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(4) forall z,y e X, as n — +0o0,

VY it
max ele’ I = o(e9™) |
~vel', n—1<d(z,yy)<n

Proof. The proof of the equivalence claim is similar to the one of | , Theo. 5.4], using
Proposition 3.10 (2), (4) instead of | , Lem. 3.4], and Lemma 4.2 instead of | )
Lem. 3.10]. The claims (1) to (4) are proved as in | , Sect. 5.3]. ]

The following corollary follows immediately from Poincaré’s recurrence theorem and the
Hopf-Tsuji-Sullivan-Roblin theorem, see | , Thm. 5.15] for the argument written for the
manifold case.

Corollary 4.6. If mp is finite, then
(1) the pair (T, F*) is of divergence type,

(2) the Patterson densities (u)zex are unique up to a multiplicative constant and the Gibbs
measure mp s uniquely defined up to a multiplicative constant.

(3) the support of mp is the image QT in T\GX of QT = {{ € X : (4 € AT}, and

(4) the geodesic flow is ergodic for mp. U

As the finiteness of the Gibbs measures will be a standing hypothesis in many of the
following results, we now give criteria for Gibbs measures to be finite. Recall (see Section
2.2) that the discrete nonelementary group of isometries I' of X is geometrically finite if every
element of AT is either a conical limit point or a bounded parabolic limit point of T'.

Theorem 4.7. Assume that I' is a geometrically finite discrete group of isometries of X.

(1) If (T, F*) is of divergence type, then the Gibbs measure mp is finite if and only if for
every bounded parabolic limit point p of I', the series

Y dw,ay) el

a€l’y
converges, where Iy, is the stabiliser of p in I'.

(2) If we have 5Fp FE < 0, for every bounded parabolic limit point p of I' with stabiliser Ty,

in T and with FpJ—r : I)\X — R the map induced by F* | then (T, F) is of divergence
type. In particular, mp is finite.

When X is a manifold, this result is due to | , Theo. B for the case F' = 0, and to
[Cou] and | , Theo. 8.3, 8.4| for the general case of Holder-continuous potentials. When
F' = 0 but on much more general assumptions on X with optimal generality, this result is due
to | , Theo. 17.1.2].

Proof. The proof is similar to the manifold case in | |, which follows closely the proof
of | |. Note that the convergence or divergence of the above series does not depend on
the choice of the sign +.
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Let Parp be the set of bounded parabolic limit points of I'. By | , Lem. 1.9])%, there
exists a I'-equivariant family (J7,)pepar. of pairwise disjoint closed horoballs, with /%, centred
at p, such that the quotient

My=T\(¢AT - | ] 24)
peParp
is compact. Using Theorem 4.5, the HC-property and Proposition 3.10 instead of | ,
Lem. 3.4], the proofs of | , Theo. 8.3, 8.4] then extend to our situation. O

Recall that the length spectrum of I on X is the subgroup of R generated by the translation
lengths in X of the elements of T

Recall that a continuous-time 1-parameter group (h');cg of homeomorphisms of a topo-
logical space Z is topologically mizing if for all nonempty open subsets U, V' of Z, there exists
to € R such that for all t > tg, we have U n 'V # .

We have the followinNg result, due to | , Thm. 1| in the manifold case, with develop-
ments by | | when F' = 0, and by | , Sect. 8| for manifolds with pinched negative
curvature.

Theorem 4.8. If the Gibbs measure is finite, then the following assertions are equivalent :

(1) the geodesic flow of T\X is mizing for the Gibbs measure,

(2) the geodesic flow of T\X is topologically mizing on its nonwandering set, which is the
quotient under I' of the space of geodesic lines in X both of whose endpoints belong to

AT.

(3) the length spectrum of T' on X is not contained in a discrete subgroup of R. O]

In the manifold case, the third assertion of Theorem 4.8 is satisfied, for example, if I has
a parabolic element, if AT is not totally disconnected (hence if I'\ X is compact), or if X is a
surface or a (rank-one) symmetric space, see for instance | , .

Error terms for the mixing property will be described in Chapter 9. The above result
holds for the continuous time geodesic flow when X is a metric tree. See Proposition 4.15 for
a version of this theorem for the discrete time geodesic flow on simplicial trees. At least when
X is an R-tree and T is a uniform lattice (so that I'\X is a finite metric graph), we have a
stronger result under additional regularity assumptions, see Section 9.2.

We end this Section by an elementary remark on the independence of Gibbs measures
upon replacement of the potential F' by a cohomologous one.

Remark 4.9. Let F*: T'X — R be a potential for I" cohomologous to F and satisfying the
(HC)-property. As usual, let F** = F* and F*~ = F* o, and let F* : I'7T'X — R be the
induced map. Let G:T'X 1 — R be a continuous I'-invariant functlon such that, for every
le9X, the map t — G(Ugtg) is differentiable and F*(vy) — F(vg) = dt|t OG(’Ugté).

For all z € X and £ € 0, X, let £, ¢ be any geodesic line with footpoint ¢, ¢(0) = 2 and
endpoint ({5, ¢)+ = 5, and let /¢ , be any geodesic line with /¢ ,(0) = x and origin (¢, w) =¢£.
Note that the value G(vg §) is independent of the choice of £, ¢, by the continuity of G and
similarly for G(w&,z). In particular, for all v € I, by the I'-invariance of G, we have

~ ~ ~ ~

G(ng,yflg) = G(Ugwx,ﬁ) and Gou (UZDC’E) = G(Ueé,x) X (45)

3See also [ | for the case of simplicial trees and | , Thm. 12.4.5] for a greater generality on X.
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Note that F*~ = F* oy and F~ = F oy are cohomologous, since if G* =—Go L, for every
le 49X, we have

~ ~

~ ~ ~ d
F*o L(Q}g) —Fo L(Uf) = F*<UL€) - F(ULE) = %\t,OG(UgtM)
d ~ d ~
= &lt:OG([/’Ug—tg) = &H:OG (vgte) -

As already seen in Lemma 3.7, the critical exponent dp ps+ is equal to the critical exponent
or, p+, and independent of the choice of £, and we denote by ¢ the common value in the
definition of the Gibbs cocycle.

Note that if C*+ = Cli—i pws 18 the Gibbs cocycle associated with (T, F*¥), then C** and

C?* are cohomologous:
Cet(a,y) = Cf (a,y) = Glog, ) = Glog, o) (4.6)

and similarly

~ ~

C¢ (2,y) = O (w,y) = G (vg, o) — G (vr, ) - (4.7)

Let (uf) be a Patterson density for (I', F¥). In order to simplify the notation, let

zeM
GT = G and G~ = G*. The family of measures (u**),cx defined by setting, for all x € X
and £ € 05X,

durt () = &) duz(e) | (4.8)

is also a Patterson density for (I', F*%). Indeed, the equivariance property (4.1) for (p**),ex
follows from the one for () .ex and from Equation (4.5). The absolutely continuous property
(4.2) for (u¥t),ex follows from the one for (ui).ex and Equations (4.6) and (4.7).

Assume that the Patterson density for (I', F**) defined by Equation (4.8) is chosen in
order to construct the Gibbs measure mp« for (I', F'*) on ¥ X. Then using

e Hopf’s parametrisation with respect to the base point zy and Equation (4.3) with F
replaced by F* for the first equality,

e Equations (4.6), (4.7), (4.8) and cancellations for the second equality,
e the definition of G* = — G o and again Equation (4.3) for the third equality,

e Equation (4.5) so that ¢ vy, = vy and the fact that we may choose £;_ ¢ = ¢

(0),€_

and £y, ¢, = £ for the last equality,

£_,2(0)?

we have

ec;‘_— (z0,£(0)) + C’;‘: (x0,£(0))

dips(€) = dpigy (=) dpg ) (04) dt

o (= ¥ (v T (z (v
_ O o KON 3G ey ) O 0 HOD #6000 ) gy gt (0, di

_ €7GOL(’UZZ(O),Z_ ) +G(W€(0),e_) de(e)

— e—é(vz)+@(ve) dinp(0)

hence mpsx = mp.
In particular, since the Gibbs measure, when finite, is independent up to a multiplicative
constant on the choice of the Patterson densities by Corollary 4.6, we have that mp is finite

if and only if mpgx is finite, and then
mp= mpg

- . (4.9)
Imps||  [|mel
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4.3 Patterson densities for simplicial trees

In this Section and the following one, we specialise and modify the general framework of the
previous sections to treat simplicial trees. Recall’ that a simplicial tree X is a metric tree
whose edge length map is constant equal to 1. The time 1 map of the geodesic flow (g')icr
on the space GX of all generalised geodesic lines of the geometric realisation X = |X|; of X
preserves for instance its subset of generalised geodesic lines whose footpoints are at distance
at most 1/4 from vertices. Since both this subset and its complement have nonempty interior
in 9X, the geodesic flow on X has no mixing or ergodic measure with full support. This is

why we considered the discrete time geodesic flow (g!)sez on X in Section 2.7.

Let X be a locally finite simplicial tree without terminal vertices, and let X = |X|;
be its geometric realisation. Let I' be a nonelementary discrete subgroup of Aut(X). Let
F:T'X - Rbe a potential for I', and let P+ = ]5, F~ = Fou Let O* OpX xXxX >R
be the associated Gibbs cocycles. Let (uf).ex be two Patterson densities on 0, X for the
pairs (T, F'%)

Note that only the restrictions of the cocycles C* to 0, X x VX x VX are useful and
that it is often convenient and always sufficient to replace the cocycles by finite sums involv-
ing a system of conductances (as defined in Section 3.5), see below. Furthermore, only the
restriction (u3)zevx of the family of Patterson densities to the set of vertices of X is useful.

Example 4.10. Let X be a simplicial tree and let ¢ : EX — R be a system of conductances
on X. For all z,y in VX and £ € 0,X, with the usual convention on the empty sums, let

3

and

where, if p € VX is such that [p,&[ = [z, &[] N [y,&[, then (e1,ea,. .., en) is the geodesic edge
path in X from x = o(e1) to p = t(en) and (f1, fo,..., fn) is the geodesic edge path in X from

v =o0(f1) top=t(fn).

€1

iﬂ\

mop Og
./V././?:v
Y f2

bl

With 6. defined in the end of Section 3.5 and with C* the Gibbs cocycles for (T, ﬁc)7 by
Proposition 3.11, we have, for all £ € 0,,X and x,y € VX,

Cgi(xvy) = _Cfi(xay) + (Scd(.'lf,y),

and Equation (4.2) gives
+ C T 7(53 d x, +
duy; (&) = e @) (@) d,uy— €).

4See Section 2.7.
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Using the particular structure of trees, we can prove a version of the Shadow Lemma 4.2
where one can take the radius R to be 0. When F' = 0, this result is due to Coornaert [Coo].

Lemma 4.11 (Mohsen’s shadow lemma for trees). Let K be a finite subset of VX. There
exists C > 0 such that for all vy e ' and x,y € K with y € €Al', we have

ot

% D) < U (G tyyy) < O EED)

Proof. The structure of the proof is the same as in Lemma 4.2 with some differences in the
details towards the end of the argument. Note that C’g—r (z,yy)+ Y (FT—6) = 0if £ € On{vyy}
(that is, if yy € [z,£[), by Equation (3.8).

First, one argues as in the proof of | , Lem. 3.10], that it suffices to prove that there
exists C' > 0 such that for all v € I" and z,y € K with vy € €Al', we have

1
& <my(Gelw}) <C.

Now, the argument for proving the upper bound is the same as in loc. cit., using Proposition
3.10 (2) instead of | , Lem. 3.4 (i)].

In order to prove the lower bound, we assume by contradiction that there exist sequences
(24)ieN, (¥i)ien in K with y; € €Al" and (7;)ien in I' such that u%yi(ﬁwi{%yi}) converges to
0 as i — +o0. Up to extracting a subsequence, since K is finite, we may assume that the
sequences (z;);eny and (y;)ien are constant, say with value x and y respectively. Since y € €AT,
as every point in ¥ AT" belongs to at least one geodesic line between two limit points of I, the
geodesic segment from x to ;¥ may be extended to a geodesic ray from x to a limit point.
Since the support of uF is equal to AT for any z € X, we have M%y(ﬁx{%y}) > 0 for all i € N.
Thus, up to taking a subsequence, we can assume that ;" Ly converges to € € AT (otherwise
by discreteness, we may extract a subsequence so that (7;);en is constant, and M%y(ﬁx{%y})
cannot converge to 0).

Since X is a tree, there exists a positive integer N such that ﬁ%_1m{y} = ﬁ’,yj_v1m{y} = Oc{y}
for all i > N. As above, O¢{y} meets AL since y € €AL, thus i (O¢{y}) > 0. But for every
1= N,

py (Oely}) = (7 Dy (O, -1,49}) = 15, (Oulriv})

tends to 0 as ¢ — +00, a contradiction. Il

Let q;l% : VX — [0, +00[ be the total mass functions of the Patterson densities:

op (z) = |z

for every x € VX. These maps are I'-invariant by Equation (4.1), hence they induce maps
qbrf : T\VX — [0,+[. In the case of real hyperbolic manifolds and vanishing potentials,
the total mass functions have important links to the spectrum of the hyperbolic Laplacian
(see [Sull]). See also | , | for the case of simplicial trees and the discrete Laplacian,
Section 6.1 for a generalisation of the result of Coornaert and Papadopoulos, and for instance
[ | for developments in the field of quantum graphs.
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4.4 Gibbs measures for metric and simplicial trees

Let (X,A) be a locally finite metric tree without terminal vertices, and let X = |X]|) be
its geometric realisation. Let I' be a nonelementary discrete subgroup of Aut(X,\). Let
F:T'X >Rbea potential for T'. Let (uf)zevx be two Patterson densities on 0o X for the
pairs (T, F'%).

The Gibbs measure mp on the space of discrete geodesic lines ¥X of X, invariant under
I' and under the discrete time geodesic flow (gt)iez of gX, is defined analogously with the
continuous time case, using the discrete Hopf parametrisation for any basepoint g € VX, by

C, (w0,£(0)) + c;+ (0, £(0)

dimp(l) = e Y dp, (0-) du (04) dt (4.10)

where now dt is the counting measure on Z. We again denote by mp the measure it induces
on N"¥X.

In this Section, we prove that the Gibbs measures in the case of trees satisfy a Gibbs
property even closer to the one in symbolic dynamics, we give an analytic finiteness criterion
of the Gibbs measure for metric trees, and recall the ergodic properties of tree lattices.

As recalled in the introduction, Gibbs measures were first introduced in statistical me-
chanics and consequently in symbolic dynamics, see for example | I, | I, | |. In
order to motivate the terminology used here, we recall the definition of a Gibbs measure for
the full two-sided shift on a finite alphabet:® Let ¥, = {1,2,...,n}% be the product space of
sequences T = (T )nez indexed by Z in the finite set {1,2,...,n}, and let o : ¥,, — %, be the
shift map defined by o((zn)nez) = (Tn+1)nez. A shift-invariant probability measure p on %,
satisfies the Gibbs property for an energy function ¢ : 3, — R if

:u’([a—mfﬂl—mf-‘rla sy Amy —1, am+])

1
— < — <C
C e—P(m, tmy 1)+, dloka)

for some constants C' > 1 and P € R (called the pressure) and for all my in N and z in the
cylinder [a—p,_,a—pm_41,- .-, @m,—1,am, | that consists of those x € X,, for which zj, = aj, for
all ke [-m_,m4].
Let x_,zy € VX and let g € VX n [z_,z]. Let us define the tree cylinder of the triple
(x—,zp,24+) by
[z_,z0, 21| ={e9X by € Op{x+}, £(0) =2x0}.

These cylinders are close to dynamical balls that have been introduced in Section 4.2, and the
parallel with the symbolic case is obvious, as this cylinder is the set of geodesic lines which
coincides on [—m_,m, ], where my = d(zg, x4 ), with a given geodesic line passing through
x4 and through zy at time ¢ = 0. The Gibbs measure mpr on the space of discrete geodesic
lines ¥X satisfies a variant of the Gibbs property which is even closer to the one in symbolic
dynamics than the general case described in Proposition 4.4.

Proposition 4.12 (Gibbs property). Let K be a finite subset of VX n €AL. There exists
C’ > 1 such that for ally €T and x4 € TK and all 20 € VX N [z_,24],

1l a i) _
C’ 676 d@—,z )+t F

5See Section 5.1 for the appropriate definition when the alphabet is countable.
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Proof. The result is immediate if d(x_, 2z ) is bounded, since the above denominator and
numerator take only finitely many values, and the numerator is nonzero since z4+ € €Al
hence [z_,xg,z+] meets the support of mp. We may hence assume that d(z_,xz,) = 2.
Using the invariance of mp under the discrete time geodesic flow, we may thus assume that
ToFT_,Tq.

Using the discrete Hopf parametrisation with respect to the vertex xq, we have, by Lemma
4.11,

mp (2 20, 24]) = 1y (O {w-}) pi (Owo{x4})
< (2 oy (For0) S (F=0) _ 2 fit(F=0)

This proves the upper bound in Proposition 4.12 with ¢’ = C? and the lower bound follows
similarly. L]

Next, we give a finiteness criterion of the Gibbs measure for metric trees in terms of the
total mass functions of the Patterson densities, extending the case when I is torsion free and
F =0, due to | , Theo. 1.1].

Proposition 4.13. Let (X, \, T, ﬁ) be as in the beginning of this Section.

(1) If (X, A) is simplicial and | - |3 is the Hilbert norm of L>(T\VX, volp\x), we have
Imel < 6], 6.1, -
(2) In general, with | - |2 the Hilbert norm of L*(T\EX, Tvolpyx ), we have’
Imrl < |, oo, I6, ool -

Proof. (1) The simplicial assumption on (X, \) means that all edges have length 1. The
space ["\¥X is the disjoint union of the subsets {{ € \¥X : 7(¢) = £(0) = [z]} as the class
[z] = Tz of x € VX ranges over I'\VX. By Equation (4.10), using Hopf’s decomposition with
respect to the basepoint x, we have

d(Mp)|ewx : 00)=2}(£) = dpg (€-) dpy (L) .

Let A[;) be the unit Dirac mass at [z]. By ramified covering arguments, we hence have the
following equality of measures on the discrete set I'\VX:

rme= %

[z]el\VX U]

py %k ({(0=,00) e 2X 1 we 0o, 04 [}) Al - (4.11)

Thus, using the Cauchy-Schwarz inequality,

1 _ _ _
|me| = |meme| < ), o ltg >tz | =<bus b0y < gyl 0, -
[zler\VX ™7

This proves Assertion (1) of Proposition 4.13.

SRecall that o : T\EX — I'\VX is the initial vertex map, see Section 2.7.
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(2) The argument is similar to the proof of the simplicial case. Since the singletons in R have
zero Lebesgue measure, the space '\ X is, up to a measure zero subset for mp, the disjoint
union for [e] € T\EX of the sets Af.; consisting of the elements £ € T\¥ X such that £(0)
belongs to the interior of the edge [e]. We fix a representative e of each [e] € I'\EX. For every
t € [0, A(e)], let e; be the point of e at distance ¢ from o(e). By Equation (4.3), using Hopf’s
decomposition with respect to the basepoint o(e) in Ale), we have as above

i ) O e e o
e| l_€0eX Jli€e0eX

Since ¢_,0(e), e;, £+ are in this order on the geodesic line ¢ with {_ € 0zX and /1 € 0. X, we
have C, (o(e), e;) + Ca(o(e), e:) = 0 by Equation (3.8). Hence

lmre| =
eF\EX

Ime| =] )\(ei Hoey (0eX) 1) (0eX)

e _
< 3 2D = <05 00,65 0 0% < 85 ool 6 ool

[e]lel\EX ILel
which finishes the proof. O

Let us give some corollaries of this proposition in the case of simplicial trees. It follows
from Assertion (1) of Proposition 4.13 that if the Lo-norms of the total mass of the Patterson
densities are finite, then the Gibbs measure mp is finite. Taking F = 0 and (1) zevx =
(i3 )zevx, so that the Gibbs measure mp is the Bowen-Margulis measure mpy, it follows
from this proposition that

2
[meml < | l,” < Vol(T\X) sup [uz|? . (4.12)
zeVX

In particular, if T" is a lattice in X and if the total mass of the Patterson density is bounded,
then the Bowen-Margulis measure mpy is finite.

The following statement summarises the basic ergodic properties of the lattices of X when
F=0.

Proposition 4.14. Let (X, \) be a metric or simplicial tree, with geometric realisation X.
Assume that (X, \) is uniform and that T is a lattice in Aut(X,\). Then

(1) T is of divergence type, and its critical exponent or is the Hausdorff dimension of any
visual distance d; on 0pxX = AL';

(2) the Patterson density (pg)zex coincides, up to a scalar multiple, with the family of
Hausdorff measures (%) .oy of dimension or of the visual distances (0o X,dy); in

particular, it is Aut(X, X)-equivariant: for all v € Aut(X, X), we have vysfiy = flyz;

(3) the Bowen-Margulis measure mpnm of I' on 9X is Aut(X, X)-invariant, and the Bowen-
Margulis measure mpy of T on T\Y X is finite.
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Proof. Let IV be any uniform lattice of (X, \), which exists since the metric tree (X, \) is
uniform. It is well-known (see for instance [Bou]) that the critical exponent op of I is finite
and equal to the Hausdorff dimension of any visual distance (0 X, d;), and that the family
(pilavs) cyx of Hausdorff measures of the visual distances (05X, d,) is a Patterson density
for any discrete nonelementary subgroup of Aut(X, \) with critical exponent equal to dor.

By | , Coro. 6.5(2)], the lattice " in Aut(X, \) is of divergence type and or = dpv. By
the uniqueness property of the Patterson densities when I is of divergence type (see Theorem
4.5), the family (u1,)zevx coincides, up to a scalar multiple, with (pl2%)cyx.

As the graph T"\X is compact, the total mass function of the Hausdorff measures of the
visual distances is bounded, hence so is (||uz|)zevx. By Proposition 4.13, since I' is a lattice

of X, this implies that the Bowen-Margulis measure mpy of I is finite. [l

Note that as in | |, when (X, \) (or its minimal nonempty I'-invariant subtree) is not
assumed to be uniform, there are examples of I' that are lattices (or are geometrically finite)
whose Bowen-Margulis measure mpgy is infinite, see Section 15.5 for more details.

Let us now discuss the mixing properties of the discrete time geodesic flow on I'\¥X for
the Gibbs measure mpg.

Let Lr be the length spectrum of T', which is, in this simplicial case, the subgroup of Z
generated by the translation lengths of the elements of IT'.

Since d(z,vx) = 2d(z, Axy) + £(v) if an isometry v of X is loxodromic and d(z,vx) =
2d(z, Fix,) if 7 is elliptic with fixed point set Fix,, the following assertions are equivalent :

(1) L[* c 27
(2) VzeX, Vyel, d(z,yz)e2Z. (4.13)

Let GovenX (respectively Grven X) be the subset of ¥X (respectively S?X) that consists of
the geodesic lines (respectively generalised geodesic lines) in X whose origin is at an even
distance from the basepoint x.

Recall that a discrete-time 1-parameter group (h"),ez of homeomorphisms of a topological
space Z is topologically mizing if for all nonempty open subsets U, V of Z, there exists ng € N
such that for all n = ng, we have U n A"V # (.

The following result is well-known. When F' = 0, see for instance | | for the equivalence
of the first, second and fourth claims, and the arguments of | , Prop. 3.3] for what remains
to be proved.

Proposition 4.15. Assume that the smallest nonempty I'-invariant simplicial subtree of X
is uniform, without vertices of degree 2, and that mp s finite. Then the following assertions
are equivalent:

e the length spectrum of I' is nonarithmetic, that is Lt = Z;

e the discrete time geodesic flow on I'\YX is topologically mixing on its nonwandering set;
e the quotient graph T'\X is not bipartite;

o the Gibbs measure mp is mizing under the discrete time geodesic flow (g')wez on T\¥X.
Otherwise Ly = 27, and the square of the discrete time geodesic flow (g2!)sez is topologically
mizing on the nonwandering subset of T\GevenX and mizing for the restriction of the Gibbs
measure mp to I'\Geyen X. O
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By Proposition 4.14, the general assumptions of Proposition 4.15 are satisfied if X is
uniform, without vertices of degree 2, I is a lattice of X and F = 0. Thus, if we assume
furthermore that I'\X is not bipartite, then the Bowen-Margulis measure mpy of ' is mixing
under the discrete time geodesic flow on I'\¥X.
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Chapter 5

Symbolic dynamics of geodesic flows
on trees

5.1 Two-sided topological Markov shifts

In this short and independent Section, that will be used in Sections 5.2, 5.3, 5.4, 9.2 and 9.3,
we recall some definitions concerning symbolic dynamics on countable alphabets.!

A (two-sided, topological) Markov shift’> is a topological dynamical system (3,0) con-
structed from a countable discrete alphabet o/ and a transition matric A = (A )i, jews €
{0,1}*9 where ¥ is the closed subset of the topological product space 7% defined by

Z = {x = (:En)neZ € %Z : v n e Zy Az‘n,xn+1 = 1} 9
and o : ¥ — X is the (two-sided) shift defined by

(0(2))n = Tnt1

for all z € ¥ and n € Z. Note that to be given (7, A) is equivalent to be given an oriented
graph with countable set of vertices &/ (and set of oriented edges a subset of &/ x /) and
with incidence matrix A such that A; ; = 1 if there is an oriented edge from the vertex i to
the vertex j and A; ; = 0 otherwise.

For all p < ¢ € Z, a finite sequence (an)p<n<q € o/ P4} is admissible (or A-admissible
when we need to make A precise) if Ag, 4,,, = 1 for all n € {p,...,q —1}. A topological
Markov shift is transitive if for all z, y € &7, there exists an admissible finite sequence (ay)p<n<q
with a, = x and a; = y. This is equivalent to require the dynamical system (2,0) to be
topologically transitive: for all nonempty open subsets U, V in %, there exists n € Z such that
Ano"(B) # J.

Note that the product space 7% is not locally compact when &7 is infinite. When the
matrix A has only finitely many nonzero entries on each line and each colum, then (X, 0) is
also called a subshift of finite type (on a countable alphabet). The topological space ¥ is then

!See for instance [Kit, .

2Note that the terminology could be misleading, a topological Markov shift comes a prori without a measure,
and many probability measures invariant under the shift do not satisfy the Markov chain property that the
probability to pass from one state to another depends only on the previous state, not of all past states.
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locally compact: By diagonal extraction, for all p < ¢ in Z and ap, aps1,...,a9-1,a4 in &,
every cylinder

[ap, Qpit,- ..\ aq—1,0q) = {(l’n)nez €Y : Vnel{p,...,q}, zp,= an}

is a compact open subset of X.

Given a continuous map Fiymp : ¥ — R and a constant CFuymp € R, we say that a measure

P on ¥, invariant under the shift o, satisfies the Gibbs property® with Gibbs constant CPyymb

for the potential Fyyyy, if for every finite subset E of the alphabet 7, there exists Cp > 1
such that for all p < ¢ in Z and for every = (25, )nez € X such that z,, z, € E, we have

l < P([$p,$p+1,...,$q_1,$q])

Cr o~ Faymp (A—PTD L0 Foymp (072) <Cp. (5-1)

5.2 Coding discrete time geodesic flows on simplicial trees

Let X be a locally finite simplicial tree without terminal vertices, with X = |X|; its geometric
realisation. Let I'" be a nonelementary discrete subgroup of Aut X, and let F:T'X — R be
a potential for I'.

In this Section, we give a coding of the discrete time geodesic flow (gt)ez on the nonwan-
dering subset of "\¥X by a locally compact transitive (two-sided) topological Markov shift.
This explicit construction will be useful later on to study the variational principle (see Section
5.4) and rates of mixing (see Section 9.2).

The main technical aspect of this construction, building on | , §6], is to allow the case
when I" has torsion. When T' is torsion free and I'/X is finite, the construction is well-known,
we refer for instance to | | for a more general setting when the potential is 0. In order
to consider for instance non-uniform tree lattices, it is important to allow torsion in I'. Our
direct approach also avoids the assumption that the discrete subgroup I' is full, that is, equal
to the subgroup consisting of the elements g € Aut(X) such that pog = p where p: X — I'\X
is the canonical projection, as in [[<wo| (building on | , 7.3]).

Let X’ be the minimal nonempty I'-invariant simplicial subtree of X, whose geometric
realisation is ¥ Al’. Since we are only interested in the support of the Gibbs measures, we
will only code the geodesic flow on the non-wandering subset I'\X’ of T\¥X. The same
construction works with the full space T'\¥X, but the resulting Markov shift is then not
necessarily transitive.

Let (Y,Gy) = T'\X' be the quotient graph of groups of X’ by I' (see for instance Example
2.10), and let p : X’ —» Y = I'\X’ be the canonical projection. We denote by [1] = H the
trivial double coset in any double coset set H\G/H of a group G by a subgroup H.

We consider the alphabet 7 consisting of the triples (e~, h,e™) where
e c¢T e EY satisfy t(e”) = o(e™) and
o 1€ pe-(Ge-)\Go(er)/por(Ger) satisty h # [1] if e* =e™.
This set is countable (and finite if and only if the quotient graph I'\X' is finite), we endow

it with the discrete topology. We consider the (two-sided) topological Markov shift with
alphabet & and transition matrix A , o) (- p,e+) = 11if et = €'~ and 0 otherwise.

3Note that some references have a stronger notion of Gibbs measure (see for instance | |), with the
constant C' independent of F.
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Note that this matrix A = (A; ;) jewr has only finitely many nonzero entries on each line and
each column, since X’ is locally finite and I' has finite vertex stabilisers in X’. We consider
the subspace

Y= {(e;,hi,ej)iez : VieZ, 6;—1 = e;}

of the product space 7%, and the shift o : ¥ — ¥ defined by (o(x)); = x;41 for all (z;)sez in
> and i € Z. As seen above, X is locally compact.

Let us now construct a natural coding map © from IN¥X’ to X, by slightly modifying the
construction of | , §6].

hiv1(£) € Gye,)

Vi e P . & €i+1
Y .
%. ‘ €i+1
Jei g 9Jeiit
— in (Y,G,) = I\X
n X 1) e =T

For every discrete geodesic line £ € ¥X/, for every i € Z, let f; = fi(£) be the edge of
X" whose geometric realisation is ¢([i,7 + 1]) with origin f(i) and endpoint f(i + 1), and let
ei = p(fi), which is an edge in Y. Let us use the notation of Example 2.10: we fix lifts €
and ¥ of every edge e and vertex v of Y in X’ such that & = &, and elements g, € I’ such
that getf(\eJ) = t(€). Since p(€;) = e; = p(fi), there exists 7; = v;(¢) € ', well defined up to
multiplication on the left by an element of G, = I's;, such that v, f; = €; for all i € Z.
We define e; (¢) = e;_1, €] ({) = €;, and
hi(l) = 9,7 =1 ()0 g5 (5.2)

€

Since for every edge e of Y the structural monomorphism

pe:Ge=Ts — Gy =T

is the map g — g 'gge, the double coset of hi(¢) in p, - (G- )\G et/ P 7 (Ge+) does not
depend on the choice of the 7;’s, and we again denote it by h;(¥). '

The next result shows that, under the only assumptions on I' that it is discrete and
nonelementary, the time-one discrete geodesic flow g! on its nonwandering subset of I'\¥X is
topologically conjugate to a locally compact transitive (two-sided) topological Markov shift.

Theorem 5.1. If X' = €A, the map © : T\YX' — ¥ defined by

Tl (e (£), hi(0), ef (€))iez

'

is a homeomorphism which conjugates the time-one discrete geodesic flow g' and the shift o,
and the topological Markov shift (3,0) is a locally compact and transitive.
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Furthermore, if we endow T\¥X' with the quotient distance of*
d(ejg/) _ 67 max {’nEN: E\[fn,n] = Zi[—n,n]}

on 9X' and X with the distance’

d(ZL‘ 1:/) — o~ max {TLEN: Vie{—n,.,n}, z;= z;}
) )
then © 1is a bilipschitz homeomorphism.

Finally, if X' is a uniform tree without vertices of degree at most 2, if the Gibbs measure
mp of I' is finite, and if the length spectrum Lr of I is equal to Z, then the topological Markov
shift (X, 0) is topologically mizing.

The following diagram hence commutes

nex £ T\@x
el le
) AN b))

Note that when Y is finite (or equivalently when I' is cocompact), the alphabet o is finite
(hence (X,0) is a standard subshift of finite type). When furthermore the vertex groups of
(Y, Gy) are trivial (or equivalently when I" acts freely, and in particular is a finitely generated
free group), this result is well-known, but it is new if the vertex groups are not trivial.
Compare with the construction of | |, whose techniques might be applied since I" is word-
hyperbolic if Y is finite, up to replacing Gromov’s (continuous time) geodesic flow of I' by the
(discrete time) geodesic flow on ¥X’, thus avoiding the suspension part (see also the end of
loc. cit. when T is a free group).

Proof. For all £ € gX’ and vy € ', we can take v;(7/) = v;(£)y~!, and since p(vfi) = p(fi),
we have e (y£) = e (¢) and h;(y¢) = h;(£), hence the map © is Well defined.

By constructlon the map O is equivariant for the actions of g! on F\%X/ and o.

For every N € N, if £,/ € 4X’ are close enough, then for —N —1<i< N +1, we have
fi(6) = f;(¢") and we may take v;(¢) = v;(¢'), so that e () = e (¢) and hz(ﬁ) = hz(f’) for
—N < i < N. Therefore © is continuous.

Furthermore, with the distances indicated in the statement of Theorem 5.1, if £, ¢ € ¥X’
satisfy {[_,, n] = €|[ o) for some n € N, then we have ef(l) = e (0) for —-n <i<n—1,
and we may take v;(¢) = v;(¢') for —n < i <n—1, so that h;(¢) = h;(¢') for —-n <i<n-—1.
Therefore, we have

d(O(TY),0()) <ed(e,Tl),

and © is Lipschitz.

Let us construct an inverse ¥ : ¥ — I'\¥X' of 6, by a more general construction that will
be useful later on. Let I be a nonempty interval of consecutive integers in Z, either finite or
equal to Z (the definition of the inverse of 6 only requires the second case I = Z). For all
e ,eT € EY such that t(e”) = o(e™), we fix once and for all a representative of every double
coset in p—(Ge-)\Go(e+)/po7(Ge+ ), and we will denote this double coset by its representative.

4 with the convention that max ¢ = 0 when we consider the empty set (¥ as a subset of N.
5See previous footnote.
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Let w = (e;, h,e; )ier be a sequence indexed by I in the alphabet 7 such that for all
i € I such that i — 1 € I, we have eitl = e; (when I is finite, this simply means that w
is an A-admissible sequence in &/, and when I = Z, this simply means that w € ¥). In

particular, the element h; € GO(6+) = F’(\g) is the chosen representative of its double coset
7 o 67:

P (G ) hi p+(Gp).
For every i € I, note that

olhi gt el ) =olgtel ) =olel) = tle)) = t(g, " e ).

But h; gj_l e;r is not the opposite edge of the edge ge__1 e
e, 7

K3

. » since the double coset of h; is

not the trivial one [1] when e} = g, hence h; does not fix gefl e; . Therefore the length 2

edge path (see the picture below)

~ ~

-1 = -1 ¥
(ge— eivhigg e; )

i

is geodesic.

+ —_
Y . € =% . €i = Cit1 . Cit1 .
A
p » )
| o(e;) i
X 1= ! -1 ¥
gef € : -1 f ge»+ €
I g? gei\ ‘ \
| i | thita
| .
| ~
. —1 + |
az—l: ge:_ 67: :
|
| ai:
Y \
Ji-1 fi Jit1

Let us construct by induction a geodesic segment w in X’ (which will be a discrete geodesic
line if I = Z), well defined up to the action of I', as follows.

We fix ig € I (for instance i = 0 if [ = Z or i9p = min [ if I is finite), and «;, € I'. Let us
define

Ly
fio = fio(w) =y 9+ 62; :
io

Let us then define

-1 -1 -1 _—
Qg1 = aiofl(w) = Qig g + geT hio and  fi,—1 = fiofl(w)aiofl 9.~ €io -
10 iQ 0

:1 e;g = fi, and (fi,—1, fi,) is a geodesic edge path of length 2 (as the
eio

image by «;,—1 of such a path).
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Let : — 1,7 € I be such that i’ < iy < ¢ — 1. Assume by increasing induction on 7 and
decreasing induction on ¢’ that a geodesic edge path (fy_1 = fy_1(w),..., fi—1 = fi—1(w)) in
X" and a sequence (o = a1 (w),...,a;—1 = a;—1(w)) in I have been constructed such that

-1°¥ —1
fi=qj ge;r e; and o5 =aj_1h; gg Jet
for every j € N such that i — 1 < j < ¢ — 1, with besides j7 > 4’ for the equality on the right.

If 4 does not belong to I, we stop the construction on the right hand side at ¢ — 1. If on

the contrary i € I, let us define (see the above picture)

—1 -1°F
a; = a1 h; 9% Yer and f; = fi(w) = o g+ ej .
i 1

Then

(fie1, fi) = (i1 ge;_l e; s a1 h; 95—1 el) .
is a geodesic edge path of length 2 (as the image by a;_1 of such a path). As an edge path
is geodesic if and only if it has no back-and-forth, (fy,..., f;) is a geodesic edge path in X'.
Thus the construction holds at rank ¢ on the right.

If i/ — 1 does not belong to I, we stop the construction on the left side at 7’. Otherwise we
proceed as for the construction of a;,—1 and f;,—; in order to construct a;_; and f;—; with
the required properties.

UI=[pqgnZwithp<qgeZletl' =[p—1,q|nZ. If I =7Z,let I' =7Z. We have thus

constructed a geodesic edge path

(fi)ier = (fi(w))ier (5.3)

in X’. We denote by @ its parametrisation by R if I = Z and by [p—1,q+ 1] if I = [p,q] n Z,
in such a way that w(i) = o(f;) for all i € I. In particular, f; = w([i,i + 1]) for all i € I'.
When I = [p,q] nZ, we consider w as a generalised discrete geodesic line, by extending it to
a constant on | — 00, p — 1] and on [q, +00] .

The orbit I'w of @ does not depend on the choice of «;,, since replacing «;, by oz;o replaces
fi by agga;ol fi for all < € I’, hence replaces W by agoa;ol
not depend on the choice of ig € I.

Assume from now on that I = Z, and define ¥ : ¥ — I"¥X' by

w. This also implies that ' does

U(w)=Tw.
With the distances indicated in the statement of Theorem 5.1, let w = (e;,hi,ej)iez and
w = (e;_,h’i,ef)ie[ in ¥ satisfy eli = egi and h; = I/; for all i € {—n,...,n} for some
n € N. Then we may take the same i9 = 0 and ¢, in the construction of @w and w’. We thus

have a;(w) = a;(w') and f;(w) = f;(w') for —n < i < n. Therefore, we have
d(¥(w), ¥(w')) < d(w,w'),
and ¥ is Lipschitz.

Let us prove that W is indeed the inverse of ©. As in the construction of O, for all £ € ¥X’
and i € Z, we define f; = (([i,i + 1]), e; = p(f;) and e; = e ;. We denote by 7/ € I an

~

element sending f; to ge:l e; for all i € Z (see the picture below): with the notation above

the statement of Theorem 5.1, we have v, = ge:l ~i ().
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; ficr fi l fit1
' /
1 N Vi
? 3 9.7 el Y
: / : ‘
: Yi—1! :
u o L L
~ 0 UF e ~ r
-1 - i [ -1 +
G- G Y v I G
o(e]) B
Vi1 fi 4
Y - _ ot +_ - +
Y . € =% . € ~ %+ . Cit1 .
Then ~; is well defined up to multiplication on the left by an element of I' | ~ = p_—(G_-).
g e i i

e.
7

Let R be an element in Go(e;r) sending gej_ ! ej to v/_, fi. It exists since these two edges have

the same origin o(e; ), and same image by p:

p(Yi-1fi) = p(fi) = ej = p(ej) = p(gj &

Furthermore, it is well defined up to multiplication on the right by an element of I' _, ~ =
g——"e

i
oF
7

pej(Gegr), and we have (see the above picture)

—1 _1
Vi1V 9,5 97 € hip(Ger)

By the construction of © (see Equation (5.2) with ] = ge___1 vi(£) for all i € Z), we have

O(0) = (e (G, ) B (G2, € (O)ies
Let h; be the chosen representative of the double coset p (G -) h; pej(Gegr) . there exists

aep (G -)and B € G _+) such that h; = ah’3. Up to replacing v by a4/ and b by
pe- [ pej [ (2 ’72 K3 1

hiB, we then may have h; = h;. By taking o, = fygo_l, we have a; = %{_1 for all 7 € Z, and
an inspection of the above two constructions gives that ©® o ¥ = id and ¥ 0 © = id.

Since the discrete time geodesic flow is topologically transitive on its nonwandering subset
and by conjugation, the topological Markov shift (X, o) is topologically transitive.

If X’ is a uniform tree without vertices of degree at most 2, and if the length spectrum of
I" is nonarithmetic and if the Gibbs measure mp for I' is finite, then by Proposition 4.15, the
discrete time geodesic flow on I"\¥X' is topologically mixing, hence by conjugation by ©, the
topological Markov shift (3, o) is topologically mixing. This concludes the proof of Theorem
5.1. O

When the length spectrum Lr of T is different from Z, the topological Markov shift (X, o)
constructed above is not always topologically mixing. We now modify the above construction
in order to take care of this problem.
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Recall that X' = € AT’ and that %pven X’ is the space of geodesic lines £ € ¥X’ whose origin
2(0) is at even distance from the basepoint zy (we assume that xg € X’), which is invariant
under the time-two discrete geodesic flow ¢? and, when Lr = 27, under T.

Consider Zeyen the alphabet consisting of the quintuples (f~,h~, fO, h*, f*) where the
triples (f~,h~, f) and (f°,h*, f*) belong to &/ and o(f°) is at even distance from the
image in Y = I'\X’ of the basepoint xzg. Let Acven = (Aeven,i,j)ijesiwe, D€ the transition
matrix with line and column indices in e, such that for all i = (f=,h~, fO,h*, f*) and
= (fa hs, fO, 05, fF), we have Aeven,ij = 1 if and only if f* = f;. We denote by
(Xeven, Teven) the associated topological Markov shift. We endow Xeven with the slightly
modified distance

deven(x, I,) _ e—% max {neN Vke{-n,...,n}, = x?c} :
where © = (z)kez and @’ = (2},)kez are in Xeyen.

We have a canonical injection inj : Yeven — 3 sending the sequence (f,,, b, O, bt f ) nez
to (e, , I, €, )nez with, for every n € Z,

- _ = o _ g0 — 0 —pt ot gt
Con = fn7 han = hn’ Con = fn? Cont1 = fn7 h‘2n+1 = hn? Cont1 = Jn>

By construction, inj is clearly a homeomorphism onto its image, and
@(F\gevenxl> = inj(zeven) .

If two sequences in Yy, coincide between —n and n, then their images by inj coincide
between —2n and 2n. Conversely, if the images by inj of two sequences in Yoyen coincide
between —2n — 1 and 2n + 1, then these sequences coincide between —n and n. Hence inj is
bilipschitz, for the above distances.
Let us define Ogyen = inj ! 0ON Gy’ * I\ Geven X' — Yeven. The following diagram hence
commutes
D\Goven X 220 B

s

nex' —2. %,

where the vertical map on the left hand side is the inclusion map.

Theorem 5.2. Assume that X' = € AT is a uniform tree without vertices of degree at most 2,
that the Gibbs measure mp of I is finite, and that the length spectrum Lt of ' is equal to 27.
Then the map Ocven : N\ ZGeven X — Zeoven 5 a bilipschitz homeomorphism which conjugates
the time-two discrete geodesic flow g? and the shift Oeven, and the topological Markov shift
(Xeven, Teven) 1S locally compact and topologically mixing.

Proof. The only claims that remains to be proven is the last one, which follows from
Proposition 4.15, by conjugation. O

Let us now study the properties of the image by the coding map © of finite Gibbs measures
on M¥X.

Let (u)zevx be two Patterson densities on 0, X for the pairs (T, F+), where as previously
F*+ = F, F~ = F o Assume that the associated Gibbs measure mp on M¥X (using the
convention for discrete time of Section 4.3) is finite.
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Let us define )
P=—+—0.mp (5.4)
Imr|

as the image of the Gibbs measure mp (whose support is ['\¥X') by the homeomorphism O,
normalised to be a probability measure. It is a probability measure on 32, invariant under the
shift o.

Let (Zy)nez be the random process classically associated with the full shift o on 3: it is
the random process on the Borel space ¥ indexed by Z with values in the discrete alphabet
o, where Z, : ¥ — of is the (continuous hence measurable) n-th projection (zj)ken — Zn
for all n € Z.

The following result summarises the properties of the probability measure P. We start by
recalling and giving some notation used in this proposition.

For every admissible finite sequence w = (ay, ..., a4) in &7, where p < ¢ € Z, we denote

o by [w] = [ap,...,aq] = {(zn)nez € L : Vne{p,....q}, @, = an} the associated
cylinder in X,

e by w the associated geodesic edge path in X with length ¢ — p + 2 constructed in the
proof of Theorem 5.1 (see Equation (5.3)), with origin w_ and endpoint w .

For every geodesic edge path a = (fp—1,..., fg) in X/, we define (See Section 2.7 for the
notation, and the picture below)

a;X, = équ' and 0;X' = aﬁX' y

and
G X={{e¥9X : U(p—1)=o0(fp—1) and L(g+1)=1t(fy)} .

We define a map Fyynp : 2 — R by

t(eg )
Fym(e) = | " F (5.5)

if © = (24)iez With zg = (e, ho, ear ). Note that Fyy, is locally constant (constant on each
cylinder of length 1 at time 0), hence continuous: for all (2,)nez, (Yn)nez € X, if g = yo, then
Fsymb(x) = Fsymb (y)

For instance, if ' = F. is the potential associated with a system of conductances c :
MNEX — R (see Section 3.5), then

Fsymb(x) = C(e(J)r) .

Note that if ¢, ¢ : T\EX" — R are cohomologous systems of conductances on I'\EX', then the
corresponding maps Fiymp, Fro . n @ 2 — R are cohomologous. Indeed if f : T\VX — R is a
map such that ¢/(e) — c(e) = f(t(e)) — f(o(e)) for all e € T\EX, with G : ¥ — R the map
defined by G(z) = f(o(e)) if z = (x;)icz With zo = (eg, ho, eg ), then G is locally constant,

hence continuous, and since 75(66r ) = o(e]), we have, for every z € 3,
s/ymb(x) - Fsymb(x) = G(O'x) — G(.T) .
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Definition 5.3. Let X be a locally finite simplicial tree. A nonelementary discrete subgroup
I of Aut(X) is Markov-good if for every n € N—{0} and every geodesic edge path (eg, . .., €n41)
in €AY, we have

Lo, n--nTy ||Te, Nl nTy  [=|Te,n---nTy [T,  nT, |. (5.6)

en+1 €n+1

Remark 5.4. (1) Note that Equation (5.6) is automatically satisfied if n = 1 and that I" is
Markov-good if I acts freely on X.

(2) A group action on a tree is 2-acylindrical’ if the stabiliser of any geodesic edge path
of length 2 is trivial. If " is 2-acylindrical on X, then I" is Markov-good, since all groups
appearing in Equation 5.6 are trivial.

(3) If X has degrees at least 3 and if I” is a noncocompact geometrically finite lattice of X,
then I is not Markov-good.

Proof. (3) Since the quotient graph I"\X is infinite, the graph of groups I''\X contains at
least one cuspidal ray. Consider a geodesic ray in X with consecutive edges (fy)nen mapping
injectively onto this cuspiday ray, pointing towards its end. Their stabilisers in I are hence
nondecreasing: we have F,/fn c F,/fn+l for all n € N. By the finiteness of the volume, there exists
n > 3 such that I” ., s strictly contained in Flfnfr Since X has degrees at least 3, there
exists v € I fixing t(f,_1) but not fixing f,_1. Let eg = fo,...,en1 = frn-1, €n = ¥ fn_1
and e,+1 =y fn—2. Then (eg,...,en+1) is a geodesic edge path in X (equal to €AIl” since I

is a lattice). Since I'g n---nTg =T I7 NIy nlg =10 I{n-nly =T,
e, nle, =T% and[[, |+ I, | the subgroup I' is not Markov-good. ]
Recall that a random process (Z,,)nez on (X,P) is a Markov chain if and only if for all

p<qinZand ay,...,aq aq+1 in &7, we have
P(Zgs1 = ag1|Zg = aq, ... Zp = ap) = P(Zy11 = ag41 | Zg = aq) . (5.7)

Proposition 5.5. (1) For every admissible finite sequence w in </, we have

W4 ~
ng (65X uh (03%) o=

gl [mre|

P([w]) =

(2) The random process (Zp)nez on (3,P) is a Markov chain if and only if T is Markov-good.

(8) The measure P on the topological Markov shift ¥ satisfies the Gibbs property with Gibbs
constant 6 for the potential Fyymy.

It follows from the above Assertion (2) and from Remark 5.4 that when X has degrees
at least 3 and I is a noncocompact geometrically finite lattice of X, then (Z,)nez is not
a Markov chain. The fact that codings of discrete time geodesic flows on trees might not
satisfy the Markov chain property had been noticed by Burger and Mozes around the time
the paper | ] was published.” When proving the variational principle in Section 5.4 and
the exponential decay of correlations in Section 9.2, we will hence have to use tools that are
not using the Markov chain property.

6See for instance [Sel, |, which require other minor hypothesis that are not relevant here.
"Personal communication.
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Proof. (1) Let w = (ayp,...,a,) where p < g € Z, be an admissible finite sequence in 7. By
the construction of ©, the preimage ©~!([w]) is equal to the image T'9;X’ of 43X’ in T\¥X'.
Hence, since I'y; is the stabiliser of ;X' in T,

1 1
= mp(C%X) = ——— p(DX) .
g ™ T = oy T (#0X)

P([w])
In the expression of mp given by Equation (4.10), let us use as basepoint x the origin w_ of
the edge path @, and note that all elements of 43X’ pass through @w_ at time t = p — 1, so
that by invariance of mp under the geodesic flow , we have

mp(9eX') = J

dimp(gi=P0) = f
LGy X!

t_edy X

| g e e
lyedp X/

N N ST N N E T §?+(F—5)
= g (05, X) g (05X7) = pg (05X) pg (05X7) e~ ;
where this last equality follows by Equations (4.2) and (3.8) with x = @w_ and y = W, since
for every £, € 6:5+X’, we have Wy € [Wy, 04 .

(2) Let us fix p < ¢ in Z and ay, . .., a4, ag+1 in o7, and let us verify Equation (5.7). We may
assume that o = (ap, ..., aq,aq+1) is an admissible sequence. Let ay = (ayp, ..., aq), which is
also an admissible sequence. Let us consider

P(Zg11 = agr11Zg = aq, .., Zp = ap) _ P(lap, - . ., ag+1]) P([aq])
P(Zg41 = ag1 124 = ag) P([ap, - -, aq]) P([ag, ag1]) -

Let us replace each one of the four terms in this ratio by its value given by Assertion (1).

; -x/ — A~ X! At — At I At — At/ -/ — A— /
Since 03X’ = (90?*X, 02X = (9aq’aq+1X , (9QA*X = %ZX and (9aqX = 6@(17%“5& , all Patterson
measure terms cancel. Denoting by y; the common origin of & and ay, by ys the common
origin of @4 and ag, ag11, by y3 the common endpoint of @, and &y, and by ys4 the common

endpoint of ag, agy1 and &, we thus have by Assertion (1)

Qa:

YA (F Y3 (F—
e .

R Y Tal  S6@-o) Sud—o)

Since y1, Y2, Y3, y4 are in this order on [y1,y4], we have

. ‘F&QJ ‘Fa@q’

Ou =
“ ITal g

Since every geodesic edge path of length n + 1 at least 3 in X’ defines an admissible
sequence of length n at least 2 in 7, by Equation (5.6), we have Q4 = 1 for every admissible
sequence « in & if and only if I' is Markov-good.

(3) Let E be a finite subset of the alphabet o7, and let w = (ay, ..., aq) with p < ¢ in Z and
admissible sequence in o/ such that ap,a, € E. By Assertion (1), we have

W4 ~
ng (05%) g (5% o=
P([w]) = T
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Since ap, a, are varying in the finite subset E of &7, the first and last edges of @ vary amongst
the images under elements of I' of finitely many edges of X. Since w is admissible, the
open sets (9 X' are nonempty subsets of AI', hence they have positive Patterson measures.
Furthermore the quantities ,u (6+X’ ) are invariant under the action of I" on the first/last
edge of @. Hence there exists ¢; > 1 depending only on E such that 1 < [Ty < [Ts_| < &1
1 + +
and - < u@i(aﬁ)X’) e
Note that the length of w is equal to ¢ — p + 2. Therefore
e _s(g-pt1)+ft B e} _s(g-pr1)+fit B

< P([u]) <

e |me| Imr

If © = (fp—1,fp:---,fq) and x € [w], we have by the definition of Fyym

fw+ﬁ Zq: Jt(fz ~ J(fp 1)F+Zq:Fsymb ( ).

= O(fl O(fpfl) 1= =p

Since F' is continuous and o(f,—1) remains in a finite subset of VX', there exists ¢o > 0
depending only on E such that |F(v)| < ¢ for every v e T'X with 7(v) € [o(fp—1), t(fp—1)]-
Hence ]S (p- 1) F | < ¢g, and Assertion (3) of Proposition 5.5 follows (see Equation (5.1) for
the deﬁnltlon of the Gibbs property). O

Again in order to consider the case when the length spectrum Lt of I' is 27, we define

1

I(mF)| P\Gevenx |

Peven = (@even)*(mF>| MNYevenX’ >
and (Zeven, n)nez the random process associated with the full shift geyen 00 Zeven, With Zeven, n :
Yeven — Peven the m-th projection for every n € Z.

By a proof similar to the one of Proposition 5.5, we have the following result. We define
a map Fsymb, even : even — R by

t(f3)
F‘symb7 even(x) = f F (58)
o(f3)
if @ = (2i)iez with mo = (fy ,hg, O hd s fo ). As previously, Fyymb, even is locally constant,
hence continuous.

Proposition 5.6. The measure Peyen on the topological Markov shift Yeven satisfies the Gibbs
property with Gibbs constant & for the potential Fyymp, even- O

Again, if ' is a noncocompact geometrically finite lattice of X and X’ has degrees at least
3, then (Zeyen, n)nez is not a Markov chain.

5.3 Coding continuous time geodesic flows on metric trees

Let (X, A) be a locally finite metric tree without terminal vertices, with X = |X], its geometric
realisation. Let I' be a nonelementary discrete subgroup of Aut(X, \), and let F': T'X — R
be a potential for I'. Let X’ = ¥ AT', which is the geometric realisation |X'|y of a metric
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subtree (X', ). Let (u).evx be two Patterson densities on 0y X for the pairs (I', F+), and
assume that the associated Gibbs measure mp is finite. We also assume in this Section that
the lengths of the edges of (X', \) have a finite upper bound (which is in particular the case
if (X', A) is uniform). They have a positive lower bound by definition (see Section 2.7).

In this Section, we prove that the continuous time geodesic flow on I'\¢ X’ is isomorphic
to a suspension of a transitive (two-sided) topological Markov shift on a countable alphabet,
by an explicit construction that will be useful later on to study the variational principle (see
Section 5.4) and rates of mixing (see Section 9.3). Since we are only interested in the support
of the Gibbs measures, we will only give such a description for the geodesic flow on the non-
wandering subset I\Z X’ of I'\¥ X. The same construction works with the full space T\¥9 X,
but the resulting Markov shift is then not necessarily transitive.

We start by recalling (see for instance | , §1.11]) the definitions of the suspension of
a (invertible) discrete time dynamical system and of the first return map on a cross-section of
a continuous time dynamical system, which allow to pass from transformations to flows and
back, respectively.

Let (Z, 1, T) be a metric space Z endowed with an homeomorphism 7" and a T-invariant
(Borel, positive) measure p. Let r : Z — ]0,400[ be a continuous map, such that for all
z € Z, the subset {r(T"z) : ne N} u {—r(T-*D2) : n e N} is discrete in R. Then the
suspension (or also special flow) over (Z, u, T') with roof function r is the following continuous
time dynamical system (Zy, pir, (T%)ter) :

e The space Z, is the quotient topological space (Z x R)/ ~ where ~ is the equivalence
relation on Z x R generated by (z,s + r(z)) ~ (T'z,s) for all (z,s) € Z x R. We denote by
[z, s] the equivalence class of (z,s). Note that

F ={(z,8) : zeZ, 0<s<r(z)}
is a measurable strict fundamental domain for this equivalence relation. We endow Z, with
the Bowen-Walters distance, see | | and particularly the appendix in | .
e For every t € R, the map T : Z, — Z, is the map [z,s] — [z,s + t]. Equivalently,
when (z,5) € .Z and t > 0, then T!([z, s]) = [T"2,s'] where n € N and s’ € R are such that

n—1
t+s= Zr(Tiz%I—s' and 0<s <7r(T"2).
i=0

e With ds the Lebesgue measure on R, the measure . is the pushforward of the restriction
to Z# of the product measure du ds by the restriction to .% of the canonical projection (Z x
R) — Z,.

Note that (T7)s«r is indeed a continuous l-parameter group of homeomorphisms of Z,.,
preserving the measure p,.. The measure p, is finite if and only if SZ rdu is finite, since

lpr| = J rdu .
Z

We will denote by (Z, u,T), the continuous time dynamical system (Z,., ., (T%)er) thus
constructed.

Conversely, let (Z, i1, (¢¢)wer) be a metric space Z endowed with a continuous 1-parameter
group of homeomorphisms (¢;)wcr, preserving a (Borel, positive) measure pu. Let Y be a
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cross-section of (¢4)wer, that is a closed subspace of Z such that for every z € Z, the set
{te R : ¢i(z) € Y} is nonempty and discrete. Let 7:Y — ]0,400[ be the (continuous) first
return time on the cross-section Y: for every y e Y,

7(y) =min{t >0 : ¢(y)eY}.

Let ¢y : Y — Y be the (homeomorphic) first return map to (or Poincaré map of) the cross-
section Y, defined by

by 1y — (bT(y) (y) :

By the invariance of p under the flow (¢;)er, the restriction of u to

{oe(y) r yeY, 0<t <7(y)}

disintegrates® by the (well-defined) map ¢;(y) ~ y over a measure uy on Y, which is invariant
under the first return map ¢y:

du(e(y)) = dt duy(y) -

Note that if r has a positive lower bound and if p is finite, then uy is finite, since

lpll = lpy || infor.

Hence (Y, py, ¢y) is a discrete time dynamical system.

Recall that an isomorphism from a continuous time dynamical system (Z, i, (¢¢)ter) to
another one (Z’, 1/, (¢})ier) is an homeomorphism between the underlying spaces preserving
the underlying measures and commuting with the underlying flows.

Example 5.7. If (Z,u,T) and (Z', 1/, T") are (invertible) discrete time dynamical systems,
endowed with roof functions r : Z — 10, +oo[ and v’ : Z" — 10, +00[ respectively, if 0 : Z — Z’
is a measure preserving homeomorphism commuting with the transformations 7' and 7" (that
is, Oxp =/, 0o T =T 06) and such that

rof=r,

then the map 0 : Z, — Z!, defined by [z,s] — [0(z),s] is an isomorphim between the
suspensions (Z, u, T), and (Z', 1/, T") .

It is well known (see for instance | , §1.11]) that the above two constructions are
inverses one to another, up to isomorphism. In particular, we have the following result.

Proposition 5.8. The suspension (Y, uy, ¢y ), over (Y, uy, ¢y ) with roof function T is iso-
morphic to (Z, p, (¢1)ter) by the map fy : [y, s] — ¢sy. O

In order to describe the continuous time dynamical system (F\gX ! anii\\’ (gt)teR) as a
suspension over a topological Markov shift, we will start by describing it as a suspension
of the discrete time geodesic flow on I'\¢X'. Note that the Patterson densities and Gibbs

8with conditional measure on the fiber {¢:(y) : 0 <t < 7(y)} over y € Y the image of the Lebesgue
measure on [0, 7(y)[ by t — ¢+(y)
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measures depend not only on the potential, but also on the lengths of the edges.” We hence
need to relate precisely the continuous time and discrete time situations, and we will use in
this Section the left exponent § to indicate a discrete time object whenever needed.

For instance, we set £X’ = |X’|; and we denote by (*g');cz the discrete time geodesic
flow on IM¥X'. Note that X’ and EX’ are equal as topological spaces (but not as metric
spaces). The boundaries at infinity of X’ and X', which coincide with their spaces of ends
as topological spaces (by the assumption on the lengths of the edges), are hence equal and
denoted by 0y X.

We may assume by Section 3.5 that the potential F:T'X - R is the potential }NWC
associated with a system of conductances ¢ on the metric tree (X, \) for I'. Let 0. = dp,. We
denote by ¢ : EX — R the I'-invariant system of conductances

e (cle) —6.)M(e) (5.9)

on the simplicial tree X for I', by ﬁ’uc - T'(*X) — R its associated potential, and by fc :
MEX — R and Fi, : T\T'(*X) — R their quotient maps.

Note that the inclusion morphism Aut(X, A) — Aut(X) is a homeomorphism onto its image
(for the compact-open topologies), by the assumption on the lengths of the edges, hence that
I is also a nonelementary discrete subgroup of Aut(X).

Now, let (X, 0,P) be the (two-sided) topological Markov shift conjugated to the discrete

time geodesic flow (F\%X’ igl, ”Z H) by the bilipschitz homeomorphism O : I\¥X' — X of
Theorem 5.1 (where the potential F is replaced by Fi.). Let r : ¥ — ]0, +oo[ be the map

r:x e Ned) (5.10)

if v = (2p)nez € ¥ and xg = (eq , ho, eg ) € o/. This map is locally constant, hence continuous
on X, and has a positive lower bound, since the lengths of the edges of (X’, \) have a positive
lower bound.

Theorem 5.9. Assume that the lengths of the edges of (X', \) have a finite upper bound,
and that the Gibbs measure mp is finite. Then there exists a > 0 such that the continuous
time dynamical system (F\%X’, HzF Ik (gt)teR) is isomorphic to the suspension (X, o, aP), over

(3, 0,aP) with roof function r, by a bilipschitz homeomorphism O, : T\¢ X' — %,

Proof. Let
Y={({eD\¥X" : (0)eT\VX}.

Then the (closed) subset Y of I\¥ X’ is a cross-section of the continuous time geodesic flow
(g')ter, since every orbit meets Y and since the lengths of the edges of (X', \) have a positive
lower bound. Let 7 : Y — ]0 +00[ be the first return time, let gy be the measure on Y
(obtained by disintegrating — T H) and let gy : Y — Y be the first return map associated
with this cross-section Y.

9The fact that the Patterson densities could be singular one with respect to another when the metric varies
is a well known phenomenon, even when the potential vanishes. See for instance Kuusalo’s theorem | ]
saying that the Patterson densities on the boundary at infinity of the real hyperbolic plane of two cocompact
marked Fuchsian groups are absolutely continuous one with respect to the other if and only if the marked
Fuchsian groups are conjugated, and the extension of this result in [ ]. See also the result of | ]
which parametrises the Culler-Vogtmann space using Patterson densities for cocompact and free actions of
free groups on metric trees.
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We have a natural reparametrisation map R : Y — 'YX/, defined by ¢ — i, where
“0(n) = (g2)(0) is the n-th passage of £ in VX, for every n € Z. Since there exists m, M > 0
such that A\(EX) < [m, M], the map R is a bilipschitz homeomorphism. It commutes with
the first return map g, and the discrete time geodesic flow on I'\¥X":

Rogy = 'g'oR.
The main point of this proof is the following result relating the measures py and mpg, .

Lemma 5.10. (1) The family (uL).evx is a Patterson density for (T, Fy,.) on the boundary
at infinity of the simplicial tree X', and the critical exponent 03, of fc is equal to 0.
mEy

C
HmFuc [

(2) We have R*m =

Proof. (1) By the definition of the potential associated with a system of conductances (see
Section 3.5), for every z,y € VX', if (e1,...,e,) is the edge path in X with o(e;) = = and
t(en) =y, then (noting that the integrals along paths depend on the lengths of the edges, the
first one below being in X’, the second one in #X”)

[ =0 = Yeteone) - s - | B (5.11)
=1

T T

Let us denote (see Section 3.3) by

ﬁQ(S) = QF,FﬁC,I,y — Z eszy(Fucfs)

vyel

and

Qs) = Qr, posoreyls) = 3 8oty

vyell

the Poincaré series for the simplicial tree with potential ﬁuc and for the metric tree with
normalised potential £, — &, respectively. We hence have #Q(s) < Q(37) < +ooif s > 0 and
*Q(s) = Q(5;) = +o0 if s < 0. Thus the critical exponent &, of (I', Fy,) for the simplicial
tree X’ is equal to 0, hence F}, is a normalised potential.

By the definition (see Section 3.4) of the Gibbs cocycles (which uses the normalised po-
tential), Equation (5.11) also implies that the Gibbs cocycles C* and *C* for (T, F.) and
(I, Fi,) respectively coincide on 0,X x VX x VX. Thus by Equations (4.1) and (4.2), the
family (uE)zevx is indeed a Patterson density for (I', Fy,.): for all v € I and z,y € VX, and
for (almost) all £ € 05X,

+
dux (5) _ efﬁCg(x,y) )

+ +
Valy = My, and i =

(2) We may hence choose these families (M%)xevx in order to define the Gibbs measure mg,
associated with the potential Fy, on I'\¥YX. Note that since we will prove that my, is finite,
the normalised measure HZ% is independent of this choice (see Corollary 4.6).

Let g/ ={e9X" : {(0) e VX'} be the (I-invariant) lift of the cross-section Y to ¥ X",
let R:Y — ¢X be the lift of R, mapping a geodesic line £ € Y to a discrete geodesic line
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%0 obtained by reparametrisation, and let /7y be the measure on Y whose induced measure
onY = I‘\lN/ is py. We have a partition of Y into the closed-open subsets }N/x ={{e¥X :
0(0) = x} as x varies in VX'

Let us fix z € VX. By the definition of jy as a disintegration of r— = with respect to the

Imr|
continuous time, by lifting to ¥ X’, by using Hopf’s parametrisation with respect to x and

Equation (4.3) with g = = , we have for every ¢ € Y,

[mr.|

Note that £(0) = #(0), ¢_ = #¢_, ¢, = %4, since the reparametrisation does not change the
origin nor the two points at infinity. Hence by Assertion (1), we have

Ay (6) = —— dyi (02) dya (02) -

~ 1
R*(MY) =

T M, .

e[ e

As py is a finite measure since 7 has a positive lower bound, this implies that mpg, is finite.
c

By renormalizing as probability measures, this proves Assertion (2). O

amuc

WA

Let a = |uy| > 0, so that by Lemma 5.10 (2) we have Ryuy =
10, +00] be the map

Let ¥ : \¥X/ —

7T — A(£([0,1]))

given by the length for A\ of the first edge followed by a discrete geodesic line £ € ¥X’. Note
that 7 is locally constant, hence continuous, and that ¥ is a roof function for the discrete time
dynamical system (I'\¥X’, #g!). Also note that

FoR=7 and ro®=7¥F

by the definitions of 7 and r.
Let us finally define O, : T\¢ X’ — ¥, as the compositions of the following three maps

RS - 4 gy S (S,aPo), ., (5.12)

! R a My,
”mFHa(gt)tGR) - (KHY}QY)T - (F\gxlv

e

(M@ X',

where the first one is the inverse of the tautological isomorphism given by Proposition 5.8
and the last two ones, given by Example 5.7, are the isomorphisms R and © of continuous
time dynamical systems obtained by suspensions of the isomorphisms R and © of discrete
time dynamical systems. It is easy to check that ©, is a bilipschitz homeomorphism, using
the following description of the Bowen-Walters distance, see for instance | , Appendix].

Proposition 5.11. Let (Z, u, T), be the suspension over an invertible dynamical system such
that T 1is a bilipschitz homeomorphism, with roof function r having a positive lower bound
and a finite upper bound. Let dgw : Z, x Z, — R be the map'’ defined (using the canonical
representatives) by

dpw([z,s],[2',s]) =

min{d(z,2’) + |s — §'|, d(Tz,2') +r(z) —s+s, dx,Tz") +r(y) +s— s}

0The map dpw is actually not a distance, but may replace the Bowen-Walters true distance when working
up to multiplicative constants or bilipschitz homeomorphisms.
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Then there exists a constant Cgw > 0 such that the Bowen-Walters distance d on %, satisfies

1
e dpw < d < Cpw dpw . [
BW
This concludes the proof of Theorem 5.9. O

5.4 The variational principle for metric and simplicial trees

In this Section, we assume that X is the geometric realisation of a locally finite metric tree
without terminal vertices (X, \) (respectively of a locally finite simplicial tree X without
terminal vertices). Let I' be a nonelementary discrete subgroup of Aut(X,\) (respectively
Aut(X)).

We relate in this Section the Gibbs measures'! to the equilibrium states (see the definitions
below) for the continuous time geodesic flow on "% X (respectively for the discrete time
geodesic flow on I'¥X).

When X is a Riemannian manifold with pinched negative curvature such that the deriva-
tives of the sectional curvature are uniformly bounded, and when the potential is Holder-
continuous, the analogs of the results of this Section are due to | , Thm. 6.1]. Their
proofs generalise the proofs of Theorems 1 and 2 of [OP], with ideas and techniques going
back to | |. When Y is a compact locally CAT(—1)-space, a complete statement about
existence, uniqueness and Gibbs property of equilibrium states for any Hoélder continuous
potential is given in | |.

The proof of the metric tree case will rely strongly (via the suspension process described
in Section 5.3) on the proof of the simplicial tree case, hence we start by the latter.

The simplicial tree case.

Let X be a locally finite simplicial tree without terminal vertices, with geometric realisation
X = |X|;. Let I" be a nonelementary discrete subgroup of Aut(X) and let ¢: EX — R be a
system of conductances for I' on X. Let ﬁc : T'X — R be its associated potential, and let 6,
be the critical exponent of c.

We define a map Iti'vc : 49X —> R by

o Heg (0)
ch):c(eo(z)):j i

for all £ € X, where ef (¢) is the edge of X in which ¢ enters at time ¢ = 0. This map is
locally constant, hence continuous, and it is I'-invariant, hence it induces a continuous map
F.:T\¢9X — R.12

The following result proves that the Gibbs measure of (I', F.) for the discrete time geodesic
flow on I"\¥X is an equilibrium state for the potential F.. We start by recalling the definition
of an equilibrium state,® see also | ; |.

11Gee the definition in Sections 4.2 and 4.3.

12See after the proof of Theorem 5.12 for a comment on cohomology classes.

13This definition is given for transformations and not flows, and for possibly unbounded potentials, contrarily
to the one the Introduction.
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Let Z be a locally compact topological space, let T : Z — Z be a homeomorphism, and
let ¢ : Z — R be a continuous map. Let .#4 be the set of Borel probability measures m
on Z, invariant under the transformation 7', such that the negative part max{0, —¢} of ¢ is
m-integrable. Let h,,(T) be the (metric) entropy of the transformation T' with respect to
m € .My The metric pressure for the potential ¢ of a measure m € .#y is

Py(m) = hp(T) + J pdm .
Z
The pressure of the potential ¢ is

Py, = sup Py(m).
me/ﬂz,

A measure mg € Ay is an equilibrium state for the potential ¢ if Py(mo) = Py.

Theorem 5.12 (The variational principle for simplicial trees). Let X,T', ¢ be as above. Assume
that 6. < +00 and that there exists a finite Gibbs measure m. for F, such that the negative
part of the potential F. is mc.-integrable. Then HZZ—ZH is the unique equilibrium state for the
potential F. under the discrete time geodesic flow on T\YX, and the pressure of F. coincides
with the critical exponent d. of c.

In order to prove this result, using the coding of the discrete time geodesic flow given in
Section 5.2, the main tool is the following result of J. Buzzi in symbolic dynamics, building
on works of Sarig and Buzzi-Sarig, whose proof is given in the Appendix.

Let 0 : ¥ — X be a two-sided topological Markov shift'* with (countable) alphabet .o/
and transition matrix A, and let ¢ : ¥ — R be a continuous map.

For every n € N, we denote by

var, ¢ = SupZ |p(x) — o(y)]
Jf7y€
Vie{-n,..,n}, z;=y;

the n-variation of ¢. For instance, if ¢(x) depends only on xg, then var, ¢ = 0 (and hence
Dnen M var, ¢ = 0 converges).

A weak Gibbs measure for ¢ with Gibbs constant C = C(m) € R is a o-invariant Borel
measure m on % such that for every a € o7, there exists ¢, = 1 such that for all n € N — {0}
and z € [a] such that o™ (z) = x, we have

1 B
1 mlleo. ozl (5.13)
Ca > o—Clmn+sig oloia)

Theorem 5.13 (J. Buzzi, see Corollary A.5). Let (X,0) be a two-sided transitive topological
Markov shift on a countable alphabet o7 and let ¢ : X2 — R be a continuous map such that
Dneny M varp ¢ converges. Let m be a weak Gibbs measure for ¢ on ¥ with Gibbs constant
C(m), such that (¢~ dm < +o0. Then the pressure of ¢ is finite, equal to C(m), and m is
the unique equilibrium state. O

14GQee Section 5.1 for definitions.
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Proof of Theorem 5.12. In Section 5.2, we constructed a transitive topological Markov
shift (3, 0) on a countable alphabet &/ and a homeomorphism O : T\¥X’' — ¥ which conju-
gates the time-one discrete geodesic flow g on the nonwandering subset I'\¥X' of I'\¥X and
the shift o on ¥ (see Theorem 5.1). Let us define a potential F symb : ¥ — R by

Fe, symb (2) = c(eg) (5.14)

if * = (2;)iez With 2o = (e, ho, eg ). Note that this potential is the one denoted by Fyymp, in
Equation (5.5), when the potential F' on T'X is replaced by F.. By the construction of O,
we have

Fe symb 0 © =F. . (5.15)

Note that all probability measures on I'\¢X invariant under the discrete time geodesic flow
are supported on the nonwandering set I'\¥X’. The pushforward of measures ©, hence gives
a bijection from the space .#4, of g'-invariant probability measures on I'\&X for which the
negative part of F. is integrable to the space .#F, , , of o-invariant probability measures on
N@X for which the negative part of F. ¢ym, is integrable. This bijection induces a bijection
between the subsets of equilibrium states.

Since F¢ symb(z) depends only on zg for every x € X, the series )} . nvar, Fe symb
converges.

mp,

By definition (see Equation (5.4)), the measure P is the pushforward of —Z= by ©,

Im e,
hence is a o-invariant probability measure on "¢ X for which the negative part of F gymp is

integrable, by the assumption of Theorem 5.12. By Proposition 5.5 (3), the measure P on 3
satisfies the Gibbs property with Gibbs constant d. for the potential F. symp, hence'® satisfies
the weak Gibbs property with Gibbs constant J.. Theorem 5.12 then follows from Theorem
5.13. ]

Remark. It follows from Equation (5.15), from the remark above Proposition 5.5 and from
the fact that ©og! = 600, that if ¢, ¢’ : T\EX’ — R are cohomologous systems of conductances
on M EX', then the corresponding maps F.,Fy : I\¥X' — R are cohomologous: there exists
a continuous map G : N¥X' — R such that for every £ € T\¥X/,

Fo(0) = Fe(l) = G(g't) — G(0) .

The metric tree case.

Let (X, \) be alocally finite metric tree without terminal vertices with geometric realisation
X = [X]y, let T be a nonelementary discrete subgroup of Aut(X,\) and let ¢: EX — R be a
system of conductances for I" on X. Let }NWC : T'X — R be its associated potential (see Section
3.5), and let d, = dp, be the critical exponent of c.

Recall'® that we have a canonical projection X — T'X which associates to a geodesic
line ¢ its germ vy at its footpoint £(0). Let ﬁ‘g : 49X — R be the I'-invariant map obtained by
precomposing the potential ﬁc : T'X — R with this canonical projection:

Fi: 0 F.(v) .

15For every a € <7, for the constant ¢, required by the definition of the weak Gibbs property in Equation
(5.13), take the constant Cr given by the definition (see Equation (5.1)) of the Gibbs property with E = {a}.
63ee Section 2.4.
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Let IFE : N¥X — R be its quotient map, which is continuous, as a composition of continuous
maps.

The following result proves that the Gibbs measure of (I', F) for the continuous time
geodesic flow on I'\¥ X is an equilibrium state for the potential FE We start by recalling the
definition of an equilibrium state for a possibly unbounded potential under a flow.'”

Given (Z, (¢1)wer) a topological space endowed with a continuous one-parameter group of
homeomorphisms and ¢ : Z — R a continuous map (called a potential), let .4, be the set of
Borel probability measures m on Z invariant under the flow (¢;)er, such that the negative
part of ¢ is m-integrable. Let h,,(¢1) be the (metric) entropy of the geodesic flow with respect
to m € .#y. The metric pressure for 1 of a measure m € .#, is

Poim) = hn(n) + [ dm.
z
The pressure of the potential v is

Py = sup Py(m).
‘ me///lz,
An element m € .#; is an equilibrium state for 1 if the least upper bound defining P, is
attained on m.

Note that if 1)’ is another potential cohomologous to 1), that is, if there exists a continuous
map G : Z — R, differentiable along every orbit of the flow, such that ¢/'(z) — ¢(x) =
%”:()G(gtx), then .#y = My, for every m € .4, we have Py(m) = Py(m), Py = Py and
the equilibrium states for ¢’ are exactly the equilibrium states for ).

Theorem 5.14 (The variational principle for metric trees). Let (X, \),T,¢ be as above. As-

sume that the lengths of the edges of (X, \) have a finite upper bound.'® Assume that 6. < +o0

and that there exists a finite Gibbs measure m. for F,. such that the negative part of the poten-
m,

tial ]Fi 18 me-integrable. Then el 1s the unique equilibrium state for the potential FE under

the continuous time geodesic flow on T\94 X, and the pressure of ic coincides with the critical
exponent 6. of c.

Using the description of the continuous time dynamical system (F \gX', HTT%H’ (gt)teR) as

a suspension over a topological Markov shift (see Theorem 5.9), this statement reduces to
well-known techniques in the thermodynamic formalism of suspension flows, see for instance
[1JT], as well as | , , 1], |. Our situation is greatly simplified by the fact that
our roof function has a positive lower bound and a finite upper bound, and that our symbolic

potential is constant on the 1-cylinders {x € ¥ : 2y = a} for a in the alphabet.

Proof. Since finite measures invariant under the geodesic flow on I'\¥X are supported on its
nonwandering set, up to replacing X by X’ = ¢AI', we assume that X = X'.
Since equilibrium states are unchanged up to adding a constant to the potential, under

the assumptions of Theorem 5.14, let us prove that ”z—zu is the unique equilibrium state for

the potential Fi— dc under the continuous time geodesic flow on I'\¥ X', and that the pressure
of FE — d. vanishes. The last claim of Theorem 5.14 follows, since

Py —0c = Py, -

1" This requires only minor modifications to the definition given in the Introduction for bounded potentials.
18They have a positive lower bound by definition, see Section 2.7.

87 19/12/2016



We refer to the paragraphs before the statement of Theorem 5.9 for the definitions of
e the system of conductances ¢ for I' on the simplicial tree X,
e the (two-sided) topological Markov 5hift (X, 0,P) on the alphabet o7, conjugated to the

discrete time geodesic flow (I'\¥X, igl ‘") by the homeomorphism © : I'\¥X — X,

’ Hm |
e the roof function r : ¥ — |0, +0o[

e and the suspension (3, 0, aP), = (3, (¢1)cr,a P ) over (X, 0, aP) with roof function r,
conjugated to the continuous time geodesic flow (T'\¥ X, “m K , (8")ter) by the homeomorphism
O, : N¥X — X, defined at the end of the proof of Theorem 5.9. We will always (uniquely)
represent the elements of 3, as [z, s] with z € ¥ and 0 < s < r(x).

We denote by F : 2 — R the potential defined by

c,symb *

"

¢, symb

—FioO !, (5.16)

which is continuous, as a composition of continuous maps. The key technical observation in
this proof is the following one.
Lemma 5.15. For every x € ¥, we have Fy, i, (z) = §§ (@) Fi ymb — 0c)([z, 8]) ds. For

every x € X, the sign of IFC symb ([, 5]) is constant on s € [0, r(z)].

Proof. Let z = (zp)nez € ¥ and x9 = (eg, ho, e ) € «7. By the definition of the first return
time r in Equation (5.10), we have in particular

IFﬁc,symb(x) = ﬁc(ea“) = (C(Q(JD - 50))‘(68_) :

Using in the following sequence of equalities respectively

e the definitions of the potential Fi symb 11 Equation (5.16) and of the suspension flow
(o ﬁ)teRy

o the fact that this suspension flow is conjugated to the continuous time geodesic flow by
@T’

e the definition of ©, using the reparametrisation map R of continuous time geodesic
lines with origin on vertices to discrete geodesic lines,

e the definition of the potential Fi,

e the fact that the first edge followed by the discrete geodesic line © !z, hence by the
geodesic line R0~ 1z, is eg and the relation between the potential F, associated with ¢ and
¢ (see Proposition 3.11),
we have

7(x) r(x) r(z)
f Fi symb([Z,5]) ds = J FE(@;laﬁ[:c,O]) ds = J Fi(gs@;l[a:,()]) ds
0 0

0
r(x Aeg )
= (g°R7'© )d:f F.(vgsp-10-12) ds
0 0
= c(eg)M(eg)
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Since Sg(x) Sc ds = 6. A(eg), the first claim of Lemma 5.15 follows. The second claim

follows by the definition of the potential F, associated with ¢, see Equation (3.11). O
By Equation (5.16), the pushforwards of measures by the homeomorphism ©,, which
conjugates the flows (g')cr and (ol)er, is a bijection from My 10 My , such that
c ¢, symb

B ((©)em) = Py (m)

¢, symb F

for every m € ;. In particular, we only have to prove that (@T)*”Z—z” = aP, is the unique
i

c.symb — 5. under the suspension flow (ol)sr, and that

equilibrium state for the potential F

i

c.symb — d. vanishes.

the pressure of F

The uniqueness follows for instance from [IJ7T, Theo. 3.5|, since the roof function r is
locally constant and the potential g = F* ,, is such that the map'? from ¥ to R defined by

¢, sym
T Sg(t) 9([, s]) ds is locally Holder-continuous by Lemma 5.15 and since Fy, ¢, is locally
constant.

Let us now relate the o-invariant measures on ¥ with the (o!);cg-invariant measures on
Y,. Recall that we denote the Lebesgue measure on R by ds and the points in ¥, by [z, s]
with z € ¥ and 0 < s < r(x).

Lemma 5.16. The map S : A, i Mg defined by
¢, sym ¢, symb
4 S(m)([2,5]) = ———— dp(x) ds
Y rdm #

for every m € My, s a bijection, such that
c,sym

b

Py, (m)
P S _ c, symb
Fnc, symb_éC ( (m)) SE T dm

Proof. Note that {i, r dm is the total mass of the measure dy,([z,s]) = du(x)ds on X,. In
particular, S(m) is indeed a probability measure.

Since r has a positive lower bound and a finite upper bound, it is well known since | ],
see also [IJT, §2.4], that the map S defined above is a bijection from the set of o-invariant
probability measures m on X to the set of (o&)g-invariant probability measures on ¥,

Furthermore, for every o-invariant probability measure m on 3, we have the following
Kac formula, by the definition of the probability measure S(m) and by Lemma 5.15,

J IFtu:,syrnb dS’(m) - 50 = JZ} (qu:,symb - 55) dS(m)
1 r(@) !
v | s~ 00 5D dmie) s

1
= — F dm . 5.17
SZ rdm J; fc,symb G110 ( )

9denoted by A, in loc. cit.

89 19/12/2016



By the comment on the signs at the end of Lemma 5.15, this computation also proves that
the negative part of T p, is integrable for S(m) if and only if the negative part of Fi. ¢ 1,

¢, sym|
is integrable for m. Hence S is indeed a bijection from .#f, , to Mgy
¢, sym c, symb
By Abramov’s formula [Abr], see also [1JT, Prop. 2.14|, we have
hm (o)
h Vo= 5.18
The last claim of Lemma 5.16 follows by summation from Equations (5.17) and (5.18). [

By the proof of Theorem 5.12 (replacing the potential ¢ by ﬁc), the pressure of the potential
Fi. symp is equal to the critical exponent d;, of the potential fc, and by Lemma 5.10 (1), we
have &z, = 0. Hence for every m € .%Ig‘u L we have

c,sym

Pr (m)  Pr §
PIFu 5 (S(m)) — ﬁc,symb < uc, symb _ fe _ 0 )
¢, symb ~0c SE rdm SE r dm SE rdm
b
¢, symb
the proof of Theorem 5.12 (replacing the potential ¢ by fc), we know that P is an equilibrium
state for the potential Fy, ¢y, Hence

In particular, the pressure of the potential [F — . is at most 0, since S is a bijection. By

P (P)

Fo, ot
P S(P)) = — e~ _
Fi,symb_6c( ( )) SE Td]P
Therefore, S(P) is an equilibrium state of the potential FE symb — d¢, With pressure 0. But alP;.,
which is equal to Hg—:” since alP, is a probability measure, is by construction equal to S(P).
The result follows. L]

With slightly different notation, this result implies Theorem 1.1 in the Introduction.

Proof of Theorem 1.1. Any potential Ffor T on T'X is cohomologous to a potential
F, associated with a system of conductances (see Proposition 3.12). If two potentials F and
F' for T on T'X are cohomologous?’ then the potentials £ — F(v;) and £ — F'(v;) for T on
¢ X are cohomologous for the definition given before the statement of Theorem 5.14. Since
the existence and uniqueness of an equilibrium state depends only on the cohomology class
of the potential on ¥X, the result follows. O

20See the definition at the end of Section 3.2.
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Chapter 6

Random walks on weighted graphs of
groups

Let X be a locally finite simplicial tree without terminal vertices, and let X = |X|; be its
geometric realisation. Let I be a nonelementary discrete subgroup of Aut(X).

In Section 6.1, we define an operator A, on the functions defined on the set of vertices
of the quotient graph of groups I'\X endowed with a system of conductances ¢ : I'\EX — R.
This operator is the infinitesimal generator of the random walk on T'\X associated with the
(normalised) exponential of this system of conductances. When T' is torsion free and the
system of conductances vanishes, the construction recovers the standard Laplace operator on
the graph I'\X.

Under appropriate anti-reversibility assumptions on the system of conductances, using
techniques of Sullivan and Coornaert-Papadopoulos, we prove that the total mass of the
Patterson densities is a positive eigenvector for the operator A, associated with the system
of conductances.

In Section 6.2, we study the nonsymmetric nearest neighbour random walks on VX associ-
ated with anti-reversible systems of conductivities, and we show that the Patterson densities
are the harmonic measures of these random walks.

6.1 Laplacian operators on weighted graphs of groups

Let X be a locally finite simplicial tree without terminal vertices, and let X = |X|; be its
geometric realisation. Let I" be a nonelementary discrete subgroup of Aut(X). Let ¢: EX — R
be a (I'-invariant) system of conductances for T'.

We define ¢ = ¢ and ¢~ : e — ¢(€), which is another system of conductances for ', and
we denote by ¢* : T\EX — R the quotient maps. Recall (see Section 3.5) that ¢ is reversible

(respectively anti-reversible) if ¢~ = &% (respectively ¢~ = —¢ 7). For every z € VX, we
define
degz+(z) = Z et (@)
e€eFEX, o(e)=x

The quotient graph of groups I'\X is endowed with the quotient maps ¢* : T\EX — R of &*.
Also note that the quantity degz+ () is constant on the I-orbit of 2. Hence, it defines a map
deg.+ : T\VX — ]0, +00] .
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On the vector space CV* of maps from VX to C, we consider the operator A+, called

the (weighted) Laplace operator of (X, ct),! defined by setting, for all f € CV* and x € VX,

Apf@)=— Y D) - flHe)) - (6.1)

- deggi (:U) e€eFEX, o(e)=x

This is the standard Laplace operator? of a weighted graph with the weight e — egi(e), except

ectle) . ..
) is a Markov transition

that usually one requires that ¢(e) = &(€). Note that p*(e) = Tox 100

kernel on the tree X, see Section 6.2.
The weighted Laplace operator A+ is invariant under I': for all f € CV* and v € T, we
have

Aci(foﬁ)/) = (Acif>07'

In particular, this operator induces an operator on functions defined on the quotient graph
X, as follows.

Let (Y,Gx) be a graph of finite groups and let i : EY — N — {0} be the index map
i(e) = [Go(e) : Ge]. For every function ¢ : EY — R, let deg. : VY — R be the positive
function defined by

deg.(x) = Z i(e) e .

eeEY, o(e)=x

The Laplace operator® of (Y, Gy, c) is the operator A, = Ay g, . on L2(VY, voly @, ) defined

by
Afiom — o i(e) e (fx) — f(tle)) -

degC(x) eeEY, o(e)=x

Remark 6.1. (1) Let (Y,G,) = I'\X be a graph of finite groups with p : VX - VY = T'\VX
the canonical projection. Let ¢: EX — R be a potential and let ¢: EY = I'\EX — R be the
map induced by ¢ An easy computation shows that for all f € CVY and z € V'Y, we have

Acf(x) = Af (@)
if fz fop: VX — C and 7 € VX satisfies p(Z) = z.
(2) For every z € VY, let

i(r) = > i(e).
eeEY, o(e)=x
Then i(x) is the degree of any vertex of any universal cover of (Y, G,) above z. In particular,
the map ¢ : VY — R is bounded if and only if the universal cover of (Y,G,) has uniformly
bounded degrees. When ¢ = 0, we denote the Laplace operator by A = Ay ¢, and for every
z € VY, we have

Aof@) = — S ie)(f(@) — f(t(e)))

Z(.Z‘) eEEY, o(e)=x

We thus recover the Laplace operator of [Mor| on the edge-indexed graph (Y, 1).

Lor on X associated with the system of conductances &+
2See for example [Car] with the opposite choice of the sign, or | |
3See for instance [Mor] when ¢ = 0.
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Returning to general graphs of finite groups, we denote by L2(V'Y, vol(y ¢,)) the Hilbert
space of maps f : VY — C with finite norm | f||yo for the following scalar product:

<fvg>v01: Z L 7-

zeVY ’ x‘

We denote by L2(EY, Tvoly g,)) the Hilbert space of maps ¢ : EY — C with finite norm
|¢|Tvol for the following scalar product:

G o= 5 Y o 6(e) (E)

eeEY ‘ e|

Proposition 6.2. Let (Y,G.) be a graph of finite groups, whose map i : VY — R is bounded.
Let ¢ : EY — R be a system of conductances on Y, and let

B ec(e)
P1) = Geg.(ole)

for every ee EY.
(1) The Laplace operator A, : L*(VY,voly ¢,)) = L2(VY, voly ) is linear and bounded.
(2) The map d. : LQ(VY,VOI(YG*)) — L3(EY, Tvoliy,q,)) defined by
de(f) s e = \/p(e) (f(t(e)) = f(o(e)))
18 linear and bounded, and its dual operator
d¥ - L*(EY, Tvolyy g,)) — L*(VY, voly c,))

s given by

a@iee Y (ol o) - Vale) ole)

eeEY, o(e)=x

(3) Assume that c is reversible. Then
A, =d}d,
In particular, A, is self-adjoint and nonnegative.

Proof. By the assumptions, there exists M € N such that i(x) < M for every x € VY, and
hence i(e) < M for every e € EY. Note that i(e) = ll};(:l)‘, that I'. = I'z and that p(e) < 1.

(1) For every f e L2(VY, vol(y ¢,)), using the Cauchy-Schwarz inequality and the change of
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variable e — €, we have

At = 3 i

zeVY eeEY, o(e)=x
<)) |p1| ( > 2‘(e)zp(e)2>( > f@) —f(t(e))f)
zeVY x eeEY, o(e)=x eeEY, o(e)=x

<o Y (% [f@P +fe))

zeVY ‘ x‘ eeEY, o(e)=x

<am? Y L ro(e)] + |t
ecEY ITel

—4aMm? Yy ‘;’}f(o(e))|2=4M2 > ‘Pl‘ Y, i@lf@)P
ecEY " © zeVY Tl ecEY, o(e)=x

<4M? ) [f(@)[? =407 | f]71
zeVY ILal

Hence the linear operator A, is bounded.

(2) For every f € LQ(VY,VOI(YG*)), we have

el =3 20 2 [ft(e)) ~ Flole))

eeEY ‘ e|

<3 ( e’ +|fo(eN]) =2 3 IFfote

ecEY €| eeEY

=2 2:2 () f 2<2vao
QGZEY |Fo(e )| I;y |Fx| | ( )| H H 1 -

Hence the linear operator d. is bounded.

For all f € L3(VY, voliy g,)) and ¢ € L2(EY, Tvol(y,q,)), using again the change of
variable e — €, we have

ey = 5 Y1 o Vole) 6(e) (F(t(e)) — F(ol0))

ecEY ‘ e’

(ZE] Fop 60 TOE - 3 MR o0 7o) )

- 2 ;<r¢ )= Vole) o(e)) F@)

zeVY f‘| ecEY, o(e)=x

This gives the formula for d.

(3) For all f,g € LQ(VY,VOI(YG*)), since p(e) = p(€) by reversibility, by making the change
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of variable e — € in half the value of the second line, we have

Afgpa= Y == i€ pe) (@) — FE(e)) 9@)

zeVY ’F$’ ccEY, o(e)=x
=2 |13(€)  2(e)(£(0(e) glo(e)) — f(¢(e)) g(o(e)))
ecEY " ole)
— % Z Fl | ple)(f(t(e)) — f(oe))) (g(t(e)) — g(ole)))
eeEY €

= <dcfa dcg>Tvol .

This proves the last claim in Proposition 6.2. O

The following result is an extension to anti-reversible systems of conductances of | ,
Prop. 3.3] (who treated the case of zero conductances), which is a discrete version of Sullivan’s
analogous result for hyperbolic manifolds (see [Sull]). Let F, : T'X — R be the potential
for I' associated with ¢, so that (}~7’C)J—r = Nci, and let d. be their critical exponent. Let
C* : 0, X x VX x VX — R be the associated Gibbs cocycles. Let (u3)zevx be two Patterson

densities on 0, X for the pairs (I, Fix).

Proposition 6.3. Assume that X is (¢ + 1)-regular, that the system of conductances c is
anti-reversible and that the map deg.+ : VX — R is constant with value k*. Then the total
mass %i : @ ||uZ| of the Patterson density is a positive eigenvector associated with the
etgenvalue
1 e% + qe~0%
xE

for the Laplace operator A+ on CVZ.

Pfoof. l\Iote that ¢t : VX — R is bounded, hence ¢ : EX — R is bounded, hence
(F.)* = F,+ is bounded. As X is (q + 1)-regular, the critical exponent dr is finite and hence
also the critical exponent J. is finite by Assertions (6) and (7) of Lemma 3.7. Since

¢t (x) = f dpy = J G m) gyt
O X 0o X

by Equation (4.2) and by linearity, we only have to prove that for every fixed £ € d,X the
map
fixm— ¢~ (@0)
is an eigenvector with eigenvalue 1 — Lﬁﬁ for A +.
For every e € EX, recall* that 0,X is the set of points at infinity of the geodesic rays whose
initial edge is e. By Equation (3.8) and by the definition of the potential associated with a
system of conductances®, for all e € EX and 7 € .X, we have

t(e)
Cte)oe)) = | (Fex = 0) = e(e) b
o(e)

4See Section 2.7.
5See Proposition 3.11 with the edge length map A constant equal to 1
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Thus N N .
ft(e)) = o Ce (t(e),0(€))=C¢ (o(e), x0) _ ,—c*(e)+dc Flo(e))

if £ € 0.X, and otherwise

+

F(tle)) = ecgi(t(é),O(E))—Cgi(t?(e),xo) (8)—dc Flole)) .

For every z € VX, let e¢ be the unique edge of X with origin z such that £ € 0. X. Then,

:ec

1 +
Ausf(@) = 1) = (;_ e f(t(e)
= @) - e Ofe) - = Y ()
e#eg,0(e)=x
dc —0c
(=B
This proves the result. O

Note that the anti-reversibility of the potential is used in an essential way in order to get
the last equation in the proof of Proposition 6.3.

6.2 Patterson densities as harmonic measures for simplicial
trees

In this Section, we define and study a Markov chain on the set of vertices of a simplicial
tree endowed with a discrete group of automorphisms and with an appropriate system of
conductances, such that the associated (nonsymmetric, nearest neighbour) random walk con-
verges almost surely to points in the boundary of the tree, and we prove that the Patterson
densities, once normalised, are the corresponding harmonic measures. We thereby gener-
alise the zero potential case treated in | |, which is also a special case of | | when
X is a tree under the additional restriction that the discrete group is cocompact. For other
connections between harmonic measures and Patterson measures, we refer for instance to
| , , , | and their references.

Let X be a (¢ + 1)-regular simplicial tree, with ¢ > 2. Let I' be a nonelementary discrete
subgroup of Aut(X). Let ¢ : EX — R be an anti-reversible system of conductances for T,
such that the associated map ¢ : VX — R on the vertices of X is constant. Let (pz)zevx be
a Patterson density for (T', F,), where F, is the potential associated with ¢. We denote by
¢u :  — |pz the associated total mass function on VX.

We start this Section by recalling a few facts about discrete Markov chains, for which we
refer for instance to [Rev, |. A state space is a discrete and countable set I. A transition
kernel on a I is a map P : I x I — [0,1] such that for every x € I,

Z P(x,y)=1.

yel

Let A be a probability measure on I. A (discrete) Markov chain on a state space I with initial
distribution A and transition kernel P is a sequence (Z,)nen of random variables with values
in I such that for all n € N and zq,...,x,+1 € I, the probability of events IP satisfies

96 19/12/2016



(1) P[Zy = zo] = A({zo}),
(2) P[Zny1 = 2ny1 | Zo = 20,21 = 1, .., Zy = Tp) = P(Tn, Tny1).

The associated random walk consists in choosing a point xg in I with law A, and by induction,
once x,, is constructed, in choosing x,+1 in I with probability P(z,x,+1). Note that

P[Zy = x0, Z1 = 21, .., Zn = x| = A{z0}) P(x0,21) ... P(Xp_1,2n) .

When the initial distribution A is the unit Dirac mass A, at x € I, the Markov chain is then
uniquely determined by its transition kernel P and by z, and is denoted by (Z7),en.

For every n € N, we denote by P(") the iterated matrix product of the transition kernel P:
we have PU = p, pO) (x,y) is the Kronecker symbol 6, , for all z,y € I, and by induction
p+1) — p. p(™ where - is the matrix product of I x I matrices, that is, for all z,z € I,

P (@, 2) = 3 Pa,y)PM™(y,2) .
yel

Note that
P (z,y) =P[Z2 = y]

is the probability for the random walk starting at time O from z of being at time n at the
point y. The Green kernel of P is the map Gp from I x I to [0, 4] defined by

(z,y) = Gp(z,y) = >, P"(z,y),

neN

and its Green function is the following power series in the complex variable z :

plx,y|z) = ZP(”xy

neN

Recall that if Gp(x,y) # 0 for all 2,y € I, then the random walk is recurrent® if Gp(z,y) = o
for any (hence all) (z,y) € I x I, and transient otherwise. Note that, using again matrix
products of I x I matrices,

Gp=1d+P-Gp. (6.2)

We will from now on consider as state space the set VX of vertices of X. If a Markov chain
(Z7)nen starting at time 0 from x converges almost surely in VX U 0,X to a random variable
Z% | the law of ZZ is called the harmonic measure (or hitting measure on the boundary)
associated with this Markov chain, and is denoted by

Ve = (Z25)«(P) -

Note that v, is a probability measure on 0y X.
For instance, the transition kernel of the simple nearest neighbour random walk on X is
defined by taking as transition kernel the map P where

1
P(zx,y) = T+ 1 A(z,y)

Sthat is, Card{n € N : ZZ = y} = oo for every y € I (or equivalently, there exists y € I such that
Card{neN : Z; =y} = o)
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for all z,y € VX, with A : VX x VX — {0,1} the adjacency matriz of the tree X, defined by
A(z,y) = 1 for any two vertices =,y of X that are joined by an edge in X and A(z,y) = 0
otherwise. We denote by

&(x,y | 2) Z P

keN

the Green function of P, whose radius of convergence is r = % and which diverges at z = r,

see for example | I, | , Ex. 9.82], | , §6.3].

The antireversible system of conductances ¢ : EX — R defines a cocycle on the set of
vertices of X, as follows. For every u,v in VX, let ¢(u,v) = 0 if u = v and otherwise let

n
Z clei),
where (e1,e2,...,ey) is the geodesic edge path in X from u = o(e1) to v = t(ey).

Lemma 6.4. (1) For every edge path (e}, e5,... € ,) from u to v, we have
n/
=D, )
i=1

(2) The map ¢: VX x VX — R has the following cocycle property: for all u,v,w € VX,

c(u,v) + ¢(v,w) = c(u,w) and hence c(v,u) = —c(u,v) .
(3) We have c(u,v) = § E..

(4) For all £ € 0,X and u,v € VX, if C°(-,-) is the Gibbs cocycle associated with ﬁ’c, we
have

C¢(u,v) = c(v,u) + 0cBe(u,v) .

Proof. (1) Since X is a simplicial tree, any nongeodesic edge path from u to v has a back-and-
forth on some edge, which contributes to 0 to the sum defining ¢(z, y) by the anti-reversibility
assumption on the system of conductances. Therefore, by induction, the sum in Assertion (1)
indeed does not depend on the choice of the edge path from u to v.

Assertion (2) is immediate from Assertion (1). Assertion (3) follows from the definition of
¢(+,-) by Proposition 3.11.
(4) For every £ € 0,X, if p € VX is such that [u,&[ n [v,&[ = [p, €[, then using Equation (3.6)
and Assertions (3) and (2), we have

C¢(u,v) = Jp(ﬁc —6e) — fp(ﬁc —38.) = c(v,p) — c(u, p) + 8. Be(u,v)

v u

= c(v,u) + 0c Be(u,v) . O

We now define the transition kernel P. associated with’ the (logarithmic) system of con-
ductances ¢ by, for all z,y € VX,

_ ¢ (y) c(z,y)
Pc(x7y) = K¢ ¢Z($) € Y B(x,y) :

"The transition kernel also depends on the choice of the Patterson density if I' is not of divergence type.
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From now on, we denote by (Z7),en the Markov chain with initial distribution A, and
transition kernel P..

Let
1+gq

Ry = —/—m—————
el + qe O

)

0. a+L

' 2./q
r of the Green function &(x,y | z) if and only if cosh(d. — % Ing) > 1, that is, if and only
if 5. # 3 Ing. The computation (due to Kesten) of the Green function of P is well known,
and gives the following formula, see for instance | , Prop. 3.1]: If . # % In g, then there

exists a > 0 such that for all z,y € VX

which belongs to | ]. Note that this constant k. is less than the radius of convergence

&(x,y | ke) = a e @) (6.3)
Lemma 6.5. (1) The map P, is indeed a transition kernel on VX.

(2) The Green kernel . = Bp. of P, is

S

p(y)
Pu(z)

®c(mv y) = ec(% v) Q('%y ‘ KC) . (6'4)

In particular, the Green kernel of P. is finite if §. # % Ing.

(3) Assume that 6. # % Ing. For all z,y,z € VX, we have

Op(y) Oe(y:2) _ ety a)+c(d(e,2)-d(y,2)) |

qﬁ#(ac) Bc(z, 2)
If furthermore z ¢ [x,y[, then, for every & € U,(z),

u) 8l1s2) _ cxten)

=€

Pu(®) Bc(z, 2)

Proof. (1) By Proposition 6.3, the positive function ¢, is an eigenvector with eigenvalue
e + ge~% for the operator

R D S N (O

eeEX, o(e)=x

Since P(o(e),t(e)) = qJ%l for every e € EX, we hence have

N Rley) = Y Plai(e)

yeVX eeEX, o(e)=x

- L+ 4 S F9g,te) Plat(e) = 1.

(666 * qe*éc) (b‘u(x) eeEX, o(e)=x

(2) Let us first prove that for all z,y € VX and n € N, we have

PO () = (o) 249 cete) po (6.5)

¢u($)
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Indeed, by the cocycle property of ¢(-,-) and by a telescopic cancellation argument, we have
P (z,y)
= 2 Pc(l‘wfpl) Pc(ajl’x2)---Pc(xn—2a$n—1) Pc(fn—lvy)

T1yenny {L'n,1EVX

— (e P40 ) P Ploa) Plaraa). Plon-aanos) Plea-1.y)
T,y Tpn—1€EVX

Pu()
= (k" d),u(y) c(x ).’E
- (re S o) POy

Equation (6.4) follows from Equation (6.5) by summation on n. As we have already seen,
ke < 1 if and only if §. # % Ing. The last claim of Assertion (2) follows.

(3) Let z,y,z € VX. Using (twice) Assertion (2), the cocycle property of ¢ and (twice)
Equation (6.3), we have

Ge(y,z) _ e gu(2) gulx) B(y,z | re) _ oel,a) Pu(2) @ % dlv: %)
Be(x,2) @2 duly) du(z) &(x,z | ke) du(y) a e ded.2)
_ Pu®) oty ) oeldte, ) -d, )
¢u(y)

This proves the first claim of Assertion (3). Under the additional assumptions on z,y, z, €,
we have

The last claim of Assertion (3) hence follows from Lemma 6.4 (4). ]

Using the criterion that the random walk starting from a given vertex of X with transition
probabilities P, is transient if and only if the Green kernel &.(x,y) of P, is finite (for any,
hence for all, z,y € X), Lemma 6.5 (2) implies that if 0. # % In g, then (Z¥),en almost surely
leaves every finite subset of VX. The following result strengthens this remark.

Proposition 6.6. If 0. # 3 Lng, then for every x € VX, the Markov chain (Z%)pen (with
initial distribution A, and tmnsztzon kernel P.) converges almost surely in VX U 0,X to a
random variable wzth values in 0xX. In particular the harmonic measure v, of (ZX)nen 1S

well defined if 6. # 5 Ing.

Proof. Since X is a tree, if (2, )nen is a sequence in VX such that d(z,, x,+1) = 1 for every
n € N and which does not converge to a point in d,X, then there exists a point y such that
this sequence passes infinitely often through y, that is, {n € N : =z, = y} is infinite. The
result then follows from the fact that the Markov chain (Z2),cy is transient since 6, # % 5 Ing.

[

The following result, generalising | | when ¢ = 0, says that the Patterson measures
associated with a system of conductances ¢, once renormalised to probability measures, are
exactly the harmonic measures for the random walk with transition probabilities P..

Theorem 6.7. Let (X,T',¢, (ig)zevx) be as in the beginning of Section 6.2. If 0. # % Ingq,
then for every x € X, the harmonic measure of the Markov chain (ZF)pen is

Kz

Vp = 7 .
T kel
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Proof. We fix x € X. Recall that given z € VX, the shadow 0 (z) of z seen from z is the set
of points at infinity of the geodesic rays from z through z.

For every n € N, we denote by S(z,n) and B(z,n) the sphere and ball of centre z and
radius n in VX, and we define two maps f1, fo : VX — R with finite support by

Hﬂﬂc” 60(1'72) ®c(x7 z)

if z € S(x,n), and fi1(z) = f2(z) = 0 otherwise. Let us prove that f; = fo for every n € N.
Since {0,(z) : z € VX} generates the Borel o-algebra of 0, X, this proves that the Borel
measures v, and m ”C‘ coincide.

We will use the following criterion: For all maps G : VX x VX - Rand f: VX >R such
that f has finite support, let us again denote by G - f the matrix product of G and f :
every y € VX,

filz) = and fy(z) =

Lemma 6.8. For all f, f' : VX — R with finite support, if .- f = &.- f', then f = f'.
Proof. By Equation (6.2), we have
ff=Cf —P & f =6 f-P-& f=f. O
Let us hence fix n € N and prove that &, - f{ = &, fo. Theorem 6.7 then follows.
Step 1: For every y € B(xz,n), since {0,(z) : z € S(x,n)} is a Borel partition of 00X,

by Equation (4.2), since z ¢ [z, y[ if z € S(z,n) and y € B(z,n), and by the second claim of
Lemma 6.5 (3), we have

]. 1 _Cc( :E)
1= J dp, = J e €T du, (¢
ou®) Jox " duly) 2 O (2) ©
1

zeS(z,n)

_ p(y) Gy, 2)
 duly) Zessz u(@) Gz, )du‘r’”(€>
= Y Gy m e fi(y) (6.6)

2€5(z,n)

Step 2: For all y,z € VX such that z ¢ [x,y[, any random walk starting at time 0 from y
and converging to a point in €, (z) goes through z. Let us denote by C,(z) the set of vertices
different from z on the geodesic rays from z to the points in &, (z). Partioning by the last
time the random walk passes through z, using the Markov property saying that what happens
before the random walk arrives at z and after it leaves z are independent, we have

vy(Ox(2)) = P[Z25 € Ou(2)] = &c(y,2) P[Vn >0, Z; € Co(2)],

so that

- 2 (6.7)
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Step 3: For every y € B(x,n), again since {0,(z) : z € S(z,n)} is a Borel partition of
0 X, and by Equation (6.7), we have

L=lnl= Y w@e) = Y 6w D" tepe) . 69

zeS(z,n) zeS(z,n) < T, )

Step 4: By Steps 1 and 3, we have &, - f1(y) = &, - fa(y) for every y € B(z,n). Let now
y € VX — B(z,n). Since z € B(x,n), we have as just said &, - fi(x) = &, - fa(z). Hence by
the first claim of Lemma 6.5 (3), we have

60 : fl(y) = Z 66(2/72:) fl(z)

zeS(z,n)
— 2 o€, 2)+0.(d(, 2)~d(y, =) ) Pul@) Bu(r.2) f1(2)
zeS(x,n) qu(y)
_ ey ) +oe(d@, ) —d(y, ) Pul®) o g
= e . ZB
bu(y) 1)
= el D)+l >y”%$@cm@—mﬁ@.

This proves that &, - fi = &, - fs, thereby concluding the proof of Theorem 6.7. O]
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Chapter 7

Skinning measures with potential on
CAT(—1) spaces

In this Chapter, we introduce skinning measures as weighted pushforwards of the Patterson-
Sullivan densities associated with a potential to the unit normal bundles of convex subsets of
a CAT(—1) space. The development follows | | with modifications to fit the present
context.

Let X, x, T, F be as in the beginning of Chapter 4. Let (uf).ex be Patterson densities
on don X for the pairs (T, F%).

7.1 Skinning measures

Let D be a nonempty proper closed convex subset of X. The outer skinning measure &3,
on 61+D and the inner skinning measure o, on 0L D associated with the Patterson densities

(U )pex for (I, F*) are the measures 5} = &[i),Fi defined by

+
dg—[—i_)(p) = ecﬂi(xo,P(O)) dﬂ;:io(pi) , (71>

where p € 01 D, using the endpoint homeomorphisms p — py from 01D to 05, X — 00D, and
noting that p(0) = Pp(p+) depends continuously on py.

When F = 0, the skinning measure has been defined by Oh and Shah | | for the
outer unit normal bundles of spheres, horospheres and totally geodesic subspaces in real hy-
perbolic spaces. The definition was generalised in | | to the outer unit normal bundles
of nonempty proper closed convex sets in Riemannian manifolds with variable negative cur-
vature.

Note that the Gibbs measure is defined on the space ¥ X of geodesic lines, the potential
is defined on the space T'X of germs at time ¢t = 0 of geodesic lines, and since (91iD is
contained in %1 (X (see Section 2.5), the skinning measures are defined on the spaces 44 X of
(generalised) geodesic rays. In the manifold case, all the above spaces are canonically identified
with the unit tangent bundle, but in general, the natural restriction maps 4X — T'X and
94X — 9, X have infinite (though compact) fibers.

Remark 7.1. (1) If D = {z} is a singleton, then

55 (p) = du (p+) (7.2)
103 19/12/2016



where p is a geodesic ray starting (at time ¢ = 0) from x.

(2) When the potential F' is reversible (in particular when F = 0), we have C~ = CF, we
may (and we will) take p; = pf for all x € X, hence tump = mp and 67, = 140 5.

(3) The (normalised) Gibbs cocycle being unchanged when the potential F is replaced by the
potential F' + o for any constant o, we may (and will) take the Patterson densities, hence the
Gibbs measure and the skinning measures, to be unchanged by such a replacement.

When D is a horoball in X, let us now related the skinning measures of D with previously
known measures on 0y, X, constructed using techniques due to Hamenstadt.

Let 2 be a horoball centred at a point & € 05, X. Recall that Py : 00X — {&} — 09 is
the closest point map on 2, mapping n # £ to the intersection with the boundary of J# of
the geodesic line from 7 to £. The following result is proved in | , §2.3] when F' = 0.

Proposition 7.2. Let p : [0,40[ — X be the geodesic ray starting from any point of the
boundary of  and converging to . The following weak-star limit of measures on 05X — {&}
SP% 77)

Ayt () = Tim e gyt

t) (77)

exists, and it does not depend on the choice of p. The measure M?f 1s invariant under the
elements of T preserving €, and it satisfies, for every x € X and (almost) every n € 0 X —

3} )
du, s -
L ) — G0

Proof. We prove all three assertions simultaneously. Let us fix x € X. For all t > 0 and
N € 0 X — {£}, let 2z be the closest point to P (n) on the geodesic ray from p(y) to 7.

Using Equation (4.2) with x replaced by p(t) and y by the present x, by the cocycle
equation (3.7) and by Equation (3.8) as z; € [p(t),n], we have

Py (n) 7 Poe () (s
e~ S (FE0) ity (1) = e bl FE0) o=Cik (60 3) g% (i)

_ S (FE=8) O (o). z) - Cif (1, %) dut ()

S;’(:)f(’?) 5)+Sp(t) (F£—5) e_C,T(Z,f,x) d'u;_i-(n) .

As t — +o0, note that z; converges to Py (n) and that by the HC-property (and since Fis
bounded on any compact neighbourhood of P,-(n)), we have

” —5)—F(ﬁ+—5)‘ao.
o0 o)
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The result then follows by the continuity of the Gibbs cocycle (see Proposition 3.10 (3)). [J

Using this proposition and the cocycle property of C* in the definition (4.3) of the Gibbs
measure, we obtain, for every £ € ¢ X such that ¢4 # &,

4
de(e) _ ecg_(P%( -),£(0)) + Cy (P%(z-%—) £(0)) du}(ﬁ_)du}(&r)dt ) (73)
Note that it is easy to see that for every p € (?lijf , we have

5%, (p) = dpZ,(p+) - (7.4)

When F' = 0, we obtain Hamenstddt’s measure

fy = lim € ) (7.5)

t——+00

on 0 X — {£} associated with the horoball J#, which is independent of the choice of the
geodesic ray p starting from a point of the horosphere 0.7 and converging to £. Note that
for every ¢ > 0, if #[t] is the horoball contained in .7 whose boundary is at distance ¢ from
the boundary of ¢, we then have

Horlt] = e gy . (7.6)

The following results give the basic properties of the skinning measures analogous to those
in | , Sect. 3| when the potential is zero.

Proposition 7.3. Let D be a nonempty proper closed convex subset of X, and let 52—3 be the

skinning measures on ﬁ}iD for the potential F.
(i) The skinning measures 52—5 are independent of xg.

(ii) For all v € T, we have 7*575 = 5'3[). In particular, the measures 5% are invariant under

the stabiliser of D in .
(iii) For all s = 0 and w € 01D, denoting by (gisw)&[oﬁm[ the element of ¥4 o which
coincides with g=w on £[0, +oo[, we have

s £ o0 (LS - (gt w) FE_S) o
dU/VD((gi w)|i[0,+oo[) — luy (m(w), m(g w)) da%(w) Sﬂ'(w) (F==9) da%(w) ‘

iv) The support of 5L is
( ) 144 f D
{vedlD vy € AT} = PE(AT — (AT n D)) .
+

In particular, 6, is the zero measure if and only if AI' is contained in 0D

For future use, the version! of Assertion (iii) when F = 0 is
g Sw) =e 0%, (7.7)

As another particular case of Assertion (iii) for future use, consider the case when X = [X]
is the geometric realisation of a metric tree (X, A) and when F' = F, is the potential associated
with a system of conductances ¢ on X (see Equation (3.11) and Proposition 3.12). Then for

!contained in | , Prop. 4]
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all w € 0L D (respectively w € 0L D), if e, is the first (respectively the last) edge followed by
w, with length A(e,), then
ﬂ(gik(ew)w) N
J F* = c(ew)

m(w)

by Proposition 3.11, so that

d5:i/VSD((gi)\(EW)w)|i[O,+CD[) — e—clew)+oA(ew) d&%(w) ) (7.8)

Proof. We give details only for the proof of claim (iii) for the measure 3}, the case of
0, being similar, and the proofs of the other claims being straightforward modifications of
those in | , Prop. 4]. Since ((gsw)‘[07+go[)+ = wy and since w € 01D if and only if
(8°w))[0,+o0[ € 51+L/I/SD, we have, using the definition of the skinning measure and the cocycle
property (3.7), for all s > 0,

A5, (w0 soep) = €7+ 0 TE ) dyt () = T O TE W) g8 ()
This proves the claim (iii) for ¢, using Equation (3.8). O
Given two nonempty closed convex subsets D and D’ of X, let
Ap pr = 00X — (0D U 0, D)

and let h%,D/ : P5(Ap,pr) — P3,(Ap,pr) be the restriction of P3, o (P5) ™! to Pq(Ap, pr). It
is a homeomorphism between open subsets of &iD and ('iliD’ , associating to the element w
in the domain the unique element w’ in the range with w’, = w+. The proof of Proposition
5 of | | generalises immediately to give the following result.

Proposition 7.4. Let D and D' be nonempty closed convex subsets of X and h* = h% D
The measures (h¥), 52—5 and 52—5, on PJ—F,(ADD/) are absolutely continuous one with respect to
the other, with
d(h*)s 75
53,
for (almost) all w € P5(Ap.p) and w' = h*(w). O
Let w € 93 X. With N : W*(w) — 0% HB. (w) the canonical homeomorphism defined in

Section 2.5, we define the skinning measures pyy =+, on the strong stable or strong unstable
leaves W= (w) by

(w/) — e_C%i (W(w)v ﬂ'(w/))

9

Hwt(w) = ((N%)_l)*fwaBi(w) )
so that

Cf (z0,£(0 T
iy (€) = € 71O ap (65) (7.9)

for every £ € W*(w). By Proposition 7.3 (ii) and the naturality of N, for every v € T, we
have

VbWt (w) = KWWt (yw) - (7'10)
By Proposition 7.3 (iv), the support of puyy+ () is {¢ € W*(w) : ¢z € AT}. For all t € R and
¢ e WE(w), we have, using Equations (3.7) and (3.8), and since /4 = wy,

—t —
HE™Dbw(w) gty _ 7 00D _ i, (600).80) (7.11)
d:uWi(gtw)
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Let w € 44 X. The homeomorphisms W*(w) x R — W% (w), defined by setting (¢, 5)
¢' = g°¢, conjugate the actions of R by translation on the second factor of the domain and by
the geodesic flow on the range, and the actions of I" (trivial on the second factor of the domain).
Let us consider the measures v, on W% (w) given, using the above homeomorphism, by

dl/i (f’) _ 60:751 (w(0),£(0)) dMWi(’w) (f) ds . (712)

They satisfy (gf)«vE = v for all t € R (since if £/ = g*¢, then g~ = g*~'¢). Furthermore,
Vvt = y$w for all vy € I'. In general, they depend on w, not only on W= (w). Furthermore,
the support of vy is {¢' € W*(w) : ¢, € AT'}. These properties follow easily from the

properties of the skinning measures on the strong stable or strong unstable leaves.

Lemma 7.5. (i) For every nonempty proper closed convex subset D' in X, there exists Ry > 0
such that for all R > Ry, n >0, and w € 0L D', we have sz(vfn r) > 0.

i) For allwe 9+ X and t € R, the measures v, and v} are proportional:
+ gtw w

V;w _ iy (w(t),w(0)) vE.

Proof. (i) By | , Lem. 7],% there exists Ry > 0 (depending only on D’ and on
the Patterson densities) such that for all R > Ry, w € 01D’ and w' € 1 D’, we have
o+ (w) (BF (w, R)) > 0 and piyy— () (B~ (w’, R)) > 0. The result hence follows by the defini-

tions of v, and Vwi77 'y
(ii) For all w € 4+ X, s,t € R and £ € W*(w), we have by Equations (7.12) and (7.11), and
by the cocycle property of C¥,

(g'w(0),g"€(0))

_ B o,
dyg;fw(gSE) =dvi, (95 'g"l) = e E)x

glw

dpvyy (gh) (80) d(s — 1)
_ Oy (b)) ,—Ci, (£(0), £(t) dpyy+ () (€) ds
= (O (0. 40) =G, (w00 g, (o)

= ecui;i (w(t)zw(o))dyqf(gsg) X D

The following disintegration result of the Gibbs measure over the skinning measures of
any closed convex subset is a crucial tool for our equidistribution and counting results. Recall
the definition in Equation (2.10) of the flow-invariant open sets % and the definition of the
fibrations fzj—r : @/Di — %LD from Section 2.5.

Proposition 7.6. Let D be a nonempty proper closed convex subset of X. The restriction
to %B—r of the Gibbs measure mp disintegrates by the fibration fz)—r : %B—F - (iliD, over the
skinning measure 535 of D, with conditional measure vF on the fiber (f5) " (p) = W (p) of
p € 0L D: when ¢ ranges over UF, we have

i 5 () = f ).
PETY

Proof. In order to prove the claim for the fibration fg, let ¢ € %c(%g). Using in the various
steps below:

2whose proof extends to the present situation, although the notation is different.
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e Hopf’s parametrisation with time parameter ¢ and the definitions of mp (see Equation
(4.3)) and of %5 (see Equation (2.10)),

e the positive endpoint homeomorphism w — w, from 61+D t0 0 X —0op D, and the negative
endpoint homeomorphism v +— v_ from W (w) to 0, X — {w4}, with s € R the real
parameter such that v' = g~*v € W+ (w) where v € W%*(w), noting that t — s depends
only on vy = wy and v_ =0’ ,

e the definitions of the measures py -+, (see Equation (7.9)) and &7, (see Equation (7.1))
and the cocycle property of C'*,

e Equation (3.8) and the cocycle properties of C*,

we have

L OLLEC

C (zo,m(v C xg, (v
o(v) o= o TEDFCL TN gy gy (o) dpi, (v4)

V4 €0 X —0xp D Lean{mr} LGR
C (wo, m(g"v)+C, (o, m(g""))

- b(gv) e ds dp, (o) dyit (ws)
weﬁ}rD v'eW T (w) JseR

O ) mg ) HCL, (r(w), 7@ ) N
:J DJ e o) e + ds djtyy+ oy (v)) d5 (w)
we v'e w eSS
s C:: w(w), w (v’ ~
Lo L ot T s ) ),
wEe v'e w SE

which implies the claim for the fibration f 5. The proof for the fibration f, is similar. O
In particular, for every u € 4_ X, applying the above proposition and a change of variable
to D = HB_(u) for which 1D = N, (W~ (u)) and

Uy =9X W)= ] Worw
weW —(u)

the restriction to X — W%t (1u) of the Gibbs measure mp disintegrates over the strong
unstable measure py— () = (N, )™1)«55, with conditional measure on the fiber W* (w) of

w € W~ (u) the measure v, = I/;[,(w). for every ¢ € €.(4X — W (1u)), we have
| 6(0) dir(v) =
GX-WOt(Lu)
(.| 6(g") < T Gy ) dag oy (w) . (7.13)
weW = (u) Jv'eW+(w) JseR

Note that if the Patterson densities have no atoms, then the stable and unstable leaves have
measure zero for the associated Gibbs measure. This happens for instance if the Gibbs measure
mp is finite, see Corollary 4.6 and Theorem 4.5.

7.2 Equivariant families of convex subsets and their skinning
measures

Let I be an index set endowed with a left action of T'. A family 2 = (D;);er of subsets of X
or of X indexed by I is I'-equivariant if vD; = D.; for all vy € I' and 7 € 1. We will denote
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by ~ = ~4 the equivalence relation on I defined by ¢ ~ j if and only if D; = D; and there
exists v € I' such that j = i. This equivalence relation is I'-equivariant: for all 7,5 € I and
~v €I, we have i ~ ~j if and only if i ~ j. We say that & is locally finite if for every compact
subset K in X or in X, the quotient set {i € I : D; n K # &}/ is finite.

Examples. (1) Fixing a nonempty proper closed convex subset D of X, taking I = I" with
the left action by translations (v,i) — i, and setting D; = iD for every i € I' gives a
I-equivariant family 2 = (D;);c;. In this case, we have i ~ j if and only if i~!j belongs to
the stabiliser I'p of D inT', and I/ =T'/T'p. Note that D depends only on the class [y] of v
in I'/T'p. We could also take I’ = T'/T'p with the left action by translations (v, [7']) — [v7],
and 2’ = (yD)[yjer, so that for all i, j € I, we have i ~g j if and only if i = j, and besides,
2’ is locally finite if and only if Z is locally finite. The following choices of D yield equivariant
families with different characteristics:

(a) Let g € I' be aloxodromic element with translation axis D = Ax,,. The family (yD)er
is locally finite and I'-equivariant. Indeed, by Lemma 2.1, only finitely many elements
of the family (vD).er /T meet any given bounded subset of X.

(b) Let £ € X be a geodesic line whose image under the canonical map X — I'\¥ X has
a dense orbit in "% X under the geodesic flow, and let D = ¢(R) be its image. Then
the I'-equivariant family (yD)qer is not locally finite.

(c) More generally, let D be a convex subset such that I'p\D is compact. Then the family
(YD)~er is a locally finite I'-equivariant family.

(d) Let & € 05X be a bounded parabolic limit point of I', and let J# be any horoball in X
centred at {. Then the family (7.%#),er is a locally finite I'-equivariant family.

(2) More generally, let (D“)aea be a finite family of nonempty proper closed convex subsets
of X, and for every a € A, let F, be a finite set. Define I = (J, 4T x {a} x F, with the
action of I' by left translation on the first factor, and for every i = (v, o, z) € I, let D; = vD®.
Then I/« = J,ea /T pa x {a} x F, and the I'-equivariant family 2 = (D;)er is locally
finite if and only if the family (yD*) er is locally finite for every o € A. The cardinalities of
F, for a € A contribute to the multiplicities (see Section 12.2).

Let 2 = (D;)ier be a locally finite I'-equivariant family of nonempty proper closed convex

subsets of X. Let Q = (£;);er be a I'-equivariant family of subsets of GX , where §2; is a
measurable subset of 01 D; for all i € I (the sign + being constant). Then

o = :}: ‘7[%|in

el/~

is a well-defined I'-invariant locally finite measure on GX , whose support is contained in
¢, 0X. Hence, the measure 55 induces a locally finite measure on I'\ GX , denoted by 05,
see for example | , §2.6], in particular for warnings concerning the fact that I does not
always act freely on ¥X. When Q) = 8;@ = (%LDZ-)Z-e 1, the measure 56 is denoted by

~+ ~+
7= 3 ok

€l/~
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The measures 5; and ¢, are respectively called the outer and inner skinning measures of 2
on 4X, and their induced® measures (T;; and 0, on I'\9X are the outer and inner skinning
measures of 2 on '\ 9 X.

Example. Consider the I'-equivariant family 9 = (7D),er/r, with D = {x} a singleton in X.

With 7% = (P5|a,x) "t : 0L D — 05, X the homeomorphism p — px, we have (74),55 = u

by Remark (1) in Section 7, and

+
+ ez |
ozl = . 7.14
3See for instance | , §2.6] for details on the definition of the induced measure when I' may have

torsion.
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Chapter 8

Explicit measure computations for
simplicial trees and graphs of groups

In this Chapter, we compute skinning measures and Bowen-Margulis measures for some highly
symmetric simplicial trees X endowed with a nonelementary discrete subgroup I' of Aut(X).
The potentials F' are supposed to be 0 in this Chapter, and we assume that the Patterson
densities (] )zevx and (p )zeyx of I' are equal, denoted by (uz)zevx. As the study of
geometrically finite discrete subgroups of Aut(X) mostly reduces to the study of particular
(tree) lattices (see Remark 2.12), we will assume that I' is a lattice in this Chapter.

The results of these computations will be useful when we state special cases of the equidis-
tribution and counting results in regular and biregular trees and, in particular, in the arith-
metic applications in Part III. The reader only interested in the continuous time case may
skip directly to Chapter 9.

A rooted simplicial tree (X, zg) is spherically symmetric if X is not reduced to x¢ and has
no terminal vertex, and if the stabiliser of zp in Aut(X) acts transitively on each sphere of
centre xg. The set of isomorphism classes of spherically symmetric rooted simplicial trees
(X, zg) is in bijection with the set of sequences (p,)nen in N — {0}, where p,, + 1 is the degree
of any vertex of X at distance n from xg.

Lo

po+1l m D2 D3

If (X, x0) is spherically symmetric, it is easy to check that the simplicial tree X is uniform
if and only if the sequence (py,)nen is periodic with palindromic period in the sense that there
exists N € N — {0} such that p,+n = p, and py_,, = py, for all n € N (such that n < N for
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the second property). If N = 1, then X = X, is the regular tree of degree py + 1, and if
N =2, then X = X, ,,, is the biregular tree of degrees pg + 1 and p; + 1.
The Hausdorff dimension hx of 0, X for any visual distance is then

hX = %ln(po . -pN—l) s

see for example [Lyo, p. 935].

8.1 Computations of Bowen-Margulis measures for simplicial
trees

The next result gives examples of computations of the total mass of Bowen-Margulis measures
for lattices of simplicial trees having some regularity properties.

Analogous computations can be performed for Riemannian manifolds having appropriate
regularity properties. We refer for instance to | , Prop. 10] and | , Prop. 20
(1)] for computations of Bowen-Margulis measures for lattices in the isometry group of the
real hyperbolic spaces, and to | , Lem. 4.2 (iii)| for the computation in the complex
hyperbolic case. In both cases, the main point is the computation of the proportionality
constant between the Bowen-Margulis measure and Sasaki’s Riemannian volume of the unit
tangent bundle. When dealing now with simplicial trees, similar consequences of homogeneity
properties will appear below.

We refer to Section 2.7 for the definitions of T'w, Tvol, TVol appearing in the following
result.

Proposition 8.1. Let (X, xg) be a spherically symmetric rooted simplicial tree with associated
sequence (pp)nen such that X is uniform, and let T' be a lattice of X.

(1) For every x € VX, let rp = d(z, Aut(X)zg), and let

(pr, — 1)62 "= hx i 2po
(po+1)%p% ... P2 _ipr, (o + 1)

Cyp =

ifry #0 andcm=[% if r. = 0. Then

1
HmBM“ = Z ﬁ (||Nz”2 - Z Mm(aex>2)
[z]lem\VX '™ 7 eeEX : o(e)=x

Cx
= Hluxo H2 Z Tl (8.1)

[z]el\VX V|

(2) If X = X, 4 is the biregqular tree of degrees p + 1 and q¢ + 1, with VX = V,X u VX the
corresponding partition of the set of vertices of X, if the Patterson density (piz)zevx of I is
normalised so that ||p|| = % for all x € VX, then

(T'm)smpm = Tvolpyx

and

Imeu| = TVOI(T\X) = )] p|1]L|1 + ) q|+|1 (8.2)
[z]el\Vp,x ™7 [z]el\V,x ™%
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(3) If X = X, is the regqular tree of degree q + 1, if the Patterson density (fiz)zevx of I' is
normalised to be a family of probability measures, then

T+MBM = volpyx

qg+1

and in particular
q
= —— Vol(I'\X) . .
[mewm| q+1V0( \X) (8.3)

Proof. Let us first prove the first equality of Assertion (1). For every z € VX, we may
partition the set of geodesic lines ¢ € ¥X with £(0) = = according to the two edges starting
from x contained in the image of £. The only restriction for the edges is that they are required
to be distinct.

For every e € EX, recall from Section 2.7 that 0.X is the set of points at infinity of the
geodesic rays whose initial edge is e. For all e € EX and z € VX, say that e points away from
x if o(e) € [z,t(e)], and that e points towards x otherwise. In particular, all edges with origin
x point away from z. Hence by Equation (4.11), and since p, = p, = p;, we have

1
TxMBM = Z Z M;(aEX) ,LL;F(ae/X) A[:Jc] (84)

[z]eT\VX |F$| e,e’€EX : o(e)=o(e/)=z, e#e’
1
= Z ‘P ‘ (( Z Nm(aex) )2 - Z Uz(aex)2> A[x] : (8'5)
[z]lem\VX '™ 7 eeEX : o(e)=x eeEX : o(e)=x

This gives the first equality of Assertion (1).

Let us prove the second equality of Assertion (1). By homogeneity, we assume that
|tao | = 1 and we will prove that
c
[meul = )] ik

[z]el\VX V|

Let N € N — {0} be such that p,+n = p, and py_,, = p, for all n € N, which exists since
X is assumed to be uniform. Then the automorphism group Aut(X) of the simplicial tree
X acts transitively on the set of vertices at distance a multiple of N from zy. Hence for
every = € VX, the distance 7, = d(z, Aut(X)zg) belongs to {0,1,...,[ 5]}, and there exists
Vs Vo € Aut(X) such that d(z,y,x0) = re, © € [V2T0,V4x0] and d(vz0,Vez0) = N. The map
x + 1 is constant on the orbits of I in VX (actually on the orbits of Aut(X)) and hence the
right hand side of Equation (8.1) is well defined.

Since the family (ul®"),cyx of Hausdorff measures of the visual distances (0o X, d;) is
invariant under any element of Aut(X), since I' is a lattice and by Proposition 4.14, we have
Or = hx and Yifty = fiye for all 2 € VX and v € Aut(X).

Since (X, ) is spherically symmetric, and since p, is a probability measure, we have by
induction, for every e € EX pointing away from xy with d(xg,o0(e)) = n,

1

20 (0eX) =
Hao (0cX) (Po+1)p1 ... pn

(3.6)

if n # 0, and f,(0.X) = [ﬁ otherwise.

For every fixed x € VX, let us now compute p,(0.X) for every edge e of X with origin z.
Let v = 72,7 = 7, € Aut(X) be as above. By the spherical transitivity, we may assume that
e or € belongs to the edge path from vz to +/zg.
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There are two cases to consider.

Case 1: Assume first that e points away from yxg. There are pg + 1 such edges starting

from x if r; = 0, and p,, otherwise. By Equation (8.6) and by invariance under Aut(X) of

( ,u?aus)xevx, we have

1
po+1)p1 ... pr,

with the convention that the denominator is pg 4+ 1 if 7, = 0. Since the map & — Se(x, yzo)
is constant with value —r, on 0.X, and by the quasi-invariance property of the Patterson
density (see Equation (4.2)), we have

U’Yﬂﬁo(aex) = (

)

67"1' hx

T an :eiar(irz) T an = )
pa(0eX) Heo (eX) (po+1)p1 ... pr,

with the same convention as above.

Case 2: Assume now that e points towards yxg. This implies that r, > 1, and there is one
and only one such edge starting from x. Then as above we have

1

1o (3.X) =
Hrao (0eX) (pN +1)pN_1 ... Dry

)

and
e(N—Tm)hX

2(0.X) = e CIN=2))y ,(0,X) = .
,U, ( ) /’L’Y 0( ) (pN+1)pN—l p'r‘z

Therefore, if we set for every z € VX,

G=( Y mex) - Y m@Ex?, (8.7)

eeEX : o(e)=z eeEX : o(e)=x
we have if 7, # 0, since eV = pop1 ... pn_1 and py = po,
C ( erzchX + e(N_rw)hX )2
= p =
; “o+Dp1-..pr, (N +1)DPN-1 ... Dr,
erzhx 9 e(NfrI)hX 9
- (pn. + )
( " ((p0+1)p1---prz) ((pN+1)pN—1---pr,)

(9 = pry) €2l 2 py, eV x

(po+1)2p1? ... 0,2 (Po+1)p1 ... Drobr, - -PN-1(pN + 1)
(pr, — 1) e?=hx 2po

= + =Cg,

(po+1)2p12 ... pro—1?pr,  (po+1)2

and, if r, =0,

C (( +1) 1 )2 ( +1)( 1 )2 Po
— — — = C, .
v Po po+1 Po po+1 po+1 v
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Assertion (1) of Proposition 8.1 now follows from Equation (8.5).

Let us prove Assertion (2) of Proposition 8.1. Note that X = X, , is spherically symmetric
with respect to any vertex of X, and that

1
by = 5 In(pq) .

Let e be an edge of X, with x = o(e) € V,X and y = t(e) € V,X. For every z € VX, we define
C as in Equation (8.7).

Note that by homogeneity, we have C, = C, and || = |uz| for all z € VX, as well as
C, = Cy and ||p;|| = [|py| for all z € V,X. Hence the normalisation of the Patterson density
as in the statement of Assertion (2) is possible. By the spherical symmetry at x, and the

normalisation of the measure, we have f1,(0.X) = %= and 1,(3zX) = /p. Therefore

VP

HMyH = Ny(an) + ,Uy(ééx) = ehxﬂm(aex) + e_hxﬂm<aéx>
g+l

1 1
Pq—=+ ——=P="——
VP A/Pq NG
This symmetry in the values of |y and || explains the choice of our normalisation. We
have

2
o= sl = 4 D () = el = o+

and similarly C, = q%“ tyl? = g + 1. This proves the second equality in Equation (8.2), by
the first equation of Assertion (1).
In order to prove that (T'7).mpm = Tvolpx, we now partition I'¢X as

) {£en\@X : £0) = (o(e)), £(1) = 7(t(e))} -
[e]lel\EX

Using on every element of this partition Hopf’s decomposition with respect to the basepoint
o(e), we have, by a ramified covering argument already used in the proof of the second part
of Proposition 4.13,

1
(T'T)«mpm = Z T Ho(e) (0nX — 0eX) po(e) (0eX) Al -
[e]leM\EX '~ €

Since fio(e) (0eX) = e*hx,ut(e)(ﬁeX) and by homogeneity, we have

degt(e) — 1
degt(e)

Z 1 dego(e) —1

h
ITe| degole) lieey| €™ A

(T'm)smpm = Hﬂo(e) I

[e]eM\ EX

1 H/’Lo(e) ” H/Lt(e)H \/ZTq A
Tel  (p+1)(g+1)

g

[e] = TVOIF\X .
[e]el\ EX

The first equality of Equation (8.2) follows.

Finally, the last claim of Assertion (3) of Proposition 8.1 follows from Equation (8.1), since
Cyp = q% for every x € VX, (or by taking ¢ = p in Equation (8.2) and by renormalising). The
first claim of Assertion (3) follows from the first claim of Assertion (2), by using Equation

(2.16). O
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Remark 8.2. (1) In particular, when X = X, is regular, the Patterson density is normalised
to be a family of probability measures and I" is torsion free, then m,mpy is qqu times the
counting measure on I'\VX. In this case, Equation (8.3) is given by | , Rem. 2].

(2) If X = X, 4 is biregular with p # ¢, then mumpy is not proportional to volpyx. In
particular, if I' is torsion free and the Patterson density is normalised to be a family of
probability measures, then w,mpgy is the sum of ]% times the counting measure on I'\V,X
and qqu times the counting measure on I'\V;X.

This statement is similar to the well-known fact that in pinched but variable curvature,
the Bowen-Margulis measure is generally not absolutely continuous with respect to Sasaki’s
Riemannian measure on the unit tangent bundle (it would then be proportional by ergodicity
of the geodesic flow in the lattice case).

8.2 Computations of skinning measures for simplicial trees

We now give examples of computations of the total mass of skinning measures (for zero
potentials), after introducing some notation. Let X be a locally finite simplicial tree without
terminal vertices, and let " be a discrete subgroup of Aut(X).

For every simplicial subtree D of X, we define the boundary dVID of VID in X as
VD ={xeVD : Jee EX, o(e) ==z, t(e) ¢ VD} .

The boundary D of D is the maximal subgraph (which might not be connected) of X with
set of vertices 0VID. If I is a discrete subgroup of Aut(X), then the stabiliser I'p of D acts
discretely on JD.

For every x € VX, we define the codegree of x in D as codegp(z) = 0 if x ¢ D and otherwise

codegp () = degx(z) — degp(z) .

Note that codegp(z) = 0 if 2 ¢ OV, and that the codegree codeg 4. p(z) of z € VX is 0
unless x lies in the boundary of the 1-neighbourhood of D, in which case it is constant equal
to degx(x) — 1.

Let 2 = (D;)er be a locally finite I'-equivariant family of simplicial subtrees of X, and let
x € VX. We define the multiplicity' of x in (the boundary of) 2 as (see Section 7.2 for the
definition of ~)

_ Card{iel/., : xedVD}
= T .

The numerator and the denominator are finite, by the local finiteness of the family Z and
the discreteness of I', and they depend only on the orbit of x under I'. Note that if D is a
simplicial subtree of X which is precisely invariant under T (that is, whenever « € I is such
that D N 7D is nonempty, then  belongs to the stabiliser I'p of D in I'), if Z = (YD),er/r,,
and if x € VD, then

mg(x)

1
1

mg(z)

In particular, if furthermore I" is torsion free, then mgy(x) = 1 if x € dVD, and mgy(x) = 0
otherwise.

1See Section 12.2 for explanations on the terminology.
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Example 8.3. Let ¢4 be a connected graph without vertices of degree < 2 and let X be its
universal cover, with covering group I'. If C'is a cycle in 4 = I'\X and if Z is the family of
geodesic lines in X lifting C, then mgy(x) = 1 for all z € VX whose image in ¢4 = I'\X belongs
to C'if C' is a simple cycle (that is, if C passes through no vertex twice).

We define the codegree of x in & as

codegy () = Z codegp, () ,

iE]/~@
which is well defined as codegp, (z) depends only on the class of i € I modulo ~4. Note that
codeg(z) = (degy @ — k) |Ta | mos(2) (8.8)

if degp, (x) = k for every x € 0VID; and i € I. If every vertex of X has degree at least 3, this is
in particular the case with k = 2 if ID; is a line for all ¢ € [ and with k£ = 1 if D; is a horoball
for all i € I.

We will say that a simplicial subtree D of X, with stabiliser I'p in T', is almost precisely
invariant if there exists N € N such that for every x € VD, the number of v € T'/T'p such
that € y0VD is at most N. It follows from this property that if 2 = (yD).er, then Z is
locally finite and codegy(z) < N codegp(z) for every z € X.

Proposition 8.4. Assume that X is a reqular or biregular simplicial tree with degrees at least
3, and that T is a lattice of X.

(1) For every simplicial subtree D of X, we have

T -

~t lpz| codegp(z)
TyOm = A
D xg;x degx ()

(2) If 2 = (Dy)ier is a locally finite T'-equivariant family of simplicial subtrees of X, then

S [pz|| codegg ()

MOy = [=]
[.T]EF\VX |F$ | degX (.’L’)

(8) Let k € N and let D be a simplicial subtree of X such that degp(x) = k for every x € oVD
and the T'-equivariant family 9 = (YD)p r,, is locally finite. Then

+ lpy|l (degx (y) — k)
9 = Z Ary .
I'pyelp\ovVD |(P'p)y| degx(y)

(4) If D is a simplicial subtree of X such that the I'-equivariant family 9 = (yD)rr, is locally
finite, then the skinning measure 0'% is finite if and only if the graph of groups T'p\0oD has
finite volume.

Before proving Proposition 8.4, let us give some immediate consequences of Assertion (3).
If X = X, 4 is biregular of degrees p+1 and ¢+ 1, let VX = V,,X 1 VX be the corresponding
partition of the set of vertices of X and, for r € {p, ¢}, let 0,D be the edgeless graph with set
of vertices oVD n V. X.
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Corollary 8.5. Assume that (X,T") is as in Proposition 8.4. Let D be a simplicial subtree of
X such that the I'-equivariant family 9 = (yD)rr, is locally finite.

(1) If X = X,, 4 is bireqular of degrees p + 1 and g + 1 and if the Patterson density (fz)zevx
of T' is normalised so that ||p.|| = \/ﬁ% for all x € VX, then

o if D is a horoball,

loZ| = +/p Vol(I'p\d,D) + /g Vol(I'p\o,D) ,

o if D is a line,

k] = p}pl Vol(T'p\3,D) + q_\/al Vol(I'p\2,D) - (89)

(2) If X = X is the reqular tree of degree q + 1 and if the Patterson measures (fiz)zcvx are
normalised to be probability measures, then

e if D is a horoball,

+ q
| = —— Vol(I'p\oD 8.10
ol = L Vol(To'\eD) (5.10)
e if D is a line,
lot] = T L volrp\p) (8.11)
7 qg+1 D ' ’
Proof of Proposition 8.4. (1) We may partition the outer/inner unit normal bundle

%L]DD of D according to the first/last edge of the elements in 8}£]D). On each of the elements
of this partition, for the computation of the skinning measures using its definition and its
independence of the basepoint (see Section 7.1), we take as basepoint the initial/terminal

point of the corresponding edge. Since D is a simplicial tree, note that for every e € EX such
that o(e) € VD, we have e € ED if and only if ¢(e) € VID. Thus, we have

77*5]1; = Z Ho(e) (an) Ao(e)
eeEX : o(e)eVD, t(e)¢VD

> > Ha(0.X)) A,

zedVD ecEX: o(e)=z, t(e)¢VD

and similarly

Tw0p = > te(e) (0eX) Ay(e)
eeEX : t(e)eVD, o(e)¢VD

(X #2(0X)) A .

zedVD ecEX: o(e)=z, t(e)¢VD

As in the proof of Proposition 8.1 (2), since X is spherically homogeneous around each point
and since I' is a lattice (so that the Patterson density is Aut(X)-equivariant, see Proposition

4.14), we have pz(0.X) = djgg(”x) for all z € VX and e € EX with o(e) = z. Assertion

(1) of Proposition 8.4 follows, since Y ccpx . o(e)—s, t(e)evn 1 = codegp(z) if x € VD and
codegp(z) = 0 otherwise.
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(2) By the definition® of the skinning measures associated with I'-equivariant families, we
have 53 = Yc; /o 5["51,, where ~ = ~4. Hence by Assertion (1)

e i) codegp, (2)
TsOy = Z T, = Z Z dogy (2) Ay

iel/~ i€l /~ zeVX
x @ d
_ Z ( Z CodegDi(x)) dN I _ Z e |dCO gy () A, .
2eVX iel/~ o8x zeVX egx(2)

By the definition of the measure induced in I'\VX when I may have torsion (see for instance
| , §2.6]), Assertion (2) follows.

(3) It follows from Assertion (2) and from Equation (8.8) that

+ Z degx(z) —

Tx0y = ||Mx|\ ma(z) Ap -
[z]eD\VX degy (2)

For every x € VX, by the definition of mg(z), we have, by partitioning VD into its orbits
under I'p,

mg(z) = ‘Fl‘Card{'y e 'p\I' : vz € OVD}

Z Card{y e I'p\I" : I'pyz = I'py}
| Ipyelp\ovD

N 2 Card{y e I'p\I" : I'pyy = I'py}
Ipyelp\oVD, M'z=Ty

1
= ‘ ‘ 2 [Fy : (FD)ZJ] = Z ’(F]D)>y| :

! Ipyelp\ovVD, F'z=Ty Ipyelp\éVD, Tz=Ty

This proves Assertion (3), since > 1er\vx, ra—ry Az = Ary-
(4) Tt follows from Assertion (2) that

Z |pz|| codegy () .
|Fx| degx ()

loZ] =
[2]eD\VX

Note that for every x € dVID, we have

Tz|mg(z) < codegy (r) < degx (2) [Tzl ma(z) -

Let m = mingevx |pe]| and M = maxgeyx | o], which are positive and finite, as the total
mass of the Patterson measures takes at most two values, since I is a lattice and X is biregular.
By arguments similar to those in the proof of Assertion (3), we hence have

m
mingeyx degx ()

The result follows. ]
2See Section 7.2.
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We now give a formula for the skinning measure (with zero potential) of a geodesic line
in the simplicial tree X, using Hamenst#idt’s distance d and measure® ji 4 associated with
a fixed horoball 77 in X. This expression for the skinning measure will be useful in Part III.

Lemma 8.6. Let 57 be a horoball in X centred at a point £ € 0,X. Let L be a geodesic line
in X with endpoints Ly € 0,X — {€}. Then for all p € 01 L such that py # &,

dy(Ly,L_)°r
d%(p-‘ra L—)6F d%(p-l-a Ly

s} (p) = Jor e (p+) -

Proof. By Equations (2.9) and (7.6), the power d " of the distance and the measure p
scale by the same factor when the horoball is replaced by another one centred at the same
point. Thus, we can assume in the proof that L does not intersect the interior of 52.

Fix pe (ﬂL such that p; # . Let y be the closest point to & on L, let zo be the closest
point to L on 57, and let z be the closest point to £ on p([0, +0[). Let ¢ — x; be the geodesic
ray starting from zg at time ¢ = 0 and converging to £&. When t is big enough, the points p,,
z, ¢y and £ are in this order on the geodesic line ]p4, [

We have, by the definition in Equation (7.1) of the skinning measure,

Ao} (p) = e e 0Oy (py) = s (o0 000 s (0O g ()

— ¢ 0r Be(zt, 2)—or d(z,p(O))d'uxt (py) = 01 t=0r B¢ (0, 2)—dr d(z,P(O))d'UJ (p+)

Tt 9

and by the definition of Hamenstadt’s measure 4 (see Equation (7.5))

dp(p+) = €6Ftd#zt (p+) -

Case 1: Assume first that p(0) # y. We may assume that p(0) € [y, L+[. Then z = p(0) and
z is the closest point to ¢ on the geodesic line |Ly, py[. Thus dy(L—,Ly) = dyp(L_, p4)
and d (L4, py) = e~ U= 70) — ¢Be(20.2) " and the claim follows.

Case 2: Assume now that y = p(0). Then [y, z] = [y,&[ N [y, p+[, and we may assume that
xg = z up to adjusting the horoball % while keeping its point at infinity. Thus d»(L_, L) =
e~ 4w w0) — ¢=d(z.p0) and d o (L_, p;) = dy (L, py) = 1, and the claim follows. O

3See the definitions of Hamenstidt’s distance and measure in Sections 2.3 and 7.1 respectively.

120 19/12/2016



Chapter 9

Rate of mixing for the geodesic flow

Let X, xo,F,ﬁ, (uf)zex be as in the beginning of Chapter 7. In this Chapter, we start
by collecting in Section 9.1 known results on the rate of mixing of the geodesic flow for
manifolds. The main part of the Chapter then consists in proving analogous bounds for the
discrete time and continuous time geodesic flow for quotient spaces of simplicial and metric
trees respectively.

We define mp = Hrmnii\\ when the Gibbs measure is finite. Recall that this measure is
nonzero since I' is nonelementary.

Let o € ]0,1].) We will say that the (continuous time) geodesic flow on T\¥X is ea-
ponentially mizing for the a-Hélder regularity or that it has exponential decay of a-Hdlder
correlations for the potential F' if there exist C, s > 0 such that for all ¢,y € ¢*(I"\¥ X) and

t € R, we have

[ vogtvamp— | odmr| wdmE|<Cet ol ol
Nex Ngx

Nx

and that it is polynomially mizing or has polynomial decay of a-Hélder correlations if there
exist C' > 0 and n € N — {0} such that for all ¢,¢ € €*(I"\¥ X) and t € R, we have

| ocgtvdmp— | odmp|  vdmE|<C @) 6l Wl
nex Ngx

Nx

9.1 Rate of mixing for Riemannian manifolds

When X = M is a complete Riemannian manifold with pinched negative sectional curvature
with bounded derivatives, then the boundary at infinity of M , the strong unstable, unstable,
stable, and strong stable foliations of TN are only Holder-smooth in general.? Hence Holder
regularity on functions on TIM is appropriate.

The geodesic flow is known to have exponential decay of Holder correlations for compact
manifolds M when
e M is two-dimensional and F' is any Holder potential by | .

'"We refer to Section 3.1 for the definition of the Banach space %(Z) of bounded a-Hélder-continuous
functions on a metric space Z.

2See for instance | | when M has a compact quotient (a result first proved by Anosov), and | ,
Theo. 7.3].
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e M is 1/9-pinched and F = 0 by | , Coro. 2.7],

e myp is the Liouville measure by [Live|, see also [Tsu], [NZ, Coro. 5| who give more precise
estimates,
e M is locally symmetric and F is any Holder potential by [Sto], see also [MO].

When M is a symmetric space, then the boundary at infinity of M , the strong unstable,
unstable, stable, and strong stable foliations of T M are smooth. Hence talking about leafwise
%"'-smooth functions on T M makes sense. We will denote by %X(N) the vector space of real-
valued €*-smooth functions on the orbifold T'M = F\T1M (that is, the maps induced on
T'M by the €*‘-smooth T'-invariant functions on Tll\,\f), with compact support in 7'M, and
by |||, the Sobolev W*2-norm of any ¢ € €*(T'M).

Given £ € N, we will say that the geodesic flow on T'M is exponentially mizing for the (-
Sobolev regularity (or that it has exponential decay of ¢-Sobolev correlations) for the potential
F if there exist ¢, x > 0 such that for all ¢, € €/(T'M) and all t € R, we have

[, sogtvamr- | odmp | wamp|<ce ol ol
TiM TIM

T'M

When F' = 0 and I' is an arithmetic lattice in the isometry group of M (the Gibbs measure
then coincides, up to a multiplicative constant, with the Liouville measure), this property, for
some ¢ € N, follows from | , Theorem 2.4.5], with the help of [Clo, Theorem 3.1] to check
its spectral gap property, and of | , Lemma 3.1| to deal with finite cover problems.

9.2 Rate of mixing for simplicial trees

Let X be a locally finite simplicial tree without terminal vertices, with geometric realisation
X = |X|1. Let T be a nonelementary discrete subgroup of Aut(X) and let ¢: EX — R be a
system of conductances for I" on X.

In this Section, building on the end of Section 4.4 concerning the mixing properties them-
selves, we now study the rates of the mixing properties of the discrete time geodesic flow on
N¥X for the Gibbs measure m, = mp,, when it is mixing.

Let (Z,m,T) be a dynamical system with (Z, m) a probability space and T : Z — Z a
(not necessarily invertible) measure preserving map. For all n € N and ¢,v € L?(m), the
(well-defined) n-th correlation coefficient of ¢, is

COVim. (0, 1) = L ¢ o T b dm — L ¢ dm L b dm .

Let a € ]0,1] and assume that Z is a metric space (endowed with its Borel o-algebra).
Similarly as for the case of flows in the beginning of Chapter 9, we will say that the dynamical
system (Z,m,T) is exponentially mizing for the a-Holder regularity or that it has exponential
decay of a-Hélder correlations if there exist C, k > 0 such that for all ¢,v € €*(Z) and n e N,
we have

| coVim,n(@,9)] < C e |P]a []a-

Note that this property is invariant under measure preserving conjugations of dynamical
systems by bilipschitz homeomorphisms.
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The main result of this Section is a simple criterion for the exponential decay of correlation
for the discrete time geodesic flow on I'\¥X.
We define m, = HT’Z—ZH when the Gibbs measure m. on I'\¥X is finite, and we use the

dynamical system (IT'\¥X, Mg, g') in the definition of the correlation coefficients.
Given a finite subset E of I'\VX, we denote by 75 : '"\¥9X — N u {400} the first return
time to F of the discrete time geodesic flow:

T5(¢) = inf{n e N— {0} : g"¢(0) € E},
with the usual convention that inf ¢J = +o0.

Theorem 9.1. Let X,T',¢ be as above, with 0. finite. Assume that the Gibbs measure m is
finite and mixing for the discrete time geodesic flow on T\YX. Assume moreover that there
exist a finite subset E of T\VX and C', k' > 0 such that for all n € N, we have

me({{e T\GX : £(0) € Eand 75(0) = n}) <C' e "™ (9.1)

Then the discrete time geodesic flow on T\YX has exponential decay of a-Hélder correlations
for the system of conductances c.

A similar statement holds for the square of the discrete time geodesic flow on I'\%yenX
when m. is finite, €Al is a uniform simplicial tree with degrees at least 3 and Lr = 2Z.

Note that the crucial Hypothesis (9.1) of Theorem 9.1 is in particular satisfied if "X
is finite, by taking £ = T'\VX. But the result is quite well-known in this case: when T is
torsion free, it follows from Bowen’s result | , 1.26] that a mixing subshift of finite type
is exponentially mixing.

Proof. Let X' = ¥ATl'. Using the coding introduced in Section 5.2, we first reduce this
statement to a symbolic dynamics one.

Step 1 : Reduction to two-sided symbolic dynamics

Let (X,0) be the (two-sided) topological Markov shift with alphabet .7 and transition
matrix A constructed in Section 5.2, conjugated to (I'\¥X’, g!) by the homeomorphism © :
MN¥X' — X (see Theorem 5.1). Let P = O, HZZ—ZH, which is a mixing o-invariant probability
measure on Y. Let

&={(e ,het)ed :t(e”)=0(e") e E}.

The set & is finite since the degrees and the vertex stabilisers of X are finite. For all x € X
and k € Z, we denote by xj the k-th component of x = (z,)nez. Let

Tg(x) = inf{n e N— {0} : z, € &}

be the first return time to & of x under iteration of the shift o.
Let 1, : ¥ — &/~ be the natural extension (n)nez > (Tn)nen. Theorem 9.1 will follow
from the following two-sided symbolic dynamics result.?

Theorem 9.2. Let (3,0) be a locally compact transitive two-sided topological Markov shift
with alphabet &7 and transition matriz A, and let P be a mixing o-invariant probability measure
with full support on ¥. Assume that

3 Assumption (1) of Theorem 9.2 is far from being optimal, but will be sufficient for our purpose.
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(1) for every A-admissible finite sequence (wo, ..., wy) in <, the Jacobian of the map from

{(@k)ken € T4(2) w0 = wn} to {(yk)ken € T4(X) : Yo = wo,...,Yn = wp}
defined by (xg,x1,22,...) — (Wo, ..., Wy, T1,Ta,...), with respect to the restrictions of
the pushforward measure (w4)P, is constant;

(2) there exist a finite subset & of & and C', k' > 0 such that for all n € N, we have

P({zeX : zp€ & and 74(z) = n}) < C’ erm (9.2)

Then (3,P,0) has exponential decay of a-Hélder correlations.

Proof that Theorem 9.2 implies Theorem 9.1. Since m, is supported on 4X’, up to
replacing X by X', we may assume that 0, I" = AT".

By the construction of © just before the statement of Theorem 5.1, for every £ = IVAS
N\ZX, we have (00)g = (eg (£), ho(£), ed (£)) with ed (£)) = p(£([0,1])) where p : X — I'\X' is
the canonical projection, so that o(eg (¢))) = £(0). Since © conjugates g' to o, we have

(©0)n = (¢"(00))o = (O(g"0))o € &

if and only if ¢"¢(0) € E, and
T£(00) = 1R({) .

Therefore Theorem 9.1 will follow from Theorem 9.2 by conjugation since © is bilipschitz,
once we have proved that Hypothesis (1) of Theorem 9.2 is satisfied for the two-sided topo-
logical Markov shift (X, ) conjugated by © to (I'\¥¢X,g!), which is the main point in this
proof.

We hence fix an A-admissible finite sequence w = (wy, ..., w,) in o/. We denote by
[wn] = {(k)keny € T4(E) : 2o = wn},

[w] = {(yk)ken € T4(2) : Yo = wo, ..., Yn = W}

and fy, : (xo,x1,22,...) — (wo,...,Wn,T1,T2,...) the sets and map appearing in Hypothesis
(1). We denote by @ and w,, the discrete generalised geodesic lines in X associated with w
and wy, (see the proof of Theorem 5.1 just after Equation (5.3)). Since w ends with w,, by
the construction of O, there exists v € ' sending the two consecutive edges of W, to the last
two consecutive edges of w. We denote by z = w(0) and y = w,(0) the footpoints of w and
w,, respectively.

@ o6
M
A S oy
EEmer e
oy
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For every discrete generalised geodesic line w € X which is isometric exactly on an
interval I containing 0 in its interior (as for w = W, wy), let

X::{Keéﬁx Igu':(qI}

be the space of extensions of w); to geodesic lines. With 0XX = {{1 : (e 94,X]} its set
of points at +o0, we have a homeomorphism ¥4,X — (9;X x 9} X) defined by ¢ — (¢_, (),
using Hopf’s parametrisation with respect to the point w(0), since all the geodesic lines in
“4,X are at the point w(0) at time ¢t = 0. Using as basepoint z¢p = w(0) in the definition of the
Gibbs measure (see Equation (4.10)), this homeomorphism sends the restriction to ¢, X of the
Gibbs measure d m.(¢) to the product measure du;(o) (0-) du 0) ¢4). Hence the pushforward

)
of ﬁ’ng x by the positive endpoint map e4 : £ — £, is u;(o)(aqu) du;r(o) (¢4), and note that
g (05X) is a positive constant.

ince my : 3 — X is the map which forgets about the past, there exist measurable maps
Uy 1 0 X — [w] and wy, : 5:{mx — [wy,] such that the following diagrams commute:

Ty o0@op mT400o0p
Yo X — [w] Yo X — [wn]
e\ = and es N tn
otx o X

Furthermore, the map u,, (respectively w,,, ) is surjective, and has constant finite order fibers
given by the orbits of the finite stabiliser Iy (respectively I'g; ). Since P = @*Ilfnlizll’ the push-
forward by the map w,, (respectively u,,,) of the measure u} (respectively ,u; ) is a constant
time the restriction of (74 )P to [w] (respectively [wy]). Finally, by the construction of the
(inverse of the) coding in the proof of Theorem 5.1, the following diagram is commutative:

OEX I [w,]

Vl lﬂu
oEX 5 [w,].

Recall that the pushforwards of measures u, v, which are absolutely continuous one with
respect to the other, by a measurable map f are again absolutely continuous one with respect
to the other, and satisfy (almost everywhere)

d fupt dp
of = —/—.
d fav dv

Hence in order to prove that Hypothesis (1) in the statement of Theorem 9.2 is satisfied, we
only have to prove that the map v : G%X — (9:£X has a constant Jacobian for the measures
u;r on 63;?3{ and p} on QJgX respectively.

For all £,n € agx, by the properties of the Patterson densities (see Equations (4.1) and
(4.2)), and since yy belongs to the geodesic ray from x to £ and n (see Equation (3.6) and
the above picture), we have

Lt (¢) () Clme) b

dpd _ dui _ _ 1
dv*ui( ) dpdy (n) e=Cn (w,2) o= STV (FS=5c)
d d p

125 19/12/2016



This proves that Hypothesis (1) in Theorem 9.2 is satisfied, and concludes the proof of
Theorem 9.1. L]

We now indicate how to pass from a one-sided version of Theorem 9.2 to the two-sided
one, as was communicated to us by J. Buzzi.

Step 2 : Reduction to one-sided symbolic dynamics

Let (X4,04) be the one-sided topological Markov shift with alphabet </ and transition
matrix A, that is, ¥ is the closed subset of the topological product space 7N defined by

Sy ={z = (Tn)nen € N V¥neN, Ay g, =1},
and o4 : ¥, — ¥, is the (one-sided) shift* defined by
(04 (2))n = Tni1
for all x € ¥, and n € N. We endow >, with the distance
d(a,a’) = e max {neN : Vie{0,..n}, z; = o} } '

Note that the distances on 3 and >, are bounded by 1.

Let m4 : ¥ — ¥4 be the natural extension (x,)nez — (2n)nen, which satisfies 74 o0 =
o4 omy and is 1-Lipschitz. Note that ¥ is transitive (respectively locally compact) if and only
if 3 is transitive (respectively locally compact).

In the one-sided case, we always assume that the cylinders start at time ¢t = 0: given an
admissible sequence w = (wp, w1, . ..,wy_1), the cylinder of length |w| = n it defines is

[w] = [wo, ..., wp—1] ={(Tp)nen € X+ : Vi € {0,...,n—1}, z; = w;}.

We first explain how to relate the decay of correlations for the two-sided and one-sided

systems. This is well-known since the works of Sinai [Sin, §3] and Bowen | , Lem. 1.6], see
for instance | , §4], and the following proof has been communicated to us by J. Buzzi. We
fix @ € ]0,1]. For all metric space Z and bounded a-Holder-continuous function f : Z — R,
let
f(z) — f(y
Il = sup  LELZJW)

)
T,yes d(.%’, y)a
O0<d(z,y)<1

so that” || flla = [ fleo + [ f]a-

Lemma 9.3. For every a € o, let us fix z* € 3 such that (2%)g = a. Let ¢ : ¥ — R be a
bounded a-Hélder-continuous map and N € N. Define o) : £, — R by:

Ve e Xy, (;s(N)(;U) = ¢(y) where { Yi = x»}r:jN if i = —N

Yi = z;, N otherwise.

Then ¢WN) is bounded and a-Hélder-continuous on X, with
oo — ™M om | <l e

Moreover,
6™ < ¥ ol and 6™ oo < [

4Although it is standard to denote the one-sided shift by o in the same way as the two-sided shift, we use
o4 for readability.
®See Section 3.1 for the definition of the Hélder norm | - | a.
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Proof. For all x = (2,,)nez € X, with y associated with 7, () as in the statement, we have
(UN(fL’))n =y, if n| < N, hence

¢ 0™ (@) = ¢N (s (2))] = |6(o™ (7)) = d(y)| < [l Ao (@), 9)* < oo e .

Moreover, if y,y’ € ¥ are associated with © = (2, )nen, 2’ = (2] )neny € X4 respectively, then
d(y,y") = eV d(z,2') if d(z,2') < e and otherwise d(y,v’) <1 < eMNd(z,2'), so that

9" (@) = oM ()| = [6(y) — o) < |8l dly,y)* < [l N d(w,a)* . O

Proposition 9.4. Let u be a o-invariant probability measure on X. Assume that the dynam-
ical system (X4, 04, (74 )ep) has exponential decay of a-Hélder correlations. Then (X, 0, p)
has exponential decay of a-Hélder correlations.

Proof. Let C,x > 0 be such that for all bounded a-Holder-continuous maps ¢',¢’ : ¥, — R
and n € N, we have

| OV i n (D, 9] < C Bl [0 €™ .

Let ¢, : ¥ — R be bounded a-Hoélder-continuous maps and n € N. Denoting by + ¢ any
value in [—t,t] for any ¢ = 0, we have, by the first part of the above lemma and for any N € N
(to be chosen appropriately later on),

ngi)oan Y dp = fquoan“v Yoo du
— | @ om ol ) oam @M om k[l e du

= . oM oo M d(r)ep £ [Dla [Y]a e N .
.

A similar estimate holds for the second term in the definition of the correlation coefficients.
Hence by the second part of the above lemma

| covp, (¢ ) < | €0Vir, ) n (7, 0P 4 2 [l [10]0 €N
C (6l + l0la ™) (Il + [¥lG e*™) €™ + 2 [lla []a e

<
< o [$]a(C 22N =57 1 9 e=a Ny

Taking N = [4%], C' = C +2¢ and &' = §, we have

|0V, n (@ )] < O [Blla [l ™™

and the result follows. O

In order to conclude Step 2, we now state the one-sided version of Theorem 9.2 and prove
how it implies Theorem 9.2.

Theorem 9.5. Let (X4, 04) be a locally compact transitive one-sided topological Markov shift
with alphabet o and transition matriz A, and let Py be a mizring o -invariant probability
measure with full support on .. Assume that

5 Assumption (1) of Theorem 9.5 is far from being optimal, but will be sufficient for our purpose.

127 19/12/2016



(1) for every A-admissible finite sequence w = (wy,...,w,) in <, the Jacobian of the map
from [wy] to [w] defined by (wy,x1,22,...) — (Wo,. .., Wn,T1,Z2,...) with respect to
the restrictions of the measure P. is constant;

(2) there exist a finite subset & of & and C', k' > 0 such that for all n € N, we have

P ({ze¥; : woe & and 74(z) = n}) < C’ e (9.3)

Then (X4,P4,04) has exponential decay of a-Hélder correlations.

Proof that Theorem 9.5 implies Theorem 9.2. Let (X,0,P,&) be as in the statement
of Theorem 9.2. Let P, = (m4)P, which is a mixing o -invariant probability measure
on X;. Note that Hypothesis (1) in Theorem 9.5 follows from Hypothesis (1) of Theorem
9.2. Similarly, Equation (9.3) follows from Equation (9.2). Hence Theorem 9.2 follows from
Theorem 9.5 and Proposition 9.4. O

Let us now consider Theorem 9.5. The scheme of its proof, using inducing and Young
tower arguments, was communicated to us by O. Sarig.

Step 3 : Proof of Theorem 9.5

In this final Step, using inducing of the dynamical system (¥X;,04) on the subspace
{reXy : xge &} = J,eplal (afinite union of 1-cylinders), we present (X1,04) as a Young
tower to which we will apply the results of | |-

Note that since o, is mixing with full measure, there exists a o, -invariant measurable
subset A of ¥4 such that the orbit under o4 of every element of A passes infinitely many
times inside the nonempty open subset | J,.s[a]. We again denote by 7¢ : A — N — {0} the
restriction to A of the first return time in J,.z[a], so that if

Ag={reA : a:oeé"}zu Anla],

ages

then 7¢(x) = min{n e N— {0} : o%xz e Ay} for all z € A. We denote by F : A — Aq the
first return map to Ag under iteration of the one-sided shift, that is

F:z— Jfb(z)(m) :

Let W be the set of admissible sequences w of length |w| at least 2 such that if w =
(wo, - .., wy) then
wo,Wn €E and wi,...,Wn_1 ¢ & .

We have the following properties:

e the sets A, = A n [a] for a € & form a finite measurable partition of Ag and for every
a € &, the sets A, = A n [w] for w e W and wy = a form a countable measurable partition
of Ag;

e for every w € W, the first return time 7,4 is constant (equal to |w| —1) on each A,,, and
if wy,|—1 = b, then the first return map F is a bijection from A, to Ay;

e for all we W and z,y € A, since x,y have the same |w| first components, we have

d(F(x), F(y)) = d(o™ ™z, o/ 7ly) = e d(z,y) > e d(z,y) ;
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o forallwe W, ne{0,...,|w| —2} and x,y € A, we have
(0%, 0ly) = €" d(z,y) < eI7? d(w,y) < d(F(x), F(y)) ;

e for every w € W, the Jacobian of the first return map F : A, — Aw‘wH for the
restrictions to A,, and Aw|w\—1 of P is constant.”

By an easy adaptation of | , Theo. 3| (see also | , §2.1]) which considers the case
when & is a singleton, we have the following noneffective® exponential decay of correlation:
there exists x > 0 such that for every ¢,¢ € €(X,), there exists a constant Cy,, > 0 such
that

|COVP+,n(¢7 ¢)| < Cab,w e ™

By an elegant argument using the Principle of Uniform Boundedness, it is proved in | ,
Appendix B| that this implies that there exists C,x > 0 such that for every ¢,¢ € € (X4 ),
we have

[covps n (0, ¥)] < C ||]a [¢fa e .
This concludes the proof of Theorem 9.5, hence the proof of Theorem 9.1. O O

The next result gives examples of applications of Theorem 9.1 when I'\X is infinite. It

strengthens | , Theo. 2.1| that applies only to arithmetic lattices and only for the locally
constant regularity (see Section 15.4), see also | | for an approach using spectral gaps. It
was claimed in [[Kwo], but was retracted by the author.

Corollary 9.6. Let X be a locally finite simplicial tree without terminal vertices. Let I' be a
geometrically finite subgroup of Aut(X) such that the smallest nonempty T'-invariant subtree
of X is uniform without vertices of degree 2. Let o € ]0,1].

(1) If Ly = Z, then the discrete time geodesic flow on T'\YX has exponential decay of
a-Hélder correlations for the system of conductances ¢ = 0.

(2) If Ly = 27, then the square of the discrete time geodesic flow on I'\GeyenX has expo-
nential decay of a-Holder correlations for the 0 system of conductances, that is, there exist

C, Kk > 0 such that for all ¢, v € €' (I\GevenX) and n € Z, we have

1
pog 2" dmpm — f ¢deMJ Y dmpm
‘ L\%mx MmBM (DN\GevenX) Jr\genx I\GovenX
< Ce ™ gla [¢]a -

The main point of this corollary is to prove the exponential decay of volumes of geodesic
lines going high in the cuspidal rays of T'\X| stated as Assumption (9.1) in Theorem 9.1.
There is a long history of similar results, starting from the exponential decay of volumes
of small cusp neighbourhoods in noncompact finite volume hyperbolic manifolds (based on
the description of their ends) used by Sullivan to deduce Diophantine approximation results
(see [Sul3, §9]).” These results were extended to the case of locally symmetric Riemannian

7 Actually, only a much weaker assumption is required, such as a Hélder-continuity property of this Jacobian,
see |.

8 Actually, there is in | | (see also [CyS5]) a control on the constant in terms of some norms of the test
functions, but these norms are not the ones we are interested in.
“and by probabilists in order to study the statistics of cusp excursions (see for instance [EF])
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manifolds by Kleinbock-Margulis | | (based on the description of their ends using Siegel
sets). Note that the geometrically finite lattice assumption on T' is here in order to obtain
similar descriptions of the ends of T'\X.

Proof. Up to replacing X by €Al', we assume that X is a uniform simplicial tree with
degrees at least 3 and that I' is a geometrically finite lattice of X. We use the 0 system of
conductances.

(1) By | | and as recalled in Section 2.7, the graph I'\X is the union of a finite graph Y
and finitely many geodesic rays R; for i € {1,...,k}, such that if (2; ,)nen is the sequence of
vertices in increasing order along R; for i = 1,...,k, then the vertex group Gy, , of x; , in

the quotient graph of groups I'\X satisfies G, , © Gy, ., for all n € N, and the edge group
of the edge e;,, with origin z;, and endpoint z; ,,+1 is equal to G%n.lo Note that since the
degrees of X are at least 3, we have [G Gy, ] = 2 and |Gy, 4| = 1, so that

xi,n+1

Gy | =27 (9-4)

Ti,n

Let E be the (finite) set of vertices V'Y of Y. Note that for all n € N — {0} and ¢ € I'\¥X,
if £(0) € E and 7g(£) = 2n, then £ needs to leave Y after time 0 and it travels (geodesically)
inside some cuspidal ray for a time at least n, so that there exists i € {1,...,k} such that
¢(n) = x; . Hence for all n € N, using

e the invariance of mpy; under the (discrete time) geodesic flow in order to get the third
term,

e Equation (8.4) where Z; , is a fixed lift of z; ,, in VX for the fifth term, and

e Equation (9.4) since [Tz | = |G, | and the fact that the degrees of the uniform
simplicial tree X are uniformly bounded and that the total mass of the Patterson measures
of the lattice ' are uniformly bounded (see Proposition 4.14) for the last term,
we have

mpm({{ € T\¥X : £(0) € E and 75(¢) = 2n})

k
< 2 mem({£ € T\IX : £(n) = z;,})

k
mem({£ € T\IX : £(0) = 7in}) = Y mempu({zin})
=1
1

Z Miz,n<aex) Iu'?v‘z,n(aE,X)

I';.
’ & ”’ e, e’eEX : o(e)=o0(e')=T; n, e#e’

8

=1
k
=1
k
=1
<k 5 maxdeg(z)® max | [* .

The result then follows from Theorem 9.1 using the above finite set E which satisfies
Assumption (9.1) as we just proved, and using Propositions 4.14 and 4.15 in order to check
that under the assumption that Lt = Z, the Bowen-Margulis measure mpgy; of I' is finite and
mixing under the discrete time geodesic flow on I"¥X.

(2) The proof of Assertion (2) of Corollary 9.6 is similar to the one of Assertion (1). I

10identifying the edge group of an edge e with its image by the structural map G — Go(e)
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Remark. The techniques introduced in the above proof in order to check the main hypothesis
of Theorem 9.1 may be applied to numerous other examples. For instance, let X be a locally
finite simplicial tree without terminal vertices. Let I' be a nonelementary discrete subgroup of
Aut(X) such that the smallest nonempty I'-invariant subtree of X is uniform without vertices
of degree 2, and such that Lpr = Z. Let o € ]0,1]. Assume that I'\X is the union of a
finite graph A and finitely many trees Ty,..., T, meeting A in one and exactly one vertex
#1,..., %, such that for every edge e in T; pointing away from the root *; of T;, the canonical
morphism Ge — G, () between edge and vertex groups of the quotient graph of groups I'\X
is an isomorphism. Assume that there exists C, x > 0 such that for all n € N,

1 _
¥ < Cenn
i=1,...,k, zeV'T; : d(x,%;)=n

Then the discrete time geodesic flow on I'\¥X has exponential decay of a-Holder correlations
for the 0 system of conductances.

This is in particular the case for every k,q € N such that k£ > 2, ¢ > 2k + 1 and ¢ — k is
odd, when the quotient graph of groups I'\X has underlying edge-indexed graph'! a loop-edge
with both indices equal to q—l§+1 glued to the root of a regular k-ary rooted tree, with indices
1 for the edges pointing towards the root and ¢ — k + 1 for the edges pointing away from the
root (see the picture below with k£ = 2). Note that X is then the (¢ + 1)-regular tree, and
that the loop edge is here in order to ensure that Lr = Z. For instance, the vertex group of

a point at distance n from the root may be chosen to be Z/(#)Z x (Z)(qg—k+1)Z)".

9.3 Rate of mixing for metric trees

Let (X,)), X, T, F, (uE)zevx and mp be as in the beginning of Section 4.4. The aim of
this Section is to study the problem of finding conditions on these data under which the
(continuous time) geodesic flow on I'\¥ X is polynomially mixing for the Gibbs measure mpg.

We will actually prove a stronger property, though it applies only to observables which are
smooth enough along the flow. Let us fix a € |0, 1]. Let (Z, u, (¢¢)wcr) be a topological space
Z endowed with a continuous one-parameter group (¢;)wr of homeomorphisms preserving
a (Borel) probability measure p on Z. For all k € N, let %’f“(Z ) be the real vector space
of maps f : Z — R such that for all z € Z, the map t — f(¢x) is C*-smooth, and such

11GQee definition in Section 2.7.
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that the maps 0if : Z — R defined by z — 4 f(¢ez) for 0 < i < k are bounded and

dt? [t=0
a-Hoélder-continuous. It is a Banach space when endowed with the norm
k .
| lko = 105 fla s
i=0

and it is contained in L2(Z, x) by the finiteness of u. We denote by €. “(Z) the vector

subspace of elements of (ﬁf **(Z) with compact support.
For all ,v’ € L?(Z, ) and t € R, let

vy (16, 9) = L o gy dy— L ¥ dy L ¥ dy

be the correlation coefficient of the observables 1,9 at time ¢ under the flow (¢¢)wer for
the measure pu. We say'? that the (continuous time) dynamical system (Z, i, (¢¢)er) has
superpolynomial decay of a-Hdélder correlations if for every n € N there exist C' = C,, > 0 and
k = ky, € N such that for all 1,4’ € 6" *(Z) and t € R, we have

| covp, 1 (¥, ) < C (L + )" [¢llk,a ¢

Following Dolgopyat, we say that the dynamical system (Z, u, (¢¢)twer) i rapidly mizing if there
exists o > 0 such that (Z, u, (¢¢)er) has superpolynomial decay of a-Holder correlations

|k,o¢ .

The two assumptions on our data that we will use are the following ones, introduced
respectively in | | and | |. Recall that the Gibbs measure mp, when finite, is mixing if
and only the length spectrum Lt is dense in R (see Theorem 4.8). The rapid mixing property
will require stronger assumptions on Lr.

We say that the length spectrum Lr of I' is 2-Diophantine if there exists a ratio of two
translation lengths of elements of I" which is Diophantine. Recall that a real number x is
Diophantine if there exist a, 8 > 0 such that

:c—g =« —p
| ql q

for all p,q € Z with ¢ > 0.

Let E be a finite subset of vertices of I'\ X, and let E be the set of vertices of X mapping
to E. We denote by Tg the set of triples (A(vy),d(7),q(7y,p)) where v € T" has translation
length A(y) > 0, has d(y) vertices on its translation axis Ax(y) modulo v* and if the first
return time of a vertex p in E n Ax(7) in E n Ax(y) under the discrete time geodesic flow
along the translation axis has period ¢(v,p). We say that the length spectrum Lp of T' is
4-Diophantine with respect to E if for all sequences (by)gen in [1 4 oo[ converging to +oo and
(W) keN, (¥k)ken In [0, 27[, there exists N € N such that for all a > N and C, 3 > 1, there
exist k > 1 and (7,d, q) € Tg such that

d((ka + wid)|BInby| + qp, 27Z) = Cqb,“ .

We define the first return time after time € on a finite subset E of vertices of I'\X as the
map 75 : I\YX — [0, +00] defined by 77(¢) = inf{t > € : {(t) € E}.

Theorem 9.7. Assume that the critical exponent dp is finite, that the Gibbs measure mp
is finite and mizing, and that the lengths of the edges of (X, \) have a finite upper bound.*?

128ee | |, and more precisely [ , Def. 2.2] whose definition is slightly different but implies the one
given in this paper by the Principle of Uniform Boundedness argument of | , Appendix B] already used
in Section 9.2.

13They have a positive lower bound by definition, see Section 2.7.
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Furthermore assume that
(a) either T\X is compact and the length spectrum of T'\X is 2-Diophantine,
(b) or there exists a finite subset E of vertices of T\X such that

(1) there exist C,rx > 0 and € € |0, min \[ such that for allt > 0,

me({feT\¥X : d¢(0),E) <e and 75°(¢) =t}) <Ce ",

(2) the length spectrum of T' is 4-Diophantine with respect to E.

Then the (continuous time) geodesic flow on T\Y X has superpolynomial decay of a-Hélder

correlations for the normalised Gibbs measure H:"n—iu

Note that the existence of E satisfying the exponentially small tail Hypothesis (1) is in
particular satisfied if I' is geometrically finite with E the set of vertices of a finite subgraph of
IMX whose complement in I"'\X is the underlying graph of a union of cuspidal rays in I'\X :
see the proof of Corollary 9.6 and use the hypothesis on the lengths of edges.

Note that the exponentially small tail Hypothesis (1) might be weakened to a superpoly-
nomially small tail hypothesis while keeping the same conclusion, see | |. Since the former
is easier to check than the latter, we prefer to state Theorem 9.7 as it is.

We will follow a scheme of proof analogous to the one in Section 9.2 for simplicial trees,
by reducing the study to a problem of suspensions of Young towers, and then apply results of
| | and | | for the rapid mixing property of suspensions of hyperbolic and nonuniformly
hyperbolic dynamical systems.

Proof. Since the Gibbs measure normalised to be a probability measure depends only on the
cohomology class of the potential (see Equation (4.9)), we may assume by Proposition 3.12
that F' = F, is the potential on I'\T' X associated with a system of conductances ¢ : EX — R
for I'. We denote by 4. the critical exponent of (I', F.), and by m. the Gibbs measure mp..

Step 1 : Reduction to a suspension of a two-sided symbolic dynamics

We refer to the paragraphs before the statement of Theorem 5.9 for the definitions of
e the system of conductances fc for I' on the simplicial tree X,

e the (two-sided) topological Markov shift (X, o, P) on the alphabet <7, conjugated to the

discrete time geodesic flow (F\gX, igt, H:Zﬁ) by the homeomorphism © : T\¥X — X,

e the roof function r : ¥ — ]0, +oo[
e and the suspension (3,0,aP), = (X, (0l)wr,aP;) over (X,0,aP) with roof func-
tion r, where a = ”]P}—TH. This suspension is conjugated to the continuous time geodesic flow

(I’\g X, e (gt)teR) by the bilipschitz homeomorphism O, : T\¥ X — ¥, defined at the end

* me]
of the proof of Theorem 5.9. We will always (uniquely) represent the elements of ¥, as [z, s]

with z € ¥ and 0 < s < r(x).

Note that since ©, ! conjugates (ol);cr and (g')icr, we have for all f : I\¢X — R and
r € ¥, when defined,

U0 =  JEO @) = @) 00 w)
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Hence if f: T\¥X — R is C*-smooth along the orbits of (g*)cr, then f o ©; ! is C*-smooth
along the orbits of (ol)g. Furthermore, since ©, is bilipschitz, the precomposition map by
O, ! is a continuous linear isomorphism from 4" *(N\ZX) to 6" *(%,).

Note that since ©, conjugates (g')wcr and (of)s g, and sends ﬁ to H%H’ we have, for all
P, e L2\ X) and t € R,

cov me o (,') = cov e (0O, ¢ 0O

[P

Therefore we only have to prove that the suspension (3, (¢!)cr, H%H) is rapid mixing.

Step 2 : Reduction to a suspension of a one-sided symbolic dynamics

In this Step, we explain the rather standard reduction concerning mixing rates from sus-
pensions of two-sided topological Markov shifts to suspensions of one-sided topological Markov
shifts. We use the obvious modifications of the notation and constructions concerning the sus-
pension of a noninvertible transformation to a semiflow, given for invertible transformations
at the beginning of Section 5.3.

We consider the one-sided topological Markov shift (X,04,P;) over the alphabet o
constructed at the beginning of Step 2 of the proof of Theorem 9.1, with the system of
conductances ¢ now replaced by fc. Let m, : ¥ — X, be the natural extension so that
P, = (ry)sPand 7y o0 =04 omy.

We are going to construct in Step 2, as the suspension of (X4,04+,P4) with an appro-
priate roof function 7, a semiflow ((X4),,, ((U+)£‘+)t>0’ (P1);,), and prove that the flow

t (P+)7'+

(21, (0L)ter, H%H) is rapid mixing if the semiflow ((X4),,, ((0’+)r+)t20, T®aT

) is rapid mix-
ing.
We start by introducing the notation that will be used in Step 2.

Let r4 : ¥4 — ]0,4+00[ be the map
ryix— Negd) (9.5)

if 2 = (p)neny € X4 and zo = (ey, ho,ef) € &/. Note that this map has a positive lower
bound, and a finite upper bound, and that it is locally constant (and even constant on the
1-cylinders of ¥ ). By Equation (5.10), we have

ryomy =1, (9.6)

We denote by ((34)r,, ((a+)£+)t>0, (P+),. ) the suspension semiflow over (X4,04,P,) with

roof function ry. We (uniquely) represent the points of the suspension space (X1),, as [z, s]
for z € ¥y and 0 < s < ry(z). For all t > 0, we have (o)}, ([z,s]) = [0 2,s'] where n € N
and s’ € R are such that t +s = Y7 ry(0h2) + 8 and 0 < ' <74 (07 ).

We define the suspended natural extension as the map 7] : ¥, — (X1),, by

7T-i7: : [.Z‘,S] g [7T+(l‘),8] )

which is well defined by Equation (9.6). Note that 7] is 1-Lipschitz for the Bowen-Walters
distance on X, and (¥4),, (see Proposition 5.11).
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For all ¢ : &, — R and T > 0, let us construct a function (™) : (X4)r, — R as follows.
For every [z,s] € (34)r,, let N € Nand s’ > 0 be such that (o)L [z,s] = [o¥z, s], with

T4 T+
N-1
0<s <ri(olfr) and s+ 7T = 2 ri(o’x) +5.
i=0

Let
([, s]) = ¢([y, 1)
where y = (Yn)nez is such that y; = ;1 n if i = —N and y; = 27 otherwise. Note that

Yo = wn, hence 7(y) = r4 (0¥ (z)), and the above map is well defined.
Finally, for every ¢ € ‘Kf’a(ET) or e Cff’a((EJr)”), let

k
[0k, = Y 16i%]o
i=0
and
k .
[l o = ) 1[4
i=0
so that
|k, 0 = 9]k, 00 + 1915, o -

Lemma 9.8. Let T > 0 and ¢ € 6% (%,).

(1) For allt >0, we have (o). om| =n] oo}

(2) With o/ = sipxs there exists a constant Cy > 0 (independent of k, T' and ) such that

ool —p@Monr|<Cy |, e T

(3) We have (7)€ %}f’a((EQ”) and [P D |0 < [¢]w. With o = &, there exists a
constant Cy > 0 (independent of k, T and 1) such that

[T o < Co e T ] - (9.7)

Proof. (1) For every [z,s] € ¥,, let n € N and s’ > 0 be such that

n—1
t+s= Z ri(olmi(z)+5 and 0<s
i=0

"<ry(otme(x)) .

Since r4 o ai oy =roo for all i € N, these two equalities are equivalent to

n—1
t+s= Z r(o'z) +s and 0<s <r(oc"z).
i=0
Hence
(04 ), o7 L([2,5]) = (04);, ([7+(2), 5]) = [0 71 (2), 5]
and

77 ool([a,s]) = 7] ([o"z,s']) = [r: ("2, ]
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This proves Assertion (1) since 71 00 = o4 o T4.

(2) By Proposition 5.11, we may assume that, in the formula of the Hélder norms, the Bowen-
Walters distance is replaced by the function dgw, as this will only change C7 by Cgyy Ci.

For every [z, s] € ¥,, with [y, s'] and N associated with 7] ([z, s]) = [74(x), s] as in the
definition of () ([74 (), s]), we have

dBW(U::F[x? 8]7 [ya S/]) = dBW([UNw7 Sl]a [yv 3,]) < d(UNxvy) < e V.

Since the positive roof function r is bounded from above by the least upper bound sup A of
the lengths of the edges, we have

[ o of ([,5]) = D (7 (2))] = [$(0] [z, s]) = ¥([y, s'D)]

——a_T
< [l do (0 [z, 8], [, 1) < [plly o T4

(3) The inequality |7, < [t0]o is immediate by construction. Let us prove that () is
C* along semiflow lines. Fix [z,s] € (24), .- Let us consider € > 0 small enough, so that
e <ri(z) —sand e <7y (o x) — s, with [y,s'] and N as in the construction of ¥ ([z, 5]).
Then

VDo (o )y, ([2.s]) = ¢ [z, + ) = ¥(ly, s + ) = o op([y. 5']) -

Therefore by taking derivatives with respect to ¢ in this formula, (7 is indeed C* along
semiflow lines, and, for ¢ = 0,...,k, we have

i i\ (T
ai(w™) = (Gw)" . (9.8)
Let us prove that there exists a constant Cy > 0 (independent of 7" and ) such that
A N e [ A (9.9)

Let [z,5] € ¥,, with [y,s'] and N as in the definition of 7)([z,s]). Let [z,s] € %,
with [y, s'] and N as in the definition of /(") ([z,s]). Up to exchanging [z,s] and [z,s], we
assume that N <N.

By Proposition 5.11, we may assume that, in the Hoélder norms formulas, the Bowen-
Walters distance is replaced by the function dgw, as this will only change C5 by C£23\Ofv Cs.
Let

C3 = min{e™ !, inf \} .

Note that the map dgw on X, x X, is bounded from above by 1 + sup A, since the distance
on X is at most 1 and since the roof function 7 is bounded from above by sup A.
We have

O ([, s1) = D[z, s DI = [([y. 1) = ¥ [y, DI < [0l dew([y. ] [y, 8D (9.10)
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If dBW([‘T7 8]7 [&7§]) = Cg 6_%’ then

14+supA _r

dpw([y. s'], [y, 8']) < 1 +sup A < ens dpw([z, s, [z,s]) .

A Cs

S (14sup N)*
= .

Therefore Equation (9.9) follows from Equation (9.10) whenever Cy o

Conversely, suppose that dpw([z, s],[z,s]) < Cs e~mix. Assume that
dBW([.CC, 3]7 [£a§]) = d(x7£) + |8 - §| y

the other possibilities are treated similarly. Since

N-1
s+ T = Z ri(otx) + 5

i=0
and since the roof function 7, is bounded from below by inf A\, we have T' > N inf A\ — inf A,
or equivalently N < % + 1. Hence d(z,z) < C3 ¢~ mrx < eV by the definition of C5. In
particular the sequences z and z indexed by N have the same N + 1 first coefficients. Since
7+ (2) depends only on 2 for all 2z € ¥, we thus have r; (c.z) = r1 (o} z) for i =0,..., N.
Note that we have

N-1
s+ T = Z ri(ohz) +5 .
i=0

If N = N, then by taking the difference of the last two centred equations, we have
s —s = s —s', and by construction, the sequences y and y indexed by Z satisfy y; = (y); if
i<0andif 0<i<—Ind(z,z) — N. Therefore d(y,y) < e d(z,z) and

dew ([, 5], [y, 8]) < d(y.y) + |§' — | < eV d(z,z) + |s — 5]
< eV dpw([z, 5], [z,3]) < entx ™t dpw ([, 5], [z, 5]) -

Therefore Equation (9.9) follows from Equation (9.10) whenever Cy > e®.

If on the contrary N > N, then again by difference

N—-1

s—8§= Z ri(ox) +ry(ofz) — s + 5.
i=N+1

Note that s’ > 0, that r; (cz) —s' > 0, and that |s —s| < C3 e~ mx < inf A by the definition
of 3. Hence we have N = N+1and s—s =171, (afaﬁ) —s'+5'. By construction, the sequences
oy and y indexed by Z satisfy (oy); = (y); if i <0 andif 0 <i < —Ind(z,z) — N — 1. Hence
by the definition of dgw and since r(y) = r4 (o) z), we have

dew([y, '], [y, 8]) < d(oy,y) +r(y) — s’ + s’ < eNtd(z,z) + [s — s

<N dpw([z, 8], [z, 8]) < entx 2 dpw ([, 5], [z, 5]) -

Therefore Equation (9.9) follows from Equation (9.10) whenever Cy > e2*. This ends the
proof of Equation (9.9).

Now note that Equations (9.8) and (9.9) imply Equation (9.7) by summation (using the
independence of Cy on 1), thus concluding the proof of Lemma 9.8. O
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Proposition 9.9. Let u be a (aﬁ)teR—invariant probability measure on X,.. Assume that the
dynamical system ((X4),,, ((G+)£+)teR, (m{)xp) has superpolynomial decay of c-Hélder cor-
relations. Then (3, (ol)er, i) has superpolynomial decay of a-Hdélder correlations.

Proof. We fix ne N. Let N =1+ 2[??1?;\] Let k€ N and Cy > 0 (depending on n) be such
that for all ¢,4’ € € *((24)r, ), we have for all £ > 1

’COV(ﬂl)*u,t(¢7w/)’ < Cy [Yllk, o (g k, o N (9.11)

Now let 9,7’ € ‘K}f’a(ET). We again denote by +¢ any value in [—t,t] for any ¢ > 0. By
invariance of y under (ol);cr, by Lemma 9.8 (2) and by Lemma 9.8 (1), we have, for any
T = 0 (to be chosen appropriately later on),

J Poo, w’du=f Yool Yool du
Xr >,
- [ @M orrr ol e Moot P on 0y W T du

T r o
_ j D o), WD drD)en £ CF [pla [0 e .
(Z+)7"+

A similar estimate holds for the second term in the definition of the correlation coeflicients.
Hence, applying Equation (9.11) to the observables () and v’ (T), by Lemma 9.8 (3), we
have

0%y, (. 8)] < [ eovir o, o (00T +2 CF [l [0/ 7
< Cy ([, 0 + Co ¥}, o ') (1% Ik, 0 + C2 ¥ 1. o /Ty =N n
+2CF [l ['la e T
< [l [0l o (Co G2 T 4N 4 5 (2 ~o'T)

Take T = 2 Int > 0. Since N = 1+ 2[27], we have 2a” % — Nn < —n. Hence with
Cs =0y C3 + 2C%, we have for all t > 1

n

| covy, (¥, ¢")] < Cs |[¢

k,o H¢/

k,« t

This concludes the proof of Proposition 9.9. O

Step 3 : Conclusion of the proof of Theorem 9.7

;5" ) Py)ry
+/1207 [|(P4)r |
which concludes the proof of Theorem 9.7, using Proposition 9.9 with u = %.

Recall (see the proof of Theorem 5.9) that Y = {£ e I\¥ X : ¢(0) € VX} is a cross-section
of the geodesic flow on T\¥ X, and that if R : ¥ — I'\¥X is the reparametrisation map
of £ € Y to a discrete geodesic line ¢ € M¥X with the same origin, then the measure uy,
induced by the Gibbs measure m,. on the cross-section Y by disintegration along the flow,
maps by R, to a constant multiple of my,. (see Lemma 5.10 (2)). Hence for all n € N, by
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Assumption (b) (1) in the statement of Theorem 9.7, we have
‘0)e E })
Vke{l,....,n—1}, %(k)¢ E

e - . RT'(0)(0) e B
= Huij Y<{R ey Vite]o,ninf \[, R\ (%)(t) ¢ F }>
.| 0<s<e dgR*)(0),E)<e
Viele,ninf A —e[, gR71(*)(t) ¢ F }>

muc({ﬂﬁeF\gX : ¢
1

< Me SR e T\9 X -
ey me({e R 0 T

[

< C e ® (inf ) n+ke )
€lpy|

ImeclCe o g
€yl

k' = k inf X\. As seen in the proof of Theorem 9.1, this implies that there exists a finite subset
& of the alphabet o/ such that Equation (9.3) is satisfied.

We now apply | , Theo. 2.3] with the dynamical system (X,mo,T) = (X4,P4,04)
(using the system of conductances f¢) and the roof function h = r,. This dynamical system
is presented as a Young tower in Step 3 of the proof of Theorem 9.1. Equation (9.3) for
the first return map 7¢ and the 4-Diophantine hypothesis are exactly the hypothesis needed

in order to apply | , Theo. 2.3]. Thus the semiflow ((S4)r,, ((04)L,) (B+)ry ) has

T+/t20" [(P+)r |

Therefore Equation (9.1) (where ¢ is replaced by fc) is satisfied, with C" =

superpolynomial decay of a-Holder correlations.

When I'\ X is compact, the alphabet & is finite and (X4, 04,P4) is a (one-sided) subshift
of finite type, hence we do not need the exponentially small tail assumption, and only the
2-Diophantine hypothesis, and we may apply | |. O

Corollary 9.10. Assume that the critical exponent 0 is finite, that the Gibbs measure mp
is finite and mizing, that the lengths of the edges of (X, \) have a finite upper bound, and
that T\X is geometrically finite. There exists a full measure subset A of R* (for the Lebesgue
measure) such that if T' has a quadruple of translation lengths in A, then the (continuous time)
geodesic flow on T\YX has superpolynomial decay of a-Hélder correlations for the Bowen-
Margulis measure mp.

Proof. The exponentially small tail Assumption (b) (1) is checked as in the proof of Corollary
9.6. The deduction of Corollary 9.10 from Theorem 9.7 then proceeds, by an argument going
back in part to Dolgopyat, as for the deduction of Corollary 2.4 from Theorem 2.3 in | ].
[

Note that under the general assumptions of Theorem 4.8, the geodesic flow on "¢ X
might not be exponentially mixing, see for instance | , page 162| or | | for analogous
behaviour.
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Chapter 10

Equidistribution of equidistant level
sets to Gibbs measures

Let X be a geodesically complete proper CAT(—1) space, let I" be a nonelementary discrete
group of isometries of X, let F be a continuous I-invariant map on T X such that § = or p+
is finite and positive and that the triple (X, T, F) satisfies the HC-property,! and let (u2)zex
be Patterson densities for the pairs (T, F'%).

In this Chapter, we prove that the skinning measure on (any nontrivial piece of) the outer
unit normal bundle of any properly immersed nonempty proper closed convex subset of X,
pushed a long time by the geodesic flow, equidistributes towards the Gibbs measure, under
finiteness and mixing assumptions. This result gives four important extensions of | ,
Thm. 1|, one for general CAT(—1) spaces with constant potentials, one for Riemannian man-
ifolds with pinched negative curvature and Holder potentials, one for R-trees with general
potentials, and one for simplicial trees.

10.1 A general equidistribution result

Before stating this equidistribution result, we start by a technical construction which will also
be useful in the following Chapter 11. We refer to Section 2.5 for the notation concerning the
dynamical neighbourhoods (including VJ - r) and to Chapter 7 for the notation concerning
the skinning measures (including v).

Technical construction of bump functions._ Let D* be nonempty proper closed convex
subsets of X, and let R > 0 be such that vt (V. g) > 0forall n’ > 0and we 01 D*. Let

n > 0 and let QT be measurable subsets of 6};Di. We now construct functions (byf ROt
4 X — [0, +o0o[ whose supports are contained in dynamical neigbourhoods of Q*. If X = M is

a manifold and F' = 0, we recover the same bump functions after the standard identifications.
For all ' > 0, let h$ e =X — [0, +o0[ be the I'-invariant measurable maps defined by

1
hi /(w) — — (10.1)
) - +
" Vw (Vw,m Tz’)
if v (V.F o) > 0 (which is for instance satisfied if wy € AI') and h;—r (W) = 0 otherwise.

1See Definition 3.4.
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These functions h;—r o have the following behaviour under precomposition by the geodesic

flow. By Lemma 7.5 (2), by Equation (2.13), and by the invariance of v under the geodesic
flow, we have, for all t € R and w e ¥4+ X,

_ _ £ w(T _
Wi (g7 w) = e“or O B L (w). (10.2)

n, e—tn’

Let us also describe the behaviour of h;{ ” when 7 is small. Let w € 4 X be such that w
is isometric at least on %[0, +oo[, which is for instance the case if w € 01 D¥. For all ¥ > 0
and £ € B*(w,n'), let @ be an extension of w such that dyy+ (¢, @) < 7’. Then @(0) = w(0)
by the assumption on w, and using | , Lem. 2.4],%2 we have

d(£(0),w(0)) = d(£(0),@(0)) < dyy(w) (¢, D) <.
Hence, with k1 and ko the constants in the Definition 3.4, if

1=K +9+ sup F| |
71 (B(w(0),7'))

we have, by Proposition 3.10 (2),
| CF_(1(0), €0)) | < e1 (i)™ .
Using the defining Equation (7.12) of v}, for all s€ R, # > 0 and £ € B*(w,n’), we have
e~ )™ (g A+ () (£) < dvf (g°0) < e ™2 ds dpuyy = () -

It follows that for all 7 € ]0,1] and w € 01 DT such that ws € AT, we have the following
control of A, (w):

e—c1(n)"2 B (w) ec1(n')"™2 (103)
<hF L (w) < : 10.3
20 ) (BE(w, 7)) ™7 20 pyy + (w) (BE (w, 1))
Note that when X is an R-tree, we may take sy = 1 and ¢; = |F — 8] in this equation, as

we saw in the proof of Proposition 3.5.

Recall that 14 denotes the characteristic function of a subset A. We now define the test
functions QS:;R o+ 19X — [0, +o0 by

T T +
where ”I/;’—FR(Qi) and f5 are as in Section 2.5. Note that if £ € %]%R(QTF), then £y ¢ 0o DF
by convexity. Thus, ¢ belongs to the domain of definition %Dﬂ of fg;; hence (b:]“ raorl) =
hiR o fgi (¢) is well defined. By convention, gb;_r’ R.OF (0)=0if ¢ ¢ %I%R(QJ_F)

The following property of the bump functions is proved as in | , Prop. 18|, using
the disintegration result of Proposition 7.6.

Lemma 10.1. For everyn > 0, the functions qﬁ:;r R o+ are measurable, nonnegative and satisfy

OF e dip =35(QF). O
9X T

2 Although it is stated for Riemannian manifolds, the argument is valid in general CAT(—1) spaces.
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We now state and prove the aforementioned equidistribution result. Note that as elements
of the outer unit normal bundles are now only geodesic rays on [0, +0o[, their pushforwards
by the geodesic flow at time ¢ are geodesic rays on [—t, +o0[ and the convergence towards
geodesic lines (defined on | — oo, +00[) does take place in the full space of generalised geodesic
lines ¥X. This explains why it is important not to forget to consider the negative times —
skinning measures, supported on geodesic rays, pushed by the geodesic flow, have a chance
to weak-star converge to Gibbs measures, supported on geodesic lines, up to renormalisation.

The proof of the following result has similarities with that of | , Theo. 1], but the
computations do not apply in the present context because the proof in loc. cit. does not keep
track of the past: here we can no longer reduce our study to the outer unit normal bundle of
the t-neighbourhood of the elements of Z.

Theorem 10.2. Let (X,F,ﬁ) be as in the beginning of Chapter 10. Assume that the Gibbs
measure mp on I\ X is finite and mizing for the geodesic flow. Let 9 = (D;)ier be a locally
finite T-equivariant family of nonempty proper closed convex subsets of X with T\I finite.
Let Q = (;)ier be a locally finite T-equivariant family of measurable subsets of GX, with
Q, c é’_liDi for all i € I. Assume that aér is finite and nonzero. Then, as t — 40, for the

weak-star convergence of measures on I'\9 X,

1 P 1
— (g™ )0y — ——mp.
&m0z & %% = g

Proof. We only give the proof when + = +, the other case is treated similarly. Given three
numbers a, b, ¢ (depending on some parameters), we write a = b £ c if |a — b| < c.

Let n € ]0,1]. As in the proof of | , Thm. 19], we may assume that I'\I is finite.
Hence, using Lemma 7.5 (i), we may fix R > 0 such that U;(VJWR) > 0 for all w € 0} D;
and i e I.

Using the notation introduced in the above construction of the bump functions ¢; R.Q;

we may hence consider the global test functions ‘1377 19X — [0, +oo],

Sy(v) = >, ppa, = D, hyrold, Ly 0
iel/~ iel/~ 7

As in loc. cit., the function ‘I)n 19X — [0, +00[ is well defined (independent of the represen-
tatives of i), measurable and I'-equivariant. Hence it defines, by passing to the quotient, a
measurable function ®, : T\¢ X — [0,+o[. By Lemma 10.1, the function ®, is integrable
and satisfies

[ aydme =g (10.5
N\ X

Fix ¢ € €,(I\9X). Let us prove that

1 1
lim d gt)*o';i =

. — L b dmp .
t>+o (g0 | Jrex Imrl Jrgx

Consider a fundamental domain Ar for the action of I' on X, such that the boundary of
Ar has zero measure, the interiors of its translates are disjoint and any compact subset of

& X meets only finitely many translates of Ap: see | , p. 13] (or the proof of | ,
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Prop. 18]), using the fact that mp has no atoms, since mp is finite and according to Corollary
4.6(1) and to Theorem 4.5.

By a standard argument of finite partition of unity and up to modifying Ar, we may
assume that there exists a function 1; . 94X — R whose support has a small neighbourhood
contained in Ar such that QZ = 1 o p, where p : GX — F\E?X is the canonical projection
(which is Lipschitz). Fix e > 0. Since J is uniformly continuous, for every 1 > 0 small enough

and for every t = 0 large enough, for all w € ¢, X and ¢ € VJ

o e—tRy We have

D) = P(w) £ = . (10.6)

If ¢ is big enough and 7 small enough, we have, using respectively
e the definition of the global test function ®,, since the support of v is contained in Ar and
the support of <b;7 R.Q; 18 contained in %51, , for the second equality,

e the disintegration property of fZ)ri in Proposition 7.6 for the third equality,

e the fact that if £ is in the support of v, then f;i (g7t) = fgi (¢) = p and the change of
variables by the geodesic flow w = g'p for the fourth equality,
e the fact that the support of Vg_,tw is contained in W% (g~tw), and that

W (g™"w) 0 g' V() = ¢' (W (g7"w) n V) o) = 'V n = Vil i

for the fifth equality,
e Equation (10.6) for the sixth equality, and
e the definition of A~, the invariance of the measure 1/; .. and the Gibbs measure mp under

the geodesic flow, and the definition of the measure o, for the last two equalities.

J Y @nog_tdmpzf 1; &)nog_tdﬁlp
X Arn@X

= Z J i b, R,Qi(g_tg) dmp(f)

i€l/~

= — (fF (ot 4 I
- iel/~ LGP D; LE%+ n’R(fDi(g g))ﬂ%;TR(QZ)(g E) de (6) dO’Di(p)

-3 j B(0) by plg™w) dv,, (0) ()55, (w)
WEE (91 legty ™ ()

el/~

— L}eg 1D, LEV+ V() h, (g~ bw) dv _tw(é) d(g')«5p, (w)

i€l/~ n,e"tR

_ f W) By (&™) v, €V, ) A8, ()
iel/~ weg& D; 7

nog 'dmp
s
:f v
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We then conclude as in the end of the proof of | , Thm. 19]. By Equation (10.5), we
have |(gh)«oa0l = |od| = SF\%X ®,, dmp. By the mixing property of the geodesic flow on
¥ X for the Gibbs measure mp, for ¢ > 0 large enough (while n is small but fixed), we
hence have

Spax ¥ d(g")x05, Srgx @pog™ Y dmp LE Srx ¢ dmr e
I(g")«od | Srgx @y dmp 2 el —

This proves the result. ]

Recall that by Proposition 3.5, Theorem 10.2 applies to Riemannian manifolds with
pinched negative curvature and for R-trees for which the geodesic flow is mixing and which
satisfy the finiteness requirements of the Theorem.

Since pushforwards of measures are weak-star continuous and preserve total mass, we
have, under the assumptions of Theorem 10.2, the following equidistribution result in X of
the immersed ¢t-neighbourhood of a properly immersed nonempty proper closed convex subset
of X: as t — 40,

1 4 1
— = — . 10.8
ox " )on = e (108)

10.2 Rate of equidistribution of equidistant level sets for man-
ifolds

IfX=DMisa simply connected Riemannian manifold of pinched negative curvature and if
the geodesic flow of F\M is mixing with exponentially decaying correlations, we get a version
of Theorem 10.2 with error bounds. See Section 9.1 for conditions on I' and F' that imply
exponential mixing.

Theorem 10.3. Let M be a complete simply connected Riemannian manifold with negative
sectional curvature. Let I' be a nonelementary discrete group of isometries of M. Let F :
TIM — R be a bounded T-invariant Holder-continuous function with positive critical exponent
0 =0r,F. Let 7 = ( i )ier be a locally finite T-equivariant family of nonempty proper closed
convex subsets of M with finite nonzero skinning measure og. Let M = F\M and let F :
T'M — R be the potential induced by F.

(i) If M is compact and if the geodesic flow on T*M is mizing with exponential speed for the
Hoélder regularity for the potential F', then there exist a € 10,1] and " > 0 such that for all
e €T M), we have, as t — +o0,

1 1 "
Ha_@” Jw d(gt)*a_@ = m fqb dmp + O(e—m t Hchx) '

(i) If M is a symmetric space, if D; has smooth boundary for every i € I, if mp is finite
and smooth, and if the geodesic flow on T'M is mizing with exponential speed for the Sobolev
reqularity for the potential F, then there exists £ € N and k" > 0 such that for all ¢ €
CHT M), we have, ast — +0,

gt>*U@

fwde+0<ﬂ”|wm

FH
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Note that if M is a symmetric space and M has finite volume, then M is geometrically
finite. Theorem 4.7 implies that mp is finite if F' is small enough. The maps O(-) depend on
M, T, F, 2, and the speeds of mixing.

Proof. Up to rescaling, we may assume that the sectional curvature is bounded from above
by —1. The critical exponent § and the Gibbs measure mp are finite in all the cases we
consider here.

The deduction of this result from the proof of Theorem 10.2 by regularisations of the
global test function ®,, introduced in the proof of Theorem 10.2 is analogous to the deduction

of | , Theo. 20| from | , Theo. 19] when F' = 0. The doubling property of the
Patterson densities and the Gibbs measure for general F, required by this deduction in the
Holder regularity case, is given by | , Prop. 3.12|. For the assertion (ii), the required

smoothness of mp (that is, the fact that mp is absolutely continuous with respect to the
Lebesgue measure with smooth Radon-Nikodym derivative) allows to use the convolution
approximation. [l

10.3 Equidistribution of equidistant level sets on simplicial
graphs and random walks on graphs of groups

Let X, X, T, ¢, fc, 0. be as in the beginning of Section 9.2. Let ﬁc : T1X — R be its associated
potential, and let § = §.. be the critical exponent of c. Let (1u3).eyvx be two Patterson densities
on 0, X for the pairs (I', FE), and let m. = mp, be the associated Gibbs measure on I'\¥X.

In this Section, we state an equidistribution result analogous to Theorem 10.2, which now
holds in the space of generalised discrete geodesic lines I'\ ?X, but whose proof is completely
analogous.

Theorem 10.4. Let X,T',¢, (u¥)sevx be as above, with 6. finite. Assume that the Gibbs
measure me on T\YX is finite and mizing for the discrete time geodesic flow. Let 9 = (D;)ier
be a locally finite I'-equivariant family of nonempty proper simplicial subtrees of X. Let Q =
(Qi)ier be a locally finite T'-equivariant family of measurable subsets of E?X, with ; < é’iDi
for all i € I. Assume that a;g is finite and nonzero. Then, as n — +00, for the weak-star

convergence of measures on I'\ 9X,

1

mogt AL
H(g”)*agﬂ W*(g )*UQ HmFH mp . [
We leave to the reader the analog of this result when the restriction to I'\@eyenX of the
Gibbs measure is finite and mixing for the square of the discrete time geodesic flow.
Using Propositions 4.14 and 4.15 in order to check that the Bowen-Margulis measure mpym
on M¥X is finite and mixing, we have the following consequence of Theorem 10.4, using the
system of conductances ¢ = 0.

Corollary 10.5. Let X be a uniform simplicial tree. Let I' be a lattice of X such that the graph
I\X is not bipartite. Let 9 = (D;)ier be a locally finite T-equivariant family of nonempty
proper simplicial subtrees of X. Let Q = (;)ier be a locally finite T -equivariant family of
measurable subsets of GX, with Q; < 0L D; for alli € I. Assume that the skinning measure
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06 (with vanishing potential) is finite and nonzero. Then, as n — 4w, for the weak-star

convergence of measures on I'\ 94X,

1 (n)g+i#mBM_D
[CRR [mpml

When furthermore X is regular, we have the following corollary, using Proposition 8.1 (3).

Corollary 10.6. Let X be a reqular simplicial tree of degree at least 3. Let I" be a lattice of
X such that the graph T\X is not bipartite. Let 9 = (D;)ier be a locally finite T'-equivariant
family of nonempty proper simplicial subtrees of X. Let Q = (Q;)ier be a locally finite T'-

equivariant family of measurable subsets of E?X, with ; < é’}rDi for all i € I. Assume that
the skinning measure 05 (with vanishing potential) is finite and nonzero. Then, as n — +00,

for the weak-star convergence of measures on T'\ gX,

1 *

n U-‘r
TEeoh] &)= .

1
—  volp .
Vol(T\X) 0T

Let us give an application of Corollary 10.6 in terms of random walks on graphs of groups,
which might also be deduced from general result on random walks, as indicated by M. Burger
and S. Mozes.

Let (Y,Gx) be a connected graph of finite groups with finite volume, and let (Y, G) be
a connected subgraph of subgroups.® Note that (Y’,G%) also has finite volume, less than or
equal to the volume of (Y,G,). We say that (Y,Gy) is homogeneous if ZeeEY’ o(e)=x % is
constant at least 3 for all x € VY. We say that a connected graph of groups is 2-acylindrical if
the action of its fundamental group on its Bass-Serre tree is 2-acylindrical (see Remark 5.4).
In particular, this action is faithful if the graph has at least two edges.

The non-backtracking simple random walk on (Y,Gy) starting transversally to (Y, G)
is the following Markovian random process (X,, = (fn,Vn))nen where f, € EY and , €
Go(s,) for all n € N. Choose at random a vertex yo of Y’ for the probability measure
WUG/*) VOIY/’G/* (we will call yo the origin of the random path). Then choose uniformly
at random Xy = (fo,70) where fy € EY is such that o(fy) = yo and vy is a double coset in
Gy \Gyo/p7;(G,) such that if fo € EY' then 7o ¢ Gy p%(GfO).4 Assuming X,, = (fn, )
constructed, choose uniformly at random X, 11 = (fnt1,7m+1) where fr,11 € EY is such
that o(fn+1) = t(fn) and yp41 € GO(an)/pm(anﬂ) is such that if f,+1 = f, then

Vil ¢ pm(anH). The n-th vertex of (X, = (fn,n))nen is o(frn).

Corollary 10.7. Let (Y, Gy) be a homogeneous 2-acylindrical nonbipartite connected graph of
finite groups with finite volume, and let (Y', G%) be a homogeneous nonempty proper connected
subgraph of subgroups. Then the n-th vertex of the non-backtracking simple random walk on
(Y, Gy) starting transversally to (Y',Gl) converges in distribution to m voly g, as
n — +00.

Proof. Let I' be the fundamental group of (Y,G,) (with respect to a choice of basepoint
in VY’), which is a lattice of the Bass-Serre tree X of (Y, Gy), since I' acts faithfully on X

3See Section 2.7 for definitions and background.
4This last condition says that 7o is not the double coset of the trivial element.
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and (Y,Gy) has finite volume. Note that X is regular since (Y, G4) is homogeneous. Let
p: X — Y =TI'\X be the canonical projection.

Let I' be the fundamental group of (Y, G%,) (with respect to the same choice of basepoint).
By | , 2.15], there exists a simplicial subtree X’ whose stabiliser in I is I, such that the
quotient graph of groups I"\X' identifies with (Y, G%,). Similarly, X’ is regular since (Y, G/,)
is homogeneous. Let 2 = (X' )yer/r7, which is a locally finite family of nonempty proper
simplicial subtrees of X.

Using the notation of Example 2.10 for the graph of groups I'\X (which identifies with
(Y, Gy)), we fix lifts f and 7 in X by p of every edge f and vertex y of Y such that f = f,
and elements gy € I" such that gy ﬂL\fJ) = t(f) We may assume that fe EX'if f € EY', that
geVX'if ye VY’ and that gy e I if f € EY'.

Let (2, P) be the (canonically constructed) probability space of the random walk (X,, =
(fnsn))nen. For all n € N let y,, = o f,,) be the random variable (with values in the discrete
space Y = I'\X) of the n-th vertex of the random walk (X,,)nen.

Let us define a measurable map © : (2 — F\?X, with image contained in the image of

(?}rX’ by the canonical projection gX — I\ E?X, such that ©.P is the normalised skinning

+
measure ”Z%” and that the following diagram commutes for all n € N :
7

Q I\ gx
yn\ /ﬂog"
Y="IX . (10.9)
Assuming that we have such a map, we have
n n J; 1 n +
(Un)«P = (mx0(9")s 0 O)P = mi(g9") HU%H = H(gn)*géH (g )*U@

so that the convergence of the law of y,
applied to 6i@.

to m voly g, follows from Corollary 10.6

Yo fo Yn fn Yn+1 frna1 Yn+-2
Y = ,-------- " - . - a
A .
D N N . :1 T
fO gf_l fn Yn+1 gfn+1 fn+1 "%H_l
: . I l n
3 A 1A 1
| gfn 9F |
| | |
g+ [ —1 [
I 0 —~ 9+ fn Y !
* | U e |
| ‘ | On+1
| | |
97 ' fo Y0 4 |
4 Y \
——————— — > e =
yNO €0 €n €n+1
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Let (X, = (fn,7n))nen be a random path with origin yg € Y, corresponding to w € .
Fix a representative of v, in its right class for every n > 1, and a representative of g in its
double class, that we still denote by =, and 7y respectively. Using ideas used for the coding
introduced in Section 5.2, let us construct by induction an infinite geodesic edge path (e, )pen
with origin o(eg) = go and a sequence (o, )pen in I' such that

en an'yngf fn . (10.10)

Let ap = id and ey = 7 g%*1 fo. Since o(fo) = 97 yo by the construction of the lifts

and since yp € Gy, = ['y;,
edge eg does not depend on the choice of the representative o modulo Py (G f,) on the right,
but depends on the choice of the representative vy modulo G F on the left.

The hypothesis that if fo € EY’ then ~g ¢ Gyo P (Gy,) ensures that the edge eg does not
belong to EX'. Indeed, assume otherwise that ey belongs to EX’ Then fo = p(eg) € EY,

and by the assumptions on the choice of lifts, the edges gJT fo and e both belong to EX'.

we have o(eg) = go. Since the stabiliser of g%_1 fo is p%(Gfo) the

Since they are both mapped to fy by the map X’ — Y’ = I"\X/, they are mapped one to the
other by an element of F’y~0 =G, Let 5 € F/% be such that v ey = g%_1 fo- Then ~) 1o

belongs to the stabiliser in I" of the edge g%*1 fo, which is equal to g%*1 F%g% = PE(Gfo)'
Therefore v € Gy, p7-(G,), a contradiction.
Assume by induction that e, and «,, are constructed. Define
Qpt1 = Qp Tn gﬁ_l 9fn
and
En+1 = Opt1 Yn+l gf fn+1 )

so that the induction formula (10.10) at rank n + 1 is satisfied. By the construction of the
lifts, since yp+1 = t(fn) = o( fnt+1, we have

Unt1 :gf (fn> _gf (fn+1)

Hence, since y,41 € G fixes yn+1, using the induction formula (10.10) at rank n for the

last equality,

Yn+1

—1 o — —
O(en-i-l) = On41 Yn+1 gm O(fn+1) = On+1 Vn+1 Yn+1 = On+1 Yn+1

Q41 Qf;1 t(fn) = an gﬁ—l t(fn) = tlen) -

In particular, the sequence (ey)nen is an edge path in X.

Since the stabiliser of gfi_1 m is pﬁ(anH) the edge vn11 gm an does not
depend on the ch01ce of the representatlve of the right coset v,,+1. Let us prove that the length
2 edge path (gf Frs nst 95— fn+1) is geodesic. Otherwise, the two edges of this path
are opposite one to another, hence fot1 = fn by using the projection p : X — Y, therefore

97y = 9fn- Thus 7,1 maps gf fn to g fn, hence belongs to py, (Gy,) = pm(anH),
a contradiction by the assumptions on the random walk.

By constructlon the element a1 of I' sends the above length 2 geodesic edge path
(gf fn, Tnt1 G5 an) to (€én,en+1). This implies on the one hand that the edge path
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(én,€n+1) is geodesic, and on the other hand that ay,4; is uniquely defined, since the action
of I on X is 2-acylindrical.

In particular, (ep)nen is the sequence of edges followed by a (discrete) geodesic ray in X,
starting from a point of X’ but not by an edge of X, that is, an element of (?iX’ . Furthermore,
this ray is well defined up to the action of F’%, hence its image, that we denote by O(w), is

well defined in I\ ¥X. Since p(o(en)) = p(Jn) = yn for all n € N, the commutativity of the
diagram (10.9) is immediate.

For every z € VX', let 01 X'(z) be the subset of 01X’ consisting of the elements w with
w(0) = z. By construction, the above map from the subset of random paths in € starting
from yg to F’ga\ﬁiX’ (7o), which associates to (X;,)nen the F;%—orbit of the geodesic ray with
consecutive edges (ep)nen, is clearly a bijection. This bijection maps the measure P to the

+

normalised skinning measure since by homogeneity, the restriction to éﬁX/(yNO) of (7'3'5

92

log 1’
to 01 X'(¢o), normalized to be a probability measure, is the restriction to 01 X'(go) of the
Aut(X),-homogeneous probability measure on the space of geodesic rays with origin x in the

regular tree X. This proves the result. OJ

When Y is finite, all the groups Gy, for y € V'Y are trivial and Y’ is reduced to a vertex,” the
above random walk is the non-backtracking simple random walk on the nonbipartite regular
finite graph Y, and m voly g, is the uniform distribution on VY. Hence this result
(stated as Corollary 1.3 in the Introduction) is classical. See for instance [OW, Thm. 1.2] and
[ |, which under further assumptions on the spectral properties of Y gives precise rates

of convergence, and also the book | |, including its Section 6.3 and its references.

10.4 Rate of equidistribution for metric and simplicial trees

In this Section, we give error terms for the equidistribution results stated in Theorem 10.2 for
metric trees, and in Theorem 10.4 for simplicial trees, under additional assumptions required
in order to get the error terms for the mixing property discussed in Chapter 9.

We first consider the simplicial case, for the discrete time geodesic flow. Let X, X, T, ¢,
E, e, (UE)zevx, me = mp, be as in Section 10.3.

Theorem 10.8. Assume that d. is finite and that the Gibbs measure m. on T\YX is finite.
Assume furthermore that

(1) the families (AT, py ,dy)zevear and (AT, pt, dy)zeveoar of metric measure spaces are
uniformly doubling,’

(2) there exists o € |0, 1] such that the discrete time geodesic flow on (I\¥YX,m.) is expo-
nentially mizing for the a-Hélder regularity.

Let 9 = (D;)ier be a locally finite T'-equivariant family of nonempty proper simplicial subtrees
of X with T\I finite. Let Q = (£;)ier be a locally finite I'-equivariant family of measurable
subsets of 9X, with Q; < 8}iDi for all i € I. Assume that U;—g 1s finite and nonzero. Then
there exists k' > 0 such that for all ) € €*(I\9X), we have, as n — 400,

e [vdme s = o [@dmer Ol ™).

[(g*")«0gl

el

5The result for general Y’ follows by averaging.
5See Section 4.1 for definitions.
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Remarks. (1) If ¢ = 0, if the simplicial tree X’ with [X'|; = @Al is uniform, if Lp = Z and
if I is a lattice of X/, then we claim that d. = dr is finite, m. = mpy is finite and mixing,
and (AT, jup = p,dy)zevear is uniformly doubling.

Indeed, the above finiteness and mixing properties follow from the results of Section 4.4.
Since X’ is uniform, it has a cocompact discrete sugbroup I" whose Patterson density (for
the vanishing potential) is uniformly doubling on AT” = AT", by Lemma 4.2 (4). Since ¢ = 0
and T is a lattice, the Patterson densities of I and of I" coincide (up a scalar multiple) by
Proposition 4.14 (2).

(2) Assume that ¢ = 0, that the simplicial tree X’ with |X'|; = @Al is uniform without
vertices of degree 2, that Lr = Z and that I' is a geometrically finite lattice of X’. Then all
assumptions of Theorem 10.8 are satisfied by the first remark and by Corollary 9.6. Therefore
we have an exponentially small error term in the equidistribution of the equidistant levels
sets.

Proof. We only give the proof when + = +, the other case is treated similarly. We follow
the proof of Theorem 10.2, concentrating on the new features. We now have I'\I finite by

assumption. Let n € ]0,1] and ¢ € €*(I\9X). We consider the constant R > 0, the test
function ®,,, the fundamental domain Ar and the lift 1) = 1) o p as in the proof of Theorem
10.2.

For all n € N, all w € ¢4, X isometric on [—n, +o0[ and all £ € Vujrn onp = BF(w, e ™R),”

by Lemma 2.7 where we can take n = 0, we have d({,w) = O(e™™"). Since p is Lipschitz,
the map v is a-Holder with a-Holder norm at most ||1)|,. Hence for all n € N, all w e 4, X

. . +
isometric on [—n, +oo[ and all £ € Ve, e-npy We have

~

V() = d(w) + O™ [¢]a) - (10.11)

As in the proof of Theorem 10.2 with ¢ replaced by n, using Equation (10.11) instead of
Equation (10.6) in the series of equations (10.7), since the symbols w that appear in them are
indeed generalised geodesic lines isometric on [—n, +00[, we have

SF\?X v d(gh)«oq B Srgx ¥ Ppog™"dme

I(g")«ogl S ® dme

+ 0™ [¢la) - (10.12)

Let us now apply the assumption on the decay of correlations. In order to do that, we
need to regularise our test functions ®,. We start by an independent lemma.

Lemma 10.9. There are universal constants ey > 0,¢c9 = 1 such that for all € € 10, ¢ and
e GX, the ball By({,€) is contained in

{ e X : £/(0) = £(0), ¢'(+0) € Ba,, (£(£0),co v/e)}

and contains {¢' € 9X . £/(0) = £(0), ¢'(£0) € Bq,,, (£(+0 L/}

> o
Proof. If ¢,/ € X have distinct footpoints, then d(¢(0),£'(0)) > 1, so that d(£(t), ¢ (t)) =

1
if [t| <1, sothat d(£,¢) =%, Le 2 = ¢,
4

=

"We have Vutn, s = Bt (w,s) for every s > 0 since X is simplicial and n < 1.
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Conversely, assume that ¢, ¢’ € ¥X have equal footpoints, so that they coincide on [—N, N’]
for some N, N’ € N. By the definition of the visual distances (see Equation (2.1)), we have

dy(o) (£(+0), €' (+00)) = eV’

and similarly dy)(¢(—0),¢ (—0)) = e N. By the definition of the distance on GX (see
Equation (2.4)), we have, by an easy change of variables,

+00 -N
d(é,ﬁ/)zf 2[t — N'| e‘ztdt+f 2| — N —t| e at
! —0
_cont ey [T “ou o _ Lo ont an
= (e +e ) 2ue du—2(e +e ).
0
The result follows. ]

By the definition of the Gibbs measures,® this lemma implies that

ity (B (=), = /&) 1150y (Buy (E(+0), — V)

€o €o

Since the Patterson densities are uniformly doubling for basepoints in € AI', since the foot-
points of the geodesic lines in the support of m, belong to ¥Al', the Gibbs measure m. is
hence doubling on its support.

As in the proof of | , Thm. 20|, using discrete convolution approximation (see
for instance [Sem, p. 290-292] or | |), there exists ” > 0 and, for every n > 0, a
nonnegative function R®, € CZ(I'\¥X) such that

(1) Spgx BBy de = fpgx Py dimec,
(2) Sf\gX Ry — &y dim = O (n Sr\gx ®, dme),

By Equation (10.5), the integral Sr\gx ®, dm. = |og| is constant (in particular indepen-
dent of n). Let m, = Hz—ju All integrals below besides the first one being over I'\'¢¥X, and
using

e Equation (10.12) and the above property (2) of the regularised map R®, for the first
equality,

e the assumption of exponential decay of correlations for the second one, involving some
constant k > 0, for the second equality,

e the above properties (1) and (3) of the regularised map R®,, for the last equality,

8See Equation (4.3)
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we hence have

Spvax VA€ (y R, 0g dm.
[(gm)«od § &, dm,

_ {R®, dm. {1 dm,
B (@, dm,.

_ fq/) A7, + O (e + 0+ e ") |¢]a) -

+ 0™ |[Yla + 1 [¢]w0)

+ 0™ [Ylla + 1 [Pllo + "[ROy [a]¢)]a)

Taking n = e " with \ = o7, the result follows with &' = min{a, 5%, 5} O

Let us now consider the metric tree case, for the continuous time geodesic flow, where the
main change is to assume a superpolynomial decay of correlations and hence get a superpoly-
nomial error term, for observables which are smooth enough along the flow lines. Let (X, \),
X, T, F, 6p (uf)zex and mp be as in the beginning of Section 4.4.

Theorem 10.10. Assume that 0f is finite and that the Gibbs measure mp on T\Y X is finite.
Assume furthermore that

(1) the families (AT, py , dz)zegar and (AT, pt, dy)ecoar of metric measure spaces are uni-

~

formly doubling,’, and F is bounded on TG AT,

(2) there exists o € |0, 1] such that the (continuous time) geodesic flow on (INY X, mp) has
superpolynomial decay of a-Hélder correlations.

Let 9 = (Dj)ier be a locally finite T-equivariant family of nonempty proper closed convex
subsets of X with I\I finite. Let Q = (Q;)ier be a locally finite T'-equivariant family of
measurable subsets of gX, with ; < %LDZ- for all i € I. Assume that 05 s finite and

nonzero. Then for every n € N, there exists k € N such that for all ¢ € Cgck’a(F\gX), we
have, as t — 400,

1 1
o] | Vet = o [0 dme s O™,

Remarks. (1) If F = 0, if the metric subtree X’ = €Al of X is uniform, if the length
spectrum of I on X is not contained in a discrete subgroup of R and if T" is a lattice of X’, then
we claim that §p = Or is finite, mp = mpy is finite and mixing, and (AT, pp = pZ, dz)secar
is uniformly doubling.

Indeed, the above finiteness and mixing properties follow from Proposition 4.14 and The-
orem 4.8. Since X' is uniform, it has a cocompact discrete sugbroup of isometries I whose
Patterson density (for the vanishing potential) is uniformly doubling on AT” = AT, by Lemma
4.2 (4). Since F' =0 and T is a lattice, the Patterson densities of I' and of I coincide (up to
a scalar multiple) by Proposition 4.14.

(2) Assume that F = 0, that the metric subtree X’ = @Al of X is uniform, that the
length spectrum of I' on X is 4-Diophantine and that I' is a geometrically finite lattice of
X’. Then all assumptions of Theorem 10.10 are satisfied by the first remark and by Corollary

9See Section 4.1 for definitions.
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9.10. Therefore we have a superpolynomially small error term in the equidistribution of the
equidistant levels sets.

Proof. The proof is similar to the one of Theorem 10.8, except for the doubling property
of the Gibbs measure on its support and the conclusion of the proof. Let X’ = €AI'. The
modification of Lemma 10.9 is the third assertion of the following result, which will also be
useful in Section 12.6. Its second claim strengthens for R-trees the Holder-continuity of the
footpoint projection stated in Section 2.3. If @ and b are positive functions of some parameters,
we write a = b if there exists a universal constant C' > 0 such that % b<a<Chbh

Lemma 10.11. Let Y be an R-tree.

(1) There exists a universal constant ¢y > 0 such that for all £,¢' € GY , if d(¢, V') < c1, then
?'(0) € £(R), the intersection L(R) n ¢'(R) is not reduced to a point, the orientations of
£ and ¢ coincide on this intersection, and

d(£, €") = dy() (£(=00), £'(=00))? + dy() (£(+00), £'(+0))* + d(£(0), £'(0)) .
(2) The footpoint map m:9Y —'Y defined by £ — £(0) is (uniformly locally) Lipschitz.

(3) There are universal constants g > 0,co = 1 such that for all € € |0, eo[ and £ € GY, the
ball By(¢,€) in 9Y is contained in

{0 eqY : £(0) € (R), d(£'(0),£(0)) < co & ¢(£00) € By ((+00), co Ve )}

and contains

(0 eqy : £(0)el(R), d(€(0),6(0)) < 610 ¢, (<) € Bay (E(J_roo),clo NS
Proof. (1) Let £,0' e Y. If ¢'(0) ¢ ¢(R), then ¢'(t) ¢ £(R) for all t = 0 or ¢'(t) ¢ £(R) for all
t <0, since Y is an R-tree. In the first case, we hence have d(¢(t),¢'(t)) =t for all t > 0, thus
d(¢,0') is at least co = Saroo te 2t dt = i > 0. The same estimate holds in the second case.
This argument furthermore shows that if the geodesic segment (or ray or line) /(R) n ¢'(R) is
reduced to a point, then d(¢, ¢') is at least ¢ > 0.
If d(¢'(0), £(0)) = 1, then d(£(t), ¢'(t)) = L for |t| < L, thus

d(,0') > f_

which is a positive universal constant.

If d(¢(0),€(0)) < 1, if {(R) n ¢(R) contains ¢(0) and is not reduced to a point, but if
the orientations of ¢ and ¢ do not coincide on this intersection, then d(¢(¢),¢'(t)) > 2t —
d(¢(0),¢'(0)) = 2t — 1 for all t > 1, so that d(¢,¢') is at least S+OO 2t — 1) e~2! dt, which is a
positive constant.

Assume now that ¢(0) € ¢(R), that d(¢'(0),£(0)) < 1, that /(R) n ¢(R) is not reduced
to a point and that the orientations of £ and ¢ coincide on this intersection. Then there
exists s € R such that ¢(0) = £(s), so that |s| = d(£(0),¢(0)). Assume for instance that
s = 0, the other case being treated similarly. Then there exist 5,5 > 0 maximal such that
U(t) = L(t+s) for all t € [—-S,S'], with the convention that S = 400 if ¢(—00) = ¢(—o0), that
S = 400 if /(+0) = £(+00), and that e=* = 0.

156 19/12/2016

=

L o
- dt
4 € ’

1
4



t'(=o0) o o U'(+0)

/'(—S) 00) (S
=)o (=S +s) £0) €s) e(5/+sj'°€(+oo)

By the definition of the visual distances (see Equation (2.1)), we have, for ¢ big enough,

dy(o)(U(+0), £'(+90)) = 2[5+~ (=5
Similarly dygy(£(—0), ¢'(—0)) = e .
As can be seen in the above picture, we have

—2t—25+s if t<-5
d(t),0'(t)) =< s if —S<t<S+s

2t —28" —s if t=85+s.
By the definition of the distance on Y (see Equation (2.4)), by easy changes of variables,
assuming that at least one of S, S’ is larger than some positive constant for the last line, we
have

d(e, ¢')

-S S'+s +00
f (=2t — 25 +s) e 2t dt + J se 2t gt 4 J (2t — 28" — 5) e 2t dt
—00 -5 S'+s

S'+s +0

+00
!
= ¢ 25+ J we *du+ sf e 2t g¢ 4 e=25' s J uwe *du
s —-S s

_ _ !/
=e 25+€ 254—3.

Assertion (1) of Lemma 10.11 follows.
(2) The second assertion follows immediately from the first one.

(3) The first inclusion in the third assertion follows easily from the first one, and the
second one follows from the argument of its proof, and the fact that if dy((£(+00), £'(+-0)),
dy(0)(£(+00), £'(+00)) and d(£(0),£'(0)) are at most some small positive constant, then £(R) n
¢(R) contains #'(0) and is not reduced to a point. O

If the fogtpoints of ,0' € 94X’ are at distance bounded by cq €, then by Proposition 3.10
(2), since |F| is bounded on T X’ by assumption, the quantities \ng (£(0),¢'(0))| for £ € AT
are bounded by the constant ¢ = ¢o eo (maxg1y/ |[F — 67|). By the definition of the Gibbs

measures (see Equation (4.3)), Assertion (3) of the above lemma hence implies that if € < ¢
then

672% € /J'g_(o) (Bdg(()) (6(_00)7 l \/E)) Nz_(()) (Bdg<o) (£(+OO>7 i \/E))

€o €o

)
< 2% ¢ o) (de(m (£(—0),co Ve)) ,uzr(o) (Bd,_z(o) (£(+0),co Ve)) -

As in the simplicial case, since the Patterson densities are uniformly doubling for basepoints
in X', the Gibbs measure m, is hence doubling on its support.
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Fix n € N. As in the end of the proof of Theorem 10.8, using the assumption of superpoly-
nomial decay of correlations, involving some degree of regularity & in order to have polynomial
decay in t~N" where N = [£"] + 1, instead of the exponential one, we have for all ¢ > 1

SF\E?X 1/’ d(gt)*ag

I(g")«o ]

Taking n = t~™, by the definition of N, we hence have
SF\E?X w d(gt)*o‘;)_ _
I(g") s3]

This proves Theorem 10.10. O

=fwdmawxw4a+n+fwmr“wwh@.

jwdma+o@7wwmﬂy
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Chapter 11

Equidistribution of common
perpendicular arcs

In this Chapter, we prove the equidistribution of the initial and terminal vectors of com-
mon perpendiculars of convex subsets in the universal covering space level for Riemannian
manifolds and for metric and simplicial trees. The results generalise | , Thm. 8|.

In Sections 11.1 to 11.3, we consider the continuous time situation where the CAT(—1)-
space X is either a proper R-tree without terminal point or a complete Riemannian manifold
with pinched negative curvature at most —1, and xg is any basepoint in X. In Section 11.4,
X is the geometric realisation of a simplicial tree X, with the discrete time geodesic flow, and
xo is any vertex of X.

Let T' be a nonelementary discrete group of isometries of X. Let F be a continuous I'-
invariant potential on 77X, which is Holder-continuous if X is a manifold. Assume that
§ = Op p+ is positive and let (uf)zex be Patterson densities for the pairs (I', F*), with
associated Gibbs measure mp. Let 2~ = (D, )i~ and 2% = (D;f)jeﬁ be locally finite
I'-equivariant families of nonempty proper closed convex subsets of X.

For every (i,7) in I~ x I'" such that the closures Dif and Di;r of D;” and D; in X NnopX
have empty intersection, let X\; ; = d(D;, D;r) be the length of the common perpendicular

from D, to D;, and o ; € GX its parametrisation: it is the unique map from R to X such

— p— —_ . — — + . —
that a; ;(t) = a; ;(0) € D; ift <0, a; ;() = oy ;(Ni;j) € Dj ift = A; 5, and Qijilo, 7 5] = i
is the shortest geodesic arc starting from a point of D;” and ending at a point of D;F. Let
Xij o —Xij
ajj — ghi @, ;- In particular, we have gTjaij =g 2 ’ a;rj.

We now state our main equidistribution result of common perpendiculars between convex
subsets in the continuous time and upstairs settings. We will give the discrete time version
in Section 11.4, and the downstairs version in Chapter 12.

Theorem 11.1. Let X be a proper R-tree without terminal points or a complete Riemannian
manifold with pinched negative curvature at most —1. Let T be a nonelementary discrete group
of isometries of X and let F be a bounded T-invariant potential on X as above. Assume that
the critical exponent § is finite and positive, and that the Gibbs measure mp is finite and
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mizing for the geodesic flow on T\YX. Then

. _ P
lim & [mp| e 0! g i T A QA +
t—+00 Qi vj Y15
i€l /~, jeIT /., el
- 0+
Di ﬁD,‘/j=®,>\i7»\/j$t

— 3 Q5
= O, ®0@+

for the weak-star and narrow convergences of measures on the locally compact space GXxGX.

Recall that the narrow topology' on the set .#;(Y') of finite measures on a Polish space Y is
the smallest topology such that the map from .Z;(Y) to R defined by u — u(g) is continuous
for every bounded continuous function g : ¥ — R.

The proof of Theorem 11.1 follows that of | , Thm.8|, which proves this result when
X is a Riemannian manifold with pinched negative curvature at most —1 and F' = 0. The
first two and a half steps work for both trees and manifolds and are given in Section 11.1.
The differences begin in Step 3T. After this, the steps for trees are called 3T and 47T and
are given in Section 11.2 and the corresponding steps for manifolds are 3M and 4 M, given in
Section 11.3.

In the special case of 2~ = (yz)yer and 27 = (yy)er for some z,y € X, this statement
gives the following version with potentials of Roblin’s double equidistribution theorem | ,
Theo. 4.1.1] when F' = 0, see | , Theo. 9.1] for general F' when X is a Riemannian
manifold with pinched sectional curvature at most —1.

Corollary 11.2. Assume that F is bounded and that the Gibbs measure mp is finite and
mizing for the geodesic flow on ¢ X. Then

: 5t g _ o+ -
Jim 8 mp]| e Yoo ALRA L, = e,
yel : d(z,vy)<t

for the weak-star convergence of measures on the compact space (X U 05X ) X (X U 05 X). [

Here is a version of Theorem 11.1 without the assumption that the critical exponent of
0 = or, r is positive.

Theorem 11.3. Assume that F is bounded and that the Gibbs measure mp is finite and
mizing for the geodesic flow on ¢ X. Then for every T > 0, we have

) O |lmp| _ 2
lim 9 el H5 e 0t E es‘“’m' A -
t—o+0 1 —e 7 @

i€l™/~, jeIT/~, 7T
-t
D; (\va=®,t—7'<)\i’—yj<t

®Ay =055 ®F,,

i Y7 ~—Li,j

for the weak-star convergence of measures on the locally compact space IX x9X.

Proof. The claim follows from Theorem 11.1 by replacing F' by F' + k for x large enough so
that or pyrx = 0r,F + £ > 0, and by using a classical geometric series type of arguments, see
for instance | , Lem. 9.5] for more details. O

'also called weak topology see for instance [DM, p. 71-IIT] or |

» Par]
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11.1 Part I of the proof of Theorem 11.1: the common part

Step 1: Reduction. By additivity, by the local finiteness of the families 2%, and by the
definition of 53; = Zkeﬁ/N 52—;5, we only have to prove, for all fixed i € I~ and j € I, that

: -0t Sai ﬁ‘ . ~+ ~—
tErJPOO d |mp| e Z e A~ QA + = O'D;®0'D;r (11.1)

Rt —Li,j
veT': 0<X; ~;<t T

for the weak-star convergence of measures on GX x9X.
Let Q2 be a Borel subset of 8_1FD1-_ and let O be a Borel subset of éﬂ_D;-“. To simplify
the notation, let
- - - - ~t o~
D~ =D;, D" = D;f, oy = affr = ozfyllm, Ay = Xijyjy 00 =007 - (11.2)
Assume that Q= and QT have positive finite skinning measures and that their boundaries in
01 D~ and 01 DT have zero skinning measures (for &+ and &~ respectively). Let

_F
To- v (8) = 6 [mp] e 3 At (113
vel': O<Ay <t
a3 10.a41€27 Hoay]s @7 =2y, 01€2F 122401

We will prove the stronger statement that, for every such Q%, we have

lim Tg- qe(t) = 5H(Q7) 5 (2F). (11.4)

t—+00

Step 2: First upper and lower bounds. Using Lemma 7.57(1), we may fix R > 0 such
that vz (V" ) >0 for all  €]0,1] and w € 0L D*. Let ¢ = ¢, R o+ De the test functions
defined in Equation (10.4).

For all t > 0, let

a® =3 [ (0 65 g0 dm(0). (115)
’YEF v X
Asin | |, the heart of the proof is to give two pairs of upper and lower bounds, as T' > 0

is big enough and 7 € ]0,1] is small enough, of the (Césaro-type) quantity

T
in(T) :J et ay (1) dt. (11.6)

By passing to the universal cover, the mixing property of the geodesic flow on I'\¥ X for
the Gibbs measure mp gives that, for every € > 0, there exists T, = T¢ , = 0 such that for all
t = T., we have

e ¢ e
S o, Cl’f?LFJ (bJr dmp < ay(t) < —— J o dmpf ¢+ dmpg .
Imp| J;¢X ! gx n( ) Impl| Jyx " gx

Hence by Lemma 10.1, for all € > 0 and 7 € ]0, 1], there exists ¢c = ¢, > 0 such that for
every T' > 0, we have

eéT e&T

e ¢ g (Q1) — e <ip(T) < €° Q) () + . 11.7
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Step 3: Second upper and lower bounds. Let 7" > 0 and n € ]0,1]. By Fubini’s
theorem for nonnegative measurable maps, the definition® of the test functions qﬁ;—r and the
flow-invariance® of the fibrations fz)—ri, we have

T
() = Y fo & LX B o £ (0) Bt o fre(7710)

~yell

We start the computations by rewriting the product term involving the functions hﬁ p- For
ally el and £ € %+ N %, define (using Equation (2.11))

D- yD+>
w” = f_ (), oX and w' = fV_DJr(E) = 'yf5+(’y*1€) €Y _oX. (11.9)

This notation is ambiguous (w™~ depends on ¢, and w* depends on £ and ), but it makes the
computations less heavy. By Equations (10.2) and (3.8), we have, for every ¢t = 0,

w ™ (4/2) /73
o N _ _ “OR sy _
P n(07) = iy og 2@ %0 ) = oo T ().
Similarly,
+ (-1, O (s —t/2, +
Wt () = ST (gt
Hence,
h;ROfE—(E) h;,RofB+(771£)
3 w:(t/2) 2 wt (0) P 3 3
— et 0 Yot (-2 hn,e—t/2R(gt/2w )h;,e—t/?R(g Y2p%) . (11.10)

11.2 Part II of the proof of Theorem 11.1: the metric tree case

In this Section, we assume that X is an R-tree and we will consider the manifold case sepa-
rately in Section 11.3.

Step 3T. Consider the product term in Equation (11.8) involving the characteristic functions.
By Lemma 2.8 (applied by replacing DT by vD™), there exists ¢y = 2In R + 4 such that for
all n € 10,1] and t > to, for all £ € X, if Ilgt/Qy/;R(Q,)(f) lg_t/”ﬁ,_,m(79+)(£) # 0, then the

following facts hold.

(i) By the convexity of D*, we have ¢ € %

N %'YD+'

(i) By the definition* of w®, we have w™ € Q= and w* € vQ*. The notation (w~,w™)
here coincides with the notation (w™,w™) in Lemma 2.8.

2See Equation (10.4).
3See Equation (2.11).
“See Equation (11.9).
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(iii) There exists a common perpendicular vy, from D~ to yD*, whose length A, satisfies
| Ay —t] <2

whose origin is a7 (0) = w™(0), whose endpoint is . (0) = w™(0), such that the points

w™ () and wt(—1%) are at distance at most 7 from £(0) € a,.

Hence, by Lemma 3.3 and since Fis bounded,

~ w™ (t/2) =, cw (O) ~ ~
=21 Flo oy F <@ F Sty F < 21 Fle an B (11.11)

For all n € ]0,1], y € T and T > o, let

(1) = {(t.0) € [to, T] x GX : 0e ¥ (807 ) ¥~ up(yve 207)}
and
o= f W an@207) Y (g™ ) dt i (0).
(t, 0)ect ~(

By the above, since the 1ntegral of a function is equal to the integral on any Borel set containing
its support, and since the integral of a nonnegative function is nondecreasing in the integration
domain, there hence exists ¢4 > 0 such that for all 7> 0 and 7 € ]0, 1], we have

. _omllF S F .
in(T) > —cs+e oo Z e jgn~(T)
vel: to+2< A <T'—2n
a3 [10, 316927 [j0, 215 @7 [y, 01€72 T [[- 1. 0

and similarly, for every 77 = T (later on, we will take T” to be T + 47),

- 2n | F [ ﬁ ) /
in(T) < ca+e 7 1F e 2 el Jn4(T7) .
vel': to+2< A <T'+2n
a3 [10, 31627 [j0, 3 1s @7 [y, 01672 =1, 0]

Step 4T: Conclusion. Let ¢ > 0. Let v € I" be such that D~ and vD™ do not intersect
and the length of their common perpendicular satisfies A, > tg + 2. Let us prove that if 7
is small enough and A, is large enough (with the enough’s independent of «), then for every
T > A, + 2n, we have

1—e<jp,(T)<1+e. (11.12)

This estimate proves the claim (11.4), as follows. For every € > 0, if n > 0 is small enough,
we have

in(T +2n) = —cq + e~ 2l (1

B 6)< Io-o+(T)  Ig-go+(to +2) )
0 [mple®™ & |mp|e~dtot2)

and by Equation (11.7)

e 5 Q) F(Q)
5 HmF ” 675(T+277)
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in(T +2n) < ce +




Thus, for 1 small enough,

as T' — 400, which gives

limsup Ig- o+(T) < 57(Q7) 5 (QF).
T—+w

The similar estimate for the lower limit proves the claim (11.4).
To prove the claim (11.12), let n € ]0,1] and T > A, + 2n. To simplify the notation, let
re = e_t/QR, w, = gt/Qw_ and w;’ = g_t/2w+.

By the definition of j, ., using the inequalities (10.3) (and the comment following them), we
hence have

i (T) = ﬂ b (o) b i) dt diip(6)

n,7t n, Tt
(t, f)edn +(T)
O j j dt dinp (0) s
= . _ | |
(t, )€ty (T ’uW+ y(BH (Wi, 7)) byy— iy (B~ (wi', 7t))

Let x, be the midpoint of the common perpendicular c.,. Let us use the Hopf parametri-
sation of ¢4 X with basepoint z., denoting by s its time parameter. When (¢, ¢) € o7, ,(T'), we
have, by Proposition 3.10 where we may take ko = 1,

dinp() = 7 OV FCL O gm0y (04) ds

= eo(")d,u:; (¢-) du; (04)ds. (11.14)

Let P, be the plane domain of (t,s) € R? such that there exist s* € | — n,n[ with
At
st =5

+ s. It is easy to see that P, is a rhombus centred at (\,,0) whose area is (2n)2.
Let {7 be the point at infinity of any fixed geodesic ray from z., through oz £(0). If Ais a
subset of ¥ X, we denote by Ay the subset {{+ : £ € A} of 0, X.

Lemma 11.4. For everyt = tg, we have

B*(w] 1))z = Ba, (€7, Re™ %
(B*(w",7t))5 = Ba,, (&, Re”2).

Proof. We prove the statement for the negative endpoints, the proof of the claim for pos-
itive endpoints is similar. Let ¢ € B*(w; ,r;), with ¢ # §,. Let p € X be such that

[€/(0), & [ ~ [€/(0), €2 = [£(0), p]-
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Since t >t > 2In R, we have r; < 1, hence £'(0) = w; (0) = w™(¢/2) and p € [¢'(0), & [
Since t > to = 1 > 7, we have p € [z,,&[. Hence

Ay, (0, €7) = e~1P2) — e (=5 —5) _ p =55 — Rem

Nig

Conversely, if € € By, (€F,Re™ %) with € # €7, let £ € 4X be such that £(0) = w™(t/2)
and ¢ = {. Let w; be the extension of w; such that (@; )~ = £;. Then as above, we have
dW,(wt—)({l};7£,> < rt. |:|

st e]—nn[ and £ € ¥X, we have
+ % (or equivalently by the definition of
)\'Y

g™ 0 e BE(w/,r,) if and only if d(£(0), o (0))

It follows from this lemma that, for all ¢ > ¢
=35
¥

0
t e

Y
the time parameter s in Hopf’s parametrisation, st + % =S +s),and (4 € By, (f,;i, ReTﬂ{).
Thus,

Y.
To finish Step 4T and the proof of the theorem for R-trees, note that by the definition of

the skinning measure (using again the Hopf parametrisation with basepoint z.,), by the above
Lemma 11.4 and by Proposition 3.10 where we may take ko = 1, we have

A
yo(T) = Py x By, (&, Re” 2 ) x By, (&, Re™

Ay

iy oy (BE (0 11)) = CE (By, (€5 Re™ %)), (11.15)

Thus, by the above and by Equations (11.13) and (11.14), (and noting that O(n) + O(n) =
O(n))

M _ _ Ay Ay
i1y = T ot g2 e B, (6 B F ik (B, (& Re” 7))
: 2 - L, x T
4 iz, (Ba,, (&, Re™ 3))ud, (Ba,, (€5, Re™ 7))
_ Ay
= Olrte =) (11.16)
which gives the inequalities (11.12). O

The effective control on jj, ,(T") given by Equation (11.16) is stronger than what is needed
in order to prove Equation (11.12) in Step 4T. We will use it in Section 12.6 in order to obtain
error terms.

11.3 Part III of the proof of Theorem 11.1: the manifold case

The proof of Theorem 11.1 for manifolds is the same as for trees until Equation (11.10). The
rest of the proof that we give below is more technical than for trees but the structure of the
proof is the same. In this Section, X = M is a Riemannian manifold, and we identify ¥X
with T M.

Step 3M. Consider the product term in Equation (11.8) involving the characteristic functions.
The quantity ﬂy/nfR(Q_)(gft/zv) HWWTR(QJF)(’y*lgt/Qv) is different from 0 (hence equal to 1) if
and only if

ve g PY () g P () = St (@20 Y (e,
165 19/12/2016



see Section 2.5 and in particular Equation (2.15). By | , Lem. 7] (applied by replacing

D" by yD* and w by v), there exists tg,co > 0 such that for all € ]0,1] and ¢ > ¢, for all
107 —t/2 B —1,t/2 : .

ve T M, if ﬂ”’ﬁf,R(Q*)(g v) Ilal/mR(Qﬂ(’y g'’?v) # 0, then the following facts hold:

(i) by the convexity of D*, we have v e % n U p+>

(ii) by the definition of w* (see Equation (11.9)), we have w™ € Q= and w™ € ¥Q*. The
notation (w™,w™) here coincides with the notation (w™,w™) in Lemma 2.8,

(iii) there exists a common perpendicular a, from D~ to vD™T, whose length )\, satisfies

|)\7—t|<2n+coe*t/2,

—t/2 +)

N
is at distance at most cye ¥? from m(w™), such that both points 7(g?w~) and
m(g ¥?w*) are at distance at most 1 + coe ¥? from 7(v), which is at distance at

most ¢ge 2 from some point p, of Oy .

whose origin 7(vy) is at distance at most cge from 7(w™), whose endpoint (v

In particular, using (iii) and the uniform continuity property of the F -weighted length (see
Proposition 3.10 (3) which introduces a constant ¢y € ]0,1]), and since F' is bounded, for all
n€]0,1], t = to and v e T*M for which ]l‘//,;rR(Q*)(g_t/Qv) ]l%;R(QJr)(,y—lgt/?v) # 0, we have

(gt 2w~ ) B B Pv F+ ﬂ'(vf;—) ﬁ+o((n+€7t/2)c2)
esﬂ.(wf) S —t/2w+) — esﬁ(v;) SP'U
= oy I O(trre™%)2) (11.17)

For alln e 0,1], v e I" and T' > ¢, define o7, ,(T) as the set of (¢,v) € [to, T] x T'M such

that v € ”i/ _t/gR( 1207 n ”f/ vz (78” t2Q0), and
(T H N en@07) (g™ ) dt dig (v)
(t,v)ed - (

By the above, since the integral of a function is equal to the integral on any Borel set containing
its support, and since the integral of a nonnegative function is nondecreasing in the integration
domain, there hence exists ¢4 > 0 such that for all 7" > 0 and 7 € ]0, 1], we have

‘ a F —O((n+e=M/2)c2
ZW(T> = —c4+ Z 8S - ]7777(T) o~ Ol(n+e )e2) ’
YED: to+2+co <Ay ST —O(n+e~*/?)
" B
vreA O("JFE_A'*/Q)Q > E7'/1/—O(n+e—”v/2)g

and similarly, for every 77 > T,

; Sa F . N O((n+e 2 v/2)c2
in(T) <ca+ Z elar ™ g (T7) Cnte™75)%2)
~el': to+2+co</\7<T+0(n+e*M/2)

E'y/V

Uy €A e /2T Y Omte—r1/2)%

We will take T” to be of the form T + O(n + e~*/?), for a bigger O(-) than the one appearing
in the index of the above summation.
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Step 4M: Conclusion. Let v € I' be such that D~ and vD™ have a common perpendicular
with length Ay > tg + 2 + ¢p. Let us prove that for all € > 0, if  is small enough and A, is
large enough, then for every T = A, + O(n + e */2) (with the enough’s and O(-) independent
of v), we have

1—e<jp,(T)<1+e. (11.18)
Note that &+ (AZ(QF)) and (A (2F)) tend to 5H(QF) as ¢ — 0 (since 5 (0QF) = 0 as
required in Step 1). Using Steps 2, 3M and 4M, this will prove Equation (11.4), hence will
complete the proof of Theorem 11.1.

We say that (]\7, T, 15) has radius-continuous strong stable/unstable ball masses if for every
€ > 0, if r > 1 is close enough to 1, then for every v € T1]\7, if B~ (v, 1) meets the support of
u%_(v), then

i (B (0:7) < sy (B~ (0, 1)

and if BT (v, 1) meets the support of ,u;VJr(v), then
/J;{H(v)(BjL(”? r) < eelu;wr(v) (BT (v,1)).

We say that (]\7, I, ﬁ’) has radius-Holder-continuous strong stable/unstable ball masses if there
exists ¢ € ]0,1] and ¢ > 0 such that for every € € ]0,1], if B~ (v,1) meets the support of

+
= () then
M;/—(v)(B_(UaT)) <ef ecl‘;/f(v)(B_(Ua 1))

and if BT (v, 1) meets the support of ”171/+(v)’ then

Na/+(v)(B+(U> r)) < ECIECNI;H(U) (B*(v,1)).

Note that when F' = 0 and M has locally symmetric with finite volume, the conditional
measures on the strong stable/unstable leaves are homogeneous. Hence (]\7 T, F ) has radius-
Holder-continuous strong stable /unstable ball masses.

When the sectional curvature has bounded derivatives and when (]\7 ,F,ﬁ) has Holder
strong stable/unstable ball masses, we will prove a stronger statement: with a constant ¢; > 0
and functions O(-) independent of v, for all n € ]0,1] and T = A, + O(n + e */?), we have

R
2n
This stronger version will be needed for the error term estimate in Section 12.3. In order to
obtain Theorem 11.1, only the fact that j, ~(7") tends to 1 as firstly A, tends to +o0, secondly

1 tends to 0 is needed. A reader not interested in the error term may skip many technical
details below.

(D) = (140 (55 =) ) e, (11.19)

Given a,b > 0 and a point x in a metric space X (with a, b,z depending on parameters),
we will denote by B(ac,aeo(b)) any subset Y of X such that there exists a constant ¢ > 0
(independent of the parameters) with

B(z,ae ®) c Y c B(x,ae?).
Let n€]0,1] and T = A, + O(n + e~*/2). To simplify the notation, let
re=e 2R, wi =gPw” and wf =g Vw0,
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By the definition of j, -, using the inequalities (10.3), we hence have

) H s (W0) B () dt dii (o)
EM’W’Y

) cwz H dt dmp(v) - (11.20)

(B (o r)) i o (B )

(t,v)edy (T Mt )

We start the proof of Equation (11.18) by defining parameters s, s7, s,v',v” associated
with (t,v) € o, (T).

w+ (gt/zw*) W—(g—t/2w+)

o
W= (v2) W (w9)
We have (t,v) € o, ,(T) if and only if there exist s* € ] —n, [ such that

g%iv € Bi(git/2w$, e*t/QR) .
The notation s coincides with the one in the proof of Lemma 2.8 (where (D, w) has been
replaced by (yD*1,v)).
In order to define the parameters s, v’,v”, we use the well known local product structure of
the unit tangent bundle in negative curvature. If v € T'M is close enough to vg (in particular,

v # (v9)4 and vy # (v9)-), then let v/ = f;”IB )( v) be the unique element of W_( o)

such that v, = vy, let v = fus, (vg)( v) be the unique element of W (v9) such that v” = v_,

and let s be the unique element of R such that g~%v € W*(v’). The map v — (s v, 0") s

a homeomorphism from a neighbourhood of vg in T1M to a neighbourhood of (0,v? vo

b ’y7 ’y) in
R x W~ (v9) x WH(uh). Note that if v = g"v for some r € R close to 0, then

Ay — 1
_ + _ _
Ny S = 5 +s, 8" = 5 S.

Up to increasing ty (which does not change Step 4, up to increasing c4), we may assume that
for every (t,v) € 7, (T), the vector v belongs to the domain of this local product structure

of T'M at vg.

The vectors v,v’,v” are close to vg if ¢ is large and n small, as the following result shows.
We denote (also) by d the Riemannian distance induced by Sasaki’s metric on T'M.
Lemma 11.5. For every (t,v) € @, (T), we have d(v,vY),d(v',v9), d(v",09) = O(n+e~t?).
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Proof. Consider the distance d’ on T'M , defined by

YV vy, ve € T'M, d (vi,v9) = IFalXO]d(ﬂ-(grfUl)yﬂ-(gTUQ)) .
re|—1,
As seen in (iii) of Step 3M, we have d(m(w?), ﬂ(v;—r)), d(m(v), ) = O(e™¥?), and furthermore,
d(m(g"?w™), (v)), %5 — 5 = O(n+ ¢72). Hence d(r(v), 7(13)) = O(n + 7). By | :
Lem. 2.4|, we have

0
y

d(m(g™2™ ), m(v3)) < d(r(g” 2~ v),w(w")) +d(n(w),7(v])) < R+ coe /2
By an exponential pinching argument, we hence have d’(v,v9) = O(n + e~*/2). Since d and
d" are equivalent (see [Bal, page 70]), we therefore have d(v,v9) = O(n + e~ M/,
For all w e T'M and V e Tleﬁ, we may uniquely write V = V= + VY + V* with
V-eT,W-(w), Ve R%ltogtw and V*t e T,W*(w). By | , §7.2] (building on [Brin]

whose compactness assumption on M and torsion free assumption on I' are not necessary for
this, the pinched negative curvature assumption is sufficient), Sasaki’s metric (with norm |- |)
is equivalent to the Riemannian metric with (product) norm

IVI'= VIV R+ VR + V2.

By the dynamical local product structure of T'M in the neighbourhood of Ug and by the
definition of v’,v”, the result follows, since the exponential map of TM at vg is almost
isometric close to 0 and the projection to a factor of a product norm is Lipschitz. Il

We now use the local product structure of the Gibbs measure to prove the following result.

Lemma 11.6. For every (t,v) € <, ,(T), we have
dt diivp (v) = QD) Gt ds dpuyy— 0y () dpryy 0y (0")

Proof. By the definition of the measures (see Equations (4.3) and (7.9)), since the above
parameter s differs, when v_, v, are fixed, only up to a constant from the time parameter in
Hopf’s parametrisation, we have

dinp(v) = €= (0T T CL 07O gy () dpd (v,) ds

Y, (zo, w(v
@) = T ot

C o (zo,m(0")
duW*(vg)(U”) =€ - duxo ('U/i) :
s : : 0N ne
By Proposition 3.10 (2) since F is bounded, we have [Cg (2, 2") | = O(d(z,2)??) for all { €
é’oo]\,\j and z,2’ € M with d(z,2") bounded. Since the map 7 : TIM — M is Lipschitz, and
since vy = v/, and v_ = v”, the result follows from Lemma 11.5 and the cocycle property
(3.7). ]
When )\, is large, the submanifold g*/2Q~ has a second order contact at vg with W*(vg)
and similarly, g~*/2Q" has a second order contact at vg with W*(vg). Let P, be the plane
domain of (t,s) € R? such that there exist s* € | —n,n[ with sT = % + 5+ O(e=™/?).
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Note that its area is (27 + O(e~*/2))2. By the above, we have (with the obvious meaning of
a double inclusion)

Dy (T) = Py x BT (v, 7, Olrre™ ) B (WY, 7y, (Olrte™1/2)y.

By Lemma 11.6, we hence have

J dt divip(v) = 0T (25 1+ O(e7M/2))? x
y,(T)

O(n-i—e_AW/Q))) 0 O(n-i—e_)‘”//Q))) )

MWf(Ug)(B_ (’U,(;,T')\,Y € MW*(’U,OY)(B-F (U'yvr)\,y €
(11.21)

The last ingredient of the proof of Step 4M is the following continuity property of strong
stable and strong unstable ball volumes as their centre varies. See | , Lem. 1.16], | ,
Prop. 10.16] for related properties, although we need a more precise control for the error term
in Section 12.3.

Lemma 11.7. Assume that (]\7, T, F) has radius-continuous strong stable/unstable ball mas-
ses. There exists cs > 0 such that for every € > 0, if n is small enough and A, large enough,
then for every (t,v) € @, ,(T'), we have

By (B (w0 70)) = €2 gy 40y (B (v),7m0,)
and
NW+(w{)(B+(wt_a7“t)) = ¢90(<) NW*(UQ/)(B+<U2=T)W))'
If we furthermore assume that the sectional curvature of M has bounded derivatives and

that (]\7, r, ﬁ’) has radius-Hélder-continuous strong stable/unstable ball masses, then we may
replace € by (1 + e /2% for some constant cg > 0.

Proof. We prove the (second) claim for # T, the (first) one for # ~ follows similarly. The
final statement is only used for the error estimates in Section 12.3.

Bt (w™,R)

B* (v, R OUn+e))

Using respectively Equation (2.13) since w; = g¥/?w™ and r; = e 2R, Equation (7.11)
where (v,t,w) is replaced by (g"?v,t/2, g"/?w™), and Equation (3.8), we have

MW+(w;)(B+(wlf_7Tt)) = f d“W‘*’(gi/Qw—)(gtmv)
veBT(w™, R)
o (m(v), m(gt?v
:J (OO TE )
veB+(w~, R)

w(et20)
= J e TE G ey (0). (11.22)
veB+(w—, R)
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Similarly, for every a > 0, we have

0

(et/2v) 5
pw+(00) (BT (15, ary)) =J ety (F70)
7 veB+(vY, aR)

7 (v)

dﬂW*(vg)(U) . (11.23)
Let h~ : BY(w™, R) — W (v}) be the map such that (b~ (v))- = v_, which is well defined

and a homeomorphism onto its image if A, is large enough (since R is fixed). By Proposition
7.4 applied with D = HB, (w™) and D' = HB (v ), we have, for every v € B* (w™, R),

dﬂW*(w*)(v) = ¢~ () (7)) dlulw+(vﬂ7)(h_ (v)) -

Let us fix € > 0. The strong stable balls of radius R centred at w™ and v are very close
(see the picture in the beginning of the proof). More precisely, recall that R is fixed, and
that d(m(w™),m(vy)) = O(e=*/?) and d(w(gt/Qw*),ﬂ(g)W/%;)) = O(n + e ™/?). There-
fore we have d(m(v), w(h~(v))) < € for every v € BY(w™, R) if n is small enough and )\, is
large enough. If we furthermore assume that the sectional curvature has bounded deriva-
tives, then by Anosov’s arguments, the strong stable foliation is Holder-continuous, see for
instance | , Theo. 7.3]. Hence we have d(m(v), 7(h~(v))) = O((n + e */?)%) for ev-
ery v € BT (w™, R), for some constant ¢5 > 0, under the additional regularity asumption on
the curvature. We also have h™ (Bt (w™, R)) = B*(v;,Reo(ﬁ)) and, under the additional

hypothesis on the curvature, h~ (B*(w™, R)) = B* (v, R eO(n+e™1/2)%5)y).
In what follows, we assume that ¢ = (7 + e~*/2)% under the additional assumption on
the curvature. By Proposition 3.10 (2), we hence have, for every v € B (w™, R),

dpyy+ ) (0) = €2 dpy (o (0 (0)

and, using Proposition 3.10 (3),

n(g/2) _ r(g/2h=(v) _
f (F—&)—f (F —8) = O(e2) .
7(v) 7(h™ ()

The result follows, by Equation (11.22) and (11.23) and the continuity property in the radius.
]

Now Lemma 11.7 (with € as in its statement, and when its hypotheses are satisfied) implies
that

f f dt dinp (v)
. Bt (w; + B (w'
(tw)eddy o (T) MW*(wf)( (w;, 1)) 'qu(w;r)( (wi' 1t))

_ €0) (f (t0)esty (T) dt dmp(v) |
P o) (BT (05, 70)) pigy— ) (BT (09, 7))

By Equation (11.20) and Equation (11.21), we hence have
O((n+e=>v/2)e2) €5 (2n + O(€7AW/2))2
(2n)?

under the technical assumptions of Lemma 11.7. The assumption on radius-continuity of
strong stable/unstable ball masses can be bypassed using bump functions, as explained in

| , page 81]. O
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11.4 Equidistribution of common perpendiculars in simplicial
trees

In this Section, we prove a version of Theorem 11.1 for the discrete time geodesic flow on
quotients of simplicial trees (and we leave to the reader the version without the assumption
that the critical exponent of the system of conductances is positive).

Let X be a locally finite simplicial tree without terminal vertices. Let I" be a nonelementary
discrete subgroup of Aut(X). Let ¢: EX — R be a I-invariant system of conductances on X,
let F,, be its associated potential (see Section 3.5), and let m, = mp,. Let 2~ = (D; )ier-
and 27 = (D;f)je 7+ be locally finite I'-equivariant families of nonempty proper simplicial
subtrees of X.

For every edge path a = (ey,...,e,) in X, we set

cla) = D e .
=1

Theorem 11.8. Assume that the critical exponent §. of ¢ is positive and that the Gibbs
measure my is finite and mizing for the discrete time geodesic flow on T\YX. Then

€6c -1 5ot o
lim ——— HmCH e °¢ Z ec(az,w) Aa_

t—>+owo  ede
i€l /~, jeI T /~, vel
—~D+
Di ﬂD,YjZQ, Ai, i St

® Aoﬁ; = 5-;* ® 51%*

i, ~—Llij

for the weak-star convergence of measures on the locally compact space gX x IX.

Proof. The proof is a modification of the continuous time proof for metric trees in Sections
11.1 and 11.2. Here, we indicate the changes to adapt the proof to the discrete time. We use
the conventions for the discrete time geodesic flow described in Section 2.7.

Note that for all i € 1=, j € I, v € ', the common perpendicular «;; is now an edge
path from D, to D%, and that by Proposition 3.11, we have Sai y F, = c(iyg)-

In the definition of the bump functions in Section 10.1, we assume (as we may) that n < 1,
so that for all n/ €]0,1[ and w € 0% D* such that ws € AT, we have

Vi

_ p* !
way =B (w, 7).

see Equation (2.12) and recall that we are only considering discrete geodesic lines. As £(0) =
w(0) for every £ € BE(w,n) since n < 1, and as the time is now discrete, Equations (10.1)

and (7.12) give
1
hE (w) = . (11.24
) e o B 7) )
This is a considerable simplification compared with the inequalities of Equation (10.3).
In the whole proof, we restrict tot = n e N, T = N € N. In Steps 1 and 2, we define
instead of Equation (11.3)

_F.
Io- 0+ (N) = (¢% = 1) [mc] e V+D) D i e
yel': 0<Ay <N
a5 10,0162 fo,x415 @ [1-x,,00€2F [1-x, 01
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and instead of Equation (11.5)

ay(n) = ) LegX%( n/210) ¥ (gl"/2ly1e) dine(0) .

vel

Equation (11.6) is replaced by

N
_ Z 66 n
n=0
so that by a geometric sum argument, the pair of inequalities (11.7) becomes

ede (N+1) 5+(Q—) 5 (Q+) ede (N+1) 5+(Q—) 5 (Q+)
—ce < ip(N) < €f
(@~ 1) m] o) @~ m]

+ ce.

Step 3 is unchanged up to replacing So by Zn 0> F by F,, § by 6, and t/2 by either |n/2|
r [n/2], so that Equation (11.10) becomes, since |n/2| + [n/2] = n,

hy gofh-(0) b} go (1)

w—(In/2]) fr L (w (0)
_ e—écn esw7(0> +S

B 9
2D hme_[n/zJR(g[n/ |

w™) h;: e—[n/z]R(g_[n/Q]w+) .
The proof then follows similarly as in Section 11.2; with the simplifications in the point (iii)
that, taking 7 < 1/2, we have A, equal to t = n, and the points w™ (| 5]), w*(—[%]) and £(0)
are equal. In particular, Equation (11.11) simplifies as
w™(lg) & | cwt(0) -

egw*m) Fetd s Crgn T _ R ;
thus avoiding the assumption that F. (or equivalently ¢, see Section 3.2) is bounded. The end
of Step 3T simplifies as

—cy < ip(N) = Z o Jny(N) < ey
el tg+2< Ay <N
a3 110, 21€27 10, 31 @7 [[-a, 01672 T (224, 0]

The statement of Step 4T now simplifies as

ifn < %, and if v € T is such that D~ and vD™ do not intersect and ), is large enough. We
introduce in its proof the slightly modified notation

— e BIR, w, = gl%Jw_ and w, = g_[g]uﬁ.

. +
ro=e 2R r - M

n n

and we now take as x- the point at distance || from its origin on the common perpendicular
a. Equation (11.13) becomes (using Equation (11.24) instead of Equation (10.3))

' dn dm. ()
Jn,y(N) = ff B -
(n, £)edt ~( MWJr (B (wn’ n )) 'UJW*(w,*L')(B (wna 'n ))
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Since £(0) = x if (n,¢) € #, ,(N), Equation (11.14) simplifies as
~ - +
dine(l) = dpy_ (€-) dug (£4)ds ,

with ds the counting measure on the Hopf parameter s € Z of ¢. Replacing P, with its

intersection with Z? reduces it to one point (\,,0), and now s = s* = 0. Lemma 11.4
becomes
- _ |12 - M
(B*(wyi, i)~ = Ba,, (&, Re™ 2, (B7(wil,r))s = Ba, (€], Re7!),

so that X A
Fy(N) = (A, 00} x Bu,, (& Re U3 x By, (&) Re 7).

Finally, since £(0) = z if (n,¢) € 4, ,(N), Equation (11.15) becomes

>

/1'W+(w;)(B+(wr:77a77)) = :U’;,Y (de,y (5;7 Reil%J))ﬂ
al

MW*(wf)(Bi(w;fﬂ"n)) = i (Ba,, (&5, Re7T2y).

The last centred equation in Step 4T now reduces to jy (1) = 1. ]

>

For lattices in regular trees, we get more explicit expressions.

Corollary 11.9. Let X be a (g + 1)-regular simplicial tree (with ¢ = 2) and let I' be a lattice
of X such that T\X is not bipartite. Assume that the Patterson density is normalised to be
a family of probability measures. Let DT be nonempty proper simplicial subtrees of X with
stabilisers Tpy in T, such that 9+ = (VDi)VGF/FDi is locally finite. Then

. q—1 _ ~ ~_
Jim = VoI(T'X) g t > Doz @D+ = Gy ®5,.
e (a B, 1)ED T x T/ xI s
0<d(aD~,yBDT)<t

for the weak-star convergence of measures on the locally compact space IX x GX.
If the measure o, is nonzero and finite, then

g — 1 Vol(I'\X) gt Z A ~4

=0
t—+o g+ 1

o] dey DY
9+ el /T4, 0<d(D—,yD+)<t

for the weak-star convergence of measures on the locally compact space gX.

Proof. In order to prove the first claim, we apply Theorem 11.8 with ¢ = 0, so that by
Propositions 4.14, 4.15, and 8.1 (3), we have d. = Inq > 0, m, = mpy is finite and mixing,
and |mpum| = S5 Vol(I'\X).

The second claim follows by restricting to &« = 8 = e and integrating on an appropriate
fundamental domain (note that Equation 11.4 does not require Q* to be relatively compact,

just to have finite measure for 7). O

The mixing assumption in Theorem 11.8 implies that the length spectrum Lp of I' is
equal to Z.° The next result considers the other case, when only the square of the geodesic
flow is mixing, when appropriately restricted. Note that the smallest nonempty I'-invariant
simplicial subtree of X is uniform, without vertices of degree 2, for instance in the case when
X'is (p+ 1,q + 1)-biregular with p,q > 2 and T is a lattice of X.

5In fact, ergodicity is sufficient to have this.
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Theorem 11.10. Assume that the smallest nonempty I'-invariant simplicial subtree of X is
uniform, without vertices of degree 2, and that the length spectrum Lr of ' is 2Z. Assume
that the critical exponent 6. of ¢ is positive, that the Gibbs measure me is finite and that its
restriction to T\YGevenX is mizing for the square of the discrete time geodesic flow on T'\GeyenX.
Then

e?% — Set
lim W Ime| e % > eCini) A @Ay
t—+0 2e %, vj vl j
iel= /-, jeIt /N,'yeF
D7 nDY;=@, i, 4;<t
_ ~+ ~—
=0, Q04

for the weak-star convergence of measures on the locally compact space gX x IX.

Proof. We denote by 5=

the restriction of & cr 5 to %even X, and by & a the restriction

2+, even 2+, odd
of & U§$ to %dd X = X — %even X. We denote by VeyenX the subset of VX consisting of the
vertices at even distance from xg, and by VoqqX = VX — VeyenX its complement. The subsets
VevenX and VygqX are I-invariant if Lp = 2Z by Equation (4.13).

Let us first prove that

e —1 Set
lim  —— |mg|| e~ Z RG] A ®A
t—+0o 2e 7 y—1i, 4
iel=/~, jeIt /., el
71'(042-777]-),#(04+ )EVevenX

- +
Di f\D ®7 Z'y_j\

_ oyt ~—
UJ even®agj+,even (1125)

for the weak-star convergence of measures on the locally compact space ?even X x ?even X.

The proof of this Equation (11.25) is a modification of the proof of the previous Theorem
11.8. We now restrict to t = 2n € N, T = 2N € N, and we replace 7. by (Mc)g,,.,x and
(g iz by (9*")iez. Note that since M, is invariant under the time 1 of the geodesic flow,
which maps NZeven X to I\EX — I'\Z,yen X, we have

N .
[(72)ovenxl = 5 72| - (11.26)

Note that for all i € 7, j € IT and v € T, if m(« m]) and (ot - ) belong to VevenX,
then the distance between D, and ’yD;f is even (since for all x,y, z in a simplicial tree, if p
is the closest point from z to [y, z], then d(y, z) = d(y, z) + d(z,z) — 2 d(x,p) ).

In Steps 1 and 2, we now consider Q% two Borel subsets of 6_1—IFDJ—r N ?even X, and we define
instead of Equation (11.3)

Iy (2N) = (¢ — 1) el =20.0ven

_F
) gt
~vel': 0<Ay<2N, 7(a5 ), W(a.Jyr) € VevenX
a5 [0, 1627 Hoa 1 7 [1=xy,01€2T [1=x 0
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and instead of Equation (11.5)

m) = — 72n/2 + n/2 f dme(0) .
an(2n) Z;waqs( 06 (e ) ding(0)

Equation (11.6) is replaced by

Z 52n 2n

The mixing property of the square of the geodesic flow on I'\%,yen X for the restriction of the
Gibbs measure m, gives that, for every € > 0, there exists T, = T, > 0 such that for all
n = T, we have

| (72¢) (et
< ay(2n)
e Sdevenx ¢ dmc S‘/even
[ (M) Gerenxt]

% Oit dine

X

Note that %.,enX is saturated by the strong stable and strong unstable leaves, since two points
x,y on a given horosphere of centre £ € 0, X are at even distance one from another (equal to
2d(x,p) where [x,&] N[y, €[ = [p,&[). By the disintegration proposition 7.6, when ¢ ranges
over @/5 N YovenX, we have

AMF |3y Gz () = v (0) d55(p) -

Leal+ DA Doven X

Hence the proof of Lemma 10.1 extends to give

o ot _
J%venx ;]r dme = 0., (27) (11.27)

st _ ok
where in order to simplify notation Gge, = 0% (ien-

Therefore, by Equations (11.26) and (11.27), and by a geometric sum argument, the pair
of inequalities (11.7) becomes

2e—%?&*N*J)5§mnﬁl_)5&mn“7+)__c
(2 —1) ] )

< iy(2N)

L 2L (0 ()

(€2% — 1) mc]

Up to replacing the summations from n = 0 to IV to summations on even numbers between
0 to 2N, and replacing [n/2| by 2|n/2| as well as [n/2] by 2|n/2], the rest of the proof applies
and gives the result, noting that in claim (iii) of Step 3T, we furthermore have that the origin
and endpoint of the constructed common perpendicular o, are in VeyenX. This concludes the
proof of Equation (11.25).
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The remainder of the proof of Theorem 11.10 consists in proving versions of the equidis-
tribution result Equation (11.25) respectively in Goad X Doads Doven % Goads Dodd X Goven, and
in summing these four contributions.

By applying Equation (11.25) by replacing zo by a vertex zf in V544X, which exchanges

~ ~ ~+ ~—4
VevenX and VpqaX, Yeven and 9,44, as well as 057 even and 05% odd» Ve have
29
e“% —1
lim ———— [me| e %* Z i) A @A 4
t—+w 2 e20 el i, v X155

iel=/~, jelt /., ~el
ﬂ(a;,”.), ﬂ(a’t_li,j) € VoaaX
D;ijj:@, i, i<t

~+

= 79 ,0dd ® T+ oad (11.28)

for the weak-star convergence of measures on the locally compact space godd X x godd X.

Let us now apply Equation (11.25) by replacing 2~ = (D, )je;- by M P~ = (MD; )ier--
Let us consider the map ¢4 : IX — ?X, which maps a generalised geodesic line £ to the
generalised geodesic line which coincides with g™1¢ on [0, +-00[ and is constant (with value
¢(1)) on | — o, 0[. Note that this map is continuous and I'-equivariant, and that it maps
Grvon X A0 Doga X and Zgq X in Goen X.

Furthermore, by convexity, ¢4 induces for every ¢ € I~ an homeomorphism from 8}FD;
to 01 4 D;", which sends 0} D;” n G 44 X to oL MD; N G.ven X, such that, by Equation (7.8),
for all w e aiD; N godd X, if ey, is the first (respectively the last) edge followed by w

dg;;mdd(w) - eC(ew)_(Sc dajﬁﬁD;,even(gpJr (w)) ’

Note that for all £ > 0, there is a one-to-one correspondance between the set of common
perpendiculars of length ¢, with origin and endpoint both in Veyen, between 41D, and 'ny
forallie I~, jeI™ and v € I', and the set of common perpendiculars of length ¢ + 1, with
origin in Vyqq and endpoint in Veyen, between D, and ’yD;-r forallie I7, 7€ I" and yeT.
In particular, (o, ;)
time ¢ = 0 from /1 D; .

Therefore Equation (11.25) applied by replacing 2~ = (D; );ef- by MP™ = (MD; )icr-
gives

is the common perpendicular between .41 D, and WD;.F, starting at

cle — )teclp+(og ;)
Z € " Aof ®Ao¢+
i\ ~14,j
iel~/~, jeI*/~,~el o
W(a;ry]‘)evoddxv ﬂ-(a:fliyj)ex/evenx
-+
Dy AD} =@, X, yj<t+1

k3

_ e ~+ ~—
= € U@‘,odd®0-@+,even

for the weak-star convergence of measures on the locally compact space goddX X ?even X.
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Since c(e,~ )+ c(p4(ey ;) = c(oy ), replacing ¢ by t — 1 and simplifying by %, we get

i,

Z ecmwﬂ) Aof ® Aoﬁ
i, vJ —li,j
i€l=/~, jelt ), vel Y
m(oy ;) € VoaaX, W(aj,lm_) € VevenX

Dy nDI =@, i, yj<t

&Qf,odd ® 5?}*,even (1129)

for the weak-star convergence of measures on the locally compact space ?Odd X x ?even X.

Now Theorem 11.10 follows by
summing Equation (11.25), Equation (11.28), Equation (11.29) and the formula, proven
similarly, obtained from Equation (11.25) by replacing 2% = (D;)jeﬁ by (JVlD;-r)jepr. O

The following result for bipartite graphs (of groups) is used in the arithmetic applications
in Part III (see Section 15.4).

Corollary 11.11. Let X be a (p+1, g+ 1)-biregular simplicial tree (with p,q = 2, possibly with
p = q), with corresponding partition VX = VX u V,X. Let T' be a lattice of X such that this

partition is I'-invariant. Assume that the Patterson density is normalised so that ||ug| = %

for every x € V,X. Let D be nonempty proper simplicial subtrees of X with stabilisers I'ps
in T, such that the families 9+ = (yDi)%F/FDi are locally finite. Then

.opg—1 — —t—2

tEIJPoo 2 TVOlTAX) vpg Z AO‘;, +8 ®© Aa’j_la,ﬁ
(e, B,7)el/Tp— xI'/T'p1 xT

0<d(aD~,vpDT)<t

=0, ®05,.
for the weak-star convergence of measures on the locally compact space gX x IX.
If the measure o, is nonzero and finite, then

pqg — 1 TVol(I'\X)
t—>+oo 2

—t—2 _ ot
oL VP 2 B, =T
7+ 'YEF/FD+
0<d(D—,yD+)<t

for the weak-star convergence of measures on the locally compact space gX.

Proof. In order to prove the first result, we apply Theorem 11.10 with ¢ = 0, so that by
Propositions 4.14, 4.15, and 8.1 (2), we have 6. = 3In(pg) > 0, m¢ = mpy is finite and
its restriction to I"\%enX is mixing under the square of the geodesic flow, and ||mpym| =
TVol(I'\X).

The second claim follows as in the proof of Corollary 11.9. O
Remark. In some special occasions, the measures involved in the statements of Theorem
11.10 and Corollary 11.11 (whether skinning measures or Dirac masses) are actually all sup-

ported on Dayen X (up to choosing appropriately xq). This is in particular the case if X = [X|;
is a simplicial tree and if 2% = (fy]D)J—r)veF /Tpe With D™, DT at even signed distance (see below),
as the following proposition shows.
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e aan
A,

The signed distance between horoballs 7 and #” in an R-tree that are not centred at the
same point at infinity is the distance between them (that is, the length of their common per-
pendicular) if they are disjoint, or the opposite of the diameter of their intersection otherwise.
Note that if nonempty, the intersection of # and #’ is a ball centred at the midpoint of
the segment contained in the geodesic line between the two points at infinity of the horoballs,
which lies in both horoballs.

Lemma 11.12. Let X be a simplicial tree, T’ a subgroup of Aut(X) and 2, 7" two horoballs
in X (whose boundaries are contained in VX), which either are equal or have distinct points at
infinity. If AT < 27 and 7, ' are at even signed distance, then the signed distance between
A and v is even for every v € I' such that 2 and v do not have the same point at
nfinity.

Proof. For every horoball 7" and for all s € N, let J"[s] be the horoball contained in
€, whose boundary is at distance s from the boundary of 5. Shrinking the horoballs J#
and ', by replacing them by the horoballs [s] and #”[s] for any s € N, only changes by
+2s the considered signed distances. Hence, taking s big enough, we may assume that .7
and y#" are disjoint, and that # and J#" are disjoint or equal. Let [z, 2] be the common
perpendicular between J# and ' with x € 07, 2/ € 04, and let [y, y'] be the one between
A and v, with y € 0., y' € d(y#"). Note that yz' € o(y.#").

The distance between two points z,y of a horosphere is always even (equal to twice the
distance from x to the geodesic ray from y to the point at infinity of the horosphere). Since
geodesic triangles in trees are tripod, for all a, b, ¢ in a simplicial tree, since

d(a,c) = d(a,b) + d(b,c) — 2d(b, [a,c]) ,

if d(a,b) and d(b, ¢) are even, so is d(a,c).
Since A" © 27Z, the distance between 2’ and vz’ is even by Equation (4.13). Since d(z, z")
is even by assumption, we hence have that d(z,vz') is even. Therefore

d(ya y/) = d(l’, ’Y'xl) - d(l‘, y) - d(y,7 F}/x,)
is even. ]
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Chapter 12

Equidistribution and counting of
common perpendiculars in quotient
spaces

In this Chapter, we use the results of Chapter 11 to prove equidistribution and counting
results in Riemannian manifolds (or good orbifolds) and in metric and simplicial graphs (of
groups).

Let X, xo, I' and F be as in the beginning of Chapter 11.

12.1 Multiplicities and counting functions in Riemannian orb-
ifolds

In this Section, we assume that X = M is a Riemannian manifold. We denote its quotient
Riemannian orbifold under I' by M = F\M , and the quotient Riemannian orbifold under I'
of its unit tangent bundle by T'M = F\Tll\,Zf. We use the identifications ¥ X = ¥, (X =
T'X = T'M explained in Chapter 2.

Let 2 = (D;);er be alocally finite T'-equivariant family of nonempty proper closed convex
subsets of M. Let Q = (Q4)ier be a I'-equivariant family of subsets of T'M , where §2; is a
measurable subset of ﬁ}iDi for all 7 € I (the sign + being constant). The multiplicity of an
element v € T'M with respect to € is

~ Card{ielI/. : Ve Q}
B Card(Stabr v) ’

mq(v)

for any preimage v of v in T1M. The numerator and the denominator are finite by the local
finiteness of the family & and the discreteness of ', and they depend only on the orbit of ¥
under T.

The numerator takes into account the multiplicities of the images of the elements of (2
in T'M. The denominator of this multiplicity is also natural, as any counting problem of
objects possibly having symmetries, the appropriate counting function consists in taking as
the multiplicity of an object the inverse of the cardinality of its symmetry group.

Examples 12.1. The following examples illustrate the behaviour of the multiplicity when I’
is torsion-free and Q = 01 2.
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(1) If for every i € I, the quotient I'p,\D; of D; by its stabiliser I'p, maps injectively in M
by the map induced by the inclusion of D; in M, and if for every 4, j € I such that j ¢ I'i, the
intersection D; N Dj; is empty, then the nonzero multiplicities mq(¢) are all equal to 1.

(2) Here is a simple example of a multiplicity different from 0 or 1.

Let ¢ be a closed geodesic in the Riemannian manifold M, let ¢ be

a geodesic line in M mapping to ¢ in M, let Z = (7¢)qer, let = be T v
a double point of ¢, let v € TAM be orthogonal to the two tangent

lines to ¢ at x (this requires the dimension of M to be at least 3, if

x is a transverse self-intersection point). Then ma1 g(v) =2.

Given t > 0 and two unit tangent vectors v,w € T'M, we define the number n;(v,w)
of locally geodesic paths having v and w as initial and terminal tangent vectors respectively,
weighted by the potential F', with length at most ¢, by

= Z Card(T',) ela I

where the sum ranges over the locally geodesic paths « : [0,s] — M in the Riemannian
orbifold M such that &(0) = v, &(s) = w and s € ]0,¢], and T, is the stabiliser in " of any
geodesic path & in M mapping to a by the quotient map M — M. If F =0 and I is torsion
free, then n(v, w) is precisely the number of locally geodesic paths having v and w as initial
and terminal tangent vectors respectively, with length at most ¢.

Let Q7 = (Q )jer- and QF = (Q;_)jej+ be I-equivariant families of subsets of 7'M, where
Q; is a measurable subset of 0} D} for all k € I*. We will denote by M- o+ g : 0, +00[ - R
the following counting function: for every t > 0, let A4G- g+ p(t) be the number of common
perpendiculars whose initial vectors belong to the images in T*M of the elements of O~ and
terminal vectors to the images in 7'M of the elements of Q*, counted with multiplicities and

weighted by the potential F', that is:
Sa-ar p() = Y, ma-(v) mas (w) ny(v,w) .

v, weT1 M
When QF = 6_%9% we denote M- g+ g by A5 o+ p.

Remark 12.2. Let Y be a negatively curved complete connected Riemannian manifold and
let Y — Y be its Riemannian universal cover. Let D* be a locally convex' geodesic metric
space endowed with a continuous map f* : D¥ — Y such that if D* - D* isa locally
isometric universal cover and if f+ D* - Y is a lift of f*, then f+ is on each connected
component of D= ~an isometric embedding whose image is a proper nonempty closed locally
convex subset of Y and the family of images under the covering group of Y — Y of the
images by fJ—r of the connected components of D* is locally finite. Then D* (or the pair
(D=, %)) is a proper nonempty properly immersed closed locally convex subset of Y.

If T is a discrete subgroup without torsion of isometries of a CAT(—1) Riemannian mani-
fold X, if 2% = (’yD )ver where DFisa nonempty proper closed convex subset of X such that
the family 27 is locally finite, and if D* is the image of D* by the covering map X — '\ X,
then D* is a proper nonempty properly immersed closed convex subset of I'\X. Under these
assumptions, 45— g+ p is the counting function Ap- p+ p given in the introduction.

not necessarily connected
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Let us continue fixing the notation used in Sections 12.2 and 12.3. For every (i,j) in
I~ x I* such that D; and D;-’ have a common perpendicular?, we denote by «; ,; this common

perpendicular, by A; ; its length, by v; ;€ 6}r - its initial tangent vector and by U ;€ o DJr

(2
its terminal tangent vector. Note that if i’ ~ 7, j/ ~ j and v € I, then

_ . L, = o + _ t
Y Qi = Qs it = Ay and g =0 (12.1)

When I' has no torsion, we have, for the diagonal action of I on I~ x I,

—
W@*,@*,F(t) = Z e ‘i, J

(i, )EPN(I=/~)x(I*/~)) : Dy nDF =@, Ai, j<t

When the potential F' is zero and I' acts without torsion, .47 4+ p(t) is the number of
common perpendiculars of length at most ¢, and the counting function t + 45— 4+ o(t) has
been studied in various special cases of negatively curved manifolds since the 1950’s and in a
number of recent works, see the Introduction. The asymptotics of 45— g+ o(t) as t — +0
in the case when X is a Riemannian manifold with pinched negative curvature are described

in general in | [hm. 1|, where it is shown that if the skinning measures Jg, and o,
are finite and nonzero, then as s — +00,
+ - o s
OO el
JV@i@*,O(S) ~ ” 2 H H Al H (122)

impm|  dOr

12.2 Common perpendiculars in Riemannian orbifolds

Corollary 12.3 below is the main result of this text on the counting with weights of common
perpendiculars and on the equidistribution of their initial and terminal tangent vectors in neg-
atively curved Riemannian manifolds endowed with a Holder potential. We use the notation
of Section 12.1.

The following observation on the behaviour of induced® measures under quotients by
properly discontinuous group actions will be used in the proof of the following result and also
those of its analogues in Section 12.4. Let G be a discrete group that acts properly on a Polish
space Y and let Y = G\Y Let fiy, for k € N and i be G-invariant locally finite measures on
Y with finite induced measures uy for k € N and p on Y. If for every Borel subset B of Y
with [i(B) finite and [1(0B) = 0 we have limy_, o [ix(B) = f(B), then the sequence (g )ken
narrowly converges to .

Corollary 12.3. Let M be a complete simply connected Riemannian manifold with pinched
negative sectional curvature at most —1. Let I’ be a nonelementary discrete group of isometries
of M. Let F: T'M — R be a bounded T-invariant Hélder-continuous function with positive
critical exponent §. Let 9~ = (D] )ijer- and 9 = (D;-r)jepr be locally finite I'-equivariant

7
families of nonempty proper closed convex subsets of M. Assume that the Gibbs measure mp
is finite and mizing for the geodesic flow on TYM. Then,

lim 0 |mpg| e 0 Z Mot g (v) ma1 g (w) ne(v,w) Ay @Ay = 0, Q0 (12.3)

t—+00
v, weT1 M

2that is, whose closures Diz_ and Di;' in X U 0xX have empty intersection
3see for instance [ , §2.6] for a definition
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for the weak-star convergence of measures on the locally compact space TYM x TYM . If 05_
and o, are finite, the result also holds for the narrow convergence.

Furthermore, for all T-equivariant families QF = (Q%)ke[i of subsets of TN with Q;_r a
Borel subset of 53_FD,§ for all k € IT, with nonzero finite skinning measure and with boundary
m 8}£le of zero skinning measure, we have, as t — +00,

lod-1llogll s

</%]*,Q+,F(t) ~ 5 HmF”

Proof. Note that the sum in Equation (12.3) is locally finite, hence it defines a locally finite
measure on T M x T'M. We are going to rewrite the sum in the statement of Theorem 11.1
in a way which makes it easier to push it down from TN x TN to T*M x T M.

For every v € T1]\7, let

mT (V) = Card{ke IT/. : ¥ediDf},
so that for every v € T'M, the multiplicity of v with respect to the family é’_li 27 ist

mat g5 (V) = _m@®
177 Card(Stabp o)

for any preimage ¥ of v in TM.
For all v € I and o, w € T'M, there exists (2 J)e (I /<) x (I*/.) such that v = v,

~ o+ -1, +
andw—v,y 1 = Vi

and there exists j' € I/ such that yw € 61,D;5. Then the choice of such elements (7, j),

i
if and only if v € g® ¥, there exists i’ € I~/ such that ¥ € 01

well as i’ and 7', is free. We hence have

S eea ea,
Vi, i v,
iel=/~, jeIt /., el
0<Ai, yjst, v; =0, v;r_li,j:m
ym (W
(v + =0 + =W v w
— 2 S() Card{Z] I/ ) (I / ) . lw—U,Uw,li’j—w}Av®Aw
~vel', 0<s<t
Y=gV
Swr(w) e +~
— Z @ T mT (V) mT(y0) Ay ® Ag
~el, 0<s<t
Y=gV
Therefore
Z S% " A - ® Av+
Vi, ~j ~—Li,j

iel=/~, jeIt /N,'yel“
0<Ai, i<t

- Y (Y ST @ mt @) A

S weTIM ’yeF 0<s<t
’ Yw=g*v

4See Section 12.1
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By definition, aéi is the measure on 7'M induced by the I'-invariant measure a— . Thus
Corollary 12.3 follows from Theorem 11.1 and Equation (11.4) after a similar reductlon as in

Section 11.1, and since no compactness assumptions were made on QF to get this equation,
by [ , §2.6]. O

In particular, if the skinning measures O';
gives, as t — 400,

and o, are positive and finite, Corollary 12.3

log-1 log.l

‘/VQ*,@*‘,F(t) ~ 5 HmFH

Remark 12.4. Under the assumptions of Corollary 12.3 with the exception that § may now
be nonpositive, we have the following asymptotic result as ¢ — +oo for the growth of the
weighted number of common perpendiculars with lengths in |t — 7,t] for every fixed 7 > 0:

(L—eN) oyl ozl s
6 [mp|

Nog— g+, 7(t) — Ng— g+ pt —T) ~

This result follows by considering a large enough constant o such that ér pis = d +0 > 0,
by applying Corollary 12.3 with the potential F' + o (see Remark 7.1 (2)), and by an easy
subdivision and geometric series argument, see | , Ch. 9].

Using the continuity of the pushforwards of measures for the weak-star and the narrow
topologies, applied to the basepoint maps 7 x 7 from TIM x T'M to M x M and from
T'M x T'M to M x M, we have the following result of equidistribution of the ordered pairs
of endpoints of common perpendiculars between two equivariant families of convex sets in
M or two families of locally convex sets in M. When M has constant curvature and finite
volume, F' = 0 and 2~ is the I'-orbit of a point and 27 is the I'-orbit of a totally geodesic
cocompact submanifold, this result is due to Herrmann [IHer]. When 2% are T'-orbits of points
and F' is a Holder potential, see | , Thm. 9.1,9.3], and we refer for instance to | |
for an application of this particular case.

Corollary 12.5. Let M,T,F, 9=, 9" be as in Corollary 12.5. Then

. — . F
lim 0 |mpg| e”0 Z es%w A ® A = M40, Q@T40 4
t—+00 ( %, 'yj) ( ~—14, ]) 2
iel~ /N,jel+/~,yeF
0<Aj, yj<t

for the weak-star convergence of measures on the locally compact space M x ]\7, and

lim 6 mp|e” Z Mol o mal g+ (w) ne(v, w) ATK‘(’U) ® A71'(w)

t—+00
v, weTt M

= 71'*0 ®7T*O'9+,

for the weak-star convergence of measures on M x M. If the measures aj+ are finite, then
the above claim holds for the narrow convergence of measures on M x M. O

5See Step 1 of the proof of Theorem 11.1.
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We will now prove Theorems 1.4 and 1.5 (1) in the Introduction for Riemannian manifolds.
Recall from Remark 12.2 the definition of proper nonempty properly immersed closed locally
convex subsets D¥ in a pinched negatively curved complete connected Riemannian manifold
Y and the associated maps fJr D* Y.

Proof of Theorems 1.4 and 1.5 (1) for Riemannian manifolds. Let Y, F, D* be as in
these statements and assume that Y is a Riemannian manifold. Let I' be the covering group
of the universal Riemannian cover ¥ — Y. Let I* = T x mo(D*) with the action of I' defined
by 7 - (a,¢) = (ya,¢) for all v, € T and every component ¢ of DF. Consider the families
2% = (Dj)er+ where D = « FE(e) if k = (o, ¢). Then 9% are T-equivariant families of
nonempty proper closed convex subsets of }7, which are locally finite since DT are properly
immersed in Y. The conclusions in Theorems 1.4 and 1.5 (1) when Y is a manifold then
follow from Corollary 12.3, applied with M =Y and with F the lift of F to T M. O

Corollary 12.6. Let M T, F 2=, 9% be as in Corollary 12.3. Assume that o=
and nonzero. Then

o5 are finite

S 2
u HmFH Z mﬁl nt 9+( ) Agsu =mrg,
sotwtoto [of_||o 9+H veTI M

where
ng g+ (v Z ma1 g+ (w) ny(v, w)
weTl M
is the number (counted with multiplicities) of locally geodesic paths in M of length at most t,
with initial vector v, arriving perpendicularly to 2.

Proof. For every s € R, by Corollary 12.3, using the continuity of the pushforwards of
measures by the first projection (v,w) + v from T'M x T'M to T'M, and by the geodesic
flow on T'M at time s, since (g°)+A, = Aysy, we have

. _5 _
Jim 8| e Y moyg (0) mge (6) gy = (@)ao Lol
veTl M
The result then follows from Theorem 10.2 with Q = ﬁi 9. ]

12.3 Error terms for equidistribution and counting for Rieman-
nian orbifolds

In Section 9.1, we discussed various results on the rate of mixing of the geodesic flow for
Riemannian manifolds. In this Section, we apply these results to give error bounds to the
statements of equidistribution and counting of common perpendicular arcs given in Section
12.2. We use again the notation of Section 12.1.

Theorem 12.7. Let M be a complete simply connected Riemannian manifold with pinched
negative sectional curvature at most —1. Let I' be a nonelementary discrete group of isome-
tries of M. Let F : T'M — R be a bounded T-invariant Hélder-continuous Sfunction with
positive critical exponent §. Assume that (M,F, ﬁ’) has radius-Hdélder-continuous strong sta-
ble/unstable ball masses. Let 2~ = (D; )jer- and 21 = (D+) er+ be locally finite T-

7
equivariant families of nonempty proper closed conver subsets of M with finite nonzero skin-
ning measure 0g— and og+. Let M = F\M and let F : TYM — R be the potential induced by
F.
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(1) Assume that M is compact and that the geodesic flow on T'M is mizing with exponential
speed for the Holder reqularity for the potential F. Then there exist o € ]0,1] and £’ > 0 such
that for all nonnegative v+ € €X(T' M), we have, as t — 40,

6;?’ Y Mg (0) Mo g (w) my(v,w) P (v) T (w)
v, weT1 M

= | wrdol | Fdog. + O ¢ o [¥ T o) -
T'M TM

(2) Assume that M is a symmetric space, that D,:—r has smooth boundary for every k € IT,
that mp is finite and smooth, and that the geodesic flow on T'M is mizing with exponential
speed for the Sobolev regularity for the potential F. Then there exist £ € N and k' > 0 such
that for all nonnegative maps v+ € €L(TT M), we have, as t — +0,

0
HZLtFH Y mag-(v) mar g (w) ny(v,w) Y7 (v) P (w)
€ v, weTt M i -
— [ wrdoy [ wtdog, w0 10 )
TM T'M

Furthermore, if 9~ and 27 respectively have nonzero finite outer and inner skinning
measures, and if (M,T, F) satisfies the conditions of (1) or (2) above, then there exists K" > 0
such that, as t — +00,

ol logl s e
e/V_@*,@‘F,F(t) = W e (1 + O(e )) .

The maps O(+) depend on M I, F, 9, and the speeds of mixing. The proof is a general-
ization to nonzero potential of | , Thm. 15].

Proof. We will follow the proofs of Theorem 11.1 and Corollary 12.3 to prove generalizations
of the assertions (1) and (2) by adding to these proofs a regularisation process of the test
functions gg;f as for the deduction of | , Theo. 20] from | , Theo. 19]. We will
then deduce the last statement of Theorem 12.7 from these generalisations, again using this
regularisation process.

Let 3 be either a € ]0,1] small enough in the Holder regularity case or £ € N big enough
in the Sobolev regularity case. We fix i€ I, j € I", and we use the notation D=, Qlyy Ay, v;i
and 5% of Equation (11.2). Let ¢t € €/ (03 D*). Under the assumptions of Assertion (1)
or (2), we first prove the following avatar of Equation (11.4), indicating only the required
changes in its proof: there exists kg > 0 (independent of Ji) such that, as T' — 400,

Slmpl e S e T ) §F (o)
Yel, 0< Ay <T
_ j I do j I+ d5= + 0T || 5 |8 s) - (12.4)
0 D- ol D+

By | , Lem. 6] and the Holder regularity of the strong stable and unstable foliations
under the assumptions of Assertion (1), or by the smoothness of the boundary of D* under
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the assumptions of Assertion (2), the maps J%i : ”I/TIJ,—FR(%LDﬂ — 0L D¥ are respectively
Hélder-continuous or smooth fibrations, whose fiber over w € 01 DF is exactly Vuj—r mR- BY
applying leafwise the regularisation process described in the proof of | , Theo. 20| to

characteristic functions, there exist a constant x; > 0 and X;L € ¢P (T1]\7 ) such that
+ _ 7
* xz rls =0m™™),
L+ <Xpr<lys
S ot e PFDE) S X RS B0
e for every w € G}TDJ—F, we have

}_rDi)a

| s = e O

) P
w,n, w,ne" O(”I%Re* O(n) N

We now define the new test functions (compare with Section 10.1). For every w € 8}7Di,

let
1

+ d E
F 1%
SVJ,n,RXn’R w

H;*CR(w) =

Let @:7’ : TYM — R be the map defined by

(b% :(H%Rﬂ)i)ofgi XiR-

The support of this map is contained in %;J,_FR(a}?Di)' Since M is compact in Assertion (1)
and by homogeneity in Assertion (2), if R is large enough, by the definitions of the measures
v the denominator of H ni p(w) is at least ¢n where ¢ > 0. The map H, 7;-“  is hence Holder-
continuous under the assumptions of Assertion (1), and it is smooth under the assumptions
of Assertion (2). Therefore & € ¢ B(T'M) and there exists a constant xg > 0 such that

[®5 15 = O(n 24 5) -

As in Lemma 10.1, the functions <I>j7_r are measurable, nonnegative and satisfy

f _oF de:J vt dFt .
TIM 61¥Di

As in the proof of Theorem 11.1, we will estimate in two ways the quantity

T
I,(T) = f et 2 J N((I); o g_t/Q) ((I);;' o gt/2 o ’7_1) dmp dt. (12.5)
0 S Jriar

We first apply the mixing property, now with exponential decay of correlations, as in Step
2 of the proof of Theorem 11.1. For all ¢t = 0, let

A0 =3 [ ) o g ) (o).
’YEF veTt M

Then with x > 0 as in the definitions of the exponential mixing for the Hélder or Sobolev
regularity, we have

1
Ap(t) = o dm O dm O (e "t~ | 4l
o0 = o [ wpdie [ apdme + 0 (01519 )5)
1 T g~ it ~_ _ _ ~_ ~
— [t Bde 4 el )
HmFH (ﬂrD— ol D+
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Hence by integrating,

0T N N N R
I(T) = d”*f tdFT 4+ O (e " Ty2R2 |50t . (126
D) = STmr (Lw_w N (e T 22|15 s) ) - (12.6)

Now, as in Step 3 of the proof of Theorem 11.1, we exchange the integral over ¢t and the
summation over « in the definition of I,,(7T), and we estimate the integral term independently
of v:

T
I,(T) = Z J et J N(CI); og_t/Q) (<I>j7' ogt/2 o) ding dt.
Ser Jo T1M
Let &J;—’ = H;—F’R o fgi X;—”’R, so that ?% = JJ—” o fb_*i &);7’ By the last two properties of the
regularised maps X:f r» We have, with ¢F defined as in Equation (10.4),
+ -0 &L + O
¢776_O<”),R6_O(”),61¢Di e O < oy <dye ., (12.7)
If v € T'M belongs to the support of (@, © g~ l/?) (@ o g"? o 4~1), then we have v €
gt/27n+R(8}rD*) N g*t/2”l/n_R('ya£D+). Hence the properties (i), (ii) and (iii) of Step 3M of
the proof of Theorem 11.1 still hold (with Q_ = 01 D~ and Q4 = 0L (yD™)). In particular,
if w™ = f}_ (v) and wt = f,;D+(v), we have, by Assertion (iii) in Step 3M of the proof of
Theorem 11.1,° that
d(w*, v;i) =0(n+ 67>\7/2) )
Hence, with k3 = « in the Holder case and k3 = 1 in the Sobolev case (we may assume that
¢>1), we have N N -
[ 9E (wh) = () | = O((n + e 2)™ [ g)
Therefore there exists a constant x4 > 0 such that

L(T) =Y (9 ()8 @) + O((n + e )|~ |57 5))

~vyell

T
J‘ 66t J‘ N @;(g*t/zv) ¢;(771gt/2v) de(’U) dt
0 veTl M

Now, using the inequalities (12.7), Equation (12.4) follows as in Steps 3M and 4M of the
proof of Theorem 11.1, by taking n = e~ for some x5 > 0 and using the effective control
given by Equation (11.19) in Step 4M.

In order to prove Assertions (1) and (2) of Theorem 12.7, we may assume that the supports
of 1% are small enough, say contained in B(zT, €) for some 2+ € T'M and e small enough. Let
% be lifts of z* and let Ji € CKCB(TUW) with support in B( 2T, €) be such that @Zi =¢toTp
where p : M — M is the universal cover. By a finite summation argument and Equation
(12.4), we have

_ F ~_ N
5 [mp| e 3 el () 9t (o)
iel=/~, jeIt /~, vel
0<Ai, 4 <T
_ f I dot f I d5— + 0T |5 13 s) - (12.8)
aiD* ol D+

5See also the picture at the beginning of the proof of Lemma 11.7.
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Assertions (1) and (2) are deduced from this equation in the same way that Corollary 12.3
is deduced from Theorem 11.1. Taking the functions w,:i to be the constant functions 1 in
Assertion (1) gives the last statement of Theorem 12.7 under the assumptions of Assertion
(1). An approximation argument gives the result under the assumptions of Assertion (2). []

12.4 Equidistribution and counting for quotient simplicial and
metric trees

In this Section, we assume that X is the geometric realisation of a locally finite metric
tree without terminal vertices (X, \), and that I' is a (nonelementary discrete) subgroup
of Aut(X,; ). Let ¢: EX — R be a system of conductances for I', and let ¢ : T\EX — R
be its quotient function. We assume in this Section that the potential F is the potential ﬁc
associated” with c. Let &, = dr, r, be the critical exponent of (T, F.) and let M, = M, and
me = mp, be the Gibbs measures of F, for the continuous time geodesic flow on respectively
¥ X and I'\9 X, as well as for the discrete time geodesic flow on respectively ¥X and T'\¢¥X
when (X, A) is simplicial, that is, if A is constant with value 1.

Let DT be simplicial subtrees of X, with the edge length map induced by \,® such that
the I'-equivariant families 2+ = (’yID)i)WEr /T, are locally finite in X 9

For all v,7" in ' such that 4D~ and +'D* are disjoint, we denote by a. . the com-
mon perpendicular from 4D~ to /D% (which is an edge path in X), with length A, , =
d(yD~,4'D") € N, and by a;—r’ 4 € G X its parametrisations as in the beginning of Chapter
11: it is the unique map from R to X such that o ,(f) € yVD™ is the origin o(a, ) of

the edge path a, o if £ <0, o ,(t) € 7'VID? is the endpoint t(c., ) of the edge path .,

ift > M\ -, and a_

SR %YN[0,),, /]
ending at a point of ¥YD*.

For all 7,7 in T such that YD~ and +'D" are disjoint, we define the multiplicity of the
common perpendicular o, from YD~ to v'D* as

is the shortest geodesic arc starting from a point of vID™ and

1
~ Card(YTp-v1 ny'Tp+y' ™)

(12.9)

Moy, o

Note that m, , = 1 for all 7,7 € I' when I" acts freely on EX (for instance when I' is
torsion-free). Generalising the definition for simplicial trees in Section 11.4, we set

c(a) = D eled) Mes)
i=1
for any edge path o = (eq,...,ex).
For n e N — {0}, let

M- p+(n) = Z Me, ~ ecloen)

[v]eTp-\I/Tp+
0<d(D~ yD*+)<n

"See Section 3.5.

8By abuse, we will still denote by D* the geometric realisation [DE|,.

9We leave to the reader the extension to more general locally finite families of subtrees, as for instance
finite unions of those above.
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where T" acts diagonally on (I'/T'p-) x (I'/T'p+) and d is the the distance on X = |X|,. When
I' is torsion-free, Ap- p+(n) is the number of edge paths in the graph I'\X of length at most
n, starting by an outgoing edge from the image of D™ and ending by the opposite of an
outgoing edge from the image of D, with multiplicities coming from the fact that I'p+\D*
is not assumed to be embedded in I'\X, and with weights coming from the conductances.

In the next results, we distinguish the continuous time case (Theorem 12.8) from the
discrete time case (Theorem 12.9). We leave to the reader the versions without the assumption
de > 0, giving for every 7 € N — {0} an asymptotic on

‘/%_,]D"',T(n) = Z Me, ~ ec(ae,v) .
[v]eTp-\I'/T'p+
n—r<d(D~,yDT)<n
When I'\X is compact, ¢ = 0 and D* are reduced to points, the counting results in
Theorems 12.8 and 12.9 are proved in [Gui]. When D* are singletons, Theorem 12.8 is due
to | | if ¢ = 0. Otherwise, the result seems to be new.

Theorem 12.8. Let (X,)\), I', DT and c be as in the beginning of this Section. Assume that
the critical exponent d. is finite and positive, that the skinning measures aé; are finite and
nonzero, and that the Gibbs measure m. is finite and mizing for the continuous time geodesic

flow. Then as t — 400, the measures

Oc [mel et X ey e Ap - @ Ap,

[v] el \I'/T'p+
0<d(D~,yDH)<t

narrow converge to o5 @ o, in I'\ GX xI\9X, and

lod -1 logq|
N pr () ~ =L L0 ot
D ,]D)*( ) 50 Hmc

Proof. By Theorem 11.1, we have

. _ F,
lim  d. [me] e %! Z eSO‘aﬁb ‘A ®A L
t—+400 O‘a,'yb a,yfla b
(a,b,y)el’ /Ty xT'/T'p 4 xT' ’
0<d(aD~,ybD+)<t

_ ~+ ~—
=0, Q04 ,

not only for the weak-star convergence on GX x G X, but also by Step 1 of the proof of
Theorem 11.1, for the narrow convergence, as a;, and o, are finite. Recall that given a
discrete group G acting properly (but not necessarily freely) on a locally compact space Z,
the induced measure on G\Z of a (positive, Radon) measure p on Z is a measure i which
depends linearly and continuously (both for the weak-star and narrow topologies) on p, and
satisfies A, = |G1z\ Ag, for every z € Z. See for instance Section | , §2.4] for more
details.
The group I' x I acts on I'/T'p- x I'/T'p+ x I' by

(@', V) (a,b,7) = (d'a,b'b,a'~(¥') 7).

and the map from the discrete set I'/T'p— x I'/Tp+ x I" to 4 X x 4 X which sends (a,b,7) to

(a b O‘j—la p) is (I x I')-equivariant. In particular, the pushforward of measures by this map

sends the unit Dirac mass at (a,b,y) to A_- ,® A+
a,y

'y_la,b
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Every orbit of I'xI" on I'/T'p- xI'/T'p+ x I has a representative of the form (I'p—, I'p+, ) for
some 7y € I, since (a,b)-(T'p-,Tp+,a"tyb) = (al'p—, bI'p—, v). Furthermore the double class in
I'p-\I'/Tp+ of such a ~ is uniquely defined, and the stabiliser of (I'p-,I'p+, ) has cardinality
ITp- nATp+y Y, since (a,b) - (Tp—, Tp+,7) = (Tp—, Tp+,7’) if and only if a € Tp—, b e T'p+
and ayb~! = /. When +' = ~, this happens if and only if b = vy~ lay and a € T'p- nyTp+y .

Hence the measures

— 1 S »
6 Hm H € 6Ct e FOée,’y ¢ A — ® A +
c c . eF]D;F/FD-F ‘F]D)* N Yp+ fy—l ’ Tag Fa,y—l

0<d(D™,yDT)<t

,€

narrow converge as t — 40 to 0‘_;;, ®0o,, in F\f? X x I‘\?? X. By applying this convergence
to the constant function 1, and by the finiteness and nonvanishing of ¢ and 0+, the result
follows using the defining property of the potential F,, see Proposition 3.11. Il

In the remainder of this Section, we consider simplicial trees with the discrete time geodesic
flow.

Theorem 12.9. Let (X, )\), I', ¢ and D* be as in the beginning of this Section, with A constant
with value 1. Assume that the critical exponent 6. is finite and positive. If the Gibbs measure
me is finite and mizing for the discrete time geodesic flow and the skinning measures o=~ are

97
finite and nonzero, then as n — 400, the measures
1
e’ —1 s
—den c(ae,~)
oo Ime| e Z Me,~ € Ara;ﬁ ® Apg+ .

['7] El—‘]]))* \F/FD+
0<d(D~,yDT)<n

narrow converge to o, @ 0, in NZXxMN\gX and

S ||t -
& ot | [og, ]
</V7 ~ 9 9 den
oot (M)~ T ] ©

Proof. The claims follow as in Theorem 12.8, replacing Theorem 11.1 by Theorem 11.8. []

Examples 12.10. (1) Let X,T', ¢ be as in Theorem 12.9, and let D~ = {z} and D" = {y} for
some x,y € VX. If the Gibbs measure m, is finite and mixing for the discrete time geodesic
flow, then we have a version of Roblin’s simultaneous equidistribution theorem with potential,
see Corollary 11.2, and the number .4 ,(n) of nonbacktracking edge paths of length at most
n from x to y (counted with weights and multiplicities) satisfies

Se 1l =
I

Ny y(n) ~ Y en

23"~ (1) el [TLT5)

(2) If Y is a finite connected nonbipartite (¢ + 1)-regular graph (with ¢ > 2) and Y* are
points, then the number of nonbacktracking edge paths from Y~ to Y* of length at most n
is equivalent as n — +o0 to

(™) (12.10)

for some r < q. Indeed, by Theorem 12.9 with X the universal cover of Y, I' its covering group
and ¢ = 0, we have d. = In ¢ and m, is the Bowen-Margulis measure, so that normalizing the
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Patterson measures to be probability measures, we have |[m.| = qqu |[VY| by Equation (8.3).
We refer to Section 12.6 (see Remark (i) following Theorem 12.17) for the error term.

Let Y the figure 8-graph with a single vertex and four directed edges, and let Y* be the
the singleton consisting of its vertex. In this simple example, it is easy to count by hand
that the number of loops of length exactly n without backtracking in Y is 43"~!. Thus the
number .4 (n) of common perpendiculars of the vertex to itself of length at most n is by a
simple geometric sum 2(3™ — 1). This agrees with Equation (12.10) that gives A4 (n) ~ 23"

as n — +0o0.
(3) Let Y be a finite connected nonbipartite (¢ + 1)-regular graph (with ¢ > 2). Let Y* be

regular connected subgraphs of degrees ¢& > 0. Then the number .4 (n) of edge paths of
length at most n starting transversally to Y~ and ending transversally to Y* satisfies

(g+1—q )g+1—g") VY ||VYT|
(¢2—1) VY|

A (n) = q" +0(r")

for some r < ¢. This is a direct consequence of Theorem 12.9, using Proposition 8.1 (3) and
Proposition 8.4 (3), and refering to Section 12.6 (see Remark (i) following Theorem 12.17) for
the error term.

We refer for instance to Section 15.2 for examples of counting results in graphs of groups
where the underlying graph is infinite.

Remark 12.11. A common perpendicular in a simplicial tree is, in the language of graph
theory, a non-backtracking walk. Among other applications (when restricting to groups I
acting freely, which is never the case if I is a nonuniform lattice in the tree X, that is, when the
quotient graph of groups I"\X is infinite but has finite volume), Theorem 12.9 gives a complete
asymptotic solution to the problem of counting non-backtracking walks from a given vertex to
a given vertex of a (finite) nonbipartite graph. See Theorem 12.12 for the corresponding result

in bipartite graphs and for example | , Th. 1.1], | , P. 4290,4302], [Fri2, L. 2.3|, [Sod,
Prop. 6.4] for related results. Anticipating on the error terms that we will give in Section
12.6, note that the paper | , Th. 1.1] for instance gives a precise speed using spectral

properties, more precise than the ones we obtain.

In some applications (see the examples at the end of this Section), we encounter bipartite
simplicial graphs and, consequently, their discrete time geodesic flow is not mixing. The
following result applies in this context.

Until the end of this section, we assume that the simplicial tree X has a I'-invariant
structure of a bipartite graph, and we denote by VX = V1 X w1 15X the corresponding partition
of its set of vertices. For every i € {1,2}, we denote by &, X the space of generalised discrete
geodesic lines £ € & X such that £(0) € V;X, so that we have a partition IX =% Xu%bX.

Note that if the basepoint xg lies in V;X, then %, X is equal to 7. XNgX. For all i,7 € {1,2},
we define
f/‘ﬁ)*,]]]ﬁ,i,j(n) = Z Me, ~ ec(ae,v) .
[v]e Tp-\I'/Tp4

0<d(D~,yDV)<n
o(cte,v)EViX, t(ae,y)eV;X

Theorem 12.12. Let (X, \), I and ¢ be as in the beginning of this Section, with \ constant
with value 1. Assume that the critical exponent . is finite and positive. If X has a I'-invariant
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structure of a bipartite graph as above, if the restriction to I'\GeyenX of the Gibbs measure m,
is finite and mizing for the square of the discrete time geodesic flow, then for all i,j € {1,2}

such that the measures o, . and a§+ ; are finite and nonzero, asn tends to +00 withn = i—j
mod 2, the measures
26,
e“% —1 S
—0cn c(ae, "/)
2 2 O ”mCH € Z Me,~y € Al"a;.y ® AFa;tl’e

(] GF]D)* \F/F]D)+
0<d(D~,yDT)<n
o(ae,~)eViX, t(ae,y)eV;X

narrow converge to o5 Q0. ;i NZXxT\ZX and

2620 |of oy

(€2% —1) me]

dem

M- p+,i,5(n) ~

Proof. This Theorem is proved in the same way as the above Theorem 12.9 using Theorem
11.10. Note that we have a (I' x I')-invariant partition

GXx9dX= || 94Xx9X,
(i )ef1, 2p2

that o ., € & X if and only if o(ae, ) € V;X, and that a»j*l,e € {?J Xif and only if t(a, 4) € VjX,
since afyr (0) =77t (0) = v t(ae, ). O

-1
, €

Examples 12.13. (1) Let X, T',c be as in Theorem 12.12, and let D™ = {z} and Dt = {y}
for some vertices z,y in the same V;X for ¢ € {1,2}. If the restriction to I'\@eyenX of the
Gibbs measure m, is finite and mixing for the square of the discrete time geodesic flow, then
as n — +00 is even,

2e%  |pzlleyl 50

2% —1 [me| [Ta| |Ty|

J‘fD)—,IDﬁ (n) ~

Indeed, we have Ap- p+(n) = Ap- p+ i (n) and a;i ;= Uéi.

(2) Let Y be the complete biregular graph with ¢+ 1 vertices of degree p+ 1 and p+ 1 vertices
of degree ¢ + 1. Let Y* = {y} be a fixed vertex of degree p + 1. Note that Y being bipartite,
all common perpendiculars from y to y have even length, (the shortest one having length 4).
Then as n is even and tends to +00, we have

qlp+1) n
Ny-y+(n) ~ W(m) 2.

Indeed, the biregular tree X, , of degrees (p +1,¢ + 1) is a universal cover of Y with covering
group I' acting freely and cocompactly, so that with ¢ = 0 we have J. = In y/pq and the Gibbs
measure m. is the Bowen-Margulis measure mpy;. If we normalise the Patterson density such
that |p,l = %, then by Proposition 8.1 (2), we have [mpMm| = 2(p + 1)(¢ + 1). Thus the
result follows from Example (1). Note that if p = ¢, then

q
Nr— n) ~ ",
Y,W( ) q2_1q

and the constant in front of ¢™ is indeed different from that in the nonbipartite case.
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(3) Let Y be a finite biregular graph with vertices of degrees p + 1 and ¢ + 1, where p,q > 2,
and let VY = V,Y 1 V,Y be the corresponding partition. If Y~ = {v} where v € VY and Y™
is a cycle of length L > 2, then as N — +00, the number of common perpendiculars of even
length at most 2V from Y~ to YV is equivalent to

Lq(p—1)

eI

and the number of common perpendiculars of odd length at most 2N — 1 from v to Y* is
equivalent to
L{qg—1)

Y- vy P

Proof. The cycle Y* has even length L and has % vertices in both V,,Y and VY. A common
perpendicular from Y~ to Y* has even length if and only if it ends at a vertex in VY.

Let X — Y be a universal cover of Y, whose covering group I' acts freely and cocompactly
on X. Let D™ = {v} where ¥ € VX is a lift of v, and let D™ be a geodesic line in X mapping to
Y*. We use Theorem 12.12 with V1 X the (full) preimage of V,,Y in X, with V2X the premiage
of V,Y in X and with ¢ = 0, so that . = In,/pq and m. = mpym. Let us normalise the
Patterson density of I" as in Proposition 8.1 (2), so that

p+1
log- oI = lusl = 2.

VP

The mass for the skinning measure of the part of the inner unit normal bundle of YT with
basepoint in V,,Y is (see Corollary 8.5)

Lp+1lp-1_ L(p—1)

2 Jp p+1 2P
and its complement has mass qu\;;)
graph Y as a graph of groups with trivial groups,

. Recall also that, by Proposition 8.1 (2), considering the

[l = TVol(Y) = [EY] = 2(p + )|V, Y[ = 2(¢ + 1)|V;Y].

The claim about the common perpendiculars of even length at most 2N follows from
Theorem 12.12 with ¢ = j = 1, since

_ 1 L(p—1
202% oy Moo ;| 2ptE R Loy
(€% — 1) [mo] (pg—1) 2(p+1) VY| 2 (pg—1) [V,Y]|

The claim about the common perpendiculars of odd length at most 2N —1 follows similarly
from Theorem 12.12 with ¢ =1 and j = 2. O

(4) Let Y be a finite biregular graph with vertices of degrees p + 1 and ¢ + 1, where p,q > 2,
and let VY = V,Y u VY be the corresponding partition. If Y~ and Y* are cycles of length
L™ > 2 and L* > 2 respectively, then as N — 400, the number of common perpendiculars
of length at most N from Y~ to YT is equal to

27— 71+
2(215 - féafd(b%{) (vpa)"*? +0(r™) (12.11)
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for some r < /pq.

Proof. As in the above proof of Example (3), let X — Y be a universal cover of Y, with
covering group I' and let D* be a geodesic line in X mapping to Y*. We normalise the

Patterson density (uz)zevx of T' so that ||u,| = :egiﬁ(x))l. By Proposition 8.4 (3) with
egx(z)—

k =1 and trivial vertex stabilisers, and since a simple cycle of length A in a biregular graph
of different degrees p + 1 and g + 1 has exactly % vertices of degree either p + 1 or ¢ + 1, we
have

Hoé¥” _ Z lppe| (degx () — k) _ Z N Z N 7 \/15;‘\/6

_ degx (x _ _
TzeY¥ gx(x) yeV, Y+ yeV, Y+

The result without the error term then follows from Theorem 12.12, using Proposition 8.1 (2)
and Remark 2.11.
We refer to Section 13.2 (see Remark (ii) following Theorem 12.17) for the error term. []

Remark 12.14. If Y is a finite bipartite (p + 1)-regular graph, Y~ consists in a vertex and
Y is a cycle of length L, then Example (3) above gives
Lp(p-1) Lp-1) ._ L .,

sy Trpr-n vy Y Ty

JK{*, y+(n) ~

for the number 45— y+(n) of common perpendiculars from Y~ to Y* with length at most n.
This is the same result as for nonbipartite trees.

12.5 Counting for simplicial graphs of groups

In this Section, we give an intrinsic translation “a la Bass-Serre” of the counting result in
Theorem 12.9 using graphs of groups (see | | and Section 2.7 for background information).

Let (Y,G4) be a locally finite, connected graph of finite groups, and let (Y* G%) be
connected subgraphs of subgroups.'’ Let ¢ : EY — R be a system of conductances on Y.

Let X be the Bass-Serre tree of the graph of groups (Y, G) (with geometric realisation
X = |X];) and T its fundamental group (for an indifferent choice of basepoint). Assume that
I is nonelementary. We denote by 4(Y, Gx) = I'\¥X and (g' : (Y, Gx) — 9(Y, G*))teZ the
quotient of the (discrete time) geodesic flow on ¥X, by ¢ : X — R the (I'-invariant) lift of
¢, with . its critical exponent and ﬁc : T'X — R its associated potential, by m. the Gibbs
measure on ¥ (Y, G,) associated with a choice of Patterson densities (ui),ex for the pairs
(T, FE), by D* two subtrees in X such that the quotient graphs of groups I'p+\D* identify
with (Y*, G¥) (see below for precisions), and by a(iSﬁ o) the associated skinning measures.

G

The fundamental groupoid m(Y, G of (Y, G4)'! is the quotient of the free product of the
groups G, for v € VY and of the free group on EY by the normal subgroup generated by the
elements e € and e p.(g) € pz(g)~! for all e € EY and g € G.. We identify each G, for x € V'Y
with its image in 7(Y, Gy).

Let n € N —{0}. A (locally) geodesic path of length n in the graph of groups (Y, G) is
the image o in (Y, G) of a word, called reduced in | , 1.7],

h061 hl €2 ... hn—l enhn

108ee Section 2.7 for definitions and background.
"denoted by F(Y,Gy) in | , §5.1], called the path group in | , 1.5], see also [Hig]
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with

e ¢; € EY and t(e;) = o(e;41) for 1 < i < n—1 (so that (ej,...,ey) is an edge path in
the graph Y;

. ho € Go(el) and hi € Gt(ei) for 1 <4< n;

o if ¢;41 = & then h; does not belong to pe, (G, ), for 1 <i<n—1.

7

Its origin is o(a) = o(ey) and its endpoint is t(«) = t(ey). They do not depend on the chosen
words with image « in 7(Y, Gy).

A common perpendicular of length n from (Y~,G;) to (Y*,G}) in the graph of groups
(Y, Gy) is the double coset

[a] = G;(a)

of a geodesic path « of length n as above, such that:

o G;Ea)

e « starts transversally from (Y~,Gy ), that is, its origin o(«) = o(e1) belongs to VY~
and ho ¢ Gy, per(Ge,) if 1 € BY ™,

e « ends transversally in (YT, G}), that is, its endpoint ¢(«) = t(e,) belongs to YT and
hn & pe, (Ge,) G;Een) if e, € EYT.

Note that these two notions do not depend on the representative of the double coset
G ooy @ G;Ea), and we also say that the double coset [a] starts transversally from (Y~, G ) or
ends transversally in (Y~,Gy).

We denote by Perp((Y*, G%),n) the set of common perpendiculars in (Y, G) of length n
from (Y~,G}) to (YT,Gf). We denote by

c(a) = Z c(e;)

i=1
the conductance of a geodesic path « as above, which depends only on the double class [«].

We define the multiplicity m,, of a geodesic path « as above by

1
Card(G;(a) N aG:Ea) a 1)’

Mq

It depends only on the double class [a] of a. We define the counting function of the common
perpendiculars in (Y, Gy) of length at most n from (Y~,Gy) to (YT,GY) (counted with
multiplicities and with weights given by the system of conductances ¢) as

M-z, ov+,ap) () = > Mg, €@
[a]ePerp((Y£,GF).m)

Theorem 12.15. Let (Y, G,), (Y£,GE) and c be as in the beginning of this Section. Assume
that the critical exponent . of c is positive and that the Gibbs measure me on 9(Y, Gy) is finite
and mixing for the discrete time geodesic flow. Assume that the skinning measures U(iyi o)

Gy
are finite and nonzero. Then as n € N tends to o

S ||+ -
(/V (n) N € ”O—(Y_,G;)H ”O—(Y"',GI)H Sen
(Y=,G5), (Y+,GY) (% — 1) [me|
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Proof. Let X be the Bass-Serre tree of (Y, G,) and I its fundamental group (for an indifferent
choice of basepoint). As seen in Section 2.7, the Bass-Serre trees D* of (Y* GT), with
fundamental groups I't, identify with simplicial subtrees D¥ of X, such that I't are the
stabilisers I'p+ of D in I'. In particular, the maps (I'p+\D*) — (I'\X) induced by the
inclusion maps D* — X by taking quotient, are injective:

V~yel, VzeVD* U ED*Y, if yzeVD* U ED*, then 344 € Tpe, 4z =vz. (12.12)

As in Definition 2.10, for all 2z€ VYUEY and e€ EY, we fix a lift Z € VX u EX of z

and g, € T, such that € = ¢, g, ( ) = t(€), G, =I'z, and the monomorphism pe : Ge — Gy
is v — g-'vge. We assume, as we may, that Z e VDE U EDT if z € VYT U EYE. We
assume, as we may using Equation (12.12), that if e € EY*, then g. € I'p+. We denote by
p: X — Y =I'\X the canonical projection.

v DF
(fk)

’Y Yrr1Y'

For all v,~' € T" such that yD~ and 4'D™* are disjoint, the common perpendicular QyD-, D+
from /D~ to v/D* is an is an edge path (f1, f2,..., fi) with o(f1) € YD~ and t(fy) € ~'D*. Note
that 7~ ~Lo(f1) and p( (f1)) are two vertices of D~ in the same T-orbit, and that 4/~ ' ¢(f;) and
p(t(fk)) are two vertices of D™ in the same I'-orbit. Hence by Equation (12.12), we may choose

70 € I'p- such that 497~ o(f1) = p(o(f1)) and Tk+1 € I'p- such that vj17 " t(fr) = p(t(fx)).
For 1 < i < k, choose v; € I" such that ~; f; = p( f,) We define

o ¢, =p(fi)for 1 <i<k,

o h;= g;l'yi’yﬂflgm, which belongs to I''— = Gy, for 1 <i <k —1,

i)
e ho =077 "ger =7 (19071 ger, which belongs to T = Goey),

_ _ — —1\— .
o hi =g Y 1t = 95, (Y k1Y), which belongs to L' = Gien)-

Lemma 12.16. (1) The word hoeihy ... hix_1exhy is reduced. Its image o in the fundamen-
tal groupoid (Y, Gy) does not depend on the choices of y1,...,7k, and starts transver-
sally from (Y=, G5) and ends transversally in (Y*,G}). The double class [a] of « is
independent of the choices of vo and Ygi1.
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(2) The map 5) from the set of common perpendiculars in X between disjoint images of D~
and D under elements of T, into the set of common perpendiculars in (Y,Gy) from
(Y~,Gy) to (YT, GY), sending ap- p+ to o], is constant under the action of T' at
the source, and preserves the lengths and the multiplicities.

(8) The map © induced by &) from the set of I'-orbits of common perpendiculars in X between
disjoint images of D™ and DV under elements of I into the set of common perpendiculars
in (Y,Gy) from (Y™,Gy) to (YT,G}) is a bijection, preserving the lengths and the
multiplicities.

Proof. (1) If e;41 = &;, then by the definition of h;, we have

—1 1 ~ ~
hi € pe,(Ge;) = ge, Vei9e; <= ge, hige, € =€
— gei gei 7171+1 gei+1 gei ei = e’i

-1 = ~
< Yi%i+1 = €i+1 = €

— T 1~ -
=i leq1=7 6 = fini=fi.

Hence the word hgeihq ... hg_1eihy is reduced.

The element ~; for i € {1,...,k} is uniquely determined up to multiplication on the left
by an element of I's, = G,. If we fix'? i e {1,...,k} and if we replace v; by 7/ = a; for some
a € Ge,, then only the elements h;—; and h; change, replaced by elements that we denote by
h_, and R} respectively. We have (if 2 < ¢ < k — 1, but otherwise the argument is similar by
the definitions of hy and hy)

hi_yeihi=g.' i1 vi e ge e 9o i Yir1 et
= G Vi1V g pe(@) e pe (@) g i i g -
Since pg; ()™t e; pe, (@) is equal to &; ~1 = ¢; in the fundamental groupoid, the words h/,_; e; h/
and h;_1 e; h; have the same image in 7(Y, G4). Therefore « is independent on the choices of
Vs oo Vhe-

We have o(a) = o(e1) € VY™ and t(«) = t(eg) € VY™, hence « starts from Y~ and ends
in Y*.

-1
Assume that e; € EY™. Let us prove . v h
that hg € G;(e )pa(Gel) if and only if €1 o(e1)
_ et PP ° — D~
fieyED™. N o~ oy
ger Y0

By the definition of pg, we have hy € G;(el) per(Ge,) if and only if there exists a €
FOF(;;) N Tp- such that a1 hg € g%l I'zy ger- By the definition of hy and since v maps fi to
€1, we have

athoe g Ty gar = garo™ ' (07 1 '9e) 9= €1 = €1

— fi=71 " ags' é .

12YWe leave to the reader the verification that the changes induced by various #’s do not overlap.
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Since €1 € ED™ and 79, «, ge; all belong to I'p—, this last condition implies that f; € v ED™.
Conversely (for future use), if f; € v ED~, then (see the above picture) voy~!f; is an edge

of D~ with origin o(e1), in the same orbit that the edge g%l é1 of D™, which also has

origin g(\/el). By Equation (12.12), this implies that there exists a € F;@S N I'p- such that

= 77071 ag%l €1. By the above equivalences, we hence have that hg € G;(el) pe(Gey).

Similarly, one proves that if e, € EY™, then hy € pe, (Ge, ) G;Eek) if and only if f, € v/ ED™T.
Since (f1, ..., fn) is the common perpendicular edge path from v D~ to 4/D*, this proves that
« starts transversally from Y~ and ends transversally in Y.

Note that the element vy € I'p- is uniquely defined up to multiplication on the left by
an element of FoF(ZT) N I'p- = Go_(el)’ and appears only as the first letter in the expression of
ho. Note that the element 7.1 € I'p+ is uniquely defined up to multiplication on the left by

an element of I' o " I'p+ = G;Eek)’ hence ’7;}-1 is uniquely defined up to multiplication on

the right by an element of G;Eek)’ and appears only as the last letter in the expression of hy.
Therefore « is uniquely defined in the fundamental groupoid 7(Y,Gy) up to multiplication
on the left by an element of G;(q) and multiplication on the right by an element of G;E )

ek
that is, the double class [a] c 7(Y, Gy) is uniquely defined.

(2) Let 3 be an element in I' and let © = a,p- ,p+ be a common perpendicular in X

between disjoint images of D~ and D+ under elements of T'. Let us prove that ©(8z) = O(z).
Since Bz = ag,p- g+, in the construction of O(Fz), we may take, instead of the
elements vp, 71, - - -, V&, Ye+1 used to construct (:)(:c), the elements

'78 =70, ’751 =M ﬁ_la SRR ’7]% =Yk B_la /ylﬁngl = VYk+1-
And instead of v and +/, we now may use 74 = 8+ and 7* = 8+ N

The only terms involving 7, ', 71, ..., 7k in the construction of ©(x) come under the form
Yyt in ho, yivig1 !t in by for 1 <i <k —1, and 7/ in hy,. Since (vﬁ)_l(yﬁ)_l =~y h
(W) ()™ = it for 1< i <k — 1, and (75)(y%) = 1/, this proves that ©(5z) =
O(x), as wanted.

It is immediate that if the length of a,p- /p+ is &, then the length of [a] is k.

Let us prove that the multiplicity, given in Equation (12.9),

1
m. ;=
7 Card(yp-y !t Ay Tpey' ™)

of the common perpendicular « p+ in X between YD~ and 4/ D7 is equal to the multi-

plicity

D=,y

1

Card(G;(a) N G;Ea) a 1)

of the common perpendicular « in (Y, G,) from (Y=, G}) to (Y*,GY).

Since the multiplicity m., .,/ is invariant under the diagonal action by left translations of
7617_1 e I' on (v,7'), we may assume that v = 9 = id. Since the multiplicity m., - is
invariant under right translation by v41~!, which stabilises D, on the element v/, we may
assume that v;,1 = id. In particular, we have

Me

—_—— —_—~—

o(fi) = o(er) and t(fy) ="t(ex) .
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We use the basepoint o = o(e1) in the construction of the fundamental group and the
Bass-Serre tree of (Y, Gy), so that (see in particular | , Eq. (1.3)])

VX = [ B Gup)
Ben(Y,Gx) : o(B)=x0

and

F=mY,Gy) ={8en(Y,Gs) : o(B) =t(B) =z} .

Since an element in T" which preserves D~ and 7/ D™ fixes pointwise its (unique) common
perpendicular in X, we have

Tp- 0 YTpey' ™ =Tp- 0 Type = (Tog) 0 Tp-) & (D) 0 Tyt
= (I‘Of(;;) NnTp-) N (Fw/tze?) NTypt) .
Note that F;@/) NnIp- = Go_(el). By the construction of the edges in the Bass-Serre tree of a
graph of groups (see | , page 11]), the vertex o Gy, ) is exactly the vertex t(fy) = 7' t(ex).
By | , Eq. (1.4)], we hence have

o Ge) 0" = Stabr, (v, (@ Gye) =T, o

Therefore m, = my,.

(3) Let [a] = Gy @Gya) be a common perpendicular in (Y,G%) from (Y7,Gy) to
(Y*,G}), with representative o € 7(Y,Gy), and let hgej hy ... ex hy be a reduced word
whose image in 7(Y, Gy) is a.

We define

i ’legahal,
o fi=v 6,

e assuming that ~; and f; for some 1 < i < k — 1 are constructed, let
— -1 -1 _ 1 ~
Yir1 = geg Py ge, v and  firr = vie1 €1,

e with 74 and f; constructed by induction, finally let 7/ = 'ykfl Jey, P

It is easy to check, using the equivalences in the proof of Lemma 12.16 (1) with v = 9 =
Yk+1 = id, that the sequence (f1,..., fi) is the edge path of a common perpendicular in X

from D~ to 4'D* with origin c:(e\1/) and endpoint v’ t(ey).

If hg is replaced by a hg with a € G;(el), then by induction, fi, fo..., fr are replaced by
afi,afe, ..., afr and v is replaced by ay’. Note that (af1, afo, ..., afi) is then the common
perpendicular edge path from D~ = aD~ to ay/D*. If hy is replace by hy « with o € G:Eek)’
then fi, fo..., fr are unchanged, and 7/ is replaced by ' o. Note that v aDt =~/ D™.

Hence the map which associates to [«] the I'-orbit of the common perpendicular in X from
D~ to v/D* with edge path (f1,..., fi) is well defined. It is easy to see by construction that
this map is the inverse of ©. O

Theorem 12.15 now follows from Theorem 12.9. O
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12.6 Error terms for equidistribution and counting for metric
and simplicial graphs of groups

In this Section, we give error terms to the equidistribution and counting results of Section
12.4, given by Theorem 12.8 for metric trees (and their continuous time geodesic flows) and by
Theorem 12.9 for simplicial trees (and their discrete time geodesic flows), under appropriate
bounded geometry and rate of mixing properties.

Let (X,\), X, I, & ¢, Fe, Fe, 6, D, 7%, Ay s, 0y, a2, my o be as in Section 12.4.
We first consider the simplicial case (when A = 1), for the discrete time geodesic flow.

Theorem 12.17. Let X be a locally finite simplicial tree without terminal vertices, let I' be
a nonelementary discrete subgroup of Aut(X), let ¢ be a system of conductances on X for T’
and let DT be nonempty proper simplicial subtrees of X. Assume that the critical exponent 6,
is finite and positive, that the Gibbs measure m. (for the discrete time geodesic flow) is finite
and that the skinning measures o= are finite and nonzero. Assume furthermore that

9F
(1) at least one of the following holds :

e I'p:\oDT is compact

o GAT is uniform and I is a lattice of € AT,

(2) there exists B € ]0,1] such that the discrete time geodesic flow on (T\¥X,m.) is expo-
nentially mizing for the B-Holder reqularity.

Then there exists k' > 0 such that for all v* e (KCB(F\ ?X), we have, as n — +00,

)
e’ —1 _ _ _
€5c HmCH € 6‘3’"’ : mE,’Y eC(Oée”Y) w (Faeﬂ) ¢+<Fa;—7176)

(V] el \I'/Tp+
0<d(D~,yDT)<n

_ j ¥ dob_ f 6 dog, +0 (e s [ 8)

and if Tp+\0D* is compact, then

e log| log.|
(€% = 1) [lme]

No- () = e 10 (0 m)

Proof. We follow the scheme of proof of Theorem 12.7, replacing aspects of Riemannian
manifolds by aspects of simplicial trees as in the proof of Theorem 11.8. Let ¢* € 4 (f?X)

. . . . o - — + +
In order to simplify the notation, let Ay = Ay, ay = ey, @y = Qos Q) = Qg and
0+ =0pz-

Let us first prove the following avatar of Equation (12.4), indicating only the required
changes in its proof: there exists kg > 0 (independent of 1)*) such that, as n — 40,

)
e’ —1 son ~ o~
o md et S ) () (o)
vell, 0<Ay<n
~ [ Gt [ a0 1113, (12.13
1D~ LD+
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Most of the new work to be done in order to prove this formula concerns regularity
properties of the test functions that will be introduced later on. We start with the regularity
of the fibration of the dynamical neighbourhoods.'?

Let n, R > 0 be such that n <1 <InR.

Lemma 12.18. Let Y be an R-tree and let D be a nonempty closed convex subset of Y.
Then the restriction to %}%R(é’_liD) of the fibration f]% is (uniformly locally) Lipschitz, with
constants independent of 1.

Proof. We assume for instance that + = +. Let £,/ € “I/JR(aiD) and let w = f5 (), w' =
fo@).

Since the fiber over p € 01 D of the restriction to %TR(a-l%D) of f is ijrmR (see the end
of Section 2.5), there exist s, s’ € | —n, [ such that g*¢ € B*(w, R) and g*¢' € B (', R), so
that g®l(t) = w(t) and g*¢'(t) = w/(t) for all t > In R by the definition of the Hamenst#dt
balls. Up to permuting ¢ and ¢, we assume that s’ > s.

By (the proof of) Lemma 10.11 (1), there exists a constant cg > 0 depending only on R
such that if d(¢,¢") < cg and s” = d(£(0),£'(0)), then s” = s’ — s and the geodesic lines g*¢
and g* ¢’ coincide at least on [—In R — 1,In R + 1]. In particular, we have

w(lnR)={l(s+ImR)=0(s+InR)=w(nR).
Since the origin of w is the closest point on D to any point of w([0, +o0[), we hence have that
w(t) = w'(t) for all ¢t € [0,In R]. Therefore (using Equation (2.5) for the last inequality),
+o0

J ’ d(w(t),w' (t)) e 2t dt = f d(g®l(t), g ' (t)) e 2t dt
InR InR

d(w,w")

+o0
— eQSJ d(l(u),g" ' (v) e 2% du < e d(¢,g"" 0
In R+s

% (d(0,0) +d(l',g* ")) < e* (d(L,0) + 5")
e (d(¢,€') + d(£(0),£(0))) ,

N

so that the result follows from Lemma 10.11 (2).

Note that when Y is (the geometric realisation of) a simplicial tree, then we have s = s’ =
s” =0 and the above computations simplify to give d(w,w") < d(¢,¢). O

13Gee Section 2.5 for notations.
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We fix R > 0 big enough. With D* = |D%|;, we introduce the following modification of
the test functions qbf;r:l‘1

+ + O+ T
(I)ﬁ = (hﬁ,R P=)o flJ)ri ﬂ"f/n_,R(a}?Di) .

As in Lemma 10.1, the functions (I>7J7—r are measurable and satisfy
f OF dine :J V5T (12.14)
9X

Lemma 12.19. The maps ‘I>:7—r are B-Hélder-continuous with

|25l = Ol ]s) - (12.15)

Proof. Since X is a simplicial tree and n < 1, we have Vujin r = B¥(w, R) for every w € 05 D7.
As seen above, there exists cg > 0 depending only on R such that if £/ € B¥(w, R) and ¢’ € ¥X
satisfy d(¢,¢') < cg, then ¢/ € B¥(w, R). Hence (see Section 3.1) the characteristic function
]l'VnJTrR( oL DF) is cg-locally constant, thus S-Hdélder-continuous by Remark 3.2.

By Assumption (1) in the statement of Theorem 12.17, the denominator of

- 1
hy, (W) =
m 1 Hw+ () (BE (w, R))
is at least a positive constant depending only on R, hence h:f r is bounded by a constant

depending only on R. Since the map 1p=(, g) is cg-locally constant, so is the map h:?_r p- The
result then follows from Lemma 12.18 and Equation (3.1). I

In order to prove Equation (12.13), as in the proofs of Theorems 12.7 and 11.8, for all
N € N, we estimate in two ways the quantity

N
I(N)= Y e*n )" L » o, (g "0y @ (g Hy=1e) dine(0) . (12.16)
n=0 E

~yell

On the one hand, as in order to obtain Equation (12.6), using now Assumption (2) in the
statement of Theorem 12.17 on the exponential mixing for the discrete time geodesic flow, a
geometric sum argument and Equations (12.14) and (12.15), we have

ede(N+1) N N R N
I(NY = —— —d5T + A5 KN | + (121
o) = g Lm_w 45 LI_DJ/’ a5~ + O™ Mg 1p)) . (1217)

On the other hand, exchanging the summations over v and n in the definition of I,,(NN),
we have

N
LN = 3 N e [ e oy an).
~vel' n=0 7

148ee Equation (10.1) for the definition of hiR, that simplifies as hiR(w) = (,LLWi(w)(Bi (w, R)))™! since
X is simplicial, as seen in Equation (11.24).
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With the simplifications in Step 3T of the proof of Theorem 11.1 given by the proof of
Theorem 11.8, if n < %, if £ € 4X belongs to the support of P, o g_ln/zJ <I>;]L o g["/ﬂ oy~ L,
setting w™ = f;}_(£) and w* = fop+ (¢), we then have A, = n, w*(0) = a;—’(O) and

w ([n/2]) = w* (=[n/2]) = £(0) = o (In/2]) = a7 (—[n/2]) ,

hence

d(wi,a;—r) = O(e™™).

Therefore, since JJ—F is B-Holder-continuous,
|95 (wh) = (03) | = Oe™™ [ 5) -
Note that now <I>:7r = @ZJ—F o fF, ¢F, so that

L(N) =37 (&7 @)t () + 0™ |97 s ™ ]15)) x

vyel'

N
3 et LX o7 (&~ 1"/20) 67 (/10 10) dine(0)
n=0 ¢

Now if < 1, Equation (12.13) with ko = min{23, x} follows as in Steps 3T and 4T of
the proof of Theorem 11.1 with the simplifications given by the proof of Theorem 11.8.

The end of the proof of the equidistribution claim of Theorem 12.17 follows from Equation
(12.13) as the one of Theorem 12.7 from Equation (12.4).

The counting claim follows from the equidistribution one by taking ¥* = ]lw/n R(PLDE);

which has compact support since I'p+\dD* is assumed to be compact, and is B-Holder-
continuous by previous arguments. ]

Remarks. (i) Assume that ¢ = 0, that the simplicial tree X’ with |X'|; = AT is uniform
without vertices of degree 2, that Lr = Z and that I is a geometrically finite lattice of X’. Then
all assumptions of Theorem 12.17 are satisfied by the results of Section 4.4 and by Corollary
9.6. Therefore we have an exponentially small error term in the (joint) equidistribution of the
common perpendiculars, and in their counting if I'p+\dD* is compact, see Example 12.10 (2).

(ii) Assume in this remark that Assumption (2) of the above theorem is replaced by the
assumptions that Al is uniform without vertices of degree 2, that Lt = 27, and that there
exists 3 € ]0, 1] such that the square of the discrete time geodesic flow on (I'\ZevenX, m,) is
exponentially mixing for the g-Hdélder regularity, for instance if I' is geometrically finite by
Corollary 9.6 (2). Then a similar proof (replacing the references to Theorem 11.8 by references
to Theorem 11.10) shows that there exists ' > 0 such that for all ¥* € €2(I'\ ¥X), we have,
as n — +00,

20
e“% —1 _ _ _
S Imel e ™ 3 mey een) T(Tag,) Y (Tal )
(7] EF]])*\F/FDJr
0<d(D~,yD+)<n

— [vr oy [0t g0 1 107 10)
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and if T'p+\0D* is compact, then

2% o} _| llo. | /
N _ 9 9+ demn +0 (6e—K")n )
p-,p+(n) (X — 1) [mo] € (6 )

Let us now consider the metric tree case, for the continuous time geodesic flow, where the
main change is to assume a superpolynomial decay of correlations and hence get a superpoly-
nomial error term.

Theorem 12.20. Let (X,\), T', ¢ and DT be as in the beginning of this Section, and let
D* = |D*|,. Assume that the critical erxponent §. is finite and positive, that the Gibbs
measure me (for the continuous time geodesic flow) is finite and that the skinning measures
05; are finite and nonzero. Assume furthermore that
(1) at least one of the following holds :
e I'p:\0D?* is compact

e the metric subtree € A" is uniform and U is a lattice of € AL,

(2) there exists B € ]0,1] such that the continous time geodesic flow on (INY X, m.) has
superpolynomial decay of B-Hdolder correlations.

Then for every n € N there exists k € N such that for all YT € Cﬁck”g(I’\S?X), we have, as
T — +o0,

Oc [mef e X mey @) YT (Pag ) YT (Tal, )

[v]el p \I/T
0<d(D~,y DT)KT

= J YT dog J YT dog + O (T [ |k, |47 Ik, 8)
Ngx Ngx
and if T p=\0D7 is compact, then for every n € N
UT_ o
Np- p+(T) = M AT 40 (65CTT—n)'
’ de [[me|

Remark. Assume that ¢ = 0, that the metric tree €Al is uniform, either that I'\X is finite
and the length spectrum Lp of I' is 2-Diophantine or that I' is a geometrically finite lattice
of €Al' and that Lrp is 4-Diophantine. Then all assumptions of Theorem 12.20 are satisfied
by the results of Section 4.4 and by Corollary 9.10. Therefore we have a superpolynomially
small error term in the (joint) equidistribution of the common perpendiculars (and in their
counting if T'p+\0D* is compact).

Proof. The proof is similar to the one of Theorem 12.17, except that since the time is now
continuous, we need to regularise our test functions in the time direction in order to obtain
the regularity required for the application of the assumption on the mixing rate. We again
use the simplifying notation Ay = Ac 4, @y = aeq, @ = a, ., aj = 04;”,176 and 6% = &z—;i.
We fix n € N—{0}. Using the rapid mixing property, there exists a regularity k such that

for all ¥, € %S’B(F\%X) we have as t — +o0

covims,t (U, 9') = O™ 9]k, 5 |¥ |k, ) - (12.18)
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where N € N — {0} is a constant which will be made precise later on.
Let us first prove that for all @Zi € %Ck"g(EéX), we have, as T — +00,

bc fmel e Y T (a])d T ()

vel', 0< Ay <T

_ f I dot f I+ a5 + O™ | a5 19+ 1. 5) - (12.19)
ol D- ol D+

In order to prove this formula, we introduce modified test functions, making them with
bounded Hoélder-continuous derivatives up to order k (by a standard construction) in the time
direction (the stable leaf and unstable leaf directions remain discrete). We fix R > 0 big
enough.

For every n € ]0,1[, there exists a map /]l; : R — [0,1] which has bounded S-Holder-
continuous derivatives up to order k, which is equal to 0 if ¢ ¢ [—-n,n] and to 1 if ¢t €
[-ne ", ne ] (when k = 0, just take ﬂ; to be continuous and linear on each remaining
segment [—n, —ne~"] and [ne~",n]), such that, for some constant k1 > 0,

1Lylk, 5 = O(n~") .

Using leafwise this regularisation process, there exists X;—r’ R € ‘gf B (¢ X) such that
B = 0(77_”1),

+
LDty S X R S L, 1 (0L D)

[ ) :[].41/4—77] R(

e for every w € G}TDJ—F, we have

Xn dvE = vE (V+ n)e O — (¥ ) Pl

I w 77’ wﬂ?@_"»R

F
Vw,n,R

As in the proof of Theorem 12.7 in the manifold case, the new test functions are defined, with

1

+ +
Xn. R dvi

+ . 1p:
Hn,R : w66$D

SVJ n, R

by
O = (Hr g vt)ofhe xpp 1 9X > R.
Let &);f = H;iR o fgi X;’FR» so that <I>7J7—r = JJ—F o fgi &>7J7—r By the last two properties of the

regularised maps X;—r r» We have, with qu?_“ defined as in Equation (10.4),

¢t e O < BF < g O (12.20)

ne-"

By Assumption (1), if R is large enough, by the definitions of the measures vE, the
denominator of Hni r(w) is at least ¢cn where ¢ > 0. As in the proof of Theorem 12.7, there

exists k" > 0 such that
f O din :f ot dFT
2.4 a}?Di

=O(n .8) -
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We again estimate in two ways as T' — 400 the quantity

T
I,(T) = f edthJ o, (g7"20) @ (g'%y710) dinc(0) dt . (12.21)
0 ’YEF e9 X

Note that as T" — 400,

T T/2 T
1 1 T/2

_ O(e—6CT/2) + O(T—Nn+1) _ O(T—(N—l)n) )

Using Equation (12.18), an integration argument and the above two properties of the test
functions, we hence have

eéc T

Ly(T)

o (|t [ G e 0@y gl )
dc [me| oL D~ oL D+
(12.22)

As in Step 3T of the proof of Theorem 11.1, for all v € I" and ¢ > 0 big enough, if £ € ¥X
belongs to the support of &, o g2 Do g/ o 4~1 (which is contained in the support of
¢y © g2 o o g2 041, then we may define w= = fp- () and wt = f,;D+(€).

By the property (iii) in Step 3T of the proof of Theorem 11.1, the generalised geodesic
lines w™ and a;; coincide, besides on | —c0, 0], at least on [0, % —n], and similarly, w* and ad
coincide, besidef on [0, +o0[, at least on [—% +7,0]. Therefore, by an easy change of variable
t

and since |5 — 3| < n,

+ +00

d(w™, o) . d(w™(s), a5 (s)) e 2 ds < e 22 2se %% ds
21

=0(e™ ) = 0(e™).

N
8
l\jlﬁ
3
S m—

0

+

3) = O(e™™). Hence since P* is B-Holder-continuous, we have

Similarly, d(w™, «

|9 (wF) — 9= (a) | = O(e™ P[5 5).
Therefore, as in the proof of Theorem 12.17, we have

L(T) =Y, (0 (a3)d" () + O [9 5]47 ) x

vyel
T
ot 2 - = _ ~
f e f O (g7 20) @F (v g"20) dine() dt .
0 le9 X

Finally, Equation (12.19) follows as in the end of the proof of Equation (12.4), using
Equations (12.20) and (11.16) instead of Equations (12.7) and (11.19), by taking n = T—"
and N = 2([x"] + 1).

The end of the proof of the equidistribution claim of Theorem 12.20 follows from Equation
(12.19) as the one of Theorem 12.7 from Equation (12.4).

The counting claim follows from the equidistribution one by taking % to be B-Holder-
continuous plateau functions around I'#), p(0LD¥). O
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We are now in a position to prove one of the counting results in the introduction.

Proof of Theorem 1.9. Let X be the universal cover of Y, with fundamental group I' for an
indifferent choice of basepoint, and let D* be connected components of the preimages of Y*
in X. Assertion (1) of Theorem 1.9 follows from Theorem 12.20 and its subsequent Remark.
Assertion (2) of Theorem 1.9 follows from Theorem 12.17 and its subsequent Remarks (ii)
and (i), respectively if Y is bipartite or not. O
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Chapter 13

Geometric applications

In this final Chapter of Part II, we apply the equidistribution and counting results obtained
in the previous Chapters in order to study geometric equidistribution and counting problems
for metric and simplicial trees concerning conjugacy classes in discrete isometry groups and
closed orbits of the geodesic flows.

13.1 Orbit counting in conjugacy classes for groups acting on
trees

In this Section, we study the orbital counting problem for groups acting on metric or simplicial
trees when we consider only the orbit points by elements in a given conjugacy class. We refer
to the Introduction for motivations and previously known results for manifolds (see | |
and | |) and graphs (see [Dou] and [I[<eS]). The main tools we use are Theorem 12.8 for
the metric tree case and Theorem 12.17 for the simplicial tree case, as well as their error terms.
We in particular obtain a much more general version of Theorem 1.12 in the Introduction.

Let (X, A) be a locally finite metric tree without terminal vertices, let X = |X], be its geo-
metric realisation, let 79 € VX and let I' be a nonelementary discrete subgroup of Aut(X, \).!
Let ¢ : EX — R be a I'-invariant system of conductances, let l?‘c and F,. be its associated
potentials on 7' X and T'\T'X respectively, and let §, = 6F’F04_r be its critical exponent.”
Let (u)zex (respectively (u)sevx) be Patterson densities for the pairs (T, FE), and let
me = mp, and m. = mp, be the associated Gibbs measures on ¥X and 'YX (respectively
¢X and I'\¥X) for the continuous time geodesic flow (respectively the discrete time geodesic
flow, when A = 1).%

Recall that the wvirtual centre ZV™(T') of T" is the finite (normal) subgroup of I" consisting
of the elements v € I' acting by the identity on the limit set AT’ of I' in 0o, X, see for instance
[Cha, §5.1]. If AT = 05, X (for instance if I is a lattice), then ZV''(T") = {e}.

For any nontrivial element v in I" with translation length A(v) in X, let C, be

e the translation axis of «y if v is loxodromic on X,

e the fixed point set of v if 7 is elliptic on X,

1See Section 2.7 for definitions and notation.
2See Section 3.5 for definitions and notation.
3See Sections 4.3 and 4.4 for definitions and notation.
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and let I'c, be the stabiliser of C; in I'. In the simplicial case, C, is a simplicial subtree of X.

Note that A(y) = A(v/v(7/)™") and v'C,, = Cyry(4y-1 for all o/ € T, and that for any zo € X

d(zg,Cy) = d(xo’wg) —A0) (13.1)

By the equivariance properties of the skinning measures, the total mass of the skinning
measure’ o, where 7 = (v'Cy)yer/r - depends only on the conjugacy class £ of v in I", and
will be denoted by [o4||. This quantity, called the skinning measure of &, is positive unless
05 Cy = AT, which is equivalent to v € ZV*(I') (and implies in particular that v is elliptic).
Furthermore, |lo | is finite if v is loxodromic, and it is finite if y is elliptic and I'c, \(Cy n€'AT’)
is compact. This last condition is in particular satisfied if C, n €Al itself is compact, and
this is the case for instance if, for some k > 0, the action of I" on X is k-acylindrical (see for
instance [Sel, |), that is, if any element of I' fixing a segment of length k in @Al is the
identity.

For every v € I — {e}, we define

1
My = Card(I'y, nTc)’

which is a natural multiplicity of ~, and equals 1 if the stabiliser of z¢ in I is trivial (for
instance if I' is torsion-free). Note that for every a € I, the real number m,,.,-1 depends only
on the double coset of a in I'y,\I'/T'¢c, .

The centraliser Zr(v) of v in I' is contained in the stabiliser of C, in I. The index

ig =[Tc, : Zr(v)]

depends only on the conjugacy class K of ~; it will be called the index of K. The index ig is
finite if v is loxodromic (the stabiliser of its translation axis C is then virtually cyclic), and
also finite if C, is compact (as for instance if the action of I' on X is k-acylindrical for some

k> 0).
We define
k
Cy = Z c(e;) Ae;)
i=1
where (eq,...,ey) is the shortest edge path from zg to C,,.

We finally define the orbital counting function in conjugacy classes, counting with multi-
plicities and weights coming from the system of conductances, as

Ng o0(t) = Z Mg, €5 .

a€eR, d(zo, )<t

for t € [0, +o0| (simply ¢ € N in the simplicial case). When the stabiliser of zg in I' is trivial
and when the system of conductances ¢ vanishes, we recover the definition of the Introduction.

Theorem 13.1. Let R be the conjugacy class of a nontrivial element vy of I, with finite index
ig, and with positive and finite skinning measure o |. Assume that 0. is finite and positive.

4See Chapter 7 for definitions and notation.
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(1) Assume that m. is finite and mizing for the continuous time geodesic flow on T'\X. Then,
ast — +00,

. .y _200)
ialut | ozl % o,

de [me

Nﬁ7 xo (t) ~

If Tc, \(Cy n €AL) is compact when v € R is elliptic and if there evists B € ]0,1] such
that the continous time geodesic flow on (I\Y X, m.) has superpolynomial decay of B-Holder

d¢
correlations, then the error term is O (t_” eTt) for every n € N.

(2) Assume that A =1 and that m, is finite and mizing for the discrete time geodesic flow on
M¥X. Then, as n — 40,

e igud |l oz 5| M50
(€% — 1) [|mc|

N§7 zo (n) ~

If T \(Cy n€AT) is compact when v € R is elliptic and if there exists 3 € |0, 1] such that the
discrete time geodesic flow on (T\YX, m.) is exponentially mizing for the §-Hdélder reqularity,
then the error term is O (6(50_")”/2) for some k > 0.

One can also formulate a version of the above result for groups acting on bipartite simplicial
trees based on Theorem 12.12 and Remark (ii) following the proof of Theorem 12.17.

The error term in Assertion (1) holds for instance if ¢ = 0, X is uniform, and either I"\ X
is compact and the length spectrum Lr is 2-Diophantine or I' is a geometrically finite lattice
of X whose length spectrum Lr is 4-Diophantine, by the Remark following Theorem 12.20.
When I'\ X is compact and I" has no torsion (in particular, I' has then a very restricted group
structure, as it is then a free group), we thus recover a result of [[<e5].

The error term in Assertion (2) holds for instance if ¢ = 0, X is uniform with vertices of
degrees at least 3, I' is a geometrically finite lattice of X with length spectrum equal to Z, by
Remark (i) following the proof of Theorem 12.17.

Theorem 1.12 in the introduction follows from this theorem, using Proposition 4.14 (3)
and Proposition 4.15.

Proof. We only give a full proof of Assertion (1) of this theorem, Assertion (2) follows
similarly using Theorems 12.9 and 12.17 instead of Theorems 12.8 and 12.20.

The proof is similar to the proof of | , Theo. 8]. Let D~ = {zo} and D" = C,,. Let
2~ = (YD )yeryr,_ and gt = (7D+)7€p/FD+. By Equation (7.14), we have

13, |
[T

log-1 =

By Equation (13.1), by the definition® of the counting function Ap-, p+ and by the last claim

5See Section 12.4.
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of Theorem 12.8, we have, as t — +o0,

Z Mg €5 = Z Mg €5

aeR, 0<d(zo, o)<t aef, 0<d(z0, Ca)< t—>\2(“/o)
= Cymor—1
= Meyygy=1 €
~€T/ Zp (0), 0<d (w9, 7Crq) < 2200
. C —1
= |F.Z‘0‘ ] Z Meyyyy—1t € 7707
—A
Y€l ag\T/T ey, » 0<d(w0,7Cxy )< =20)
: t—A(0)
= |FI0‘Z§JVD7’D+( 9 )

log logel g exn

~ [Ty |ig
Taolis =5

Assertion (1) without the error term follows, and the error term statement follows similarly
from Theorem 12.20. ]

Theorem 13.1 (1) without an explicit form of the multiplicative constant in the asymptotic
is due to [[XeS] under the strong restriction that I' is a free group acting freely on X and I'\ X
is a finite graph. The following result is due to [Dou, Thm. 1] in the very special case when
X is a regular tree and the group I" has no torsion and finite quotient T"\X.

Corollary 13.2. Let X be a regular simplicial tree with vertices of degree ¢ + 1 = 3, let
x0 € VX, let T be a lattice of X such that T\X is nonbipartite, and let & be the conjugacy class
of a lozodromic element vo € I'. Then, as n — +00,

e~ A(70) |2=200)
2 “~ Zr() : 78] Vol(T\X) '

a€eR, d(zo, azo)<n

If we assume furthermore that T' has no torsion, then the result holds also when T\X is
bipartite. In this case, we have as n — 400,

)\(’}/0) l”*é(’YO)J
x| ¢

Card{a € R : d(xg, axg) < n} ~

Proof. Under these assumptions, taking ¢ = 0 in Theorem 13.1 so that the Gibbs measure is
the Bowen-Margulis measure, the discrete time geodesic flow on I'\¢X is finite and mixing by
Proposition 4.14 (3) and Proposition 4.15. We also have d. = Ingq. Using the normalisation
of the Patterson density (u&)zcyx to probability measures, Proposition 8.1 (3) and Equation
(8.11), the result follows, since when = is loxodromic,

Vol(v"\C,) A()
Vol(I'e \C5) = = .
FeND) =00, 77 ~ e, - o] (207 77
The claim for the bipartite (p + 1)-regular case follows from Remark 12.14. |

The value of C’ given below Theorem 1.12 in the Introduction follows from this corollary.

We leave to the reader an extension with nonzero potential F' of the results for manifolds
in | |, along the lines of the above proofs.
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13.2 Equidistribution and counting of closed orbits on metric
and simplicial graphs (of groups)

Classically, an important characterization of the Bowen-Margulis measure on compact nega-
tively curved Riemannian manifolds is that it coincides with the weak-star limit of properly

normalised sums of Lebesgue measures supported on periodic orbits, see | |. Under much
weaker assumptions than compactness, this result was extended to CAT(—1) spaces with zero
potential in | | and to Gibbs measures in the manifold case in | , Thm. 9.11]. As a

corollary of the simultaneous equidistribution results from Chapter 11, we prove in this Sec-
tion the equidistribution towards the Gibbs measure of weighted closed orbits in quotients of
metric and simplicial graphs of groups and as a corollary, in the standard manner, we obtain
asymptotic counting results for weighted (primitive) closed orbits.

Let (X, ) be a locally finite metric tree without terminal vertices, and X = [X], its
geometric realisation. Let I" be a nonelementary discrete subgroup of Aut(X,\). Let ¢ :
EX — R be a I'-invariant system of conductances, and ¢ : '\ EX — R its induced function.

Given a periodic orbit g of the geodesic flow on IN\¥ X, if (eq,...,ex) is the sequence of
edges followed by g, we denote by .Z;, the Lebesgue measure along g, by A(g) the length of ¢
and by ¢(g) its period for the system of conductances c:

k

k
Ag) = Z Ae;) and c(g) = 2 Ae;) c(e;) .
i=1

i=1

Let Per(t) be the set of periodic orbits of the geodesic flow on I'\¥X and let Per/(¢) be the
subset of prime periodic orbits.

Theorem 13.3. Assume that the critical exponent d. of ¢ is finite and positive and that the
Gibbs measure m. of ¢ is finite and mixing for the continuous time geodesic flow. Ast — +o0,
the measures

gePer’(t)
and
Sete et Z 2 <
, t(g)
gePer'(t)
converge to m—CH for the weak-star convergence of measures. If I' is geometrically finite, the

lme.
convergence holds for the narrow convergence.

We conjecture that if I is geometrically finite and if its length spectrum is 4-Diophantine®,
then for all n € N and § € ]0, 1], there exists k € N and an error term of the form O(t" |||, g)

for these equidistribution claims evaluated on any 1 € ¢’ (M¥X). But since we will not
need this result and since the proof is likely to be very long, we do not address the problem
here.

Proof. Let ﬁ’c and F,. be the potentials on 7' X and I'\T' X respectively associated with’ ¢,
and note that the period® of a periodic orbit g for the geodesic flow on I\ X satisfies

c(g) = Zy(Ff) = Perg.(4) |

6See definition in Section 9.3.
"See Section 3.5.
8See Section 3.2.
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where F! is the composition of the canonical map NgX — I\T'X with F,. : T\T'X — R,
and v € I is the loxodromic element of I' whose conjugacy class corresponds to g.

Let 7t be the subset of I' that consists of loxodromic elements whose translation length
is at most ¢, and let jfr/ . be the subset of 7t ; that consists of the primitive elements. The
first claim is equivalent to the following assertion: we have

boetl 3 ePernn) g % Hzill (13.2)
'Vejfrl,t ‘

as t — +o0. We proceed with the proof of the convergence claimed in Equation (13.2) as in
| , Thm. 9.11]. We first prove that

me

— ES
vl =d.e dct Z ePerre(7) Ly —
YEHT +

(13.3)

e

We then refer to Step 2 of the proof of | , Thm. 9.11] for the fact that the contribution
of the periods that are not primitive is negligible. Although the proof in loc. cit. is written
for manifolds, the arguments are directly applicable for any CAT(—1) space X and potential
F satisfying the HC-property.” In particular, the use of Proposition 5.13 (i) and (ii) of loc.
cit. in the proof of Step 2 in loc. cit. is replaced now by the use of Theorem 4.5 (1) and (4)
respectively.

Let us fix x € X. Let

V(z) ={(&mn) e (X vieX)®: & #n, welénl},

which is an open subset of X U 0, X. Note that the family (V' (y))yex covers the set of pairs
of distinct points of 85, X. For every t > 0, let 14 be the measure on (X U 05, X)? defined by

—6ct 7,
v = Oc |me| e % 2 el A1, ® A
~vel' : d(z,yz)<t

The measures v, weak-star converge to p; ® pi as t — 400 by Corollary 11.2 (taking in its
statement y = x).
Let v+ be the attracting and repelling fixed points of any loxodromic element v € I'. Let

v = delmef et D) ePreA, @A,
YEHAT ¢

1

Since X is an R-tree, every element « € I' such that x € |y~ "z, yz[ is loxodromic, and we have

YT

d(z,yx) = \(v) and f F. = Perg.(v) .

T

If furthermore d(z,~x) is big, then !

X UdpX.
Hence, for every continuous map v : (X U 0 X)? — [0, +00[ with support contained in
V(x), and for every € > 0, if ¢ is big enough, we have

x and vz are respectively close to v— and 74 in

e w(Y) < v'Y) < en(y) .

9See Definition 3.4.
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Using Hopf’s parametrisation with basepoint x, we have v}’ ® ds = |m.| v/, and the support

of any continuous function with compact support on 4¥X may be covered by finitely many
open sets V(z) x R where z € X. The proof of the claim (13.3) now follows as in Step 1 of
the proof of Theorem | , Thm. 9.11].

The second claim of Theorem 13.3 follows from the first one in the same way as in | )
Thm. 9.11] to which we refer for the proof. O

In a similar way, replacing in the above proof Corollary 11.2 of Theorem 11.1 by the similar
corollary of Theorem 11.8 with 27 = (y2)yer and 27 = (yy)qer for any z,y € VX, we get
the following analogous result for simplicial trees.

Theorem 13.4. Let X be a locally finite simplicial tree without terminal vertices, let I be
a nonelementary discrete subgroup of Aut(X) and let ¢ : EX — R be a I'-invariant system
of conductances. Assume that the critical exponent d. of ¢ is finite and positive and that the
Gibbs measure m. is finite and mixing for the discrete time geodesic flow. As n — +00, the
measures

=1 5 e(g)
o € >, 0
gePer'(n)
and 5
e 1
Colpetn Y clo) fg)
gePer’ (n) g

converge to ‘}1— for the weak-star convergence of measures. If I' is geometrically finite, the

me|
convergence holds for narrow convergence. O

66C

In the special case when I'\X is a compact graph and F = 0, the following immediate

corollary of Theorem 13.3 is proved in [Gui], and it follows from the results of | ].19 There
are also some works on non-backtracking random walks with related results. For example,
for regular finite graphs, | | and [Fril] (see [Fri2, Lem. 2.3]) give an expression of the

irreducible trace which is the number of closed walks of a given length.

Corollary 13.5. Let (X, \) be a locally finite metric tree without terminal vertices. Let I" be
a geometrically finite discrete subgroup of Aut(X, \). Let ¢ : EX — R be a I'-invariant system
of conductances, with finite and positive critical exponent d..

(1) If the Gibbs measure m. is finite and mixing for the continuous time geodesic flow, then

gePer’(t)

ast — +o0.

(2) If X = 1 and if the Gibbs measure m. is finite and mizing for the discrete time geodesic
flow, then

Oc dem
oo O E
ede—1 n
gePer’ (n)
as n — +0o0. ]
19See the introduction of [Sha] for comments.
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Arithmetic applications
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Chapter 14

Fields with discrete valuations

Let K be a non-Archimedean local field. Basic examples of such fields are the field of formal
Laurent series over a finite field, and the field of p-adic numbers (see Examples 14.1 and
14.2). In Part III of this book, we apply the geometric equidistribution and counting results
for simplicial trees given in Part II, in order to prove arithmetic equidistribution and counting
results in such fields K. The link between the geometry and the algebra is provided by the
Bruhat-Tits tree of (PGLa, K ), see Chapter 15.1. We will only use the system of conductances
equal to 0 in this Part III.

In the present Chapter, before embarking on our arithmetic applications, we recall basic
facts on local fields for the convenience of the geometer reader. For more details, we refer for
instance to [Ser2, |. We refer to | | for an announcement of the results of Part III,
with a presentation different from the one in the Introduction.

We will only give results for the algebraic group G = PGLg over K and special discrete
subgroups I' of PGLy(K ) even though the same methods give equidistribution and counting
results when G is any semisimple connected linear algebraic group over K of K-rank 1 and T
any lattice in G = G(K).

14.1 Local fields and valuations

Let F be a field and let F'* = (F — {0}, x) be its multiplicative group. A surjective group
morphism v : F'* — Z to the additive group Z, that satisfies

v(a + b) = min{v(a),v(b)}

for all a,b e F*, is a (normalised discrete) valuation v on F'. We make the usual convention
and extend the definition of v to F' by setting v(0) = +00. Note that v(a+b) = min{v(a),v(b)}
if v(a) # v(b). When F' is an extension of a finite field k, the valuation v vanishes on k*.
The subring
Oy,={xeF : v(x) =0}

is the valuation ring (or local ring) of F' or of v.
The maximal ideal
={zreF : v(zx) >0}

of 0, is principal and it is generated as an ideal of &), by any element 7, € F' with
v(my) =1
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which is called a uniformiser of F'.
The residual field of the valuation v is

ky, = O,/m, .

When £, is finite, the valuation v defines a (normalised, non-Archimedean) absolute value |- |,
on F' by

2|y = |kv’_v(x) ’
with the convention that |k,|~® = 0. This absolute value induces an ultrametric distance on
F by

($ay) — |':U - y|v .
Let F, be the completion of F' with respect to this distance. The valuation v of F' uniquely
extends to a (normalised discrete) valuation on F,,, again denoted by v.

Example 14.1. Let K = [F,(Y) be the field of rational functions in one variable Y with
coefficients in a finite field I, of order a positive power ¢ of a positive prime p in Z, let F,[Y]
be the ring of polynomials in one variable Y with coefficients in F,, and let v, : K* — Z be
the wvaluation at infinity of K, defined on every P/Q € K with P € F,[Y] and Q € F,[Y] — {0}
by

Vo (P/Q) = deg Q — deg P .

The absolute value associated with vy, is
|P/Qlo = g8 P8

The completion of K for vy, is the field K,, = F,((Y 1)) of formal Laurent series in one
variable Y ~! with coefficients in F,. The elements z in F,((Y!)) are of the form

T = Z z Y7
1€Z
where x; = 0 € F, for i € Z small enough. The valuation at infinity of F,((Y 1)) extending
the valuation at infinity of Fy(Y') is
V() =sup{ieZ : Yj<i, x;=0},
that is,
(D .
UOO(Z xiyfl) =1

i=io

if z;, # 0. The valuation ring of vy, is the ring 0, = F,[[Y ]] of formal power series in

one variable Y ! with coefficients in F,. The element 7, = Y ! is a uniformizer of vy, the
residual field &, /m,., O, of vy is ky,, = Fy.

Example 14.2. Given a positive prime p € Z, the field of p-adic numbers Q, is the completion
of Q with respect to the absolute value | - |, of the p-adic valuation v, defined by setting

a
Up(Png) =n

when n € Z, a,b € Z — {0} are not divisible by p. Then the valuation ring @, = Z, of Q, is
the closure of Z for the absolute value | - |,, 7y, = p is a uniformiser, and the residual field is

kv, = Zy/pZy = Fp, a finite field of order p.
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A field endowed with a valuation is a non-Archimedean local field if it is complete with
respect to its absolute value and if its residual field is finite.! Its valuation ring is then a
compact open additive subgroup. Any non-Archimedean local field is isomorphic to a finite
extension of the p-adic field @, for some prime p, or to an extension of F, with transcendence
degree 1 for some prime p.

The basic case of extensions of [F,, with transcendence degree 1 is described in Example
14.1 above, and the general case of the discussed in Section 14.2 below. The geometer reader
may skip Section 14.2 and use only Example 14.1 in the remainder of Part III (using g = 0
when the constant g occurs).

14.2 Global function fields

In this Section, we fix a finite field ¥, with ¢ elements, where g is a positive power of a positive
prime p € Z, and we recall the definitions and basic properties of a function field K over Fy,
its genus g, its valuations v, its completion K, for the associated absolute value | - |, and the
associated affine function ring R,,. See for instance [Gos, | for the content of this Section.

Let K be a (global) function field over F,, which can be defined in two equivalent ways as

(1) the field of rational functions on a geometrically irreducible smooth projective curve C
over [y, or

(2) an extension of I, of transcendence degree 1, in which F, is algebraically closed.

There is a bijection between the set of closed points of C and the set of (normalised discrete)
valuations of its function field K, the valuation of a given element f € K being the order of
the zero or the opposite of the order of the pole of f at the given closed point. We fix such
an element v from now on. We denote by ¢ the genus of the curve C.

In the basic Example 14.1, C is the projective line P! over F, which is a curve of genus
g = 0, and the closed point associated with the valuation at infinity is the point at infinity
[1:0].

We denote by K, the completion of K for v, and by
O, ={xeK, : v(x) =0}

the valuation ring of (the unique extension to K,) of v. We choose a uniformizer 7, of v. We
denote by k, = 0, /7,0, the residual field of v, which is a finite field of order

Qv = |kv| .

The field k, is from now on identified with a fixed lift in &, (see for instance [Col, Théo. 1.3]),
and is an extension of the field of constants ;. The degree of this extension is denoted by
deg v, so that

Qv = 8" .

We denote by | -
have

» the (normalised) absolute value associated with v: for every = € K, we

|x|v = (qv)*”(m) _ qfv(x) degv

!There are also two Archimedean local fields C and R, see for example [Cas].
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Every element z € K, is” a (converging) Laurent series x = Y., x; (m,)® in the variable ,
over k,, where x; € k, is zero for ¢ € Z small enough. We then have

‘x’v _ (qv)—sup{jEZ:V7L<j7 x;=0} , (141)

and O, consists of the (converging) power series z = Y. ;i (my)" (where z; € k;) in the
variable m, over k,.

We denote by R, the affine algebra of the affine curve C — {v}, consisting of the elements
of K whose only poles are at the closed point v of C. Its field of fractions is equal to K, hence
we will often write elements of K as x/y with z,y € R, and y # 0. In the basic Example 14.1,
we have R, = F,[Y]. Note that

Ryn O, =Fy, (14.2)
since the only rational functions on C whose only poles are at v and whose valuation at v is
nonnegative are the constant ones. We have (see for instance | , I.2 Notation|, [Gos, page
63])

(Ry)™ = (Fg)™ . (14.3)

The following result is immediate when C = P!, since then R, + 0, = K,,.

Lemma 14.3. The dimension of the quotient vector space K,/(R, + O) over Fy is equal to
the genus g of C.

Proof. (J.-B. Bost) We refer for instance to | | for background on sheaf cohomology. We
denote in the same way the valuation v and the corresponding closed point on C.

Let & = K n 0, be the discrete valuation ring of v restricted to K. Since K is dense in
K, and O, is open and contains 0, we have K, = K + 0,. Therefore the canonical map

K/(R, +0) — Ky/(Ry + Oy)

is a linear isomorphism over ;. Let us hence prove that dimp, K/(R, + 0) = g.

In what follows, ¥ ranges over the affine Zariski-open neighbourhoods of v in C, ordered
by inclusion. Let Oc¢ be the structural sheaf of C. Note that by the definition of R,, since the
zeros of elements of K™ are isolated and by the relation between valuations of K and closed
points of C,

R, = H'(C - {v},0¢c), K =lim H'(¥ —{v},0c) and € =lim H°(¥,0c).
v Va

Since ¥ and C — {v} are affine curves, we have H'(C — {v}, 0c) = H (¥, 0c) = 0. By the
Mayer-Vietoris exact sequence since {C — {v}, 7'} covers C, we hence have an exact sequence

H°(C,0c) — H(C — {v},0c) x H(V,0c) — H*(V — {v},6c) — H'(C, 6¢) .
Therefore

K/(R, + 0) = lig HO(¥ — (v}, 60)/(HY(C — (v}, 6c) + H(¥, 6))
v
~ HY(C, 0¢) .

2See for instance [Col, Coro. 1.6]
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Since dimp, H Y(C, Oc) = g by one definition of the genus of C, the result follows. O

Recall that R, is a Dedekind ring.> In particular, every nonzero ideal (respectively frac-
tional ideal) I of R, may be written uniquely as I = l_[p p? () where p ranges over the prime
ideals in R, and vp(I) € N (respectively v, (/) € Z), with only finitely many of them nonzero.
By convention I = R, if v,(I) = 0 for all p. For every z,y € R, (respectively z,y € K), we
denote by

{(x,y)=xRy+y Ry

the ideal (respectively fractional ideal) of R, generated by x,y. If I, J are nonzero fractional
ideals of R, we have

InJ= Hpmax{vp(l),vp(J)} and I+ J = Hpmin{vp(l)»vp(J)} ]
p p
We define the (absolute) norm of a nonzero ideal I =[], p () of R, by

N(I)=[Ry:I]=|Ry/I| = quv )degp

where degp is the degree of the field R,/p over F,, so that N(R,) = 1. By convention
N(0) = 0. This norm is multiplicative:

N({IJ)=N{I)N(J),
and the norm of a nonzero fractional ideal I =[], p?» (D of R, is defined by the same formula.

Note that if (a) is the principal ideal in R, generated by a, we define N(a) = N((a)). We
have (see for instance |Gos, page 63])

N(a) = |al, . (14.4)
Dedekind’s zeta function of K is (see for instance [ , §7.8] or [Ros, §5])
CI& Z N
if Re s > 1, where the summation is over the nonzero ideals I of R,. By for instance |Ros, §5],
it has an analytic continuation on C — {0, 1} with simple poles at s = 0,s = 1. It is actually
a rational function of ¢7°. In particular, if K = F,(Y’), then (see [Ros, Theo. 5.9])
1
—1)=———+—77——. 14.5

We denote by Haary, the Haar measure of the (abelian) locally compact topological
group (K,,+), normalised so that Haarg,(€,) = 1. The Haar measure scales as follows
under multiplication: for all A\, z € K,,, we have

dHaarg, (Az) = |\|, dHaarg, (x) . (14.6)

Note that any fractional ideal I of R, is a discrete subgroup of (K,, +), and we will again
denote by Haarg, the Haar measure on the compact group K,/I which is induced by the
above normalised Haar measure of K.

38ee for instance [Ser3, 11.2 Notation]. We refer for instance to [Nar, §1.1] for background on Dedekind
rings.
“Other normalisations are useful when considering Fourier transforms, see for instance Tate’s thesis [Tat].
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Lemma 14.4. For every fractional ideal I of R,, we have
Haarg, (K, /I) = ¢9~ ' N(I) .

Proof. By the scaling properties of the Haar measure, we may assume that I is an ideal
in R,. By Lemma 14.3, we have Card K,/(R, + 0,) = ¢Y. By Equation (14.2) and by the
normalisation of the Haar measure, we have

Haarg, (R, + 0,)/R, = Haarg, 0,/(R, n 0,) = Haarg, 0,/F, = ! :
q

Hence
Haarg, (K,/Ry) = Card(Kv/(Rv + @,)) Haarg, (R, + O,)/R, = ¢t

Since Haarg, (K,/I) = N(I) Haarg, (K,/R,), the result follows. O
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Chapter 15

Bruhat-Tits trees and modular groups

In this Chapter, we give the background information and preliminary results on the main
link between the geometry and the algebra used for our arithmetic applications: the (discrete
time) geodesic flow on quotients of Bruhat-Tits trees by arithmetic lattices.

We denote the image in PGLsy of an element <Z Z) € GLq by [i 2} € PGLs.

15.1 Bruhat-Tits trees

Let K, be a non-Archimedean local field, with valuation v, valuation ring &,, choice of
uniformiser 7,, and residual field k, of order ¢, (see Section 14.1 for definitions).

In this Section, we recall the construction and basic properties of the Bruhat-Tits tree X,
of (PGLy, K,), see for instance [1it]. We use its description given in [Ser3|, to which we refer
for proofs and further information.

An O,-lattice A in the K,-vector space K, X K, is a rank 2 free &,-submodule of K, x K,
generating K, x K, as a vector space. The Bruhat-Tits tree X, of (PGLq, K,,) is the graph
whose set of vertices VX, is the set of homothety classes (under (K,)*) [A] of O,-lattices A
in K, x K,,, and whose non-oriented edges are the pairs {x, 2’} of vertices such that there exist
representatives A of x and A’ of 2’ for which A ¢ A’ and A’/A is isomorphic to 0, /m,O,. If
K is any field endowed with a valuation v whose completion is K, then the similarly defined
Bruhat-Tits tree of (PGLg, K) coincides with X,, see | , p- 71].

The graph X, is a regular tree of degree |Py(k,)| = ¢, + 1. In particular, the Bruhat-Tits
tree of (PGLsg, Q) is regular of degree p + 1, and if K, = Fy((Y 1)) and v = vy, then the
Bruhat-Tits tree X, of (PGLeg, K,) is regular of degree ¢ + 1. More generally, if K, is the
completion of a function field over F, endowed with a valuation v as in Section 14.2, then the
Bruhat-Tits tree of (PGLq, K,) is regular of degree ¢, + 1.

The standard base point =, of X is the homothety class [0, x €),] of the O,-lattice O, x O,
generated by the canonical basis of K, x K,. In particular, we have

(0, [Oy x 20,]) = |v(2)] (15.1)
for every x € (K,)*. The link
k(o) = {y € VXy : d(y, =) = 1}
of %, in X,, identifies with the projective line Py (k,).
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The left linear action of GLy(K,) on K, x K, induces a faithful, vertex-transitive left action
by automorphisms of PGLg(K,) on X,. The stabiliser in PGLy(K,) of #, is PGLy(0,). We
will hence identify PGL2(K,)/PGL2(0,) with VX, by the map g PGL2(0,) — g *,.

We identify the projective line Py (K,) with K, u {oo} using the map K,(x,y) — %, SO
that

w=/[1:0].

The projective action of GLa(K,) or PGLy(K,) on P!(K,) is the action by homographies'
. b - a b a b
on K, U {0}, given by (g,2) — g-z = 255 if g = (c d> € GLa(Ky), or g = [c d} €

PGLy(K,). As usual we define o0 +— ¢ and —¢  o.

There exists a unique homeomorphism between the boundary at infinity 0»X, of X, and
P (K,) such that the (continuous) extension to 0, X, of the isometric action of PGLy(K,) on
X, corresponds to the projective action of PGLy(K,) on P1(K,). From now on, we identify
00X, and Pi(K,) by this homeomorphism. Under this identification, &, consists of the
positive endpoints £, of the geodesic lines £ of X, with negative endpoint /_ = oo that pass
through the vertex #, (see the picture below).

e e X,

Let 7%, be the horoball centred at oo € 0 X, whose associated horosphere passes through
#,. There is a unique labeling of the edges of X, by elements of Py (k,) = k, U {00} such that
e the label of any edge of X, pointing towards o0 € 0, X, is o0,
e for any z = >, _, x; (my)" € K,, the sequence (z;)icz is the sequence of the labels of the
(directed) edges that make up the geodesic line |oo, x| oriented from oo towards x
e 1 is the label of the edge of ]oo, [ exiting the horoball .7%.
We refer to | , Sect. 5] when K, = F,((Y 1)) and v = vy.

For all n,n' € K, = 05,X, — {00}, we have

n—1'lo = doe, (0,7 )™ % (15.2)

by the definitions of the absolute value | - |, and of Hamenstadt’s distance, see Equation
(14.1) and the above geometric interpretation, and Equation (2.8). Note that in | ],
Hamenstédt’s distance in a regular tree is defined in a different way: In that reference, the
distance |n — 1’|, equals Hamenstadt’s distance between 7 and 7.

Lor linear fractional transformations
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In particular, the Hélder norms [|¢[|g,._.|, and [¢[g 4, of a function ¢ : K, — R,
respectively for the distance (z,y) — |z — y|, and d g, on K,, are related by the following
formula:

1
V,BG]O, E]a W

Bl = 1V81mau, dse, - (15.3)

The group PGLy(K,) acts simply transitively on the set of ordered triples of distinct
points in 05X, = Pi(K,). In particular, it acts transitively on the space ¥X, of discrete
geodesic lines in X,,. The stabiliser under this action of the geodesic line (from oo = [1 : 0] to
0=1[0:1])

U imos [0y x (1) O]

is the maximal compact-open subgroup

A<m>:{[g 2} s ade(0,)}

of the diagonal group
a 0
a) = {[5 4]+ wae )}

We will hence identify PGLy(K,)/A(6,) with X, by the mapping Z : gA(&,) — g £*. Define

10
av_OWU_17

which belongs to A(K,) and centralises A(&,). The homeomorphism Z is equivariant for the
actions on the left of PGLa(K,) on PGL2(K,)/A(0,) and 4X,. It is also equivariant for the
actions on PGLy(K,)/A(0,) under translations on the right by (a,)? and on ¥X, under the
discrete geodesic flow (g")nez: for all n € Z and x € PGLo(K,)/A(O)), we have

E(xa)=g"Z(2). (15.4)
Furthermore, the stabiliser in PGLy (k) of the ordered pair of endpoints (¢* = oo, ¢% = 0)

of £* in 0, X, = P1(K,) is A(K,). Therefore any element v € PGLy(K,) which is loxodromic
on X, is diagonalisable over K,. By | , page 108|, the translation length on X, of 7y =

aO.S
0 dl’

Note that if 45 =

A(0) = |v(a) = v(d)] - (15.5)

g 2) € GLo(K,) is a representative of o such that detqp € (0,)*,
then as 0 = v(detyy) = v(ad) = v(a) + v(d) and since v(a) # v(d) if A(y) # 0, we have
v(tryp) = v(a + d) = max{v(a),v(d)} and v(a) — v(d) = 2v(a) = —2v(d). Thus,

A(v0) = 2lv(tro)] - (15.6)

By conjugation, this formula is valid if vy € PGLg(K,) is loxodromic on X, and represented
by 4o € GL2(K,) such that det 4y € (€,)*.
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Let 27 be a horoball in X, whose boundary is contained in VX, and whose point at
infinity £ is different from oo. The height of J€ is

hto, () = max{fo(x,%y) : vE€ K} L,

which is the signed distance between .7, and #.? It is attained at the intersection point
with 0.7 of the geodesic line from oo to &, which is then called the highest point of 5. Note
that the height of 7 is invariant under the action of the stabiliser of %, in PGLy(K,) on
the set of such horoballs 7.

The following lemma is a generalisation of | , Prop. 6.1] that covers the particular case
of K =F,(Y) and v = ve.

Lemma 15.1. Assume that K, is the completion of a function field K over F, endowed with

Z] e PGLy(K)
with a,b,c,d € K such that ad — bc € (0,)* and ¢ # 0, the image of H%, by v is the horoball

centred at % € K ¢ K, = 0,X, — {00} with height

a valuation v, with associated affine function ring R,. For every v = [CCL

htoo (7-7%) = —2 v(c) .

Proof. It is immediate that yoo = ¢ under the projective action. Up to multiplying v on

a

the left by [é _C] € PGL2(K), which does not change ¢ nor the height of v.#,, we may

1
assume that a = 0 and that b has the form ¢ 'u with v = bc — ad € (0,)*. Multiplying v
_d
on the right by [(1) 10] € PGLy(K) preserves 7.5, and does not change a = 0, b = ¢ lu or

c. Hence we may assume that d = 0. Since v then exchanges the points o0 and 0 in 05X,
the highest point of v, is y#,. Assuming first that 0,y#*,,*,,00 are in this order on the
geodesic line from 0 to o0, we have by Equation (15.1)

hteo (7.560) = d(%4, V%) = d([Oy x O], [ uO, x cO))
=d([0, x O,), [0, x *0,]) = —v(c*) = 2 v(c) .

If 0, ~#*,, *,,00 are in the opposite order, then the same computation holds, up to replacing
the distance d by its opposite —d. ]

15.2 Modular graphs of groups

Let K be a function field over Fy, let v be a (normalised discrete) valuation of K, let K, be
the completion of K associated with v, and let R, be the affine function ring associated with
v (see Section 14.2 for definitions).

The group T', = PGLs(R,) is a lattice in the locally compact group PGL2(K,), and a
lattice® of the Bruhat-Tits tree X, of (PGLg, K,), called the modular group at v of K. The
quotient graph I',\X, is called the modular graph at v of K, and the quotient graph of groups®
I \X, is called the modular graph of groups at v of K. We refer to | | for background

2See the definition of signed distance just above Lemma 11.12.
3See Section 2.7 for a definition.
4See Section 2.7 for a definition.
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information on these objects, and for instance to | | for a geometric treatment when
K =Fy(Y) and v = vg.

By for instance [Ser3], the set of cusps I'y\P1 (K) is finite, and I',\X,, is the disjoint union of
a finite connected subgraph containing I', %, and of maximal open geodesic rays h,( |0, +o0[),
for z = T'y,Z € T,\P1(K), where h, (called a cuspidal ray) is the image by the canonical
projection X, — I',\X, of a geodesic ray whose point at infinity in P;(K) < 0,X, is equal
to Z. Conversely, any geodesic ray whose point at infinity lies in P1(K) < 05X, contains a
subray that maps injectively by the canonical projection X, — I',\X,.

The group I'y, = PGLa(R,) is a geometrically finite lattice by for instance | .5 The
set of bounded parabolic fixed points of T';, is exactly P1(K) < 05Xy, and the set of conical
limit points of ', is Py (K,) — P (K).

Let us denote by m = (I',\X,) u &, Freudenthal’s compactification of I',\X,, by its

finite set of ends &, see [Fre]. This set of ends is indeed finite, in bijection with I')\P;(K)
by the map which associates to z € T',\P;(K) the end towards which the cuspidal ray h,
converges. See for instance | | for a geometric interpretation of &, in terms of the curve
C.

Let .7, be the set of classes of fractional ideals of R,. The map which associates to an
element [z : y] € P1(K) the class of the fractional ideal xR, + yR, generated by x,y induces
a bijection from the set of cusps I'\IP1 (K) to .%,.

The volume® of the modular graph of groups can be computed using Equation (14.3) and
Exercice 2 b) in [Ser3, I11.2.3]:

Vol(PGLay(Ry)\X,) = (¢ — 1) Vol(GLa(R)\Xo) = 2 (i (—1) . (15.7)

If K = Fy(Y) is the rational function field over F, and if we consider the valuation at
infinity v = vy of K, then the Nagao lattice’ T, = PGL2(F,[Y]) acts transitively on P!(K).
Its quotient graph of groups I',\ X, is the following modular ray (with associated edge-indexed
graph)

qg+1 g1 q 1 q 1 qg 1
where I'_1 = PGLy(FF,), I, = T'o n I'_; and, for every n € N,

a b 5
r, = { [0 d] € PGLy(F,[Y]) : a,dqu,bqu[Y],degbgnH}'

Note that even though PGLy (K, ) has inversions on X,, its subgroup I', = PGL2(R,) acts
without inversion on X, (see for instance [Ser3, I1.1.3]). In particular, the quotient graph
I',\X, is then well defined.

®See for instance [ | for a profusion of geometrically infinite lattices in simplicial trees.
5See Section 2.7 for a definition.
"This lattice was studied by Nagao in [Nag], see also [Moz, |. It is called the modular group in | |.
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15.3 Computations of measures for Bruhat-Tits trees

In this Section, we compute explicit expressions for the skinning measures of horoballs and
geodesic lines, and for the Bowen-Margulis measures, when considering lattices of Bruhat-Tits

trees. See | , Section 7] and | , Section 4] for analogous computations in the real
and complex hyperbolic spaces respectively, and | | for related computations in the tree
case.

Let (K,,v) be as in the beginning of Section 15.1. Let I" be a lattice of the Bruhat-Tits
tree X, of (PGLy, K,). Since X, is regular of degree ¢, + 1, the critical exponent of I" is

or =1Ingy . (15.8)

We normalise the Patterson density (us)zevx, of I' as follows. Let %, be the horoball in
X, centred at o0 whose associated horosphere passes through *,. Let ¢t — x; be the geodesic
ray in X, such that x¢p = %, and which converges to co.

e)

Ao

R R Kru - aOOX’U - {CD}

Hamenstiddt’s measure® associated with %,

lim ¢,
t—+00 Qo Ha

= lim et =
Myfoo t—>+CD /J':pt

is a Radon measure on 0,X, — {0} = K,, invariant under all isometries of X, preserving
Iy, since I is a lattice. Hence it is invariant under the translations by the elements of K.
By the uniqueness property of Haar measures, p 4, is a constant multiple of the chosen Haar
measure’ of K,, and we normalise the Patterson density (tz)zevx, so that

Kty = HaarKv . (15.9)
We summarise the various measure computations in the following result.

Proposition 15.2. Let " be a lattice of the Bruhat-Tits tree X,, of (PGLa, K,,), with Patterson
density normalised as above.

8See Equation (7.5).
9Recall that we normalise the Haar measure of (K., +) such that Haarx, (6,) = 1.
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(1) The outer/inner skinning measures of the singleton {*,} are given by

~t
dJ{—*U

1(p) = dpus, (ps) = max{L, |ps|,}~* dHaarg, (p+)
on the set of p € 0% {x,} such that py # 0.

(2) The total mass of the Patterson density is
Qv+ 1

lpall =

v

for all z e VX,.

(3) The skinning measure of the horoball 7%, is the projection of the Haar measure of K,:
For all p 8_15%”00, we have

d‘}f?rfw (p) = dusw, (p+) = dHaarg, (p+) -

(4) If o is a bounded parabolic fixed point of T', with Ty its stabiliser in T, if 9 =
(Y% )er /1y, » we have

loZ| = Haarg, (Too\K,) = Vol(Top\0.75) -

(5) Let L be a geodesic line in X, with endpoints Ly € K,, = 05,X, — {o0}. Then on the set
of pe 8iL such that py € Ky = 05Xy — {0} and py # Ly, the outer skinning measure
of L is

Ly—L_|
457 (p) =

r [P+ = L—lv|p+ — Lo

(6) Let L be a geodesic line in X,, let I'r, be the stabiliser in I of L, and assume that I'f\L
has finite length. Then with 9 = (YL)yerr,, we have

dHaarg, (p+) -

QU_l

v

loZl = Vol(PL\L) .

Proof. (1) For every £ € K, by the description of the geodesic lines in the Bruhat-Tits tree
X, starting from oo given in Section 15.1, we have & € @, if and only if Py, (€) = #,."°

A

é_ """""" Kv = aOOXU - {OO}

ORecall that Py, : 0,X, — {00} — 0.%% is the closest point map to the horoball /%, see Section 2.5.
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For every ¢ € K, — 0, by Equations (15.2) and (2.8), we have

L d(xu, Pyey (€))
qv .

[y = de, (0,6 = (15.10)

On the set of geodesic rays p € 0% {*,} such that pi # oo, by Equation (7.2), by the last
claim of Proposition 7.2, by Equation (15.8),!! since P, (p+) belongs to the geodesic ray
[#4, p+[ (even when py € 0),), and by Equation (15.9), we have

d5, 1(p) = dpus, (ps) = Tr= PP dp (p)

= 651“ Bog (P, (p£) #v) d,“/ifoo (pi)

— qv_d(Pifoc (P+), *v) dHaarKU (Pi) )

Therefore, if p € 0} {x,} is such that

pr €Oy ={{e Ky @ [£lo <1} ={{e Ky : Py (§) = #0},
then d&iv}(p) = dHaarg,(p+) . If p1+ € K, — 0, Equation (15.10) gives the claim.

(2) This Assertion follows from Assertion (1) by a geometric series argument, but we give a
direct proof.

As T is a lattice, the family (u1;)zevx, is actually equivariant under Aut(X,),'? which acts
transitively on the vertices of X, and the stabiliser in Aut(X,) of the standard base point =,
acts transitively on the edges starting from #,,.

Since X, is (g, + 1)-regular, since the set of points at infinity of the geodesic rays starting
from #,, whose initial edge has endpoint 0 € lk(%,) = Py(k,), is equal to m,0,, since all
geodesic lines from o0 € 04X, to points of 7,0, < 00X, pass through =*,, and by the
normalisation of the Patterson density and of the Haar measure, we have

e, | = (@ + 1) prae, (7, O0) = (g + 1) N%’m(ﬂvﬁv) = (qv + 1) Haarg, (7, 0y)

+1 +1
v Haarg, (0,) = v .

Qv Qv

(3) This follows from Equation (7.4), and from the normalisation p,, = Haarg, of the
Patterson density.

(4) This follows from Assertion (3) and from Equation (8.10) (where the normalisation of the
Patterson density was different).

Since the potential is zero, the Gibbs cocycle is the critical exponent times the Busemann cocycle.
23ee Proposition 4.14 (2).
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p(+o0)

(5) This follows from Lemma 8.6 applied with J# = J#, from Equations (15.9), (15.2) and
(15.8).

(6) This follows from Assertion (2) and Equation (8.11) (where the normalisation of the
Patterson density was different), since X, is (g, + 1)-regular:
—1 Qv

— Vol(TL\L) = q:l Vol(T\L) . O

+ Qv
oZ| = |1,
Io] = e 2

We now turn to measure computations for arithmetic lattices I in X,, in the function field
case. We still assume that the Patterson density of I' is normalised so that p., (0,) = 1, and
we denote by mpy the Bowen-Margulis measure of I' associated with this choice of Patterson
density.

Proposition 15.3. Let K be a function field over Fy and let v be a valuation of K. Let I’
be a finite index subgroup of T, = PGLy(R,), with Patterson density normalised such that

Wy, = Haarg, .

(1) We have

(g +1) [Ty : T] Vol(T,\X,) = 2 (a0 +1) Ge(=1) [T : 7]

Qv Qv

Impm| =

and if K = Fg(Y) and v = vy is the valuation at infinity of C = Py, then

2 [PGLy(F,[Y]) : T
q(q—1)> '

Impm| =

(2) Let T'ey be the stabiliser in I' of 0 € 0oXy, and let D = (Y Hp)erjr,,- We have

qg_l [(Fv)oo : 1100]
q—1 '
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Proof. (1) Recall that I', = PGL2(R,) acts without inversion on X,. By Equation (8.3)
(which uses a different normalisation of the Patterson density of '), and by Proposition 15.2
(2), we have

Qv (@t 1) [Ty :T]
p— Vol(T\X,) = .

[mesl =l | Vol(T',\X,) .
The first claim of Assertion (1) hence follows from Equation (15.7).
If K =TFy(Y) and v = vy, then the second claim of Assertion (1) follows either from the

first claim where the value of (i (—1) is given by Equation (14.5), or from the fact that ¢, = ¢
and that the covolume Vol(PGLy(F,[Y])\X,,, ) of the Nagao lattice PGLy(F,[Y]) is

2
(q—1)(¢*=1)"

as an easy geometric series computation shows using the description of the modular ray in
Section 15.2 (see also | , Sect. 10.2]).

Vol(PGL (F,[Y)\Xo,, ) = (15.11)

(2) Let us prove that
g—1
Haarg, ((Ty)oo\K) = -

. 15.12
p (1512)

The result then follows by Proposition 15.2 (4) since

lo|| = Haarg, (Po\Ky) = [(T)oo : Too] Haarg, ((T)oo\Koy) -

The stabiliser of co = [1 : 0] in T, acts on K, exactly by the set of transformations
z+— az+bwith a € (R,)* and b€ R,. Since (R,)* = (F;)* (see Equation (14.3)) acts freely
by left translations on (K, — R,)/R,, and by Lemma 14.4, we have

1 9-1
HaarKv((Fv)oo\Kv) = quaarKv (KU/RU) — q

g—1°

This proves Equation (15.12). ]

15.4 Exponential decay of correlation and error terms for arith-
metic quotients of Bruhat-Tits trees

As in the beginning of Section 15.1, let K, be a non-Archimedean local field, with valuation
v, valuation ring &,, choice of uniformiser m,, and residual field k, of order ¢,. Let I' be a
lattice of the Bruhat-Tits tree X, of (PGLg, K,). In this Section, we discuss the error terms
estimates that we will use in Part III.

In part in order to simplify the references, we start by summarizing in the next statement
the only results from the geometric Part II of this book, on geometric equidistribution and
counting problems, that we will use in this algebraic Part III. We state it with the normali-
sation which will be useful there (see Section 15.3).

Theorem 15.4. Let T" be a lattice of X, whose length spectrum Lt is equal to 27Z. Assume
that the Patterson density of T' is normalised so that |p| = % for every x € VX,. Let D¥
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be nonempty proper simplicial subtrees of X, with stabilisers I'py in I, such that the families
9% = ('}/Di),yer/rmi are locally finite in X,. If the measure o, 1s nonzero and finite, then

w2 —1)(gy + 1 1(T\ X,
(¢ )(qw + >VO(,\\ ) —n 5 A, =&
_O/-%—H "/EF/FD+
0<d(D~,yDT)<n

lim
n— -+ 2 qv3 Hg‘

Ce, v

for the weak-star convergence of measures on the locally compact space GX,.
Furthermore, if T' is geometrically finite, then for every [ € 10,1], there exists an error

term for this equidistribution claim when evaluated on 1 € €2 (4X) of the form O( HJ lg e ™)
for some k > 0.

As recalled at the end of Section 2.7, arithmetic lattices in PGLy(K,) are geometrically
finite, see | |. We will hence be able to use the error term in Theorem 15.4 in particular
when

e K, is the completion of a function field K over [, with respect to a (normalised discrete)
valuation v of K and I' is a finite index subgroup of PGLy(R,) with R, the affine function
ring associated with v,'? as in Chapters 16 and 19, and in Sections 17.2 and 18.2;

e when K, = Q, and I is an arithmetic lattice in PGLy(K,) derived from a quaternion
algebra, see Sections 17.3 and 18.2.

Proof. In order to prove the first claim, we apply Corollary 11.11 with X = X, and p = ¢ = q,.
Since Lt = 27, the lattice I" leaves invariant the partition of VX, into vertices at even distance
from a base point zg and vertices at odd distance from x(. Since the Patterson density is now

normalised so that |ps,| = % (instead of |z, |l = q:/;%l in Corollary 11.11), the skinning
measures a;i are now \/% times the ones in the statement of Corollary 11.11. Hence the

second assertion of Corollary 11.11 gives

2 _ 1 TVol(T'\X
lim Qv - VO( \ v) qv—n Z
=t 2q0 /gy o,

_ ~t
= /q op -

Qe y
'VEF/F]D)+
0<d(D~,yDT)<n

By Equation (2.16), we have
TVol(T\X,) = (¢, + 1) Vol(T'\X,) .

The first claim follows.

The last claim concerning error terms follows from Remark (ii) following the statement of
Theorem 12.17. O

In the last four Chapters 16, 17, 18 and 19 of this book, we will need to push to infinity
the measures appearing in the statement of Theorem 15.4. We regroup in the following two
lemmas the necessary control tools for such a pushing.

The first one is a metric estimate on the extension of geodesic segments to geodesic rays.

Lemma 15.5. Let X be a geodesically complete proper CAT(—1) space, let T > 1, and let « €

GX be a generalised geodesic line which is isometric exactly on [0,T]. For every generalised

13See Section 14.2 for definitions
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geodesic line p € GX which is isometric exactly on [0,400[, such that Pl[0,T] = Q|[o,T], We
have

and hence for all 8 €10,1] and ¢ € %f(é?X),
—28T
48

With the notation of Theorem 15.4, we will use this result when X = |X,|; is the geometric

realisation of the simplicial tree X,,, a = a , is'* the common perpendicular between D™
and yD* for v € T’ (when it exists), and p = p, is any extension of « to a geodesic ray, or
rather to a generalised geodesic line isometric exactly on [0, +00[. Under the assumptions of

Theorem 15.4, we have

[B() = Do) < 1D 15 -

(%}2 - 1)((]1) + 1) VO](F\\XJ — ¥ o~
YE o & n > A, =5, (15.13)
v 7+ 'YGF/FD+

0<d(D~,yDT)<n

with, if I' is geometrically finite, an error term when evaluated on 1; e ¢’ (gX) of the form
O( v | g e ™) for some k > 0 small enough (depending in particular on g € |0, 1]).

Proof. By Equation (2.4) defining the distance on X, we have, since d(a(t), p(t)) = 0 for
all t € | — o0, T] and d(a(t), p(t)) = t — T otherwise,
+00 27T

i —2t —27T —2u €
d(a, p) = ., (t—T)e “*dt=ce . ue ““du = 1

The result follows. ]

The second lemma is a metric estimate on the map which associates to a geodesic ray its
point at infinity. We start by giving some definitions.

Let X be a geodesically complete proper CAT(—1) space, and let D be a nonempty proper
closed convex subset of X. The distance-like map dp : (800)( — (9OOD)2 — [0, +0oo[ associated
with D is defined in | , §2.2] as follows: For &, &' € 00X — 0o D, let &, & : [0, +0] > X
be the geodesic rays starting at the closest points Pp(€), Pp(£’) to &,£ on D and converging
to &,& ast — o0. Let

dp(6,€) = lim ezdEn&)—t (15.14)

t—+00
The distance-like map dp is invariant by the diagonal action of the isometries of X preserving
D. If D consists of a single point z, then dp is the visual distance'® d, on 0, X based at x. If
D is a horoball with point at infinity &, then dp is Hamenstidt’s distance'® on 0y X — {&0}.
As seen in | , §2.2, Ex. (4)], if X is a metric tree, then

o3 APp(6):Pp(€)) < 1 if Pp(€) # Pp(&)
dp(€,€") =< da(&,&) =e @Y <1 if Pp(¢) =Pp(¢) ==
and [z,&[ n [z, 8] = [z,9] .

Ythe generalised geodesic line isometric exactly on [0,d(ID™,yD")] parametrising
153ee Equation (2.1).
63ee Equation (2.8).
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In particular, although it is not an actual distance on its whole domain 0, X — 0on D, the map
dp is locally a distance, and we can define with the standard formula the S-Hélder-continuity
of maps with values in (05X — 0wD,dp) and the f-Holder-norm of a function defined on
(00X — 0o D, dp). From now on, we endow 0o X — 05 D with the distance-like map dp.

Proposition 15.6. Let X be a locally finite simplicial tree without terminal vertices, and let D
be a proper nonempty simplicial subtree of X. The homeomorphism 07 : 81+]D — (00X —0,D)
defined by p — py is 3-Hélder-continuous, and for all B € 10,1] and ¢ € Cgf(awx — 0xD),
the map ¢ o 0T : 6i]D) — R is bounded and g—HO'lder—contmuous, with

B
[0ty < (1+257) [yls .

With the notation of Theorem 15.4, using the claim following the statement of Lemma
15.5, we will use this result when X = X, and D = D™. Under the assumptions of Theorem
15.4, with p, any extension to a geodesic ray of the common perpendicular a, ., between D™
and yDT for v € T, since pushing forward measures on 01D~ by the homeomorphism 0% is
continuous, we have by Equation (15.13)

(@? = 1)(gy + 1) Vol(T'\X,) _ ~
R LD YR VR TR C R SR (A0
v T+ ~el s

0<d(D~,yD*)<n
If I' is geometrically finite, for all 5 € ]0,1] and ¢ € 4 (0uXy — 0D ™), using the error term

~ B o
in Equation (15.13) with regularity g when evaluated on ¢ = ¢ o 0% € 6.? (9X,), we have
by the last claim of Proposition 15.6 an error term in Equation (15.15) evaluated on 1 of the
form O( [y |3 e™*") for some s > 0 small enough.

Proof. Let us prove that for every p, p’ € 01D, if d(p, p') < 1, then p(0) = p’(0), and

dp(ps.py) = V2 d(p,p)2 . (15.16)

This proves that the map 0% is %—Hélder—continuous. We may assume that p # p'.
Let p,p' € 0iD. If p(0) # p'(0), then the images of p and p’ are disjoint and their
connecting segment in the tree X joins p(0) and p’(0); hence for every t € [0, +o0[, we have

d(p(t), o (1) = d(p(0), §'(0)) + d(p(t), p(0)) + d(p/ (), p/(0)) > 1 + 2.

Thus

+00

0
d(p,p') = f_oo d(p(0),0'(0)) €** dt + fo d(p(t), p'(t)) e > dt

V

0 +00 +o0
f e2tdt+f (1+2t)e”dt>2f e 2tdt=1.
—o0 0 0

Assume that x = p(0) = p/(0) and let n be the length of the intersection of p and p’. Then

dp(ps,py) = do(ps,py) = lim ez WOA Ot — o=n

t—+00
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Furthermore, since p(t) = p/(t) for t < n and d(p(t), p'(t)) = 2(t — n) otherwise, we have,
using the change of variables u = 2(t — n),

+0o0 du 672n

+oo
d(p,p’)=f 2(t—mn) e_Qtdlt:e_Q"J0 ue_“7= 5

This proves Equation (15.16).
Let 5 € ]0,1] and ¢ € Cgf(awx — 0D). We have [[¢p 0 01| = [[¢]o since 07T is a
homeomorphism, and, by Equation (15.16),

Yo" (p) - @000*( Bl

|00y = sup
2 p,pledtD, 0<d(p,p')<1 d(p, p')
[ odt(p) —odf(p)  2|Podf|w
< sup 7 + —5
p,p'edL D, 0<d(p, p')<3 d(p, p')2 27z
/
3
< sup W)( ) (f )| + 2§+1 H¢HOO

£,8'€00X—00D 27 2 d s nB
i p(£,¢')

B
<224 y)g -

Since Yo 0| s = ¢ 0 0T | + |10 0 01’5, this proves the last claim of Proposition 15.6. []
2 2

We conclude Section 15.4 by giving a purely algebraic control of error terms, under the
stronger regularity requirement on functions of being locally constant. We assume until the
end of this Section that the lattice I' is contained in G, = PGLo(K,).

The group G, acts (on the left) on the complex vector space of maps ¢ from I'\G,, to R,
by right translation on the source: For every g € G,, we have g1 : © — ¢(zg). A function
¥ : T\G, — R is algebraically locally constant if there exists a compact-open subgroup U of
PGL2(0),) which leaves v invariant:

VgeU, gp=1,

or equivalently, if ) is constant on each orbit of U under the right action of G, on I'\G,. Note
that v is then continuous, since the orbits of U are compact-open subsets. We define

dy = dim (Vectg (PGLa(6,)1))

as the dimension of the complex vector space generated by the images of 1) under the elements
of PGL2(0,), which is finite, and even satisfies

dy < [PGL2(0,) - U] .
We define the alc-norm of every bounded algebraically locally constant map ¢ : I'\G, — R

by
kualc = \/@W’Hoo .

Though the alc-norm does not satisfy the triangle inequality, we have [[AY]ac = Al Y] alc
for every A € R. We denote by alc(I'\G,) the vector space of bounded algebraically locally
constant maps ¢ from I'\G, to R.
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For every n € N, let U,, be the compact-open subgroup of PGL2(&,) which is the kernel
of the morphism PGLy(0,) — PGLy (0, /7, O,) of reduction modulo m,”. Note that any
compact-open subgroup U of PGLy(0,) contains U, for some n € N. Hence ¢ : I'\G,, — R is
algebraically locally constant if and only if there exists n € N such that v is constant on each
right orbit of U,,. For every n € N, since the order of PGLy (&, /7, 0,) is at most the order
of (0,/m,"0,)*, which is ¢,*", if ¢ : T\G,, — R is constant on each right orbit of U,, then

[9]ate < @0 [9]leo - (15.17)

The next result is an algebraic version of the error term statement in Theorem 15.4
(assuming for simplicity that Lr = Z), which uses'” a stronger assumption on I', and obtains a
weaker regularity (locally constant instead of Hoélder-continuous, see Section 3.1 for definitions
and notation). We will not use it in this book, but its version with Lr = 2Z is used in the
announcement | | which only considers the locally constant regularity.

Theorem 15.7. Let K, be the completion of a function field K over F, with respect to a
valuation v of K and let I' be a nonuniform lattice of G, with Ly = Z. Then there exists

k > 0 such that for every e € ]0,1] and every e-locally constant map QZ . GX, — R, we have,
asn — +0o0,

(@ —1) VolT\X,) _, D ”

= v Pla,
(@ +1) g oy (o)

'YEF/F]D;-F
0<d(D~,yD+)<n

- j 3d5F 4 O(IF leteotmg, € ™).
GXy

Proof. This result follows by replacing in the proof of Theorem 12.17 (or rather Remark (ii)
following its statement) the use of the exponential decay of S-Hoélder correlations given by
Corollary 9.6 by the following result of decay of correlations under locally constant regularity
(which does follow from Corollary 9.6 by Remark 3.2).

Proposition 15.8. Let K, be the completion of a function field K over Fy with respect to
a valuation v of K and let I' be a nonuniform lattice of G, with Lt = Z. Then there exist
C,k > 0 such that for every e € |0, 1], for all e-locally constant maps ¢,¢ : I\¥X, — R and
n € Z, we have

¢ dmpm f Y dmpm
r@x,

< C e—m\n| “¢”elc,lnqv HwHElc,lan .

’J pog "Ydmpy — ——
N¥X, ImBwm|| N\¥X,

Proof. Recall'® that we have a natural homeomorphism = : I'gA(0,) — T'gf* between

MNG,/A(0,) and T\¥X,. We denote by py : I'\G, — I'"¥X, the composition map of the

canonical projection (I'\G,) — (I'\G,/A(0,)) and of Z. By Equation (15.4), for every
x € I'\Gy, we have

py (z a,") = g" py(x) . (15.18)

'"Note that the existence of a nonuniform lattice in G, = PGL2(K,) forces the characteristic to be positive,

see for instance | |
18See Section 15.1.
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Lemma 15.9. For every e € ]0,1], for every e-locally constant function ¢ : T\94X, — R, if
n= [—% Ine|, then the map ¢ o py : T\G, — R is Uy -invariant and

W Op%Halc < QUQ Hd’”elc,lnqv . (1519)

Proof. Let €,9,n be as in the statement. Let us first prove that if ¢,¢' € ¥X, satisfy
Unan] = 4 , then d(£,0) < e.

[—n,+n]
I by in) =€ then d(£(t),¢'(t)) = 0 for t € [—-n,n] and by the triangle inequality

[—n,+n]’
d(l(t),0(t)) < 2(Jt] — n) if |t| = n, hence
+00 +00 du
d(ﬁ,ﬁ')<2j 2(t—n) eztdt—QeQ”J uefujzefzn
n 0
< 672(7%lne) =¢,

as wanted.

In order to prove that ¥ o py : I'\G, — R is U,-invariant, let z, 2’ € T\G, be such that
2’ € 2 U,. Since U, acts by the identity map on the ball of radius n in the Bruhat-Tits tree X,,
the geodesic lines pg () and pg(z') in T\¥X, coincide (at least) on [—n,n]. Hence, as we saw
in the beginning of the proof, we have d(py(x), pg(z")) < e. Therefore ¢¥(py(x)) = ¥ (pg(z'))
since 9 is e-locally constant.

Now, using Equation (15.17), we have

[ © pgllaic < v2n [ © pg |0

q
_1 _
< a2 [Pl = ¢" € Yoo = @ [Ylcteng, - O

Now, in order to prove Proposition 15.8, we will use an algebraic result of exponential decay
of correlations, Theorem 15.10 (see for instance | |). We first recall some definitions and
notation, useful for its statement.

Recall that the left action of the locally compact unimodular group G, on the locally
compact space ¥X, is continuous and transitive, and that its stabilisers are compact hence
unimodular. Since T' is a lattice, the (Borel, positive, regular) Bowen-Margulis measure
mpm on 99X, is Gy-invariant (see Proposition 4.14 (2)). Hence by | | (see also | ,
Lem. 5]), there exists a unique Haar measure on G,,, which disintegrates by the evaluation map
py : Gy — 949X, defined by g — gl,, with conditional measure on the fiber over £ = g/, € ¥X,
the probability Haar measure on the stabiliser gA(&,)g~"! of £ under G,. Hence, taking the
quotient under I' and normalising in order to have probability measures, if u, is the right
G,-invariant probability measure on I'\G,, we have

mBM

MBM (15.20)
lmBwm|

(P%)*Mv =
For every g € G,, we denote by R, : I''G, — I'\G, the right action of g, and for all
bounded continuous functions 1,1’ on I'\G,,, we define

v 00 = | TRy @ duy | D [ 3 du

\G, I\G, NG,
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Note that by Equations (15.20) and (15.18), for all bounded continuous functions v,’ :
N¥X, — R and n € Z, we have'”

COV_mpMm n(w7w/) = COV/Ju)avn(w Op%wl OP@) . (1521)

[meml?

Recall that the adjoint representation of G, = PGLg(K,) is the continuous morphism
G, — GL(#(K,)) defined by [h] — {2 — hazh~'}, which is independent of the choice of
the representative h € GLa(K,) of [h] € PGLy(K,). For every g € Gy, we denote by |g|, the
operator norm of the adjoint representation of g. For instance, recalling that a, = [(1) 01},

v
we have, for all n € Z,
lau"ly = ™. (15.22)

We refer for instance to | | for the following result of exponential decay of correlations.

Theorem 15.10. Let I' be a nonuniform lattice of G. There exist C', k" > 0 such that, for
all bounded locally constant functions 1,4 : T\G, — R and g € G,

\COVuv,g("LZ, 1;/) ’ < szHalc sz/Halc lgl,™" . O (15.23)

Proposition 15.8 follows from this result applied to QZ = 1) 0 Py, 1;’ =1 opy and g = a,"
by using Equations (15.21), (15.19) and (15.22) and by taking C' = C’q} and k = k' Ingq,. ]

This concludes the proof of Theorem 15.7. ]

Remark. There is a similar relationship between locally constant functions on K, in an
algebraic sense and the ones in the metric sense.

The additive group (K, +) acts on the complex vector space of functions from K, to R,
by translations on the source: for all y € K, and ¢ : K, — R, the function y - ¢ is equal to
x— YP(x+y). Amap ¢ : K, > R is algebraically locally constant if there exists k € N such
that ¢ is invariant under the action of the compact-open subgroup (7,)*@, of K,, that is, if
for all x € K,, and y € (7,)*0,, we have 1)(x + y) = (x). Note that a locally constant map
from K, to R is continuous.

For any locally constant function ¢ : K, — R, the complex vector space Vectr(&, - 1)
generated by the images of ¢ under the elements of &), is finite dimensional. Its dimension
dy, satisfies, with k as above,

dw < [ﬁv : (Wv)kﬁv] = ka .
We define the alc-norm of every bounded algebraically locally constant map 1 : K, — R by

Hd’“alc = \/@ Hd’”oo .

Though the alc-norm does not satisfy the triangle inequality, we have |A\¢)|a1c = |A| |9 a1c for
every A € R, and the set of bounded algebraically locally constant maps from K, to R is a
real vector space.

Actually, a function v : K, — R is algebraically locally constant if and only if it is locally
constant. More precisely, for every € € ]0,1], since the closed balls of radius ¢, ¥in K, are
the orbits by translations under (m,)*@,, every e-locally constant function ¢ : K, — R is
constant under the additive action of (m,)*@, for k = [T2¢], hence 2

Ingy
[¥]ale < lere, 1 -

198ee Section 9.2 for a definition of cov,, n.
208ee Section 3.1 for the notation.
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15.5 Geometrically finite lattices with infinite Bowen-Margulis
measure

This Section is a digression from the theme of arithmetic applications, in which we use the
Nagao lattice defined in Section 15.2 in order to construct a geometrically finite discrete
group of automorphisms of a simplicial tree which has infinite Bowen-Margulis measure. This
example was promised towards the end of Section 4.4.

We will equivariantly change the lengths of the edges of a simplicial tree X endowed with
a geometrically finite (nonuniform) lattice I' in order to turn it into a metric tree in which the
group [' remains a geometrically finite lattice, but now has a geometrically finite subgroup
with infinite Bowen-Margulis measure. This example is an adaptation of the negatively curved
manifold example of | , §4]. The simplicial example is obtained as a modification of the
metric tree example.

Theorem 15.11. There exists a geometrically finite discrete group of automorphisms of a
reqular metric tree with infinite Bowen-Margulis measure.

There exists a geometrically finite discrete group of automorphisms of a simplicial tree
with uniformly bounded degrees whose Bowen-Margulis measure is infinite.

Proof. Let K = F (YY), ¢ = F,[[Y~']] and R = F,[Y]. Let X be the Bruhat-Tits
tree of (PGLQ,IA() with base point * = [0 x O]. Let I' = PGL2(R), which is a lattice of
X, with quotient the modular ray I'\X described in Section 15.2. We denote by (y;)i=—1.0,...
the ordered vertices along I'\X with vertex stabilisers (I';);——10,..., and by (e;);en the ordered
edges along I'\X (pointing away from the origin of the modular ray).

The subgroup

P=|JTi= { [g d] ;Qqu[Y],a,deF;}

120

is the stabiliser in T" of o0 € 0,,X. Let Py be the finite index subgroup of P consisting of the
elements [(1) 612] with @(0) = 0. Observing that d(v*,*) = 2(i+ 1) for any v € I'; —T';_1 and
that the cardinality of (I'; —T;_1) n Py is (¢ — 1)g**1, it is easy to see that the Poincaré series

yeP

of the discrete (though elementary) subgroup P of Isom(X) is (up to a multiplicative constant)
equal to D77, g'e ™2

Let h be a loxodromic element of I' whose fixed points belong to the open subset Y ~1¢&
of K = 0% X — {oo0}. Hence the horoball 777, centred at o0 € 05X, whose horosphere contains
*, 18 disjoint from the translation axis Axp of h. Note that the stabiliser of &, in I' is P
and that Py acts freely on the edges exiting 7%,. Let xg € VX be the closest point on Axy
to J%, let e, be the edge with origin * pointing towards xg, and let e_, e, be the two edges
with origin xzg on Axp,.
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Uh .-(-.-‘--‘-.'..',,

Let Uy, be the set of points « in VX — {zo} such that the geodesic segment from xy to =
starts either by the edge e_ or by e;. Let Up, be the set of points y in VX — {t(e4)} such
that the geodesic segment from t(ey) to y starts by the edge €. We have

(1) Up,nUp, = & and o ¢ U, v Up,,
(2) W*(VX—Uy) < Uy, for every k € Z—{0} and w(VX—Up,) < Up, for every w € Py—{id},
(3) d(z,y) = d(z,z0) + d(zo,y) for all x € Uy, and y € Up,.

Let IV be the subgroup of I" generated by Py and h. By a ping-pong argument, IV is a
free product of Py and of the infinite cyclic group generated by h. Hence every element -~y
in IV — {e} may be written uniquely woh™ w1 h™ ... wih™ with k € N, w; € Py,n; € Z with
w; # e if i # 0 and n; # 0 if ¢ # k. Using the above properties, we have by induction

d(xo, woh™wi A" .. wph™F ) = Z d(xo, h""zp) + Z d(xo, wizg) . (15.24)

o<i<k o<i<k

Let A : EX — R, be the I'-invariant length map on the set of edges of X such that for
every ¢ € N, the length of e € EX is 1 if e is not contained in Uwer, v, and otherwise, if e
maps to e; or to & under the canonical map X — I'\X, then A(e) = 1+ In =21 if i > 1 and
A(e) = 1if i = 0. Note that the distance in the metric graph |X]|) from * to the vertex on
the geodesic ray from * to oo originally at distance ¢ from = is now ¢ + In 2. The distances
along the translation axis of h have not changed. Equation (15.24) remains valid with the

new distance.

Let us now prove that the discrete subgroup I'V of automorphisms of the regular metric
tree (X, \) satisfies the first claim of Theorem 15.11.

By IM-invariance of A, the group I'' remains a subgroup of Aut(X,)\). The elements of
I"oo, or equivalently, the points at infinity of the horoballs in the IV-equivariant family of
horoballs (.7 )ervr,, With pairwise disjoint interiors in X, remain bounded parabolic fixed
points of IV, and the other limit points remain conical limit points of I'. Hence I remains a
geometrically finite discrete subgroup of Aut(X, \).

The Poincaré series of the action of Py on (X,\) is (up to a multiplicative and additive
constant) Z?’;l q' e=2%172% which has the same critical exponent dp = N9 as previously, but
it is easy to see that the group P is now of convergence type if ¢ > 3.

2
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The computations of | , 8§4] now apply to our situation (with C' = 0 in their notation,
and we sum over Py instead of over the infinite cyclic group generated by the parabolic
element p in their notation). Their argument shows that I is of convergence type with critical
exponent dp, up to replacing h by a big enough power. By Corollary 4.6, the Bowen-Margulis
measure of IV is infinite.

In order to prove the second claim of Theorem 15.11, we first define a new length map
A EX — R, which coincides with the previous one on every edge e of X, unless e maps to
e; or to € under the canonical map X — I'\X| in which case we set

Ae) =1+ |In(i+1)] — [In4]

if i > 1 and A(e) = 1if i = 0 (where || is the largest previous integer map). This map A
now has values in {1, 2}, and we subdivide each edge of length 2 into two edges of length 1.
The tree Y thus obtained has uniformly bounded degrees (although it is no longer a uniform
tree), and the group I defines a geometrically finite discrete subgroup of Aut(Y) with infinite
Bowen-Margulis measure. O
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Chapter 16

Rational point equidistribution and
counting in completed function fields

Let K be a function field over Fy, let v be a (normalised discrete) valuation of K, and let
R, be the affine function ring associated with v. In this Chapter, we prove analogues of the
classical results on the counting and equidistribution towards the Lebesgue measure on R

of the Farey fractions £ with (p,q) € Z x (Z — {0}) relatively prime (see for instance [Nev],

q
as well as | | for an approach using methods similar to the ones in this text). In
particular, we prove various equidistribution results of locally finite families of elements of K
towards the Haar measure on K, using the geometrical work on equidistribution of common

perpendiculars done in Section 11.4 and recalled in Section 15.4.

16.1 Equidistribution of non-Archimedian Farey fractions

The first result of this Section is an analog in function fields of the equidistribution of Farey
fractions to the Lebesgue measure in R, see the Introduction, and for example | , p. 978]
for the precise statement and a geometric proof. For every (zg,y0) € R, x R, — {(0,0)}, let

My 2,40 = Card{a € (R,)* : Ibe xRy N yoRy, (a — 1)zoyo — bxo € Y2 Ry} -
For future use, note that by Equation (14.3)
My,1,0 =9 — 1. (16.1)

For every (a,b) € R, x R, and every subgroup H of GLa(R,), let H(, ;) be the stabiliser of
(a,b) for the linear action of H on R, x R,.

Theorem 16.1. Let G be a finite index subgroup of GLa(Ry), and let (xo,y0) € Ry x Ry —
{(0,0)}. Then as s —> +0, if

(%2 —1) (g +1) (k(-1) My, 20, Y0 (N<x0,y0>)2 [GLa(Ry) : G

C = ,

(q—1)q971 ¢} [GL2(RU)(wo,yo) : G(xo,yo)]

then
cs 2 Z A

(z,¥)eG (20, Y0), lylv<s

*
— Haarg, .

< |8
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For every 3 € 0, ﬁ], there exists k > 0 such that for every S-Holder-continuous function
Y : K, — R with compact support,' as for instance if ¢ : K, — R is locally constant with
compact support (see Remark 3.2), there is an error term in the equidistribution claim of
Theorem 16.1 evaluated on 1, of the form O(s™*|v]3).

It is remarkable that due to the general nature of our geometrical tools, we are able to work
with any finite index subgroup G of GLa(R,), and not only with its congruence subgroups. In
this generality, the usual techniques (for instance involving analysis of Eisenstein series) are
not likely to apply. Also note that the Holder regularity for the error term is a much weaker
assumption than the locally constant one that is usually obtained by analytic number theory
methods.

Theorem 1.13 in the Introduction follows from this result, by taking K = F,(Y") (so that
g =0), v =uvy and (z9,y0) = (1,0), and by using Equations (14.5) and (16.1) in order to
simplify the constant.

Before proving Theorem 16.1, let us give a counting result which follows from this equidis-
tribution result by considering the locally constant characteristic function of a closed and
open fundamental domain of K, modulo the action by translations of a finite index additive
subgroup of R,, and by using Lemma 14.4 with I = R,,.

The additive group R, acts on R, x R, by the horizontal shears (transvections):

v]{;GR’I.Hv('%'7y)€R’lj><]%Uv k(x7y):(x+ky7y)7

and this action preserves the absolute value |y, of the vertical coordinate y. We may then
define a counting function ¥q, 5,4, of elements in K in an orbit by homographies under a
finite index subgroup G of GLa(R,), as

\I’G,(EanO(S) = Card RU’G\{(I', y) € G(l’o, yO)a |y|v < 8} s
where R, ¢ is the finite index additive subgroup of R, consisting of the elements x € R,, such
that <(1) f) € G. Note that Ry ¢ = Ry if G = GLa(R,).

Corollary 16.2. Let G be a finite index subgroup of GLa(Ry), and let (zg,y0) € Ry x Ry —
{(0,0)}. Then there exists k > 0 such that, as s — +0,

e, wo,90(8)
(q - 1) qu—Q qg [GLQ(R’U)(a?o,y()) : G(:Eo,yo)] [RU : RU,G]
2

. 82 82—5 )
= @2 1) (@ D) Ce(1) 1, 2,0 (W0, 02 [GLa(i) 6] © T O ) O

Let us fix some notation for this Section. For every subgroup H of GLy(R,), we denote
by H its image in T', = PGLa(R,). Let X, be the Bruhat-Tits tree of (PGLs, K,,), which is
regular of degree g, + 1. Let

r="2cky{on.
Yo

If yo =0, let g, = id € GLa(K), and if yg # 0, let

gr = (71” (1)) € GLy(K) .

'where K, is endowed with the distance (z,y) — |2 — yl»
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In the proof of Theorem 16.1, we apply Theorem 15.4 with I' := G, D™ := J#, and DT :=
gr . Recall that 7, is the horoball in X, centred at oo whose boundary contains =, (see
Section 15.3).

Proof of Theorem 16.1. Note that I' has finite index in I', and, in particular, it is a
lattice of X,. By [Ser3, I1.1.2, Coro.|, for all z € VX, and v € GLa(R,), the distance d(x,vz)
is even since v(det~y) = 0. Hence by the equivalence in Equation (4.13), the length spectrum
Ly, of Iy is 2Z. The length spectrum of I' is also 2Z, since it is contained in Lr,.

Note that DV is a horoball in X,, centred at r = % € 0nXy, by Lemma 15.1. The stabiliser
I'p- of D™ (respectively I'p+ of D) coincides with the fixator 'y, of 00 € 05,X,, (respectively
the fixator T, of r) in I'. Note that the families 2+ = (')/]D)i),yer/rm , are locally finite, since
'y, and hence its finite index subgroup T, is geometrically finite,” and since oo and r € K are
bounded parabolic limit points of I',, hence of its finite index subgroup I'.

For every v € I'/T', such that D~ and vD* are disjoint, let p, be the geodesic ray starting
from oze_ﬁ(()) and ending at the point at infinity - of yD*. Note that p, and ap, , coincide
on [0,d(D~,yD™)].

Since the Patterson densities of lattices of X,, have total mass q“q—:l by Proposition 15.2
(2), they are normalized as in Theorem 15.4. Then by Equation (15.15), we have

w2 —1)(gu + 1) Vol(I'\X, N
lim (q )(3q +1) Vo (_\\ ) ) Z A(Pwﬁ _ (a+)*0.+_ ) (16.2)
n=>+00 2q3 ol ey

0<d(D~,yD¥)<n

_1
> Ingy

error term of the form O(||¢]gmq,e™ ") for some £ > 0 in the above formula when evaluated
on ¢ € €™ ?(0X, — {o0}), where 0X,, — {00} is endowed with Hamenstiadt’s distance d ., .
Hence we have an error term O(|[+)[ ge™"") for some s > 0 in the above formula when evaluated
on v € € (K,), where K, = 0X, — {00} is endowed with the distance (z,y) — |z — ylo, see
Equation (15.3).

By Proposition 15.2 (3), we have

Furthermore, for every g € |0 ], by the comment following Equation (15.15), we have an

H?’L)

(07)«6p- = Haarg, .

Hence Equation (16.2) gives, with the appropriate error term,

w2 —1)(gy + 1) Vol(T\X,
lim (g )(3q +1) VO(_\\ ) w Z A,, = Haarg, . (16.3)
n—>+00 2q3 loo |l ey

0<d(D~,yD+)<n

Let g € GLo(K) be such that goo # oo. This condition is equivalent to asking that the
(2,1)-entry ¢ of g is nonzero. By Lemma 15.1, the signed distance between the horospheres
Iy and g, is

In |c|,
Ao, g ) = —2 v(c) — 2 e (16.4)
In g,
If yo # 0, then (z,y) = g(zo,yo) if and only if (£, L) = gg,(1,0), and the (2, 1)-entry of gg,

Yo’ Yo
is y%. If yo = 0 (which implies that g, = id and z¢ # 0), then (x,y) = g(zo,yo) if and only if

2See Section 15.2
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(755 25) = 9(1,0), and the (2,1)-entry of g = gg, is ;-. Let

o’ o T

Lo v iy #0
0 To otherwise.

By Equation (16.4), the signed distance between D~ = %, and gDt = g g, is

- 2 Yy
d(]D) ,g]:D)+) = @ ln|;0|v .

By discreteness, there are only finitely many double classes [g] € G(1,0)\G/G 4 4) Such
that D™ = J#, and gDt = gg,74, are not disjoint. Let Z(G) be the centre of G, which
is finite. Since Z(G) acts trivially on Py(kK,), the map G/G (4, ) — /T induced by the
canonical map GLa(R,) — PGL2(R,) is |Z(G)|-to-1. Using the change of variable

n
s = |20lv @u? ,

so that ¢, " = |Zo|v2 572, Equation (16.3) gives, with the appropriate error term,

b (@2 =1 @+ D) 20l VoIV,

A
s=>+00 2q,° |2(G)]

(z,y)eG (0, y0), lylv<s

- = = Haarg, . (16.5)
log v

The order of the centre Z(GLa(R,)) = (Ry)*id is ¢ — 1 by Equation (14.3). The map

GL2(R,)/G — T'y/T induced by the canonical map GLa(R,) — PGL2(R,) is hence %—to—l.

By Equation (15.7), we hence have

Vol(T\X,) = [Ty : T] Vol(T,\X,) = 2 Cx (—1) [T : T]
2

- 2 Ge(-)2(6)] [GLa(R) 6], (16.6)
Theorem 16.1 follows from Equations (16.5) and (16.6) and from Lemma 16.3 below. []

Lemma 16.3. We have

oo, | = g9 ! |Z0|v2 [GL2(Ry) (20,50) * Glao,p0)]
77 My, 20, yo (N<x0,y0>)2

Proof. Let v, be the image of g, in PGLy(K). Let us define IV = ~,~'T"y,, which is a finite
index subgroup in I, = v, 'T',7, and a lattice of X,. Since 7, maps o0 to r, the point o is a
bounded parabolic limit point of IV, and we have (I')o, = v, 'I';7,. Since the canonical map

GL2(R,) — PGLy(R,) is injective on the stabiliser GLg(Rv)( we have

20,Y0)"
[(F;)Oo : (F/)OO] =[To)r: Iy] = [GLQ(RU)(:vo,yo) : G(wo,yo)] :

Since the Patterson density of a lattice does not depend on the lattice (see Proposition
4.14 (1)), the skinning measures &;f of a given horoball .7 do not depend on the lattice.
Thus

St~
Tx O = O
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for every v € Aut(X,). Let 27 = (v Hp)yer /v, which is a locally finite I'-equivariant
family of horoballs. We hence have, using Proposition 15.2 (4) for the third equality,

logl =107 gl =logll = Haar e, (I")oo\Ky)
= [(T%)o + (IM)oo] Haarg, ((T)o0\Ky)
= [GLa(Ro) roo) © Clanny] Haari, (T)\Koy) - (16.7)

Every element in the stabiliser of o0 in PGL2(K,) can be uniquely written in the form

o= {g b] with (a,b) € (K,)* x K,. Note that

1
r 1\ fa b\ (0 1Y\ [(br+1 ar —br? —r
1 0/\0 1/J\1 —) b a— br '
When 2y = 0 or yo = 0, we have o € I}, if and only if

beR, and ac€ (Ry,)™.

When zg,yo # 0, we have a € I} if and only if y,.a7,.~! € T',, hence if and only if

1
beRyn-R,, ac(R,)*, ar—br*—-reR,.
r

Let U, be the kernel of the map from (I'))q to (K,)* sending [ b] to a, and let m,

a
01
be its index in (I"))s. If 29 = 0 or yo = 0, then m, is equal to |(R,)*[, so that, by Equation
(14.3),

my = [(Ro)[ = |(Fg)*| =q—1.

If xg,yo # 0, we have
X 1 2
my = Card {a € (R,)* : 3be R, n =Ry, ar —br* —r e R,} .
T
Note that the notation m, coincides with the constant m,, s, ,, defined before the statement
of Theorem 16.1 in both cases.

If I(24,40) 1s the nonzero fractional ideal

s _{RU if xo=0o0ryy =0,
@w0) =\ R, N 1R, N %R, otherwise,

vl = { [é ﬂ be Iy}

then

Therefore by Lemma 14.4,

Haarg, (I, K, q9 ' N(I,
Haarg, (1) \K,) = [(Ili’)oi ?733\] ) _ ni (ow0) (163)
v ° o0 (%
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Let (z0) = [], p*» (o) and (yo) = [, p*»(W0) be the prime decompositions of the principal
ideals (xg) and (yo). By the formulas of the prime decompositions of intersections, sums and
products of ideals in Dedekind rings (see for instance [Nar, §1.1]), we have

(38(2)) N (Toyo) N (yg) = (ZL‘%) N (yg) = HmeaX{Vp(ﬂﬁo)va(yo)}
p

and

(2o, Yo) = Hpmin{%(%)w;o(yo)} )
p

By the definition of the ideal I, ), by the multiplicativity of the norm, and by Equation
(14.4), we hence have if xg # 0 and yo # 0

N(I(:Jco,yo)) (N<‘T0a yO>)2
|y0‘v2

= N(((8)  (zow0) 0 (58)) o, 90)*(0) 2(0) 2) = 1. (16.9)

If xo = 0 or yp = 0, then

NI (zyy)) = N(Ry) = 1. (16.10)
Lemma 16.3 follows from Equations (16.7), (16.8) and (16.9) if 29 # 0 and yo # 0 or
(16.10) if zp = 0 or yo = 0. ]

Let us state one particular case of Theorem 16.1 in an arithmetic setting, using a congru-
ence sugbroup.

Theorem 16.4. Let I be a nonzero ideal of R,. Then as t — +00, we have

(@® = 1) (g0 + 1) Cx(=1) N(D) TTyyr(1 + 5)
q971 qu

—2t A
(qv) 2 A% HaarKU y
(z,y)ERy XTI
(@, y)=Ro, v(y)=—t
where the product ranges over the prime factors p of the ideal I. Furthermore, if

WU(t) = Card R,\{(z,y) € Ry x I : {(z,y) = Ry, v(y) = —t},

then there exists k > 0 such that, as t — 400,

w(t) = Chl @2 +0(g, ") .
(9% —1) (g + 1) Cr(—1) N(I) Hp|[(1 + ﬁ)

For every S5 € 0, ﬁ], there exists k > 0 such that for every v € 4 (K,) there is an error
term in the above equidistribution claim evaluated on 1, of the form O(s™"|¢| ).

Proof. The counting claim is deduced from the equidistribution claim in the same way that
Corollary 16.2 is deduced from Theorem 16.1, noting that the action of R, by horizontal
shears preserves R, x I.

In order to prove the equidistribution claim, we apply Theorem 16.1 with (z,yo) = (1,0)
and with G the Hecke congruence subgroup

G = { <Cc‘ Z) e GLy(R,) : ce I}, (16.11)
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which is the preimage of the upper triangular subgroup of GLy(R,/I) by reduction modulo
I. In this case, the constant my, z, 4, appearing in the statement of Theorem 16.1 is equal to
q¢ — 1 by Equation (16.1). The group Gy has finite index in GLa(R,). The following result is
well-known to arithmetic readers (see for instance [Shi, page 24| when R, is replaced by Z),
we only give a sketch of proof (indicated to us by J.-B. Bost) for the sake of the geometer
readers.

Lemma 16.5. We have

1

[GL2(Ry) : Gi] = N(I) H(l + W) :

Pl
where the product ranges over the prime factors p of the ideal I.

Proof. In this proof, we denote by | F| the cardinality of a finite set E. For every commutative
ring A with finite group of invertible elements A*, we have

GLa(4) = | (8 (1)) SLy(A)

acAX

Hence [GL2(A) : SLa(A)] = |A*|. Since <8 (1)> belongs to G for all a € (R,)*, we have

a 0
Gr=J <o 1>GImSL2(Rv),

ae(Ry)*

so that [GLQ(RU) : G[] = [SLQ(RU) :Grn SLQ(RU)].

The group morphism of reduction modulo I from SLa(R,) to SLa(R,/I) is onto, by an
argument of further reduction to the various prime power factors of I and of lifting elementary
matrices. The order of the upper triangular subgroup of SLa(R,/I) is |(R,/I)*| |R/I|, where
(R,/I)* is the group of invertible elements of the ring R,/I (that we will see again below).
Hence

| SLa(Ry/1)]|

[GLa(fy) : Grl = [SL2(Ro) : Gr 0 SLa(R)] = ep s m e T

_ | GLZ(RU/I)|
~ [(Ro/T)*PIR/I| - (16.12)

By the multiplicativity of the norm and by the Chinese remainder theorem,® one reduces the

result to the case when I = p™ is the n-th power of a fixed prime ideal p with norm N(p) = NV,
where n € N. Note that since R,/p is a field, we have

| GL1(Ry/p)| = [(Ro/p)"| = |Ry/p| -1 =N —1

and
2 2 2 2 1
|GL2(Rv/p)| = (|Rv/p| - 1)(|Rv/p’ - ‘Rv/pD =N (N - 1) (1 + N) :
3saying that the rings R, /I and I, R,/p"» D) are isomorphic, see for instance [Nar, page 11]
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For K = 1 or k = 2, the kernel of the morphism of reduction modulo p from GLg(R,/I) =
GLy(Ry/p") to GLg(R,/p) has order N¥* (=1 Hence

| GLy(Ry/I)| = N* D N2(N — 1)%(1+ i) ,

N
and
|(Ro/I)*| = N""H(N —1)..
Therefore, by Equation (16.12), we have
4(n—1) N2 2 1
[GLs(Ry) : Gy = (NQEﬁl)(é\]]V—li)Q(j\f: v) N"(1+ %) .
This proves the result. O

We can now conclude the proof of Theorem 16.4. Note that GL2(Ry)(1,0) = (G1)(1,0)- The
result then follows from Theorem 16.1 and its Corollary 16.2, using the change of variables
s = (qy)t, since

Gr(1,0) ={(z,y) e Ry x I : {z,y)=R,}. O

The following result is a particular case of Theorem 16.4.
Corollary 16.6. Let Py be a nonzero element of the polynomial ring R = Fy[Y] over Fy, and
let Py = ag Hle(Pi)"i be the prime decomposition of Py. Then as t — +00,

+1 ]?_ nidegPi 1+ —degPi
(+1)I[_1q (1+g¢ )q—2t 3 A

*
q— 1 _— Haarﬁzq((y_l)) .

(P,Q)eRx(PyR)
PR+QR=R, deg Q<t

For every S € |0, ﬁ], there exists x > 0 such that for every ¢ € €7 (Fo((Y™1))) there is
an error term in the above equidistribution claim evaluated on ), of the form O(s™"|||3).

Proof. In this statement, we use the standard convention that & = 0 if Py is constant,
ap € (Fy)* and P; € R is monic.

We apply the first claim of Theorem 16.4 with K = F,(7T") and v = vy so that g = 0,
¢ = q and R, = R, and with I = PyR, so that N(I) = ]_[le g™ 98 i The result follows

from Equation (14.5). (]

16.2 Mertens’s formula in function fields

In this Section, we recover the function field analogue of Mertens’s classical formula on the av-
erage order of the Euler function. We begin with a more general counting and equidistribution
result.

Let m be a (nonzero) fractional ideal of R,, with norm N(m). Note that the action of
the additive group R, on K, x K, by the horizontal shears k - (z,y) = (z + ky,y) preserves
m x m. We consider the counting function ¢y, : [0, +00[ — N defined by

Ym(s) = Card(R,\{(z,y) em xm : 0 < N(m)"'N(y) <s, (z,y) =m}).

Note that ¥, depends only on the ideal class of m and thus we can assume in the computations
that m is integral.
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Corollary 16.7. There exists k > 0 such that, as s — 400,

(a—1) g% %q°
(@02 —1) (qo + 1) Cx(—1) My, 20, 4o

where m = {xg,yo). Furthermore, as s — +00,

Um(s) = 2+ 0(827"{) ,

%
A% — HaarKv .

(9 = 1) (g0 + 1) Cre(=1) M,20,0 2 3

— —1,3

(q 1) 97" Qo (z,y)emxm
N(m)"IN(y)<s, (w,y)=m

L]  there exists k > 0 such that for every ¢ € &7’ (Kv)) there is an

) E
error term in the above equidistribution claim evaluated on 1, of the form O(s™"|[+| ).

For every 3 € |0

Theorem 1.14 in the Introduction follows from this result, by taking K = F,(Y") (so that
g = 0) and v = vy,. In order to simplify the constant, we use Equation (14.5) and the fact that
the ideal class number of K, that equals the number of orbits of PGLg(F,[Y]) on P}(F,(Y)),
is 1. Thus, if m = {(zg,y0) then the constant m, s, 4, is equal to my, 1 0, which is ¢ — 1 by
Equation (16.1).

Proof. Every nonzero ideal I in R, is of the form I = xR, + yR, for some (x,y) € R, X
R, — {(0,0)}, see for instance [Nar, page 10]. For all (z,y) and (z,w) in R, x R, we have
xRy, +yR, = 2R, +wR, if and only if (z,w) € GLa(R,)(z,y). The ideal class group of K
corresponds bijectively to the set PGLa(R,) \P1(K) of cusps of the quotient graph of groups
PGL2(R,) \X, (where X, is the Bruhat-Tits tree of (PGLg, K,)), by the map induced by
I=xR,+yR,— [z:y] e PLK).

Given a fixed ideal m in R,, we apply Theorem 16.1 with G = GLy(R,) and (zg,y0) €
R, x R, — {(0,0)} a fixed pair such that zo R, + yo R, = m. Using therein the change of
variable s — N(m)s, the result follows from Theorem 16.1 and its Corollary 16.2. I

As already encountered in the proof of Lemma 16.5, the Fuler function ¢r, of R, is
defined on the set of (nonzero, integral) ideals I of R, by setting®

¢r, (I) = Card((Ry/1)”) ,

and we denote ¢r, (v) = ¢r,(y Ry) for every y € R,,. Thus, by the definition of the action of
R, on R, x R, by shears, we have

va (S) = Z Card{x € Rv/va : <l’, y> = Rv}
yeRy, 0<N (y)<s

= > or, (1Y) . (16.13)

yERy, 0<N (y)<s

As a particular application of Corollary 16.7, we get a well-known asymptotic result on
the number of relatively prime polynomials in F4[Y]. The Euler function of the ring of
polynomials R = F,[Y] is then the map ¢, : R — {0} — N defined by

$4(Q) = |(R/QR) | = Card{P € R: (P,Q) = R, deg P < deg Q}.
Note that ¢4(AQ) = ¢4(Q) for every X e (Fy)*.

*See for example [Ros, §1].
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Corollary 16.8 (Mertens’s formula for polynomials). We have

(@-1Da

. 1
lim o D l@="

n—+o q2n
QeF,[X], deg Q<n

Proof. We apply the first claim of Corollary 16.7, in the special case when K = F,(T") and
v = vy so that g = 0, ¢, = ¢ and R, = R, and with m = R,,, so that my 59,4, = ¢ — 1, in
order to obtain the asymptotic value of g, (s) with the change of variable s = ¢". The result
follows from Equations (16.13) and (14.5). ]

The above result is an analog of Mertens’s formula when K is replaced by Q and R, by Z,
see | , Thm. 330]. See also | , Satz 2|, [Cos, §4.3], as well as | | and | ,
§5| for further developments.

A much more precise result than Corollary 16.8 can be obtained by purely number the-
oretical means as follows. The average value of ¢, is computed in [Ros, Prop. 2.7]: For
n=l1,

deg f=n, f monic

This gives Zdeg f=n oq(f) = qQ”@, so that

v oakl@=1)2 5 =1 q(g—1(¢*" 1)
O<d§f<n¢q(f)*kz—:1q q *q(q 1) q2_1 - (Q+1) ’

from which Corollary 16.8 easily follows.
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Chapter 17

Equidistribution and counting of
quadratic irrational points in
non-Archimedean local fields

Let K, be a non-Archimedean local field, with valuation v, valuation ring &, choice of uni-
formiser m,, and residual field k, of order ¢,. Let X, be the Bruhat-Tits tree of (PGLo, Kv).l
In this Chapter, we give counting and equidistribution results in K, = 0, X, — {00} of an orbit
under a lattice of PGLy(K,) of a fixed point of a loxodromic element of this lattice. We use
these results to deduce equidistribution and counting results of quadratic irrational elements
in non-Archimedean local fields.

When X, is replaced by a real hyperbolic space, or by a more general simply connected
complete Riemannian manifold with negative sectional curvature, there are numerous quan-
titative results on the density of such an orbit, see the works of Patterson, Sullivan, Hill,
Velani, Stratmann, Hersonsky-Paulin, Parkkonen-Paulin. See for instance | | for ref-
erences. The arithmetic applications when X, is replaced by the upper halfspace model of
the real hyperbolic space of dimension 2, 3 or 5 are counting and equidistribution results
of quadratic irrational elements in R, C and the Hamiltonian quaternions. See for instance
| , Coro. 3.10] and | ].

17.1 Counting and equidistribution of loxodromic fixed points

An element v € PGLy(K,) is said to be lozodromic if it is loxodromic on the (geometric
realisation of the) simplicial tree X,.? Its translation length is

Ay) = in d(xz,vx) >0,

and the subset
Ax, = {z e VX, : d(z,yz) = A\(7)}

is the image of a (discrete) geodesic line in X,,, which we call the (discrete) translation axis of
7. The points at infinity of Ax, are denoted by v~ and ¥ chosen so that v translates away

1See Section 15.1.
2See Section 2.2.
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from 4~ and towards v* on Ax,. Note that for every 7/ € PGLy(K,), we have

v Ax, = Axyry (41 and ¥t =GHyE)HE.

If T is a discrete subgroup of PGLg(K,) and if « is one of the two fixed points of a
loxodromic element of I', we denote the other fixed point of this element by «. Since I'
is discrete, the translation axes of two loxodromic elements of I' coincide if they have a
common point at infinity. Hence o is uniquely defined. We define the complexity h(«) of the

loxodromic fixed point « by
1

la — ],

h(a) = (17.1)

if o, # o0, and by h(a) = 0 if @ or a? is equal to 0. We define ¢, = 2 if there exists an
element v € I" such that v-a = a“, and 1o = 1 otherwise.?

Following [Ser3, I1.1.2], we denote by PGLy(K,)" the kernel of the group morphism
PGL2(K,) — Z/2Z defined by v = [g] — v(detg) mod 2. The definition does not depend

on the choice of a representative g € GL2(K,) of an element v € PGLy(K,), since

v(det (3 g)) — 20())

is even for every A € (K,)*. Note that when K, is as in Section 14.2 the completion of a
function field over F, endowed with a valuation v, with associated affine function ring R,,, the
group Iy, = PGLy(R,) is contained in PGLy(K,)™, see [Ser3, I1.1.2]: For every g € GLa(R,),
since det g € (R,)* = (Fy)*,* we have v(det g) = 0.

The following result proves the equidistribution in K, of the loxodromic fixed points
with complexity at most s in a given orbit by homographies under a lattice in PGLy(K,) as
s — 400, and its associated counting result. If £ € 0,X, = P;(K,) and I is a subgroup of
PGLy(K,), we denote by I'¢ the stabiliser in I' of &.

Theorem 17.1. Let T' be a lattice in PGLo(K,) ™, and let y9 € T be a lozodromic element of
I'. Then as s — +o0,

(g +1)? VoI(I\X,) _,
22 VoI Ax,) * oA,

*
— Haarg,

aelyy, ha)<s

and

2 ¢ VOI(F%_\\AX,YO)
(qv + 1)2 Vol(T'\X,)

Card{ae (I'-75) N Oy : h(a) < s} ~ s .

When T is geometrically finite, there is an error term of the form O(s'~*) for some x =
kr > 0 in the counting claim and, for every 5 € |0, ﬁ], an error term of the form O(s™*|v| 5)
for some x > 0 in the equidistribution claim evaluated on any S-Hoélder-continuous function

Y. 0, — C.

Proof. The second result follows from the first one by integrating on the characteristic
function of the compact-open subset &, whose Haar measure is 1.

3The groups GLa(K,) and PGL2(K,) act on P*(K,) = K, U {0} by homographies. See Section 15.1.
“See Equation (14.3).
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In order to prove the equidistribution result, we apply Theorem 15.4 with D™ := {x,}
and DT := Ax,,. The families 2% = ('}/]D)i),yer‘/rm) . are locally finite, since I is discrete and
the stabiliser T'p+ of D¥ acts cocompactly on D*. Furthermore, |0, | is finite and nonzero
by Equation (8.11). Since I' is contained in PGLg(K,)", the length spectrum Ly of T is
contained in 27 by | , I1.1.2, Coro.]. Hence, it is equal to 2Z by the equivalence given by
Equation (4.13).

For every 7 € I' such that d(D~,yD*) > 0,° let p~ be the geodesic ray starting at time
0 from the origin of ¢ ., (which is %,) with point at infinity v -, . Since X, is a tree and

e?’y
v+, is one of the two endpoints of YD, the geodesic segment e 10,4~ yp+)] 18 an initial

subsegment of p,.5 Therefore, by Equation (15.15), for the weak-star convergence of measures
on éi]D)_, we have

(@” — (@ +1) VOIT\Xy)  _, TR
ozd @A A O
7+ 'YEF/F]D)+
0<d(D~,yDT)<n

(17.2)

. +
lim LA

n—+w 2 q%

1

) E
error term of the form O(||¢gmq, € ™) for some x > 0 in the above formula when evaluated

on 1 € LM w (0Xy), where 05X, is endowed with the visual distance dy,. Note that on
x,y € O,, the visual distance d,, and the distance (z,y) — |z — y|, are related by

Furthermore, for every 8 € |0 ], by the comment following Equation (15.15), we have an

& = ylo = do, (2,9) % = do (,9)" ",

see Equation (15.3). Hence we have an error term O(||¢]g e *™) for some £ > 0 in the above
formula when evaluated on ) € %/ (0y), where 0, is endowed with the distance (z,y) —
|z — ylo.

Ao

K’U = aOoX/U - {OO}

Let us fix for the moment & € N. For every ¢ € n, % + 0,, we have ¢, = qv_v(g) = ¢~ if
k> 1and [£], < 1if k = 0. By restricting the measures to the compact-open subset 7, % + @,

Sthat is, such that #, ¢ YD
5Tt connects #, to its closest point P+ (#,) on yD*.
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and by Proposition 15.2 (1), we have, with the appropriate error term when I' is geometrically
finite and k = 0,

(@® — D(g +1) VOIT\X,) _, D

n——+00 243 lo. | "
v 7+ el /Ty
'y~'y()_67rv_k+ﬁu
0<d(D~,yDt)<n

_ —2k
vy = G HaArk, @) kig, -

(17.3)

If B € I' is loxodromic and satisfies 5~ € W;k + 0, and B+ ¢ W;k + 0, then the translation
axis of  passes at distance at most 2k from =, since it passes through P, (7 k) which is
the closest point on %%, to W;k. If B €T is loxodromic and satisfies 37, 8" € W;k + 0, then

d(#y, Axg) = 2k + d(H%, Axg) .

Furthermore, we have, by Equations (15.2) and (2.8)

—d( 0, Axg)

87 = B%w = doe, (87,87 = g,
Therefore by the definition of the complexity in Equation (17.1), we have for these elements

1 d(Hp, Ax d(%, Axg)—2k

h(B™) =

Since the family 2% = (YD), er/r, is locally finite, there are only finitely many elements

v € I'/Tp+ such that D" = Ax.,

finitely many v € I'/Tp+ such that v -5 = (v 1)~ € 7% + 0, we have v - 47 =
(yyoy™ D € ;% + O, and, using Equation (17.4) with 8 = yyoy ™",

—1 is at distance at most 2k from =*,. Hence for all but

h(y-g) = g P72k

Therefore, using the change of variable s = ¢,~2*, Equation (17.3) becomes

: (¢” = D(g + 1) VOI(T\X,) 4
lim — s A - = Haarg, . -k . (17.5)
s+ 2q; HU@+ [ vel“z/lz“m e (e

Yy €5 ¥+ 0
0<h(yg )<s

Note that the stabiliser F - of 75 in I' has index Lo~ in I'p+ by the definition of L= and

that I‘/F _ identifies with T"- ’Yo by the map yI" - — 7 Yo - Since ((my) ™% + O, )keN
countable famlly of pairwise disjoint compact-open subsets covering K, and since the support
of any continuous function with compact support is contained in finitely many elements of
this family, we have

is a

21 1 1(T\X
lim (@ 3)(q”+ ) VollTAXy) -y M A, = Haarg, , (17.6)
s§—+00 2qv ’Y()i HU@+” ael AT
0
0<h(a)<s

with the appropriate error term when I' is geometrically finite.
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Recall that by Equation (8.11), if the Patterson measures are normalised to be probability

measures, then

_ qu—1
log+ | = q'”j Vol(I'p+\D¥) .

v

Hence if instead the Patterson densities are normalised to have total mass % as in Propo-
sition 15.2 (2), then
_ gy — 1
logs | = =—— Vol(T'p+\D) .
Qv
Note that, since by = [Caxy, : 1“75],
Vol(Fva\AX%) =Ly Vol(Fax,, \ Axy,) -

Equation (17.6) thus gives the equidistribution result in Theorem 17.1. OJ

In the following two Sections, we use Theorem 17.1 to deduce counting and equidistri-
bution results of elements of non-Archimedean local fields that are quadratic irrational over
appropriate subfields, when an appropriate algebraic complexity tends to infinity.

17.2 Counting and equidistribution of quadratic irrationals in
positive characteristic

Let K be a function field over F,, let v be a (normalised discrete) valuation of K, and let R,
be the affine function ring associated with v. We assume in this Section that the characteristic
of K is different from 2.7

An element 8 € K, is quadratic irrational over K if 5 ¢ K and [ is a root of a quadratic
polynomial af? + b3 + ¢ for some a,b,c € K with a # 0. The Galois conjugate 3° of f3 is
the other root of the same polynomial. Let tr(f) = 8 + 87 and n(f) = 587 be the relative
trace and relative norm of . It is easy to check that 8% # [ since the characteristic of K is

different from 2. The next proposition gives a characterisation of quadratic irrationals over
K.

Proposition 17.2. Let 8 € K,,. The following assertions are equivalent:
(1) B is quadratic irrational over K,
(2) B is a fixred point of a lozodromic element of PGLa(Ry).

Proof. The fact that (2) implies (1) is immediate since PGL2(R,) acts by homographies.
The converse is classical, see for instance | , Lem. 6.2] in the Archimedean case and
| | above its Section 5 when K = F,(Y") and v = vg. O

If 8 € K, is quadratic irrational over K, its Galois conjugate 57 is the other fixed point
of a loxodromic element of PGLa(R,) fixing (3, hence the notations 57 in this Section and in
Section 17.1 coincide.

The actions by homographies of the groups GLa(R,) and PGLy(R,) on K, U {0} preserve
the set of quadratic irrationals over K. Contrary to the case of rational points, both groups
act with infinitely many orbits.

"This is equivalent to g being odd.
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The complexity of a quadratic irrational o € K, over K is

1

la — a?l, 7

h(a) =

see for instance | , §6] for motivations and results when K = F, (YY) and v = vy. Note
that this complexity is invariant under the action of the stabiliser GLa (R, ) of 00 in GLa(Ry),
which is its upper triangular subgroup. In particular, it is invariant under the action of R, by
translations.® In [ |, where K and |- |, are replaced by Q and its Archimedean absolute
value, there was, for convenience, an extra factor 2 in the numerator of the complexity, which
is not needed here. We refer for instance to | , Lem. 4.2| for the connection of this
complexity to the standard height, and to | , §4.2, 4.4] and | , §6.1] for studies
using this complexity.

The complexity h(-) satisfies the following elementary properties, giving in particular its
behaviour under the action of PGLy(R,) by homographies on the quadratic irrationals in K,
over K. We also give the well-known computation of the Jacobian of the Haar measure for the
change of variables given by homographies, and prove (using the properties of the complexity
h(-)) the invariance of a measure which will be useful in Section 18.1.

For all g = (CCL 2) € GLo(K,) and z € K, such that g -z # o0, let

jglz) = Lol
lez+d| 2"
Proposition 17.3. Let a € K, be a quadratic irrational over K.
1

(1) We have h(a) = @ = tna)l,

(2) For every g = <i Z) € GLy(K) with |det g|, = 1, we have
h(g-a)=|n(d+ ca)|y h(a) .

(3) If Qo : Ryx Ry, — [0, 400 is the map (z,y) — |n(z—y a)l|y, then for every g € GLa(R,),

we have ha)
«@
Qga = Qa0 g_l .
7 h(g-a)
In particular, if g € GLa(R,) fizes a, then
Qaog=CQq .-

(4) For all x,y,z € K, and g € GLa(K,) such that g-x,g-y,g -z # ©, we have
lg-x—g-yls = le—yll jg(=) joy)
and

d(g7 1)« Haarg,
dHaarg,

(2) -

jg(z) =

8This is a particular case of Proposition 17.3 (2) below.
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(5) The measure
d Ha
(Z) arg, (Z)

N |z —aly |z — a,

on K, —{«a,a%} is invariant under the stabiliser of o in PGLo(R,)

Proof. (1) This follows from the formula (o — a°)? = (a + a%)? —4aa’.

(2) Since g has rational coefficients (that is, coefficients in K'), we have
0= (g-0)f =g a— ao_aoﬁ—biaof’—l—b
g g -9 g Cca+d ca®+d
(ad —be)(a—a”)  (detg)(a— a?)

(ca + d)(cal + d) n(d + ca)

Taking absolute values and inverses, this gives Assertion (2).

a—co”

(3) Let g = <CCL Z) € GLy(R,). Note that g~ - o = 92=b_ For all z,y € R,,, we hence have

n ((az + by) — (cz + dy)a) = n (z(a — ca) — y(da — b))
=n (z(a — ca) — y(a — ca) gt )

1

=n(a—ca)n(z—yg  -a)

Taking absolute values and using Assertion (2), we have

h(g™" - )

Qaog= h(a)

Assertion (3) follows by replacing g by its inverse.

(4) Let g = (i Z) € GLa(K,). As seen in the proof of Assertion (2), we have

(det g)(z — y)
cr+d)(cy+d)’

9790y = |

Taking absolute values and squares, this gives the first claim of Assertion (4).

az+b
cz+d

Recall that a homography z — is holomorphic’ on K, — {fg}, with derivative

zZ (55;3332. Hence infinitesimally close to z, the homography acts (up to translations which
leave the Haar measure invariant) by a homothety of ratio (gj:i’)cg. By Equation (14.6), this
proves that
| det gl
d Haar cz) = —— dHaarg (2),
Kv(g ) |CZ+d|Uz Kv( )

as wanted.

9We refer for instance to [ | for background on holomorphic functions on non-Archimedean local fields.
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(5) Let g = (CCL b> € GLa(R,) fixing . Note that an element of GLy(R,) which fixes a also

d

fixes a?. By Assertion (4), we have

dHaarg, (g - 2) dHaarg, (g - 2)

dula - 2) = -
M9 2 = Tl g =o'l g r—g- allg-z—g a7

_ jg(z) dHaarg, (2)
|z — aly 4/jg9(2) jg(@) |z — o]y 4/jg(2) jg(a”)
1

~ Viga) jgla?) =)

Again by Assertion (4), since |detg|, = 1 as detg € (R,)* = (F,)* by Equation (14.3), by
Assertion (2) and since g fixes a, we have

1
Jjg(a) jg(a”)

=lca+d, |ca’ +d|, = |n(ca+d)|,

The result follows. ]

Let G be a finite index subgroup of GLo(R,). We say that a quadratic irrational 5 € K,
over K is G-reciprocal (simply reciprocal if G = GLg(R,)) if some element of G maps 3 to 7.
We define the G-reciprocity index v;(3) as 2 if 8 is G-reciprocal and 1 otherwise. Similarly,
we say that a loxodromic element 7 of G is G-reciprocal (simply reciprocal if G = GLa(R,))
if there exists an element in G that switches the two fixed points of ~.

Proposition 17.4. Let G be a finite index subgroup of GLa(R,), and let v be a loxodromic
element of G. The following assertions are equivalent:

(1) v is conjugate in G to v'y~1 for some v' € G pointwise firing Ax.,
(2) the lozodromic element v is G-reciprocal,

(3) the quadratic irrational v~ is G-reciprocal.
When G = GLa(R,), Assertions (1), (2) and (3) are also equivalent to

(4) the image of v"~v in PGLa(R,), for some v" € G pointwise fixing Ax., is conjugate to
the image in PGLa(R,) of tv.

Proof. Most of the proofs are similar to the ones when R,, K and v are replaced by Z, Q
and its Archimedean absolute value, see for instance | |. We only give hints for the sake
of completeness. Let o =7

If a is G-reciprocal, then let 8 € G be such that 8- a = a?. Since R, < K, we have
B-a° = a. Hence ByB~! is a loxodromic element of G fixing o and o, having the same
translation length as -, but translating in the opposite direction on Ax,. Hence 7/ = BB 1y
fixes pointwise Ax,. Therefore (3) implies (1).

If B € G conjugates v to vy~ for some v € G pointwise fixing Ax,, then 3 preserves the
set {a, a”}. Hence, it preserves the translation axis of  but it switches o and a“ since 7 and
7'y~1 translate in opposite directions on Ax.. Therefore (1) implies (2).
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The fact that (2) implies (3) is immediate, since o = .

The equivalence between (1) and (4) when G = GLa(R,) follows from the fact that the
stabiliser of Ax, normalises the pointwise stabiliser of Ax,, and from the formula

cfa BTN 1 0 1\fa b\/0 1\
c d T ad—be \-1 0)\c d)\-1 0

which is valid over any field. O

The following result says that any orbit of a given quadratic irrational in K, over K, by
homographies under a given finite index subgroup of the modular group PGLy(R,), equidis-
tributes to the Haar measure on K,. Again, note that we are not assuming the finite index
subgroup to be a congruence subgroup.

Theorem 17.5. Let G be a finite index subgroup of GLa(R,). Let ag € K, be a quadratic
irrational over K. Then, as s — 400,

*
A, — Haarg, ,

(qv + 1)2 CK(—l) mo [GLQ(RU) : G] sl Z
2 q% (q o 1) ]v(trgo)| aeG-ap : h(a)<s
where gy € G fizes ag with v(tr go) # 0, and where my is the index of g% in the stabiliser of
ag i G. Furthermore, there exists k > 0 such that, as s — 400,

2q; (q—1) |v(tr go)|

Card{ae (G- ag) n Oy : h(a) < s} = (g0 + 1)2 Ck(—1) mg [GLa(Ry) : G]

s+ 0(s' ) .

For every j € ]0, ﬁ], there exists k > 0 such that for every ¢ € €72 (Kv)) there is an

error term in the above equidistribution claim evaluated on 1, of the form O(s™"|[+| ).

Proof. We apply Theorem 17.1 with I" the image of G in PGLy(R,) and with vy the image
in PGLy(R,) of the element gg introduced in the statement. Note that I', which is contained
in Ty, is indeed contained in PGLy(K,)™.

By Equation (15.6), the translation length of g in X, is 2 |v(trg)|, and g € GLa(R,) is
loxodromic if and only if v(trg) # 0. This implies that go exists, since G has finite index in
GL2(R,), and such an element exists in GLg(R,) by Proposition 17.2. Furthermore

A(0) = 2 Jv(tr go)| -
Since the centre of GLo(K,) acts trivially by homographies, we have
G-ag=T" a.

For every a € G - ap, the complexities h(«), when « is considered as a quadratic irrational or
when « is considered as a loxodromic fixed point, coincide.
Since the centre Z(G) of G acts trivially by homographies, by the definition of mg in the
statement, we have
[, tof) - G ol _ o
o Z(G)]  12(G)]
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Therefore,

1 A7)
Vol(I -\ Ax,,) = ———= Vol(hZ\ Ax,,) = ——H—r
Yo Yo [F,YO— . ’Yg] 0 Yo [F,YO— . ’YOZ]
2 |u(t Z(G
mo
Theorem 17.5 now follows from Theorem 17.1 using Equations (16.6) and (17.7). ]

Example 17.6. (1) Theorem 1.13 in the Introduction follows from this result, by taking
K =F,(Y) and v = vy, and by using Equation (14.5) in order to simplify the constant.

(2) Let Gt be the Hecke congruence subgroup associated with a nonzero ideal I of R,, see
Equation (16.11). By Lemma 16.5, we have, as s — +00,

(gv + 1) Ce(—=1) mo N(I) [T, (1 + ﬁ) =
a2 (q—1) Jv(tr go)|

*
Z A, — Haarg, .

aeGrap : h(a)<s

We conclude this Section by a characterisation of quadratic irrationals and reciprocal
quadratic irrationals in the field of formal Laurent series F,((Y 1)) in terms of continued
fractions. When F,[Y], Fy(Y) and vy are replaced by Z, Q and its Archimedean absolute
value, we refer for instance to [Sarn| and | , Prop. 4.3| for characterisations of reciprocal
quadratic irrationals.

Recall that Artin’s continued fraction expansion of f € F (Y 1)) —F,(Y) is the sequence
(a; = a;(f))ien in Fo[Y] with dega; > 0 if 4 > 0 such that

1
f =ag + 1
ai + 1
as +
asz + —
See for instance the surveys |Las, |, and | | for a geometric interpretation. We say

that the continued fraction expansion of f is eventually periodic if there exist n € N and
N € N — {0} such that a,4; = apyn4i for every i € N, and we write

f = [a07--~7an—1aan7~-- 7an+N—1] .

Such a sequence a,...,a,+n—1 is called a period of f, and if of minimal length, it is well
defined up to cyclic permutation.

Two elements 3, 3" € F,((Y 1)) are in the same PGLy(F,[Y])-orbit if and only if their
continued fraction expansions have equal tails up to an invertible element of F,[Y] by | ,
Theo. 1]. More precisely, 5,5’ € K, are in the same PGLy(F,[Y])-orbit if and only if there

exist m,n € N and = € F;* such that for every k € N, we have a,,x(8') = (=D am+k(B).
Proposition 17.7. Let K = Fy (YY) and v = ve.

(1) An element a € K, — K is quadratic irrational over K if and only if its continued
fraction expansion of B is eventually periodic, and if and only if it is a fized point of a

lozodromic element of PGLa(F,[Y]).
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(2) A quadratic irrational o € K, is reciprocal if and only if the period ay, . ..,an—1 of the
continued fraction expansion of o is palindromic up to cyclic permutation and invertible
elements, in the sense that there exist x € F; and p € N such that for k =0,...,N —1,

we have aj4p = eV an_pa (with indices modulo N ).

Proof. (1) The equivalence of being quadratic irrational and having an eventually periodic
continued fraction expansion is well-known, see for instance the survey |Las, Theo. 3.1]. The
rest of the claim follows from Proposition 17.2.

(2) The proof is similar to the Archimedean case in [Per, §23].1° For every quadratic irrational
feF, (Y1), up to the action of GL2(F,[Y]), we may assume that f, (f7)~! € Y 1F,[[Y !]]
and f = [0, @1, az,..-,ay|. Then we may define by induction quadratic irrationals fa, ..., f, €
F,((Y~1)) over F,(Y) such that

1 1
Z=atfo, m=atfs ..., — =1t o, T =antf.
f f2 forr T
Passing to the Galois conjugates, we have
F=@1+f27 E=a2+f3a ceey fT{ZGn_Ff .
Taking these equations in the reverse order, we have
1 1 1 1 1 1
— =0y~ s, 1 = 01— S Hak s o
e T ¢
so that, since —f%, e YIF,[[Y1]], we have
1
—F = [0, an,...,ag,al] .
Therefore f = [—ayp, ..., —a, —aj]|. Thus, if f and f7 are in the same orbit, the periods are
palindromic by | , Theo. 1]. O

17.3 Counting and equidistribution of quadratic irrationals in

Q,

There are interesting arithmetic (uniform) lattices of PGL2(Q,) constructed using quaternion
algebras. In this Section, we study equidistribution properties of loxodromic fixed points
elements of these lattices. We use [Vig| as our standard reference on quaternion algebras.

Let F be a field and let a,b € F*. Let D = (aI;b) be the quaternion algebra over F'
with basis 1,4, 4,k as a F-vector space such that i = a, j2 = b and ij = ji = —k. If
T =19+ T1t + x2j + x3k € D, then its conjugate is

T =xg— Tt — T2j — x3k,

108ee also [ , Coro. 1] by relating, using twice the period, what the authors call the — continued fraction
expansion to the standard expansion.
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its (reduced) norm is
N(z) =27 = af — ax? —bas + aba?

and its (reduced) trace is
Tr(z) =2z +7T =2x.

Let us fix two negative rational integers a, b and let D = (%’) . For every field extension FE
of Q, we denote by Dg the quaternion algebra D ®q E over E, and we say that D splits over
E if the E-algebra D ®q FE is isomorphic to M(E). The assumption that a,b are negative
implies that D does not split over R. Furthermore, when p € N is an odd prime, D splits over
Q, if and only if the equation az? + by? = 1 has a solution in Q,, see [Vig, page 32|.

The reduced discriminant of D is

Discp = H q.

geRam(D)

where Ram(D) is the finite set of primes p such that D does not split over Q,.

For instance, the quaternion algebra D = ( 71@71) splits over Q,, if and only if p # 2, hence
it has reduced discriminant 2.

Assume from now on that p € N is a positive rational prime such that D splits over Q,
and, for simplicity, that Q, contains square roots /a and Vb of a and b. For example, if
a = b = —1, this is satisfied if p =1 mod 4. We then have an isomorphism of Q,-algebras

0 = 04,5 : Do, — M2(Q,) defined by

xo + x1v/a Vb (z9 + \/ax3)> | (178)

Vb (z3 — v/axs) T0 — T1V/a

O(xo + x11 + x2j + x3k) = <

so that
det(0(z)) =N(z) and tr(6(x)) = Tr(z) .

If the assumption on the existence of the square roots in @, is not satisfied, we can replace
Qp by an appropriate finite extension, and prove equidistribution results in this extension.

Let & be a Z[%]—order in Dg,, that is, a finitely generated Z[%]—submodule of Dq, gener-
ating Dg, as a Qp-vector space, which is a subring of Dg,. Let & I be the group of elements
of norm 1 in &. Then the image I', of §(6") in PGL3(Q)) is a cocompact lattice, see for
instance [Vig, Sect. IV.1]. In fact, this lattice is contained in PSL2(Q)), hence in PGLy(Q,) ™.
We denote by X, the Bruhat-Tits tree of (PSL2,Q,), which is (p + 1)-regular.

The next result computes the covolume of this lattice.'!

Proposition 17.8. Let D be a quaternion algebra over Q which splits over Q, and does not
split over R. If Onax is a mazimal Z[%]-order in Dq, containing O, then

1 _1ot .o P _
VOI(Fﬁ\\Xp) - [ﬁmax 10 ] 12 H (q 1)
g| Discp
Proof. We refer to [Vig, page 53| for the (common) definition of the discriminant Disc(Q,)
of the local field Q, and Disc(Dg,) of the quaternion algebra Dg, over the local field Q,. We

will only use the facts that Disc(Qp) = 1 as it easily follows from the definition, and that
Disc(Dg,) = Disc(Q,)* N (pZ,)? = p? (17.9)

"The index ¢ ranges over the primes dividing Discp, that is, over the elements of Ram(D).
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which follows by [Vig, Lem. 4.7, page 53] and [Vig, Cor. 1.7, page 35| for the first equality
and N (pZy) = Card(Z,/pZ,) = Card(Z/pZ) = p for the second one.

We refer to [Vig, Sect. I1.4, page 52| for the definition of the Tamagawa measure pr on
X>* when X = Dg, or X = Q. It is a Haar measure of the multiplicative locally compact
group X *, and understanding its explicit normalisation is the main point of this proposition.

By [Vig, Lem. 4.6, page 52|,'? with dz the Haar measure on the additive group X,'* with ||
the module of the left multiplication by z € X* on the additive group X, we have
1
dpr(z) =

— dz
Disc(X) ||z||

By [Vig, Lem. 4.3, page 49|, identifying Dq, to M2(Q,) by 6, the measure of GLa(Z,) for the
measure W dr is 1 — p~2. Hence, by scaling and by Equation (17.9), we have

_(1=-pA-p)  P*-1p-1)
pr(GLa(Zy)) = DiscDg,) o :

Again by [Vig, Lem. 4.3, page 49], the mass of Z for the measure m dz on Q is 1,
hence by scaling
1—p ! p—1

pr(Z,) = . =
\/Disc(Qp) P
By [Vig, page 54|, since we have an exact sequence

1 — SLy(Q,) — GLy(Q,) X% Q@ — 1,

the Tamagawa measure of GL2(Q,) disintegrates by the determinant over the Tamagawa
measure of Q with conditional measures the translates of a measure on SLa(Qy), called the
Tamagawa measure of SLy(Q)) and again denoted by pp. Thus,

_ pr(CLa(Z,) _p* -1

pr(SLe (Zp))

pr(Zy) p?
By Example 3 on page 108 of [Vig], since the Z[%]—order Omax 1s maximal, we have, with
G = 0(Oax),

pr(@\SLa(@y) = - (1-p7) ] (a—1).

g| Discp

Since GL2(Qy) acts transitively on VX, with stabiliser of the base point % = [Z,, x Z,] the
maximal compact subgroup GLa(Z,),'” and by the centred equation mid-page 116 of | ],

we have
_ 1 pr(G\GL2(Qy)) _ pr(G\SLa(Qp))
Vol(G\X,) = [g;]eGZ\VXp |G| pr(GL2(Zy)) pr(SLa(Zp))
= 11 @-v.
q| Discp

12G8ee also the top of page 55 in loc. cit.

13with a normalisation that does not need to be made precise

g0 that (M, )sdx = ||z|| dz where M, : y — zy is the left multiplication by = on X
15See Section 15.1.
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The natural homomorphism G = 0(0y,,,) = Ty is 2-to-1 and [Ty, Tyl = [On,, : O],
so that

Vol(I'y, - \X,) =2 Vol(G\X,)..
Proposition 17.8 follows. ]

Note that the fixed points z for the action on P}(Q,) = @, u {00} by homographies of the
elements in the image of §(D) are quadratic over Q(+/a,v/b). More precisely, ﬁ is quadratic

over Q(y/a). An immediate application of Theorem 17.1, using Proposition 17.8, gives the
following result of equidistribution of quadratic elements in Q, over Q(+/a, \/5)

Theorem 17.9. Let ' be a finite index subgroup offlﬁ, and let vy € T be a lozodromic element
of I'. Then as s — 40,

(P +1)? Tgpiscy, (@ = 1) [Omax - '] 05 :T] 3

A, = H
24p VoI _\ Axy,) ° ATy -

aely, h(a)<s

where Opmax %5 a mazimal Z[%]—order in Dq, containing O, and there exists k > 0 such that
as s — +0ao0

Card{ae (I' -7y ) nZy : h(a) < s}

24 p Vol(T, -\ Ax,,) B
) (p + 1)2 HQ‘DiSCD (q o 17) [ﬁrlnax : ﬁl] [Flﬁ’ : F] o O(Sl ) - U

Assume furthermore that the positive rational prime p € N is such that p = 1 mod 4
2
and that the integer % is not of the form 4*(8b + 7) for a,b € N (for instance p = 5). By

Legendre’s three squares theorem (see for instance | |), there exist x, 4, x4 € Z such that

p—1

— = x’12 + $’22 + xéQ. Hence there are x1, zs, 23 € 27 such that p? — 1 = 212 + 222 + 23°.

A standard consequence of Hensel’s theorem says that when p is odd, a number n € Z
has a square root in Z, if n is relatively prime to p and has a square root modulo p, see for
instance | , page 351]. Thus, 1 — p? has a square root in Z,, that we denote by /1 — p2.
As noticed above, since p =1 mod 4, the element —1 has a square root in Q,,, that we denote

by . The element
o — exy ++/1— p?
0 xr3 + X2

is a quadratic irrational in Q, over Q(e).

The following result is a counting and equidistribution result of quadratic irrationals over
Q(e) in Q. We denote by a” the Galois conjugate of a quadratic irrational « in Q, over

Q(e), and by
1

o — a7,

h(a) =

the complexity of a.
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Theorem 17.10. Let D = (_1@_1) be Hamilton’s quaternion algebra over Q. Let p € N be

a positive rational prime with p =1 mod 4 such that p%l is not of the form 4*(8b + 7) for
a,be N and let O be the Z[%]—orderw
O={eeZJ|+Z[5]i+2Z[}]j+Z[}]k : =1 mod 2}

in Dq,. Let T" be a finite index subgroup of Flﬁ. Then as s — +0,

(p+1)2 [T, :T] = Z

ES
307 hr A, — Haarg,,

aelap, h(a)<s

l+exy —x3+ex0

kr
] e I'. Further-
xr3 + Ex2 1—ex

where kr is the smallest positive integer such that [
more, there exists k > 0 such that as s — +00

2 p? kr
(p+1)2 [I‘lﬁ : T

Card{ae (I'-ag) nZp : h(a) < s} = s+ 0(s'7") .

Proof. The group &% of invertible elements of & is
0% ={ze 0 : N(z)ep”}.

The centre of 0% is Z(0*) = {£p" : n € Z} and the centre of 0! is Z(0') = {£1}. We
identify €0'/Z(0") with its image in 6*/Z(0>). The quotient group & /Z(0*) is a free

group on s = % generators yi,%2,...,%s, which are the images modulo Z(0*) of some
elements of & of norm p, see for instance | , Coro. 2.1.11].17

Since N(p) = p?, any reduced word of even length in S = {yli,v;j, ...,7E} belongs to
01/Z(0"). Two distinct elements in S differ by a reduced word of length 2, and v; does not
belong to ¢'/Z(0"). Hence {1,71} is a system of left coset representatives of 01/Z (&) in
0*/Z(0*), and the index of 61/Z(0") in 6% /Z(0) is

[0*)Z2(0%): 0" )Z(6M)] =2. (17.10)
Let
l4+exy —x3+ET2
go = <x3+psx2 1715):1:1 ) :
P P

By the definition of the isomorphism 6 in Equation (17.8) (with v/a = vb = ¢) and of the
integers x1, x2, 3, the element gg belongs to §(&) since x1, x2, x3 are even (and p is odd), and
det go = 1. Hence go € 6(0"). Its fixed points for its action by homography on P*(Q,) are,

by an easy computation,
ex] = ﬂ
T3 + € T9 '

16This order plays an important role in the construction of Ramanujan graphs by Lubotzky, Phillips and
Sarnak | ) | (see also | , §7.4]), and in the explicit construction of free subgroups of SO(3)
in order to construct Hausdorff-Banach-Tarsky paradoxical decompositions of the 2-sphere, see for instance
[ , page 11].

"The group 6*/Z(6*) is denoted by A(2) in [ , page 11].
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In particular, aq is one of these two fixed points. Note that tr gy = %, hence |vp(trgo)| = 1,

and the image [go] of go in PGL3(Q,) is a primitive loxodromic element of T'}.
Let us define

Y0 = [go]<*r

where € € {£1} is chosen so that 7; = ag and where kr is defined in the statement of Theorem
17.10. Since T has finite index in '}, some power of [go] does belong to T', hence kr exists
(and note that kp = 1 if I' = I'y). By the minimality of kr, the element g is a primitive
loxodromic element of I". We will apply Theorem 17.1 to this ~.

The algebra isomorphism 6 induces a group isomorphism from ¢* /Z(0*) onto its image
in PGL2(Q,), that we denote by F;.lg By | , Lem. 7.4.1], the group T'j; acts simply
transitively on the vertices of the Bruhat-Tits tree X,.

In particular, I'}; acts freely on X, and by Equation (17.10), we have

VOI(leﬁ’\\Xp) =[I'7: Flﬁ‘] Vol(I 7\X,)
=[0%/Z(0"): 6" )Z(6")] Card(TZ\VX,) = 2. (17.11)

Again since Flﬁ (hence I') acts freely on X, and since 7q is primitive loxodromic in T, we
have

Vol(I -\ Axy,) = Card (I, -\VAxy, ) = A(70)

= kr M[go0]) = 2 kr |vp(trgo)| = 2 kr . (17.12)
Using Equations (17.11) and (17.12), the result now follows from Theorem 17.1. ]
'8 This group is denoted by T'(2) in | , page 95].
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Chapter 18

Counting and equidistribution of
crossratios

We use the same notation as in Chapter 17: K, is a non-Archimedean local field, with
valuation v, valuation ring &, choice of uniformiser 7,, residual field k, of order ¢,, and X,
is the Bruhat-Tits tree of (PGLq, K,). Let I" be a lattice in PGLa(K,).

In this Chapter, we give counting and equidistribution results in K, = 05,X, — {00} of
orbit points under I', using a complexity defined using crossratios, which is different from the
one in Chapter 17. We refer to | | for the development when K, is R or C with its
standard absolute value.

Recall that the crossratio of four pairwise distinct points a, b, ¢,d in Py (K,) = K, u {0}
is
(c—a)(d—b) x
(c=b)(d—a) c F)"
with the standard conventions when one of the points is c0. Adopting Ahlfors’s terminology in

the complex case, the absolute crossratio of four pairwise distinct points a, b, ¢, d € P1(K,) =
K, u {owo} is

[a,b,c,d] =

_ lc — aly |d — by

L bye.dly = |[a,b,e,d]|y = —— =Y
|(1, /(,(|L ’[a c ]|U ]c—b]v]d—a\v

with conventions analogous to the previous ones when one of the points is c0. As in the
classical case, the crossratio and the absolute crossratio are invariant under the diagonal
projective action of GLo(K,) on the set of quadruples of pairwise distinct points in Py (K,).

18.1 Counting and equidistribution of crossratios of loxodromic
fixed points

Let a, 8 € K, be loxodromic fixed points of I'. Recall that a?, 57 is the other fixed point of

a loxodromic element of I' fixing «, 5, respectively. The relative height of 5 with respect to «

ist

1
)7 _ _ c__ 0 O o _ )
1a(B) la—a%ly 18— B max{\ﬂ aly |87 = a%ly, [B—a’ly|B a’v}
!The factor |@ — a°|, in the denominator, that did not appear in | | in the analogous definition for

the case when K, is R or C, is there in order to simplify the statements below.
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When 5 ¢ {a, %}, we have

1

min{|a,ﬁ, a07/80|v7 |a,ﬁa" aaa 6’1}} .

hoz(ﬁ) = max{|aw87/807040‘v7 ‘aaﬁgaﬁaaa|v} =

(18.1)

We will use the relative height as a complexity when [ varies in a given orbit of I' (and « is
fixed).

The following properties of relative heights are easy to check using the definitions and the
invariance properties of the crossratio.

Lemma 18.1. Let o, 8 € K, be loxodromic fized points of I'. Then

(1) har(B7) = ha(B) for all p,7 € {id, c}.

(2) If B € {a,a”}, then ho(B) = 1.

(3) hy.a(y - B) = ha(B) for every yeT.

(4) haly - B) = ha(B) for every ~ € Stabr({a, a?}). 0

The following result relates the relative height of two loxodromic fixed points with the
distance between the two translation axes.

Proposition 18.2. Let «, § € K, be lorodromic fized points of T' such that 8 ¢ {a,a”}. Then

hoz(ﬁ) — qu(]avo‘a[ﬂ]ﬂ:Ba[) .

In particular, we have hy(83) > 1 if and only if the geodesic lines |a, a?[ and |3, 57[ in X,
are disjoint, and hy(f) = 1 otherwise (using Lemma 18.1 (2) when S € {a, a}).

Proof. Up to replacing o, 5,a%, 37 by their images under a big enough power v of a loxo-
dromic element in I' with attracting fixed point in 0, we may assume that these four points
belong to 0,. Note that v exists since AI' = 0, X, and it preserves the relative height by
Lemma 18.1 (3) as well as the distances between translation axes.

Let A = Ja,a?[ and B = |3, 87[. Let u be the closest point to x, on A, so that

vl —a?%) = d(u,*,) .

We will consider five configurations.

o g ol

@ %o

Case 1. First assume that A and B are disjoint. Let [a,b] be the common perpendicular
from A to B, with a € A, so that

d(A, B) = d(a,b) .
274 19/12/2016



First assume that u # a. Up to exchanging o, o’ (which does not change d(A, B) or hq ()
by Lemma 18.1 (1)), we may assume that a € [u, . Then (see the picture on the left above),

U(B_BU) = d(b, *v)a U(a_ﬂ) = U(O‘_BU) = d(a7 *U)

and
v(@” = B) =v(a” = B7) = d(u, %) .
Therefore

|a,,8, a0750’v _ |Oé,,80, a076|fu _ qUU(Oé*,B)Jr’U(aa750)71}(017&0)71}(,87,30)

_ qd(a,*v)fd(b, #y) —d(a,b) _ ,—d(A,B)

=4q 4y )

which proves the result by Equation (18.1).

Assume on the contrary that u = a. Let v’ € VX, be such that [a,*,] N [a,b] = [a,u/].
Note that u’ € [#,,b] since 3,37 € €,. Then (see the picture on the right above),

v(B—B%) =db,*), v(a—p)=v(a—-p)=v(" —f)=v@ - %) =du, ).
Therefore

|Oé,5, aJ)BU’v = |Oé,ﬁ0, 04076|v = qv(oc—ﬁ)-i—v(oz”—ﬁ”)—U(a—a")—v(ﬁ—ﬁ")

v

2d(v, #y)—d(a, %) —d(b, %)

— q’l} _d(a7 b)

=q,

—d(A, B)

=4q

il

which proves the result by Equation (18.1).

a p g ar a g o

Case 2. Now assume that A and B are not disjoint, so that
d(A,B) =0.

Since 8 ¢ {a,a”}, the intersection A N B is a compact segment [a,b] (possibly with a = b)
in X,. Up to exchanging o and o, as well as 5 and 37 (which does not change d(A, B) nor
ha(B) by Lemma 18.1 (1)), we may assume that «, a, b, «” and 3, a,b, 3% are in this order on
A and B respectively, and that a € [u, of .

Assume first that b € Ju,a[. Then (see the picture on the left above),

U(a - 5) = d(a, *v)a v(a - /80) = U(B - BU) = d(b, *v)

and
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Therefore

|a760,aa’ ﬂ|v _ qvv(afB)Jrv(aG,Ba)fv(afaﬁ)fv(gfga) _ qf}l(a,*v)fd(b, *y) _ qg(a,b) >1

= b}

and
la, B, a7, 87|, = qvv(a—ﬁ )+v(a®—B)—v(a—a)—v(B—B7) _ P =1= g UAB)

which proves the result by Equation (18.1).
Assume that b € Ju,a”[. Then (see the picture in the middle above),

’U(Oé—ﬁ) = d(aa *’U)? U(ao—_ﬁo—) = d(ba *1})

and
v(a—p7) =v(B—a”) =v(B— B7) = d(u,=) .
Therefore
la, 87,07, B, = ql@— v =) —v(a=a)—u(F=57)
— gilas o) +(b, o) =2du0) _ gd(ab) 5
and

o, B,a7, B, = gLl A7) Hv=f)—v(a—a?)—v(F=F7) _ (0 _ 1 _ ¢—d(4,5)

which proves the result by Equation (18.1).

Assume at last that b = u. Let v’ € VX, be such that [b, *,] N [b, 37 = [b,u']. Then (see
the picture on the right above),

U(a - B) = d(a, *v), 'U(Oéa —_ ﬂ) = d(u, *v)
and
vl = B7) = v(B = B7) = v(a” = §7) = d(u', %) .
Therefore
la, 87,07, B, = ql@~ v =7 —v(a—a)—u(F=57)
_ qqc)l(a, #y) —d(u,*y) _ qg(a,b) >1 ,

and
o, 8,07, B%|, = gLl P Hv@—f)—v(a—a?)=v(F=F7) _ o0 _ 1 _ —d(4B)

which proves the result by Equation (18.1). O

The next result says that the relative height is an appropriate complexity on a given orbit
under I' of a loxodromic fixed point, and that the counting function we will study is well
defined. We denote by I'¢ the stabiliser in I" of a point £ € 0,:X,, = Py (K,).

Lemma 18.3. Let o, 8 € K, be lozodromic fixed points of I'. Then for every s > 1, the set
Es={8 €T, \['-8 : 1<h.(p)<s}

is finite.
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Proof. The set E; is well defined by Lemma 18.1 (4). Recall that a loxodromic fixed point is
one of the two points at infinity of a unique translation axis. By local finiteness, there are, up
to the action of the stabiliser of a fixed translation axis A, only finitely many images under
I' of another translation axis B at distance at most ﬁ?qi from A. Since the stabiliser of A
contains the stabiliser of either of its points at infinity with index at most 2, the result then

follows from Proposition 18.2. ]

We now state our main counting and equidistribution result of orbits of loxodromic fixed
points, when the complexity is the relative height with respect to a fixed loxodromic fixed
point.

Theorem 18.4. Let T' be a lattice in PGLo(K,)T. Let ag, By € K, be lozodromic fized points
of T'. Then for the weak-star convergence of measures on K, — {ag,af}, as s — 400,

(qp +1)? Vol(T'\X,) o1 Z Ay B dHaarg, (2)
247 Jao — ol VolTs ' 100: 580 * peppn 5 e [z~ aolu |z~ gl
Furthermore, as s — 400,

_ 2.gy Vol(T'ap\ Jao, of[) Vol(T's,\ 150, 55 [)
(g +1) Vol(I'\Xy)

Card Ty \\{B el By : hay(B) < s}

If T is geometrically finite, for every ' € ]0,1], there exists £ > 0 such that for every
P e %CBI(Kv —{ap,af}), where K, — {ap, af} is endowed with the distance-like map d]()émo[g[,2
there is an error term in the equidistribution claim of Theorem 18.4 when evaluated on v, of
the form O(s™"[1[|g). This result applies for instance if ¢ : K, — {a,af} — R is locally
constant with compact support, see Remark 3.2.

Proof. The proof of the equidistribution claim is similar to the one of Theorem 17.1. We
now apply Theorem 15.4 with D™ := ]ap, o[ and D := |5y, [ . Since I is contained in
PGLy(K,)™", the length spectrum Lr of T' is equal to 2Z. The families 2+ = (’Y]D)i),yer/rni
are locally finite, and o, || is finite and nonzero.

Arguing as in the proof of Theorem 17.1,° we have

1}2 -1 . 1) Vol(I' Xv o
lim (¢ )(3(] t1) Yo (7\\ ) v Z Ayg, = (a+)*U$’ (182)
n—s-+o0 2qy log-| Yel/Tp+

0<d(D~,yDt)<n

for the weak-star convergence of measures on 05, X, — 0xID_. When I' is geometrically finite,
for every ' € ]0,1], there exists £ > 0 such that for every S-Holder-continuous function
Y € ‘Kf l((?ooXU — 0wD_), where 0,X, — 0,D_ is endowed with the distance-like map dp-,
there is an error term in the equidistribution claim of Theorem 18.4 when evaluated on ), of
the form O(s™"|¢] ).

By Proposition 18.2, we have

hao (7 - Bo) = ¢,2® ).

2See Equation (15.14).
3See Equation (17.2).
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By Proposition 15.2 (5), we have

~ Oéo—OéU’v
o)t = | 0 dHaarg (2
5 = o agl Tz — agl, T

n

on the full measure subset K, —{ap, o} of 0,X,. Hence, using the change of variable s = ¢,

we have, with the appropriate error term when I' is geometrically finite,

SETOO 2q3 —aof -
% o — ol o g |

(@2 —1)(qo + 1) Vol(T'\X,) o1 Z A _ dHaarg, (z)
T e —aollz ol
'YEF/F]DH—
1<hag (v-Bo)<s

We again denote by ¢, the index
lag = [F{ao,ag} :Fao] )
and similarly for fy. Since the stabiliser I'g, of By in I' has index tg, in I'p+ and I'/T'g,

identifies with I' - 8y by the map v — - 5y, we have, with the appropriate error term when
I' is geometrically finite,

N 1)(3qv +1) Voi(F\\XE) S dHaarg, ()
s—+00 2q; lao — aflv o5+ | tg Py |z — aolv |2 — v
1<hay (B)<s

As in the end of the proof of Theorem 17.1, we have

w — 1
log.| = qq Vol(T's,\, 150, B3 -

v LB

This proves the equidistribution claim, and its error term when I' is geometrically finite.

In order to obtain the counting claim, we note that since 55, is invariant under the
stabiliser in I' of D™, hence under I',,, the measures on both sides of the equidistribution
claim in Theorem 18.4 are invariant under I'y,, see Proposition 17.3 (5) for the invariance of
the right hand side. By Proposition 15.2 (5) and (6), and by the definition of ¢4,, we have

J dHaarg, (z) Lag j ~t
- = = dop -
Tog\(Ko—{ao,ag}) 12— @0l |z —afle a0 —aflv Jr  \o1p-
(gv + 1) Loy, Vol(I'p-\D7)
Qv |a0 - a8|v

Qv |O[0 - ag‘v

The counting claim follows by evaluating the equidistribution claim on the characteristic
function 1 of a compact open fundamental domain for the action of I'y, on K, — {ap,ag}.
This characteristic function is locally constant, hence ’-Holder-continuous for the distance-
like function dp-, as seen end of Section 3.2. ]
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18.2 Counting and equidistribution of crossratios of quadratic
irrationals

In this Section, we give two arithmetic applications of Theorem 18.4.

Let us first consider an application in positive characteristic. Let K be a function field
over [y, let v be a (normalised discrete) valuation of K, and let R, be the affine function
ring associated with v. We assume that the characteristic of K is different from 2. Given two
quadratic irrationals «, 8 € K, over K, with Galois conjugates o, 57 respectively, such that
B ¢ {a,a}, we define the relative height of B with respect to o by

1

min{’a7ﬂ7 aa’ﬁo'"m ‘CM, 607 a0—75‘v} .

ho(f) = (18.4)

The following result says that the orbit of any quadratic irrational in K, over K, by homo-
graphies under a given finite index subgroup of the modular group PGL2(R,), equidistributes,
when its complexity is given by the relative height with respect to another fixed quadratic
irrational . The limit measure is absolutely continuous with respect to the Haar measure
on K, and it is invariant under the stabiliser of oy in PGLy(R,) by Proposition 17.3 (5).

Theorem 18.5. Let G be a finite index subgroup of GLa(Ry). Let ag, By € Ky be quadratic
wrrationals over K. Then, as s — +00,

(g0 +1)? Cx(—1) ng [GL2(R,) : G] o1 3
243 (q—1) lao — af o [v(tr o)

dHaarg, (z)

An A
7 2 — ol |2 — agly

5€G‘/50 : hao (5)<3
and there exists k > 0 such that, as s — 40,

4qy (q—1) |v(trgo)| |v(trho)| [ Z(G)
(qv + 1) Cx(=1) mg no [GL2(Ry) : G]

Card To,\{B €G- By : hay(B) < s} = +0(st77) .

Here go, ho € G fizes g, Bo with v(tr go), v(tr ho) # 0, and mq,ng is the index of g&, h% in the
stabiliser of ag, By itn G respectively.

Proof. This follows, as in the proof of Theorem 17.5, from Theorem 18.4 using Equations
(16.6) and (17.7), as well as Equation (18.3) for the counting claim. O

Example 18.6. (1) Theorem 1.16 in the Introduction follows from this result, by taking
K =F,(Y) and v = vy, and by using Equation (14.5) in order to simplify the constant.

(2) If Gy is the Hecke congruence subgroup associated with a nonzero ideal I of R, (see
Equation (16.11)), using Lemma 16.5, we have, as § — 400,

(g +1)* Cx (1) no N(I) [T (1 + ﬁ) 1 Z A, dHaarg, (z)
s s —

243 (¢ = 1) lao = af v [o(tr ko) |2 —aoly |2 —afly -

BEGI'BO : hao (5)<s

The second arithmetic application of Theorem 18.4 is in Q,. We use the notation of
Section 17.3.
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Let p € N be a positive rational prime with p = 1 mod 4 such that p%l is not of the
form 4%(8b + 7) for a,b € N (for instance p = 5). Let € be a square root of —1 in Q. Let
x1, Ta, 3 € 27 be such that p? — 1 = 212 + 292 + 23%. We again consider

e /1 — p?
)

xr3 +Ex2

which is a quadratic irrational in Q, over Q(g). We denote by a” the Galois conjugate of a
quadratic irrational « in @, over Q(¢), and by

1

min{‘aa B?aa-’ Ba|p7 ‘aa 507 O[U,,B|p}

ha(B) = (18.5)

the relative height of a quadratic irrational 8 in Q, over Q(e) with respect to «, such that

B ¢ {a,a”}. We again consider Hamilton’s quaternion algebra D = (71@71) over Q and its

Z[%]—order

ﬁ={er[%]—l—Z[%Ji%—Z[%]j—l—Z[%]k: =1 m0d2}.

The following result says that the orbit of ag in Q, by homographies under a given finite
index subgroup of the arithmetic group Flﬁ equidistributes, when its complexity is given by
the relative height with respect to ag, to a measure absolutely continuous with respect to the
Haar measure on Q.

Theorem 18.7. With the above notation, let I' be a finite index subgroup of Flﬁ. Then, as
s — +00,

(p+1)*[T5:T] 5 A » _ dHaarg,(2)
2 p? kr |ao — oflp “ |z —aolplz —aflp

a€el-ap @ hag(a)<s

l+exy —x3+exs

kr
] e I'. Further-
T3 + € T2 1l—cxq

where kr is the smallest positive integer such that {
more, there exists k > 0 such that, as s — +00,

4p (kr)?
(p+1) [Ty 1]

Proof. This follows, as in the proof of Theorem 17.10, from Theorem 18.4 using Equations
(17.11) and (17.12), as well as Equation (18.3) for the counting claim. ]

Card To)\{a el - ap : hyy(a) < s} = s+ 0(s'7").
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Chapter 19

Counting and equidistribution of
integral representations by quadratic
norm forms

In the final Chapter of this text, we give another equidistribution and counting result of
rational elements in non-Archimedean local fields of positive characteristic, again using our
equidistribution and counting results of common perpendiculars in trees summarized in Sec-
tion 15.4. In this Chapter, we use a complexity defined using the norm forms associated with
fixed quadratic irrationals. In particular, the complexity in this Chapter is different from that
used in the Mertens type of results in Section 16.1. We refer for instance to | , §5.3]
for motivations and results in the Archimedean case, and also to | | for higher dimensional
norm forms.

Let K be a function field over F,, let v be a (normalised discrete) valuation of K, and let
R, be the affine function ring associated with v. Let a € K, be a quadratic irrational over
K. The norm form n, associated with « is the quadratic form K x K — K defined by

(z,y) = n(z — ya) = (z — ya)(z — ya’) = 2° — zytr(a) + y’n(q) .

See Proposition 17.3 for elementary transformation properties under elements of GLa(R,,) of
this norm form.

A pair (z,y) € R, x R, is an integral representation of an element z € K by the quadratic
norm form n, if ny(x,y) = z. The following result describes the projective equidistribution
as s — +oo of the integral representations by n, of elements with absolute value at most s.
For every (zo,y0) € Ry x Ry, let Hy, ) be the stabiliser of (x0,yo0) for the linear action of
any subgroup H of GLy(R,) on R, x R,. We use the notation N{xg,yo) for the norm of
the ideal {(z¢,yo) generated by xg, yo (see Section 14.2) and the notation my, 4, 4, introduced
above Theorem 16.1.

Theorem 19.1. Let G be a finite index subgroup of GLa(R,), let a € K, be a quadratic
irrational over K, and let (xo,y0) € Ry X R, — {(0,0)}. Let

J = (@ —1) (qv + 1)2 Ck(—1) My, 20, yo (N <o, yO>)2 [GL2(R,) : G] .
qg (g—1) g9 ! [GLQ(RU)($07?JO) : G(l“o,yo)]
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Then for the weak-star convergence of measures on K, — {a,a’}, we have

lim ¢ s~ z = .
Y |z = alv]z — a7y

S$—+00

1 Z A dHaarg, (z)

(11?7 y)EG($O7 y0)7 I H($—y0¢)|v <8

For every 8 € ]0,1], there exists k > 0 such that for every ¢ € ‘Kf(Kv —{a,a”}),
where K, — {a,a%} is endowed with the distance-like map d]ajag[,l as for instance if v :
K, —{a,a’} — R is locally constant with compact support (see Remark 3.2), there is an
error term in the equidistribution claim of Theorem 19.1 when evaluated on v, of the form

O(s™"[¢]s)-

Examples 19.2. (1) Let (xo,%0) = (1,0), K = F,(Y) and v = vy. Theorem 1.17 in the
Introduction follows from Theorem 19.1, using Equations (14.5) and (16.1) to simplify the
constant ¢.

(2) Let (zo,yo0) = (1,0) and let G = G be the Hecke congruence subgroup of GLa(R,) defined
in Equation (16.11). The index in [GL2(R,) : Gp] is given by Lemma 16.5 and G satisfies
(G1)a,0) = GLa(Ry)(1,0)- For every nonzero ideal I of R,, for the weak-star convergence of
measures on K, — {a,a”}, we have

dH
(2. y)eRo X1, (2, y)=Ro, |n(z—ya)|v<s z—alylz =%y
where 2 1
(a0 — 1) (v +1)% Cr(=1) N(D) Ty (1 + x)
Cr = .

@ ¢!

(3) This example is interesting when the ideal class number is larger than 1. Given any
fractional ideal m of R,, taking (z¢,yo) € Ry X R, such that the fractional ideals {(zg, yo) and
m have the same ideal class and G = GLa(R,), using the change of variables s — sN(m)? in
the statement of Theorem 19.1, for the weak-star convergence of measures on K, — {a, a%},
with the same error term as for Theorem 19.1, we have

dHaarg, (z)
z = ,
Y [z —aly [z —a%ly

lim ¢y s " Z A

(2, y)emxm, (z, y)=m, N(m)~| n(z—ya)|,<s

where )
(g —1) (qu +1)° (x (1) My, 20, yo

a3 (q—1) ¢!

Cm:

Before proving Theorem 19.1, let us give a counting result which follows from it. Any
subgroup of G acts on the left on any orbit of G. Furthermore, the stabiliser G, of « in
G preserves the map (z,y) — |n(z — ya)|y, by Proposition 17.3 (3). We may then define a
counting function V'(s) = Ve, o (s) of elements in R, x R, in a linear orbit under a finite
index subgroup G of GLg(R,) on which the absolute value of the norm form associated with

« is at most s, as

V'(s) = Card Go\{(z, y) € G(x0, 10), [n(z—ya)l, <s}.

!See Equation (15.14).
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Corollary 19.3. Let G be a finite index subgroup of GLa(Ry,), let a € K, be a quadratic
irrational over K, and let (xg,y0) € Ry x Ry —{(0,0)}. Let go € G, with v(tr gg) # 0 and let
mo be the index of g5 in Go. Let

y 2q; (a—1) ¢ 1Z(G)] |v(tr go)| [GL2(Ro) 2y, 0) * G o, 0)]

(0? = 1) Cr (1) lor = a?ly mo 1y, 24,40 (N0, 40))? [GLa(Ry) : G]

Then there exists k > 0 such that, as s — +00,

U (s)=c" s+ 0(s'7) .

Proof. Using Equation (18.3) (with I" the image of G in PGLy(R,)) and Equation (17.7),

we have
dHaarg, (z) 2 (qv + 1) |Z(G)] |v(tr go)|

Go\(Ko—{asacy) 12— alolz—aly Qv |a — a%ly mg

The corollary then follows by applying the equidistribution claim in Theorem 19.1 to the
characteristic function of a compact-open fundamental domain of K, — {, @’} modulo the
action by homographies of Gj,. O

Example 19.4. Let (zo,y0) = (1,0), K = Fyg(Y), v = vy and G = GLa(F,[Y]). Using
Equations (14.5) and (16.1), Proposition 17.3 (1), and the fact that |Z(G)| = ¢—1 to simplify
the constant ¢” of Corollary 19.3, and recalling the expression of the absolute value at oo in
terms of the degree from Section 14.2; we get the following counting result: For every integral
quadratic irrational o € Fy((Y")) over Fy(Y'), there exists x > 0 such that, as t — 400,

(x, yy =Fq[Y], }

Card GLQ(Fq[Y])a\{(m’ y) EFq[Y] X Fq[y] : deg(372 —ay tr(a) + y2 n(a)) <t

2 —l € r(a 2_ n(o —K
= ™ (q—1)* deg(trgo) q' 2 destx(el =4n(@) ¢F 4 O(g'7r) |
where gy € GLo(F,[Y]) fixes o with deg(tr gg) # 0 and my is the index of ¢Z in the stabiliser
g q g T g 90
GLo(Fy[Y])a of o in GLa(F,[Y]).

Proof of Theorem 19.1. The proof is similar to that of Theorem 16.1. Let r = 2—8 €
K v {oo}. If yo =0, let g, = id € GLy(K), and if yo # 0, let

gr = (’1” é) € GLy(K) .

We apply Theorem 15.4 with ' := G the image of G in PGLy(R,), D™ := ], a”[ the (image
of any) geodesic line in X, with points at infinity a and o, and Dt := ~,,, where v, is
the image of g, in PGLa(Ry).

We have Lp, = 27 and the family 27 = (’YDJ'_),YGF/FD . is locally finite, as seen in the
beginning of the proof of Theorem 16.1. The family 2~ = (fy]D)_)Vep/FW is locally finite as
seen in the beginning of the proof of Theorem 17.1.

By Proposition 15.2 (5), we have (on the full measure subset K, — {a, a} of 0xX,)

) ot la — a7y
(0T)wop_ = dHaarg, (z).

TP |z —aly |z — oy
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For every v € I'/T', such that D~ and vD* are disjoint, let p, be the geodesic ray starting

from ag . (0) and ending at the point at infinity - of yD*.

Hence, as in order to obtain Equation (16.2), we have, with an error term for every
B €10,1] of the form O(s™*|¢| ) for some k > 0 when evaluated on ) € EP (05 Xy — 0D,

(QU2 - 1)(QU + 1) V01<F\\XU> -n Z

— v
||J@+ H ’YEF/FT
0<d(D~,yD*T)<n

lim

A,
n—+00 2 qg r

la — %,

= dHaarg, (z) . (19.1
‘2—04|U’Z—Ck‘7’v () ( )
We use the following Lemma to switch from counting over elements v € I'/T',. for which

0 <d(D~, yD*) < t to counting over integral representations with bounded value of the norm

form. See | , page 1054] for the analogous result for the real hyperbolic 3-space and

indefinite binary Hermitian forms.

Lemma 19.5. Let g € GLo(R,) and let v be the image of g in PGLa(K). Let zg = yo if
yo # 0 and zg = xg otherwise. Let (z,y) = g(xo,yo). If d(D™,4D") > 0, then

_ h(«)
dD™,yDT) = — 1 — v TS ) -
©79D%) = o (|ne —y)le 12 75)
Proof. We start by showing that
ry
r(1,0) = (—, =) .
99r(1,0) = (. 1)

Indeed, if yo # 0, we have

1
99-(1,0) = g(r,1) = ” 9(x0,%0)

and otherwise 1 ]
99-(1,0) = g(1,0) = — g(x0,0) = — g(z0,%0) -
o by

_ * %
(ggr) ' = (_y oc> .
z0 20

Note that g g, € GL2(K) and |det(gg,)|, = |detgl|, |det g,|, = 1 since g € GLa(R,). By
Proposition 17.3 (2), we hence have

In particular,

h(a) = |n(x —y a)ly Ma) . (19.2)

Magr)™ o) =[a (5= o, l?

20 20

We use the signed distance d(L, H) = minger, f¢(x, xm) between a geodesic line L and
a horoball H centred at & # L%, where zy is any point of the boundary of H. Now, by
Equations (15.2) and (2.8), we have

d(D_77D+) = d(]a’aa[’,y%%}foo) = d(](ggr)_l 1@, (ggr)_l : O‘a[’%oo)
= U((ggr)il Co (ggr)il ' ao)

—In|(ggr) " a—(99,) -0, Wnh((gg,)" )
In g, B In g, .

(19.3)
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Combining Equations (19.2) and (19.3) gives the result. ]

By discreteness, there are only finitely many double classes [g] € Ga\G/G (3,,y,) such that
D~ = Ja,a%[ and gD = g g, are not disjoint. Let Z(G) be the centre of G, which is finite.
Since Z(G) acts trivially on Py(K,), the map G/G 4, ,,) — T/I'; induced by the canonical
map GLgo(R,) — PGL2(R,) is | Z(G)|-to-1. Using the change of variable

_ ‘ZO|U2 n

h(a) Qv

S

by using Lemma 19.5, Equation (19.1) gives

o (@? 1) (g0 + 1) |200” VOIT\X,) 4
lim S A
A 8 20) oy 2

x
Yy
(I, y)EG(IO, y0)7 | n(x—ya)\ugs

_ dHaarg, (2)
lz—aly|z—a%l,’

with the appropriate error term. Replacing Vol(I'\X,) and ||o,, || by their values respectively
given by Equation (16.6) and Lemma 16.3, the claim of Theorem 19.1 follows. ]
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Appendix A

A weak Gibbs measure is the unique
equilibrium, by J. Buzzi

Abstract

For a transitive topological Markov shift endowed with a Holder-con-
tinuous potential, we prove that a weak Gibbs measure is the unique
equilibrium measure.

A.1 Introduction

Let o : ¥ — X be a topological Markov shift (possibly one- or two-sided), see for instance
Section 5.1. More precisely, we consider the one-sided and two-sided vertex-shifts defined by
a countable oriented graph G with set of vertices Viz and set of arrows Ag < Vo x Vz. We
assume that ¥ is transitive, that is, that G is connected (as an oriented graph).

We denote by P(X) the set of o-invariant probability measures on ¥ and by P (2) the
subset of ergodic ones. Recall that, for all n € N, the n-cylinders are the following subsets of
>, where x varies in X:

Co(z) =[x0...2n-1]={yeX : VEke{0,...,n—1}, yp = 21},

so that the 1-cylinders are [v] = {y € ¥ : yo = v} for all v € V5. The points of ¥ admitting
n € N as period under the shift o form the set

Fix,(¥) ={zeX : "z =z}.

We fix a potential on ¥, that is, a continuous function ¢ : ¥ — R. We do not assume that ¢
is bounded. We define ¢~ = max{—¢, 0} and, for all n e N — {0},

vary (¢) = sup [9(y) — é(2)]

z,yex, v kE{O,..,,n—l}, Tk=Yk

if (X, 0) is one-sided and otherwise

var, (¢) = sup [6(y) — o()|

z,yeX, Vke{—n+1,...n—1}, =y

We say that ¢ has summable variations if 3, var,(¢) < 0. Let Sp¢ = %Z;:ol ¢ oo’ for
all n e N.
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Definition A.1. A weak Gibbs measure for the potential ¢ is a o-invariant Borel probability
measure m on X such that there exists a number c(m) € R such that for every v € Vi, there
exists C' = 1 with

< . -1~ m(Cn(z))
Vn=1, Ve eFix,(X)n[v], C < oxp (8n6(@) — c(m)n)

Note that ¢(m) is then unique, called the Gibbs constant of m. Let us stress that we do not
assume the so-called Big Image Property | | and hence using the above weakened Gibbs
property (that is, allowing C' to depend on v) is necessary.

Note that if 3 is locally compact, that is, if every vertex of G has finite degree (the number
of arrows arriving or leaving from the given vertex), then the above condition is equivalent to
the fact that for any nonempty compact subset K in X, there exists C' > 1 with

m(Cn(z))
exp (Sné(z) — c(m)n)

The pressure P(¢,v) of an element v € P(X) such that { ¢~ dv < 40 is

<C. (A1)

Vn=>1 VzeFix,(Z)nK, C'< <C.

P(¢,v) = hy(o) + ngdu.

An equilibrium measure pieq for (X, ) is an element pe, € P(X) such that (¢~ dpeg < +o0
and

P(¢, tteg) = sup{P(¢,v) : v € P(¥) and f¢_ dv < +w} .
The Gurevic pressure is
_ lim Sud(x)
Po(¢) = lim —In > e
z€Fix, (2)n[v]

for any vertex v € Vz. Note that the Gurevi¢ pressure does not depend on v. Let us recall a
few results on the above notions.

Theorem A.2 (Iommi-Jordan [l.J, Theorem 2.2|). The following variational principle holds:
P (¢) = sup{P(¢,v) : v e P(¥) and jgb_ dv < +o}. [

Theorem A.3 (Buzzi-Sarig |BuS, Theorem 1.1|). If Pg(¢) < oo, then there exists at most
one equilibrium measure.

If there exists an equilibrium measure i, then du = hdv where h : 3 — R is a continuous,
positive function and v is a positive measure on % such that

o Lyh = e’en, and L:;I/ = @y where Ly is the transfer operator defined by
Lou(x) =X eo—1s e?W u(y).

e v is finite on each cylinder. O

We note that | | assumed sup ¢ < o0, but this was only used to justify the variational
principle and so this condition can be removed by using Theorem A.2.
We now state the main result of this appendix.
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Theorem A.4. Let (X,0) be a one-sided transitive topological Markov shift and let ¢ : ¥ — R
be a potential with summable variations. Let m be an invariant probability measure of ¥ such
that { ¢~ dm < +co.

Then m is a weak Gibbs measure if and only if it is an equilibrium measure. In this
case, the Gibbs constant c¢(m) is equal to the Gurevic pressure and the equilibrium measure is
unique.

By a classical argument that follows, this result extends to two-sided topological Markov
shifts (up to a slight strengthening of the regularity assumption).

Corollary A.5. Let (3, 0) be a two-sided transitive topological Markov shift and let ¢ : ¥ — R
be a potential with Zn>1 n var,(¢) < c0. Let m be an invariant probability measure of ¥ such
that S(;S_dm < +00.

Then m is a weak Gibbs measure if and only if it is an equilibrium measure. In this
case, the Gibbs constant c¢(m) is equal to the Gurevic¢ pressure and the equilibrium measure is

UNIqUE.

Remark. The case of the full shift N* has been treated in | , Sec. 3|]. More generally,
assuming the Big Image Property, the above result follows from [Sarl| and [BuS| along the
lines of | ].

Proof of Corollary A.5. Let (X,0), ¢, and m be as in the statement of this Corollary. Let
m: X — X with (z))nez — (xn)neN be the obvious factor map onto the one-sided topological
Markov shift (34, 04 ) defined by the same graph G as for (3, o), called the natural extension.

First, we replace ¢ by a potential ¢ depending only on future coordinates. The proof of
| , Lemma 1.6] applies to our non-compact setting without changes. To be more precise,
for each vertex a € Vi, choose 2% € ¥ with z§ = a, and define r : ¥ — ¥ by r(z) = y with
Yn = Tp for n = 0 and y,, = 22° for n < 0 and let

u(zx) = Z(qﬁoak—gbookor)(a:).

k=0

This defines a bounded real function on ¥ since |¢ o 0¥ — ¢ 0 0% o r| < varg,1(¢) and ¢ has
summable variations. Moreover, u itself has summable variations since, given z,y € 3 with
xy, = y for |k| < n, we have

w@) —ul < Y (6lohe) — 6loFy)] + 6(o* () — oo*(r0))])
o<k<|n/2|

Ly (,¢og — 600" )| +1600"(y) — 00 (ry)))

k>|n/2|

so that

> var, (u) <4 ) (2k — 2) var(¢) < oo .

n>=1 k=1

Now define ¢ : ¥ — R by
dp=¢+uooc—u.
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The function ¢ is continuous with summable variations. Following | |, let us prove that
¢ = ¢ or. We have

b=9¢+ Z(¢Oak+l—¢00k07“00)—Z(qboak—gbookor)

k>0 k>0

:¢—¢—Z (g{)oo’koroa—gbookor)
k=0

= Z (gboo’kor—gboo'koroo') .

k=0

Now, 2 = rand rocor = roo. Hence ¢ or = ¢ as claimed. Thus, ¢ induces on the

one-sided shift a function 5 : 24+ — R defined by

¢ (Tn)nen — (... 2"%2" xoz1 ... ),

satisfying ¢ = (;~5 oT.

To conclude, observe that ¢ — ¢ is bounded and that cylinders defined by the same finite
words have the same measure for an invariant probability measure m on the two-sided shift
(X, 0) and for its image m,m on the one-sided shift (X, ,0,). Therefore m is a weak Gibbs
measure for ¢ if and only if m,m is a weak Gibbs measure for gg

By construction mm(¢) = m(¢) = m(¢) since m is invariant. As it is well-known, the
natural extension w preserves the entropy. Thus, the measure m is an equilibrium measure
with respect to ¢ if and only if m,m is an equilibrium measure with respect to qz~5

The reduction to one-sided topological Markov shifts is thus complete. O

A.2 Proof of the main result Theorem A .4

The uniqueness of the equilibrium state is given by Theorem A.3. We need to prove that
weak Gibbs measures and equilibrium measures coincide under the integrability assumption
on ¢~ and that the number ¢(m) is equal to the pressure.

Step 1. If m is an equilibrium measure, then it is a weak Gibbs measure.

This is a routine consequence of Theorem A.3. Our definition of an equilibrium measure
m enforces ¢~ dm < +00 (hences excludes the concomitance of hy,(c) = 40 and {¢dm =
—0).

Recall from Theorem A.3 that dm = hdv. For v € Vi and z € Fix,(2) n [v], we have

m(Cy(z)) = fh Lo, () dv = e "F6() JLg(h)]lcn(x) dv .

By definition, L§(h)1c, (2)(2) = exp Spd(xo . . . Tn-12) h(20 . .. Tn—12) for all z € o"(Cp(x)) =
[v] (and L (h)1c, (z)(2) = 0 otherwise). Hence

m(Cp(z)) = e "o exp (S’nqb(a:) + i Vark.(gb)> f hdv .
k=1 [v]

As 0 < S[v] hdv < +oo and Y% varg(¢) < +00, the measure m is a weak Gibbs measure for
¢ with Gibbs constant ¢(m) = Pg(¢).
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We now turn to the converse implication. Let m be a weak Gibbs measure for ¢ such that
§¢~ dm < +oo0.

The weak Gibbs condition only controls the cylinders that start and end with the same
symbol. Passing to an induced system (that is, considering a first return map on a 1-cylinder)
will remove this restriction. More precisely, let a € Vg be a vertex of G and let p be an
invariant probability measure on (3, o) with p([a]) > 0. The induced system on the 1-cylinder
[a] ={x €eX : zp=a} is the map 7 : [a] — [a] defined as follows:

o let 7(x) = inf{n =1 : o"x € [a]} be the first-return time in [a], that we also denote
by T[q](7) when we want to emphasize [a];

o let 7(x) = o™®) () if T(x) < o0;

o let i(B) = pu(B n [a])/u([a]) for every Borel subset B of 3 be the restriction of p to
[a] normalized to be a probability measure.

We also define 7%(z) = 0 and by induction 7"*!(x) = 7(x) + 7%(7z) for every n € N. Note
that @ can only be iterated on the subset

{rea] : Vn=1, 7"(x) <o} .

By Poincaré’s recurrence theorem, this is a full measure subset of [a], hence the distinction
will be irrelevant for our purposes.
The induced partition is

B=A{lat1...&1a]l # T :n>1,& #a} .

We note that @ : [a] — [a] is topologically Bernoulli with respect to the partition g (that is,
7 : b — [a] is a homeomorphism for each b € ). For every integer N > 1, we define the N-th
iterated partition BN of B by

ﬁN = {bg ﬁﬁ_lbl e R ﬂE_N—HbN_l # :by,...,by_1 € B}
and we write 3V (x) for the element of the partition 8V that contains z.
Step 2. The topological Markov shift may be assumed to be topologically mixing.

This follows from the spectral decomposition for topological Markov shifts, see for instance
[BuS, Lem. 2.2].

Step 3. The Gibbs property implies full support and ergodicity.

Let A be an invariant (07*(A) = A) measurable subset of ¥ with m(A) > 0 and let us
prove that m(A4) = 1.

Observe that the Gibbs property, together with the transitivity of X, implies that any
cylinder has positive measure for m, hence that m has full support. Let a € V5 be such that
m(A n [a]) > 0.

As m([a]) > 0, we may consider the induced system on [a]. Let N > 1. When f is
a homeomorphism between topological spaces, let f* denote the pushforwards of measures
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N

by f~!. First note that, for almost every x € [a] and every N € N — {0}, since 7" is an
homeomorphism from A% (z) onto [a], we have
_N N d(EN)*md
m(An[a) m@ENAnEN@)  Iev@na a4
= —N(3N = AGN ) Fm :
ma) T @ E@) [, 0 g
Now, observe! that for m-almost every y e %V (z):
— TN
ATy ™ Dlyo---9nl) _ pz2,-5.x 6@+ @) elm)
dm n—o  m([yo...yn])
Hence,
m(An [a]) _ ot m(A n BN (z)) .
m([a]) m(pN (z))
By Doob’s increasing martingale convergence theorem (see for instance |Pet]), for m-almost

every x € [a] — A, the ratio on the right hand side converges to 0 as N — oo. Thus [a] is
contained in A modulo m. Therefore A = | J,cy[a] modulo m for some subset W of V4.

Since ¥ is topologically mixing, for any vertex b, the intersection [a] N o~ [b] N 07/ [a]
is not empty for some integers 0 < ¢ < j. Pick some point z in that set. By invariance,
m([b]) = m(c'(Cj(z))) = m(Cj(z)). But this last number is positive by the weak Gibbs
property. Thus [b] is contained in A modulo m. Hence m(A) = 1, proving the ergodicity of
m.

Step 4. The Gurevi¢ pressure Pg(¢) is equal to ¢(m), hence is finite. Furthermore h,, (o) < o0
and ¢ € L1(m).

Fix ve Vg and let K = {x € ¥ : g = v}. Note that m(K) > 0. The ergodicity of m gives
a Cesaro convergence: as n — 00, we have

n

-1
1

=Y m(K no "K) — m(K)* > 0.
™o

The Gibbs property implies that, for all n > 1,

m(K no"K) =C* Z eSnd(@)—c(m)n
z€Fix, (Z)nK

= Ci1< Z eS"‘b(T’)) e—clmn (A.2)
z€Fix, (Z)nK

If we write Z,, for the term between the parenthesis, we have by the definition of the Gurevic¢
pressure:
Pg(¢) = limsup 1 InZ, .
n—ow "N

As the value of the left hand side of Equation (A.2) is less than one, we see that c¢(m) = Pg(¢).
If this was a strict inequality, then the left hand side of Equation (A.2) would converge to
zero, contradicting its Cesaro convergence to m(K)? > 0. Therefore Pg(¢) = c(m).

Since ¢(m) is finite, so is Pg(¢). Hence Theorem A.2 implies that, for any v € P(X) with
§ ¢~ dv < +0, we have h,(0) < 0 and ¢ is v-integrable. In particular, this holds for v = m,
which finishes the proof of Step 4.

Lusing, for all u,v,c > 0 and n € N, the notation v = ¢t if C%v <u<c'w
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Step 5. If the mean entropy Hpz(8) = — 335 1(b) In7i(b) is finite, then

dp
.
do* 1 a

ha(®) = — fm

where o*1 is the measure on X defined by B — > 5 1i(0(B nb)), with respect to which p is
absolutely continuous: pu < o* .

This is a classical formula which follows from the computation of the entropy in terms of
the information function

(@) = = [ 31060 By By | 7715 v v 779)(a) die)
bep

and from the identity, for x € b,

L gy EETE) 5
R = 5 ~ @)

The absolute continuity follows from a direct computation and ensures that the integral above
is well-defined.

Step 6. For all a € Vg, N > 1 and p € Peg(X) with § ¢~ du < +00, we have

1 dn
(o) = —ulla) | dn (A3)
. N d(@)* @)
We use arguments from the proof of | , Theorem 1.1]: the key is to see that the partition

B of [a] has finite mean entropy for the induced measure fi using a Bernoulli approximation.
Let us consider the Bernoulli measure fig for ([a],7) defined by

mn( (V7B = [[m(B)
=0 =0

for all B; € 8. We construct from it an invariant and ergodic measure up on (X, 0): For every

Borel subset A, let
‘r[a]—l

pil) = ulla) | Y Laootdmy .

[a] =0

Define ¢ = ZZE(]]A ¢oo'. Using the assumption that ¢ has the summable variations, we have
| o >u<[a])f[ Far-c= [odu-c> .
a

Therefore, the last two lines of the proof of Step 4 apply to v = pp and hy, (o) < +00. Since
up is ergodic, Abramov’s formula yields

hug(0) = p(la]) b, (@) -
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Since g is Bernoulli, the right hand side of this equality is equal to
([a]) Huy (B) = p([a]) Hg(B)

which is hence proven to be finite. Thus, Step 5 applies:

B i
#() o d@*nm) a

This formula extends to hy(@") for all integers N > 1. Using Abramov’s formula this time
for p and 7z (since p is ergodic), we have

1 d7
() = O ba(e™) = —pllal) | o S
g N " w N d(@V)*m)
as claimed.
Step 7. The entropy of m is equal to ¢(m) — { ¢ dm.

In order to prove this, we apply Step 6 with u = m (which is possible, since m has been
proven to be ergodic in Step 3). As in the proof of Step 3, the Radon-Nikodym derivative is
almost everywhere

dp : a(p" (x))

= A O — N N .
@y ") T AR ey T P L AT+ S dle)
Therefore, using Step 6 and the fact that u i, = p([a]) 77, we have
(o) = Jim % ( f[ (7 @) =S 9(0) d 21 o). (A1)

Note that 7% (z) can be seen as a Birkhoff sum for the induced system on [a] and the function
7 and that, by Kac’s theorem (see for instance [Pet, Sect. 2.4]),

f rdp = p(la)~ .
[a]

Therefore, Birkhoff’s ergodic theorem yields, with convergence in L' (),

L em) V(@) e(m)
Noe TN pllal)

To analyze the second term in Equation (A.4),A let ¢(x) = Zz(jgil ¢(c*z) and observe that,
by a variation of the proof of Kac’s theorem, ¢ € L!(7) with 7i(¢) = u([a])"*u(¢). Indeed,
passing to the natural extension, one can assume the system to be invertible and use the
partition modulo p given by

) Flzeld : r(@)=n}).

n=1,0<k<n

Since S~ (;)$(z) coincides with the Birkhoff sum Snoé(z) for the induced system, Birkhoff’s
ergodic theorem yields, with convergence in L' (f),

lim S, 6(x) = lim < Snd(x) = u(la]) (@)

N—o0 N—o

The claim follows.
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Step 8. Conclusion: any weak Gibbs measure is an equilibrium measure and ¢(m) = Pg(¢).

Steps 4 and 7 prove that hy, (o) + § ¢ dm is well-defined and equal to ¢(m), which by Step
4 is equal to Pg(¢), which is equal to sup{P(¢,v) : v € P(X) and {¢~ dv < +o0} by Theorem
A.2, so that m is an equilibrium measure. This completes the proof of Theorem A .4. O
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List of Symbols

14
~=r~g
[ f]la
[[41]e

| ’ |v
A(Oy)
Aut(X, \)

Aut X

297

standard point at infinity [1 : 0] of a projective plane
characteristic function of a subset A

equivalence relation on index set of an equivariant family 2
a-Holder norm of f e €4(Z2)

Sobolev W*2-norm of 1 € €*(N)

(normalised) absolute value associated to a valuation v
base point *, = [0, x O,] of the Bruhat-Tits tree X,

maximal compact-open diagonal subgroup of PGLa(K,)
automorphism group (edge-preserving, without inversion) of a metric
tree (X, \)

automorphism group (without inversion) of a simplicial tree X

closed ball of center x and radius r in a metric space
Hamenstadt’s ball of radius 7’ > 0 with center any geodesic line
extension of w e ¥+ X

geometrically connected smooth projective curve over F,
complementary set of a subset A

period for a system of conductances c¢ of a closed orbit g for the
geodesic flow

space of real-valued continuous maps with compact support on Z
space of bounded a-Holder-continuous real-valued functions on Z
space of real-valued functions on Z with bounded a-Hélder-continuous
derivatives of order at most k along the flow

space of a-Hoélder-continuous real-valued functions with compact
support on Z

space of real-valued functions on Z with bounded a-Hélder-continuous
derivatives of order at most k£ along the flow and compact support
space of real-valued €¢*-smooth functions with compact support on a
smooth manifold N

codegree of a vertex x with respect to a subtree I

codegree of a vertex x with respect to a family of subtrees 2

228
25

109
42

122
223
227

229
36

36

132

122

116
117
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COVim, n(¢7 ¢)
covy, t(, 1)

COViy, g
€Al

T
[a,b,c,d]
|a, b, c,d|,

O X
0.X

ovD

oD

LD
LD
degwv

0 =0rF
A+
Ay
Discp
dp

KRR
3 R o=
=}
>4
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n-th correlation coefficient of ¢, for the measure m under a
transformation

correlation coefficient of ¢, 1)’ under a flow at time ¢ for the measure
correlation coefficient for g € G, and a measure p, on I'\G,

convex hull in X of the limit set A" of "

conjugate of a quaternion x

crossratio of pairwise distinct points a, b, ¢, d

absolute crossratio of pairwise distinct points a, b, ¢, d for a valuation v

boundary at infinity of X

set of points at infinity of the geodesic rays whose initial (oriented) edge
ise

boundary of set of vertices of a simplicial subtree D

maximal subgraph with set of vertices dVID

inner unit normal bundle of a closed convex subset D

outer unit normal bundle of a closed convex subset D

degree of valuation v, equal to dimg, k,

critical exponent of (T, F')

Laplacian operator associated to a system of conductances ¢t
unit Dirac mass at a point x

reduced discriminant of a quaternion algebra D over QQ
distance-like map on 0, X — 0o D associated with closed convex subset
D

distance on space of generalised geodesic lines

distance on space of germs of geodesic lines

Hamenstédt’s distance at infinity associated to an horoball 57

visual distance on 0o X seen from x € X

Hamenstédt’s distance on the strong stable/unstable ball of w € ¥+ X

set of edges of a graph X
Euler function of fonction ring R,

negative part of a real-valued map f
fibration over 0} D with fibers the stable/unstable leaves

potential on 71X
potential on T\T" X
finite field of order a prime power ¢

genus of the smooth projective curve C
space of generalised geodesic lines in X
space of generalised discrete geodesic lines in a simplicial tree X

space of generalised discrete geodesic lines ¢ in X with d(¢(0), zg) even

122

132
242
26

267
273
273

26
37

116
116
32
32
223
45
92
25
268
238

28
29
31
27
30

36
255

25
33
43
43
223

223
28
36
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9 ven X space of discrete geodesic lines ¢ in X with £(0) at even distance from zo 65

9. X space of generalised positive/negative geodesic rays in X 29
Yy 0X space of generalised geodesic lines in X isometric exactly on +[0, +oo[ 29
(g)ier (continuous time) geodesic flow on space of generalised geodesics GX 28
(g')ez (discrete time) geodesic flow on space of generalised geodesics X 37
h(T) metric entropy of a transformation 7" with respect to a probability 85
measure m
B (1) metric entropy of a flow (¢;)er With respect to a probability measure m 87
h(a) complexity of loxodromic fixed point « 258
h(«) complexity of quadratic irrational « in K, 262
h(«) complexity of quadratic irrational o in Q, 270
ha(5) relative height of loxodromic fixed point 8 with respect to « 273
ha(B) relative height of quadratic irrational § with respect to « 279
Haarg, normalised Haar measure of (K, +) 225
H(t] horoball contained in .7 whose boundary is at distance ¢ from the 28
boundary of 57
HB,(w) stable horosphere of w € ¥, X 31
HB_(w) unstable horosphere of w e ¥_X 31
H,(w) stable horosphere of w e ¥, X 31
H_(w) unstable horosphere of w e ¥_X 31
L antipodal map w — {t — w(—t)} of ¥X 28
ta(B) G-reciprocity index of a quadratic irrational 3 264
Isom(X)  isometry group of X 26
A, set of classes of fractional ideals of R, 231
K global function field over F, 223
K, completion of function field K for the valuation v 223
ko residual field of the valuation v on K 223
A7) translation length of an isometry ~ of X 26
AT limit set of a discrete group of isometries I' of X 26
AT conical limit set of a discrete group of isometries I' of X 26
L*(Y,G,) Hilbert space of square integrable maps on V'Y for the measure voliy,g,) 38
1k links of vertices in simplicial trees 227
Lt length spectrum of action of I' on X 65
In natural logarithm (with In(e) = 1) 25
I positive /negative endpoint of geodesic line ¢ 28
0* standard basepoint in space of geodesic lines ¥X, 229
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mg () multiplicity of a vertex x with respect to an equivariant family 2 116
mp Gibbs measure on the space of geodesic lines ¥ X 55
mpg Gibbs measure on the quotient space of geodesic lines T'\¢ X 55
mp Gibbs measure on the space of discrete geodesic lines ¥X 62
mg Gibbs measure on the quotient space of discrete geodesic lines I'\¥X 62
mp renormalised Gibbs measure mp/||mp|| on I\¥ X 121
Me renormalised Gibbs measure m./||m.|| on T\¥X 123
(uE)zex (normalised) Patterson density for the pair (', F'¥) 53
KW= (w) skinning measures on the strong stable or strong unstable leaf W= (w) 106
(plavsy Hausdorff measures of the visual distances d, on AT 64
N(I) (absolute) norm of a nonzero ideal I in a Dedekind ring 225
NE homeomorphism between stable/unstable leaves and inner/outer normal 32
bundles of horoballs
NA closed e-neighbourhood of a subset A of a metric space 25
n(f) relative norm of quadratic irrational 3 261
N(z) reduced norm of a quaternion x 268
vk conditional measure on the (weak) stable/unstable leaf W%%(w) of 107
w e giX
o A shadow of a subset A of X seen from z € X U 0n X 26
O valuation ring of of v in K, 223
T footpoint projection w — w(0) on (generalised) geodesic lines 28
o uniformizer of a valuation v of a function field K over F, 223
(Y, Gy) fundamental groupoid of a graph of groups (Y, Gy) 196
Pp closest point map to a convex subset D 32
PE)—F closest point map homeomorphism from 05, X — 0o D to outer/inner 32
normal bundle of D
QNS;—[ total mass function of Patterson density (u).ex 61
Py pressure of a potential ¢ under a transformation 85
Py pressure of a potential ¥ under a flow 9, 87
Py(m) metric pressure for a potential ¢ of a probability measure m invariant 85
under a transformation
Py(m) metric pressure for a potential ¢ of a flow-invariant probability measure 9, 87
m
Q = Qr, F 2y Poincaré series of (I', F') 45
Qv order of residual field k&, 223
R, affine algebra of the affine curve C — {v} 224
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Galois conjugate of a quadratic irrational 8 in K,
Galois conjugate of a quadratic irrational « in Q)
skinning measure on outer/inner normal bundle of convex subset D

inner skinning measure on I'\ GX of a family of closed convex subsets ¥

outer skinning measure on I"\ GX of a family of closed convex subsets &

outer/inner skinning measure on GX of a family of closed convex
subsets 2
outer/inner skinning measure of a family 2 = (£2;);er of subsets of
(0LDy)ier

first edge map of a geodesic line

space of germs at ¢t = 0 of geodesic lines in X

relative trace of quadratic irrational 5

reduced trace of a quaternion x

volume form on the set of edges of a graph of finite groups (Y, G)
volume form of the set of edges of a metric graph of finite groups
(Y, G, A)

total volume of the set of edges of a graph of finite groups (Y, G)
total volume of the set of edges of a metric graph of finite groups
(Y, Gy, A)

domain of the fibration fz)—r

dynamical neighbourhoods of a point w € 91 X
dynamical neighbourhood of a subset QF of ¥+ X
germ at t = 0 of geodesic line ¢

valuation at infinity of Fy(Y")

volume form on the set of vertices of a graph of finite groups (Y, G)

volume of a graph of finite groups (Y, G)
set, of vertices of a graph X

positive /negative endpoint of generalised geodesic line w
strong stable leaf of w € ¥, X

stable leaf of we ¥, X

strong unstable leaf of w e ¥_X

unstable leaf of w e ¥_X

geometric realization of a metric tree (X, \)
Bruhat-Tits tree of (PGLg, K)

Dedekind’s zeta function of a function field K
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270
103

110
110
109

109

37
29
261
268
38
38

38
39

32

33
33
29
222
38
38
36

28
30
31
30
31

36
227

225
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Index

absolute
crossratio, 273
value, 222
acylindrical, 76, 149, 212
adjacency matrix, 98
admissible, 67
alc-norm, 240, 243
algebraic lattice, 40

algebraically locally constant, 240, 243

almost precisely invariant, 117
anti-reversible, 50
antipodal map, 28, 30

bipartite, 36

biregular, 36

boundary, 116

bounded parabolic limit point, 26
Bowen ball, 55

Bowen-Margulis measure, 55
Bowen-Walters distance, 79
Busemann cocycle, 27

closest point map, 32
cocycle
Busemann, 27
Gibbs, 47
codegree, 116, 117
cohomologous, 45, 50, 87
common perpendicular, 34, 197
ending transversally, 197
endpoint, 197
multiplicity, 190
origin, 197
starting transversally, 197
complexity, 258, 262, 270
conductance, 50, 197
reversible, 50
conical limit
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point, 26

set, 26
conjugate, 267
continued fraction, 266

eventually periodic, 266

convergence
narrow, 160
weak, 160

convergence type, 45

correlation coefficient, 122, 132

counting function, 182, 197, 248, 282

critical exponent, 45, 52
cross-section, 80
crossratio, 273
absolute, 273
cuspidal ray, 39
cylinder, 62, 126

decay of correlations
exponential, 121
polynomial, 121
superpolynomial, 132
degree, 36
Diophantine, 15
2-Diophantine, 132
4-Diophantine, 132
discriminant, 268
reduced, 268
distance
Bowen-Walters, 79
Hamenstadt’s, 30, 31
signed, 179
visual, 27
distance-like map, 238
divergence type, 45
doubling measure, 54
uniformly, 54
dynamical
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ball, 55
neighbourhood, 33
of a point, 33

edge length map, 36
edge-indexed graph, 38
€lc-norm, 43
ending transversally, 197
endpoint, 197
negative, 28
positive, 28
equilibrium measure, 288
equilibrium state, 9, 85, 87
equivariant family, 108
locally finite, 109
Euler function, 255
exponential decay
Holder, 121, 122
Sobolev, 122
exponentially mixing
Holder, 121, 122
Sobolev, 122
extendible geodesics, 26
extension, 29

first return

map, 80

time, 80
footpoint projection, 28, 30
full, 68
function field, 223
fundamental groupoid, 196

Galois conjugate, 261
generalised geodesic
line, 28
discrete, 36
ray, 29
segment, 29
geodesic
current, 55
flow, 28
discrete time, 37
line, 28
generalised, 28
generalised discrete, 36
path, 196
geodesically complete, 25

304

geometric realisation, 36
geometrically finite, 26
Gibbs
cocycle, 47
constant, 68, 288
measure, 55, 62
weak, 85, 288
property, 56, 62, 68
graph
bipartite, 36
edge-indexed, 38
of groups, 37
metric, 38
quotient, 38
Green
function, 97
kernel, 97
growth
linear, 41
subexponential, 42
Gurevi¢ pressure, 288

Hamenstadt’s
distance, 30, 31
measure, 105

harmonic measure, 97

heigth, 230

highest point, 230

Holder-continuity, 41
local, 41

Hélder norm, 42

homogeneous, 149

homography, 228

Hopf parametrisation, 30
discrete, 37

Hopf-Tsuji-Sullivan-Roblin theorem, 56

horoball, 28
stable, 31
unstable, 31

horosphere, 28
stable, 31
unstable, 31

index, 212
induced
partition, 291
system, 291
inner unit normal bundle, 32
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inversion, 36
isomorphism, 80
iterated partition, 291

Kac formula, 89

Laplacian, 92
lattice, 39
algebraic, 40
uniform, 39
Oy-lattice, 227
leaf
stable, 31
strong stable, 30
strong unstable, 30
unstable, 31
length
of common perpendicular, 34
spectrum, 58, 65
limit point
bounded parabolic, 26
conical, 26
linear growth, 41
link, 227
Lipschitz, 41
local field
non-Archimedean, 223
locally
constant, 42
finite, 109
Hoélder-continuous, 41
Lipschitz, 41
loxodromic, 26, 257
reciprocal, 264

Markov
chain, 76, 96
shift
one-sided, 126
transitive, 67
two-sided, 67
Markov-good, 76
measure
Bowen-Margulis, 55
doubling, 54
Gibbs, 55
Hamenstadt’s, 105
Patterson, 53
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satisfying the Gibbs property, 56, 62, 68

skinning, 103, 106
Tamagawa, 269
measured metric space, H4
metric
graph of groups, 38
pressure, 9, 85, 87
tree, 36
modular
graph, 230
graph of groups, 230
group, 230
ray, 231
multiplicity, 116, 181, 190, 197

Nagao lattice, 231
narrow topology, 160
natural extension, 123
suspended, 134
negative
endpoint, 28
part, 25
non-Archimedean local field, 223
non-backtracking, 149
norm, 225
ele, 43
alc, 240, 243
form, 281
Holder, 42
of a quaternion, 268
of quadratic irrational, 261

order, 268

origin, 149, 197

ortholength spectrum, 11
marked, 11

outer unit normal bundle, 32

Patterson density, 53
period, 43, 215, 266
Poincaré

map, 80

series, 45
pointing

away, 113

towards, 113
polynomially mixing, 121
positive endpoint, 28
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potential, 43, 87
associated with, 51
cohomologous, 45
reversible, 45

precisely invariant, 116
almost, 117

pressure, 9, 62, 85, 87, 288
Gurevic, 288
metric, 9, 85, 87

primitive, 26

proper nonempty properly immersed closed

locally convex subset, 182
property HC, 8, 44

quadratic irrational, 261
complexity, 262
reciprocal, 264

radius-continuous ball masses, 167
radius-Ho6lder-continuous ball masses, 167
random walk, 97
non-backtracking, 149
rapid mixing, 132
ray
cuspidal, 39
generalised geodesic, 29
reciprocal, 264
reciprocity index, 264
recurrent, 97
reduced, 196
regular, 36
relative height, 273, 279, 280
residual field, 222
reversible, 45
roof function, 79

shadow, 26

lemma, 54

for trees, 61

shift, 62, 67, 69, 126
signed distance, 179
simple, 117
simplicial tree, 36
skinning measure, 103, 106, 212

inner, 110

outer, 110
special flow, 79
spherically symmetric, 111

306

splitting over, 268
stable
horoball, 31
horosphere, 31
leaf, 31
standard base point, 227
starting transversally, 197
state space, 96
strong
stable leaf, 30
unstable leaf, 30
subexponential growth, 42
subgraph of subgroups, 37
subshift of finite type, 67
subtree, 26
suspension, 79
system of conductances, 8, 50
anti-reversible, 50
cohomologous, 50
reversible, 50

Tamagawa measure, 269
terminal vertex, 36
Theorem
of Hopf-Tsuji-Sullivan-Roblin, 56
thermodynamic formalism, 9
topological Markov shift
one-sided, 126
transitive, 67
two-sided, 67
topologically
mixing, 58, 65
transitive, 67
topology
narrow, 160
weak, 160
trace
of a quaternion, 268
of quadratic irrational, 261
transient, 97
transition kernel, 96
transitive, 67

translation
axis, 26, 257
length, 26
tree

biregular, 36
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cylinder, 62
metric, 36
uniform, 36
regular, 36
simplicial, 36
R-tree, 26

uniform tree, 36
uniformiser, 222
uniformly doubling, 54
unit
normal bundle
inner, 32
outer, 32
tangent bundle, 29
unstable
horoball, 31
horosphere, 31
leaf, 31

valuation, 221
at infinity, 222
ring, 221
n-variation, 85
n-th vertex of a random walk, 149
virtual centre, 211
visual distance, 27
volume
form
of a graph of groups, 38
of a graph of groups, 38
of a metric graph of groups, 38
of a graph of groups, 38

weak Gibbs measure, 85
weak topology, 160
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