
HAL Id: hal-01421201
https://hal.science/hal-01421201

Preprint submitted on 21 Dec 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Strong normalization of lambda-Sym-Prop and lambda
bare-mu-mu tilde*-calculi

Péter Battyányi, Karim Nour

To cite this version:
Péter Battyányi, Karim Nour. Strong normalization of lambda-Sym-Prop and lambda bare-mu-mu
tilde*-calculi . 2016. �hal-01421201�

https://hal.science/hal-01421201
https://hal.archives-ouvertes.fr

Strong normalization of λSymProp- and λµµ̃∗-calculi

Péter Battyányi
Department of Computer Science, Faculty of Informatics,

University of Debrecen,
Kassai út 26, 4028 Debrecen, Hungary

email : battyanyi.peter@inf.unideb.hu

Karim Nour
LAMA - Équipe LIMD

Université Savoie Mont Blanc
73376 Le Bourget du Lac

email : karim.nour@univ-smb.fr

Abstract

In this paper we give an arithmetical proof of the strong normalization of
λSymProp of Berardi and Barbanera [1], which can be considered as a formulae-
as-types translation of classical propositional logic in natural deduction style.
Then we give a translation between the λSymProp-calculus and the λµµ̃∗-calculus,

which is the implicational part of the λµµ̃-calculus invented by Curien and
Herbelin [3] extended with negation. In this paper we adapt the method of
[4] for proving strong normalization. The novelty in our proof is the notion
of zoom-in sequences of redexes, which leads us directly to the proofs of the
main theorems.

1 Introduction

It was revealed by the works of Murthy [8] and Gri�n [6] that the Curry-Howard
isomorphism, which establishes a correspondence between natural deduction style
proofs in intuitionistic logic and terms of the typed λ-calculus, can be extended
to the case of classical logic, as well. Since their discovery many calculi appeared
aiming to give an encoding of proofs formulated either in classical natural deduction
or in classical sequent calculus.

The λµ-calculus presented by Parigot in [15] �nds its origin in the so called Free
Deduction (FD) (cf. [15]). Parigot resolves the deterministic nature of intuitionis-
tic natural deduction: unlike in the case of intuitionistic natural deduction, when
eliminating an instance of a cut in FD, there can be several choices for picking out
the subdeductions to be transformed. By introducing variables of a new kind, the
so called µ-variables, Parigot distinguishes formulas that are not active at the mo-
ment but the current continuation can be passed over to them. Besides the usual
β-reduction, Parigot introduces a new reduction rule called the µ-rule correspond-
ing to structural cut eliminations made necessary by the occurrence of new forms
of cuts due to the rule in connection with the µ-variables. The result is a calculus,
the λµ-calculus (cf. [13]), which is in relation with classical natural deduction. The
µ′-rule is the symmetric counterpart of the µ-rule. It was introduced by Parigot in
[14] with the intention of keeping the unicity of representation of data (cf. [11]),
the price was, however, that con�uence had been lost. In the presence of other
simpli�cation rules besides µ and µ′, even the strong normalization property is lost
(cf. [2]).

Historically, the �rst calculus re�ecting the symmetry of classical propositional
logic was the λSymProp-calculus of Berardi and Barbanera [1] establishing a formulae-

1

as-types connection with natural deduction in classical logic. The calculus λSymProp

uses an involutive negation which is not de�ned as A → ⊥. There are negated
and non-negated atomic types, and the main connective is not the arrow but the
classical ∧ and ∨. Berardi and Barbanera make use of the natural symmetry of
classical logic expressed by the de Morgan laws in de�ning negated types. In their
paper, Berardi and Barbanera proved that λSymProp is strongly normalizable with a
symmetric version of the Tait-Girard reducibility method (cf. [20]). In this paper,
leaning on the combinatorial proof applied by David and Nour in [5], we prove
that λSymProp is strongly normalizing. The novelty in our proof is the application of
so-called zoom-in sequences of redexes, which was inspired by the work in [19].
We prove strong normalizability by verifying that it is closed under substitution.
From the assumption that U [x := V] is strongly normalizing and U , V are strongly
normalizing, we can identify a subterm U ′ of a reduct of U such that U ′[x := V]
also is strongly normalizing. The reduction sequence leading to U ′ is a so-called
zoom-in sequence of redexes: each subsequent element is a subterm of the one-
step reduct of the preceding one. We prove that zoom-in sequences have useful
invariant properties, which makes it relatively easy for us to set the stage for the
main theorem. Due to its intrinsic symmetry in dealing with the typing relation,
the λSymProp-calculus also proves to be very close to the calculus named by Nour as
classical combinatory logic (CCL). In [12], a calculus of combinators is de�ned which
is equivalent to the full classical propositional logic in natural deduction style. Then
a translation is given in both directions between λSymProp and CCL.

Curien and Herbelin introduced the λµµ̃-calculus (cf. [3]), which established
a correspondence, via the Curry-Howard isomorphism, between classical Gentzen-
style sequent calculus and a logical calculus. The λµµ̃-calculus possesses a rather
strong symmetry: it has right-hand side and left-hand side terms (also referred to as
environments). The strong normalization of the calculus was proved by Polonovski
[16], and a proof formalizable in �rst order Peano arithmetic was found by David
and Nour (cf. [4]).

As to the connection between the λµ and the λµµ̃-calculus, Curien and Herbelin
(cf. [3]) de�ned a translation both for the call-by-value and the call-by-name part of
the λµ-calculus into the λµµ̃-calculus. Rocheteau [17] �nished this work by de�ning
simulations between the two calculi in both directions. In this paper we de�ne the
λµµ̃∗-calculus, which is the λµµ̃-calculus extended with negation, and we describe
translations between the λµµ̃∗-calculus and the λSymProp-calculus. As a consequence,
we obtain that, if one of the calculi is strongly normalizable, then the other one
necessary admits this property.

The proof applied in the paper is an adaptation of that in David and Nour
[4]. In [4] arithmetic proofs, that is, proofs formalizable in �rst-order Peano arith-
metic, are given for the strong normalizability of the λµµ̃- and Parigot's symmetric
λµ-calculus. It is demonstrated that the set of strongly normalizable terms are
closed under substitution. The goal is achieved by applying implicitly an alternat-
ing substitution to �nd out which part of the substitution would be responsible
for being not strongly normalizable provided the basis of the substitution and the
terms written in are strongly normalizable. In this paper we reach the same goal
by identifying a minimal non strongly normalizing sequence of redexes provided an
in�nite reduction sequence is given. We call this sequence of redexes a minimal
zoom-in reduction sequence. The idea of zoom-in sequence was inspired by [19],
where perpetual reduction strategies are de�ned in order to locate the minimal non
strongly normalizing subterms of the elements of an in�nite reduction sequence.
Again, alternating substitutions are de�ned inductively starting from two sets of
terms, and it is proven that zoom-in reduction sequences do not lead out of these
substitutions. With this in hand, the method in [4] can be applied.

2

We prove the strong normalization of the λSymProp-calculus, though our proof works
with some slight modi�cation in the case of the λµµ̃-calculus, as well (cf.[2]). How-
ever, instead of repeating the proof here, we give a translation of the λSymProp-calculus
into the λµµ̃-calculus, and vice versa. In fact, to make the connection more visible
we de�ne the λµµ̃∗-calculus, which is the λµµ̃-calculus extended with terms ex-
pressing negated types. Hence, we also obtain a new proof of strong normalization
of the λµµ̃-calculus.

The paper is organized as follows. In the �rst section we introduce the λSymProp-
calculus of Berardi and Barbanera, and, as the �rst step towards strong normaliza-
tion, prove that the permutation rules can be postponed. In the nest section we
show that the β, β⊥, π and π⊥ rules together are strongly normalizing. Section
4 introduces the λµµ̃-calculus de�ned by Curien and Herbelin, and we augment
the calculus with negation in order to make the comparison of the λSymProp- and the
λµµ̃-calculi simpler. Section 5 provides translations between the λSymProp- and the
λµµ̃∗-calculi such that the strong normalization of one of the calculi implies that
of the other. The last section contains conclusions with regard to the results of the
paper.

2 The λSymProp-calculus

The λSym-calculus was introduced by Berardi and Barbanera in [1]. It is organized
entirely around the duality in classical logic. It has a negation �built-in�: the nega-
tion of A is not de�ned as A→ ⊥. Each type is rather related to its natural negated
type by the notion of duality introduced by negation in classical logic. In fact, Be-
rardi and Barbanera de�ned a calculus equivalent to �rst order Peano arithmetic.
However, we only consider here its propositional part, denoted by λSymProp, since all
the other calculi treated by us in this work are concerned with propositional logic.

De�nition 2.1 The set of types are built from two sets of base types A = {a, b, . . .}
(atomic types) and A⊥ = {a⊥, b⊥, . . .} (negated atomic types).

1. The set of m-types is de�ned by the following grammar

A := α | α⊥ | A ∧A | A ∨A

where α ranges over A and α⊥ over A⊥.

2. The set of types is de�ned by the following grammar

C := A | ⊥.

3. We de�ne the negation of an m-type as follows

(α)⊥ = α⊥ (α⊥)⊥ = α (A ∧B)⊥ = A⊥ ∨B⊥ (A ∨B)⊥ = A⊥ ∧B⊥.

In this way we get an involutive negation, i.e. for every m-type A, (A⊥)⊥ = A.

4. The complexity of a type is de�ned inductively as follows.

cxty(A) = 0, if A ∈ A ∪A⊥ ∪ {⊥}.
cxty(A1 ∧A2) = cxty(A1 ∨A2) = cxty(A1) + cxty(A2) + 1.

Then, for every m-type A, cxty(A) = cxty(A⊥).

3

De�nition 2.2 1. We denote by V ar the set of term-variables. The set of
terms T of the λSymProp-calculus together with their typing rules are de�ned as
follows. In the de�nition below the type of a variable must be an m-type and
Γ denotes a context (the set of declarations of variables).

var
Γ, x : A ` x : A

〈 , 〉 Γ ` P1 : A1 Γ ` P2 : A2

Γ ` 〈P1, P2〉 : A1 ∧A2
σi

Γ ` Pi : Ai
Γ ` σi (Pi) : A1 ∨A2

i ∈ {1, 2}

λ
Γ, x : A ` P : ⊥
Γ ` λxP : A⊥

?
Γ ` P1 : A⊥ Γ ` P2 : A

Γ ` (P1 ? P2) : ⊥

2. As usuel, we denote by Fv(M), the set of the free vraribles of the term M .

3. The complexity of a term of T is de�ned as follows.

cxty(x) = 0,

cxty(〈P1, P2〉) = cxty((P1 ? P2)) = cxty(P1) + cxty(P2),

cxty(λxP) = cxty(σi(P)) = cxty(P) + 1, for i ∈ {1, 2}.

De�nition 2.3 1. The reduction rules are enumerated below.

(β) (λxP ? Q) →β P [x := Q]
(β⊥) (Q ? λxP) →β⊥ P [x := Q]
(η) λx(P ? x) →η P if x /∈ Fv(P)
(η⊥) λx(x ? P) →η⊥ P if x /∈ Fv(P)
(π) (〈P1, P2〉 ? σi(Qi)) →π (Pi ? Qi) i ∈ {1, 2}
(π⊥) (σi(Qi) ? 〈P1, P2〉) →π⊥ (Qi ? Pi) i ∈ {1, 2}
(Triv) E[P] →Triv P (∗)

(*) If E[−] is a context with type ⊥ and E[−] 6= [−], P has type ⊥ and E[−]
does not bind any free variables in P .

2. Let us take the union of the above rules. Let → stand for the compatible
closure of this union and, as usual, →∗ denote the re�exive, symmetric and
transitive closure of →. The notions of reduction sequence, normal form and
normalization are de�ned with respect to →.

3. Let M,N be terms. The length (i.e. the number of steps) of the reduction
M →∗ N is denoted by lg(M � N).

We enumerate below some theoretical properties of the λSymProp-calculus (cf. [1]
and [9]).

Proposition 2.4 (Type-preservation property) If Γ ` P : A and P →∗ Q,
then Γ ` Q : A.

Proposition 2.5 (Subformula property) If Π is a derivation of Γ ` P : A
and P is in normal form, then every type occurring in Π is a subformula of a type
occurring in Γ, or a subformula of A.

Theorem 2.6 (Strong normalization) If Γ ` P : A, then P is strongly nor-
malizable, i.e. every reduction sequence starting from P is �nite.

4

Berardi and Barbanera proved Theorem 2.6 for the extension of the λSymProp-
calculus equivalent to �rst-order Peano-arithmetic. The proof of this result by
Berardi-Barbanera [1] is based on reducibility candidates, but the de�nition of the
interpretation of a type relies on non-arithmetical �xed-point constructions.

We present a syntactical and arithmetical proof of the strong normalization of
the λSymProp-calculus in Section 3. The proof was inspired by [4]. First we establish
that the permutation rules η, η⊥ and Triv can be postponed so that we can restrict
our attention uniquely to the rules β, β⊥, π, and π⊥.

2.1 Permutation rules

First of all, we prove that the η- and η⊥-reductions can be postponed w.r.t. β, β⊥,
π, and π⊥.

De�nition 2.7 1. Let λβπ-calculus denote the calculus with only the reduction
rules →β, →β⊥ , →π, and →π⊥ .

2. Let →βπ stand for the union of →β ,→β⊥ ,→π,→π⊥ and let M →e N denote
the fact that M →η N or M →η⊥ N .

3. We denote by →β0
(resp. by →β⊥0

) the β-reduction (λxM ?N)→β M [x := N]

(resp. the β⊥-reduction (N ?λxM)→β⊥ M [x := N]), where x occurs at most
once in M .

4. We use the standard notation →+ and →∗ for the transitive and re�exive,
transitive closure of a reduction, respectively.

We examine the behaviour of a →e rule followed by a →β and a →β0 rule in
Lemmas 2.8 and 2.9.

Lemma 2.8 If U →e V →β W , then U →β V
′ →∗e W or U →β0 V

′ →β W for
some V ′.

Proof We assume →e is an η-reduction, the proof of the case of →β is similar.
The proof is by induction on cxty(U). The only interesting case is U = (U1 ? U2).
We consider only some of the subcases.

1. U1 = λx(U3 ? x), with x /∈ Fv(U3), and V = (U3 ? U2)→β U4[y := U2] = W ,
where U3 = λyU4. In this case U = (λx(U3 ? x) ? U2) →β0 (U3 ? U2) →β

U4[y := U2] = W , so →η→β turns into →β0
→β .

2. U1 = λxU3, U3 →η U4 and V = (λxU4 ? U2) →β U4[x := U2] = W . Then
U →β V

′ = U3[x := U2]→η U4[x := U2] = W .

3. U1 = λxU3, U2 →η U4 and V = (λxU3 ? U4) →β U3[x := U4] = W . Then
U →β V

′ = U3[x := U2]→∗η U3[x := U4].
�

Lemma 2.9 If U →e V →β0 W , then U →β0 W or U →β0 V
′ →e W or U →β0

V ′ →β0
W for some V ′.

Proof By induction on cxty(U). We assume U = (U1 ?U2) and we consider some
of the more interesting cases.

1. U1 = λx(U3 ? x), with x /∈ Fv(U3), and V = (U3 ? U2)→β0
U4[y := U2] = W ,

where U3 = λyU4. In this case U = (λx(U3 ? x) ? U2) →β0 (U3 ? U2) →β0

U4[y := U2] = W , thus →η→β0 turns into →β0→β0 .

5

2. U1 = λxU3, U3 →η U4 and V = (λxU4 ? U2) →β0 U4[x := U2] = W . Then
U →β0 V

′ = U3[x := U2]→η U4[x := U2] = W .

3. U1 = λxU3, U2 →η U4 and V = (λxU3 ? U4) →β0 U3[x := U4] = W . Then
U →β0

V ′ = U3[x := U2]→η U3[x := U4] provided x occurs in U3. Otherwise
U →β0

U3 = W .
�

We obtain easily the following lemma on the behaviour of several →e rules
followed by a →β or a →β0

rule.

Lemma 2.10 If U→∗eV →β0
W , then U→β0

+V ′→∗eW for some V ′, and
lg(U→β0

+V ′→∗eW) ≤ lg(U→∗eV →β0
W).

Proof By induction on lg(U →∗e V →β0
W), using Lemma 2.9. �

Lemma 2.11 If U→∗eV →β W , then U→β
+V ′ →∗e W for some V ′.

Proof By induction on lg(U→∗eV →β W). Use Lemmas 2.8, 2.10. �

Lemma 2.12 If U→∗eV →β⊥ W , then U→β⊥
+V ′→∗eW for some V ′.

Proof Similar to that of the previous lemma. �

We investigate now how a→e rule behaves when followed by a→π or→π⊥ rule.

Lemma 2.13 If U →e V →π W (resp. U →e V →π⊥ W), then U →π V
′ →e W

or U →π W (resp. U →π⊥ V
′ →e W or U →π⊥ W) for some V ′.

Proof Observe that in case of U →e V →π W the following possibilities can
occur: either U = λx(V ? x) and V →π W or U = (〈P1, P2〉 ? σ(Q)) and V =
(〈P ′1, P ′2〉 ? σ(Q′)), where exactly one of Pi →e P

′
i , Q →e Q

′ holds, the other two
terms are left unchanged. From this, the statement easily follows. �

Lemma 2.14 If U →∗e V →βπ W , then U →+
βπ V

′ →e W for some V ′.

Proof By Lemmas 2.11, 2.12 and 2.13. �

Lemma 2.15 If U →∗e V →∗βπ W , then U →+
βπ V

′ →∗e W for some V ′.

Proof Follows from the previous lemma. �

We are now in a position to prove the main result of the section.

Lemma 2.16 The η- and the η⊥-reductions are strongly normalizing.

Proof The η- and η⊥-reductions on M reduce the complexity of M . �

De�nition 2.17 1. Let λβπη-calculus denote the calculus obtained from the
λβπ-calculus by adding the η- and η⊥-reductions to it.

2. Let →βπη denote the union of →β, →β⊥ , →π, →π⊥ , →η and →η⊥ .

3. Assume M is a term strongly normalizable in the λβπ-calculus. Then we
denote by ηβπ(M) the length of the longest reduction sequence →∗βπ starting
from M .

Corollary 2.18 If the λβπ-calculus is strongly normalizing, then the λβπη-calculus
is also strongly normalizing.

Proof Let M be a term, we prove by induction on ηβπ(M) that M is strongly
normalizable in the λβπη-calculus. Assume S is an in�nite βπη-reduction sequence
starting from M . If S begins with a →βπ, then the induction hypothesis applies.
In the case when S contains only →e-reductions, we are done by Lemma 2.16.
Otherwise there is an initial subsequent M →+

e M ′ →βπ N . By Lemma 2.14, we
have M →+

βπ M
′′ →∗e N . Thus, we can apply the induction hypothesis to M ′′. �

6

What has remained is to augment the calculus treated so far with the rule Triv.
For strong normalization, it is enough to show that →Triv can be postponed w.r.t.
→βπη.

Lemma 2.19 If U →∗Triv V →βπη W , then U →+
βπη V

′ →∗Triv W for some V ′.

Proof It is enough to prove that if U →Triv V →βπη W , then U →βπη V
′ →Triv

W for some V ′. Observe that if U = E[V] →Triv V →βπη W , then V : ⊥ and
W : ⊥, from which the statement follows. �

Lemma 2.20 The reduction →Triv is strongly normalizing.

Proof The reduction →Triv on M reduces the complexity of M . �

Corollary 2.21 If the λβπ-calculus is strongly normalizing, then the λSymProp-calculus
is also strongly normalizing.

Proof By Corollary 2.18 and Lemmas 2.19 and 2.20. �

3 Strong normalization of the λβπ-calculus

In this section, we give an arithmetical proof for the strong normalization of the
λβπ-calculus. In the sequel we detail the proofs for the β- and π-reductions only,
all the proofs below can be extended with the cases of the β⊥- and π⊥-reduction
rules in a straightforward way. We intend to examine how substitution behaves
with respect to strong normalizability. The �rst milestone in this way is Lemma
3.7. Before stating the lemma, we formulate some auxiliary statements.

De�nition 3.1 1. Let SNβπ denote the set of strongly normalizable terms of
the λβπ-calculus.

2. Let M ∈ SNβπ, then ηc(M) stands for the pair 〈ηβπ(M), cxty(M)〉.

Lemma 3.2 Let us suppose M ∈ SNβπ, N ∈ SNβπ and (M ?N) /∈ SNβπ. Then
there are P ∈ SNβπ, Q ∈ SNβπ and R /∈ SNβπ such that M →∗βπ P and N →∗βπ Q
and (P ? Q)→βπ R.

Proof By induction on ηc(M) + ηc(N). Assume M ∈ SNβπ, N ∈ SNβπ and
(M ? N) /∈ SNβπ. When (M ? N) → (M ′ ? N) or (M ? N) → (M ? N ′), then the
induction hypothesis applies. Otherwise (M ? N) → P /∈ SNβπ, and we have the
result. �

De�nition 3.3 1. A proper term is a term di�ering from a variable.

2. For a type A, ΣA denotes the set of simultaneous substitutions of the form
[x1 := N1, . . . , xk := Nk] where Ni (1 ≤ i ≤ n) is proper and has type A.

3. A simultaneous substitution σ ∈ ΣA is said to be in SNβπ, if, for every
x ∈ dom(σ), σ(x) ∈ SNβπ holds.

Lemma 3.4 Let M,N be terms such that M →∗βπ N .

1. If N = λxP , then M = λxP1 with P1 →∗βπ P .

2. If N = 〈P,Q〉, then M = 〈P1, Q1〉 with P1 →∗βπ P and Q1 →∗βπ Q.

3. If N = σi(P), then M = σi(P1) with P1 →∗βπ P , for i ∈ {1, 2}.
Proof Straightforward. �

7

We remark that in the presence of the→η and→⊥η rules the above lemma would
not work. For example, λx(y ? x)→η y.

Lemma 3.5 If M ∈ SNβπ and x ∈ V ar, then (M ? x) ∈ SNβπ (resp. (x ? M) ∈
SNβπ).

Proof Let us suppose M ∈ SNβπ and (M ?x) /∈ SNβπ. By Lemma 3.2, we must
have M →∗βπ λyM1 ∈ SNβπ such that (M ? x) →∗βπ (λyM1 ? x) →βπ M1[y := x]
and M1[y := x] /∈ SNβπ. Being a subterm of a reduct of M ∈ SNβπ, we also have
M1 ∈ SNβπ. Moreover, M1[y := x] is obtained from M1 by α-conversion, hence
M1[y := x] ∈ SNβπ, a contradiction. �

De�nition 3.6 1. Let M,N be terms.

(a) We denote by M ≤ N (resp. M < N) the fact that M is a sub-term
(resp. a strict sub-term) of N .

(b) We denote by M ≺ N the fact that M ≤ P for some P such that N →∗βπ
P and either N →+

βπ P or M < P . We denote by � the re�exive closure
of ≺.

(c) Let R be a βπ-redex. We write M →R N if N is the term M after the
reduction of R.

2. Let R = [R1, . . . , Rn] where Ri is a βπ-redex (1 ≤ i ≤ n). Then R is called
zoom-in if, for every 1 ≤ i < n, Ri →Ri R′i and Ri+1 ≤ R′i. Moreover,
R is minimal, if, for each Ri = (Pi ? Qi), we have Pi, Qi ∈ SNβπ and
(Pi ? Qi) /∈ SNβπ. We write M →R N , if M →R1 ...→Rn N .

For the purpose of proving the strong normalization of the calculus, it is enough
to show that the set of strongly normalizable terms is closed under substitution. To
this end, we show that, if U , S ∈ SNβπ and U [x := S] /∈ SNβπ, then there is a term
W ≤ U of a special form such that W ∈ SNβπ and W [x := S] /∈ SNβπ. Moreover,
we show that the sequence of redexes leading to W is not completely general, this
is a zoom-in sequence de�ned below. Reducing the outermost redexes of a zoom-in
sequence preserve some useful properties, which is the statement of Lemma 3.9.

Lemma 3.7 Let U , S ∈ SNβπ and suppose U [x := S] /∈ SNβπ. Then there are
terms P, V � U and a zoom-in minimal R such that U [x := S] →R V [x := S],
(x ? P) ≤ V (or (P ? x) ≤ V), P [x := S] ∈ SNβπ and (x ? P)[x := S] /∈ SNβπ (or
(P ? x)[x := P] /∈ SNβπ).
Proof The proof goes by induction on ηc(U). If U is other than an application, we
can apply the induction hypothesis. Assume U = (U1 ?U2) with Ui[x := S] ∈ SNβπ
(i ∈ {1, 2}) and U [x := S] /∈ SNβπ. By Lemma 3.2 and the induction hypothesis
we may assume that (U1 ? U2)[x := S] →ρ U

′ /∈ SNβπ, where ρ ∈ {β, β⊥, π, π⊥}.
Let us suppose ρ = β, the other cases can be treated similarly. If U1 = λyU ′1, then
the induction hypothesis applies to U ′1[y := U2]. Otherwise U1 = x, and we have
obtained the result. �

Next we de�ne an alternating substitution: we start from two sets of terms of
complementer types and the substitution is de�ned in a way that we keep track
of which newly added sets of substitutions come from which of the two sets. The
reason for this is that Lemma 3.7 in itself is not enough for proving the strong
normalizability of λSymProp even if we would consider the β and β⊥ rules alone. We
have to show that, if we start from a term (U1 ? U2), where U1 and U2 ∈ SNβπ and
we assume that U1[x := U2] /∈ SNβπ, then there are no deep interactions between
the terms which come from U1 and from U2. We can identify a subterm of a reduct
of U1 which is the cause for being non SNβπ, when performing a substitution with
U2.

8

De�nition 3.8 1. A set A of proper terms is called �-closed from below if, for
all terms U,U ′, if U ′ � U , U ∈ A and U ′ is proper, then U ′ ∈ A.

2. Let A,B be sets �-closed from below and A a type. We de�ne simultaneously
two sets of substitutions

(a) ΠA(B) ⊆ ΣA and ΘA⊥(A) ⊆ ΣA⊥ as follows.

� ∅ ∈ ΠA(B),

� [y1 := V1τ1, . . . , ym := Vmτm] ∈ ΠA(B) if Vi ∈ B such that
type(Vi) = A and τi ∈ ΘA⊥(A) (1 ≤ i ≤ m).

� ∅ ∈ ΘA⊥(A).

� [x1 := U1ρ1, . . . , xm := Umρm] ∈ ΘA⊥(A) if Ui ∈ A such that
type(Ui) = A⊥ and ρi ∈ ΠA(B) (1 ≤ i ≤ m).

(b) Let SA(A,B) = {Uρ | U ∈ A and ρ ∈ ΠA(B)} ∪ {V τ | V ∈ B and τ ∈
ΘA⊥(A)}. It is easy to see that, from U ≤ V and V ∈ SA(A,B), it
follows U ∈ SA(A,B).

Lemma 3.9 Let n be an integer, A a type of length n and R = [R1, . . . , Rm] a
zoom-in minimal sequence of redexes. Assume the property H �if U , V ∈ SNβπ and
cxty(type(V)) < n, then U [x := V] ∈ SNβπ� holds. If R1 ∈ SA(A,B) for some sets
A and B �-closed from below, then Rm ∈ SA(A,B).

Proof The proof goes by induction on m. We prove the induction step from
m = 1 to m = 2, the proof is the same when m ∈ N is arbitrary. We only treat the
more interesting cases. Assume R1 ∈ SA(A,B).

1. R1 = (λxQ ? S)→β R
′
1 = Q[x := S] and R2 ≤ R′1.

(a) Suppose R1 = Uρ for some U ∈ A and ρ ∈ ΠA(B). Then U = (U1 ? U2)
with U1ρ = λxQ and U2ρ = S, and, since ρ ∈ ΣA, U1 must be proper.
Then we have U1 = λxU ′1 and U

′
1ρ = Q for some U ′1. Now, R

′
1 = U ′1[x :=

U2]ρ ∈ SA(A,B), which yields R2 ∈ SA(A,B).

(b) Assume now R1 = V τ . Then V = (V1?V2) with V1τ = λxQ and V2τ = S,
and, since τ ∈ ΣA⊥ , V2 must be proper. If V1 is proper, then, as before,
we obtain the result. Otherwise V1τ = Uρ = λxQ. Since U ∈ A is
proper, U = λxU1 and U1ρ = Q for some U1. Then U1ρ1 ∈ SA(A,B)
with ρ1 = ρ + [x := V2τ], since type(V2τ) = type(S) = A. This implies
R2 ∈ SA(A,B).

2. R1 = (〈Q1, Q2〉 ? σ1(S))→π (Q1 ? S) = R′1 and R2 ≤ R′1.

(a) Assume R1 = Uρ for some U ∈ A and ρ ∈ ΠA(B). Then U1ρ = 〈Q1, Q2〉
and U2ρ = σ1(S).

- Let U1 and U2 be proper. Then U1 = 〈U ′1, U ′′1 〉 and U2 = σ1(U ′2) such
that U ′1ρ = Q1, U ′′1 ρ = Q2 and U ′2ρ = S. We have R′1 = (U ′1 ?U

′
2)ρ ∈

SA(A,B), which yields the result.
- Assume U2 ∈ V ar. Then V τ = σ(S), and cxty(type(S)) <
cxty(type(σS)) = n. Then assumptionH and the fact that 〈Q1, Q2〉 ∈
SNβπ, together with Lemma 3.5, lead to (Q1 ? S) ∈ SNβπ, which is
not possible. Since ρ ∈ ΣA, U1 ∈ V ar is impossible.

(b) Assume R1 = V τ for some V ∈ B and τ ∈ ΘA⊥(A). Then V1τ =
〈Q1, Q2〉 and V2τ = σ1(S), where V = (V1 ? V2).

- Let V1 and V2 be proper. Then V1 = 〈V ′1 , V ′′1 〉 and V2 = σ1(V ′2) such
that V ′1τ = Q1, V ′′1 τ = Q2 and V ′2τ = S. We have R′1 = (V ′1 ?V

′
2)τ ∈

SA(A,B).

9

- Assume V1 ∈ V ar. Then Uρ = 〈Q1, Q2〉, where cxty(type(Q1)) <
cxty(type(〈Q1, Q2〉)) = n. Then assumption H and the fact that
S ∈ SNβπ, together with Lemma 3.5, lead to (Q1 ? S) ∈ SNβπ,
which is not possible. Since τ ∈ ΣA⊥ , the case of V2 ∈ V ar is
impossible.

�

The next lemma identi�es the subterm of U being responsible for the non strong
normalizability of U [x := V].

Lemma 3.10 Let n be an integer and A a type of length n. Assume the property
H �if U , V ∈ SNβπ and cxty(type(V)) < n, then U [x := V] ∈ SNβπ� holds.

1. Let U be a proper term, σ ∈ ΣA and a /∈ Im(σ). If Uσ, P ∈ SNβπ and
Uσ[a := P] /∈ SNβπ, then there exists U ′ such that (U ′ ? a) � U and σ′ ∈ ΣA
such that U ′σ′ ∈ SNβπ and (U ′σ′ ? a)[a := P] /∈ SNβπ.

2. Let U be a proper term, σ ∈ ΣA⊥ and a /∈ Im(σ). If Uσ, P ∈ SNβπ and
Uσ[a := P] /∈ SNβπ, then there exists U ′ such that (a?U ′) � U and σ′ ∈ ΣA⊥
such that U ′σ′ ∈ SNβπ and (a ? U ′σ′)[a := P] /∈ SNβπ.

Proof Let us consider only case (1). We identify the reason of Uσ[a := P] being
non strongly normalizable, we �nd a subterm (U ′ ? a) of a reduct of U such that,
for a substituted instance of (U ′ ? a), (U ′ ? a)σ′ ∈ SNβπ and (U ′ ? a)σ′[a := P] /∈
SNβπ. This will contradict by some minimality assumption concerning U in the
next lemma. For this we de�ne two sets of substitutions as in De�nition 3.8 with the
sets A and B as below. We note that Property H of the previous lemma implicitly
ensures that the type of U and the type of the elements in σ can be of the same
lengths.

Let
A = {M |M � U and M is proper},

B = {V |V � σ(b) for some b ∈ dom(σ) and V is proper}.

Then Uσ ∈ SA(A,B). By Lemma 3.7, there exists a minimal zoom-in R =
[R1, . . . , Rn] and there are terms U∗ and V � Uσ such that Uσ[a := P] →R
V [a := P] and (U∗ ? a) ≤ V and (U∗ ? a) ∈ SNβπ and (U∗ ? a)[a := P] /∈ SNβπ
or (a ? U∗) ≤ V and (a ? U∗) ∈ SNβπ and (a ? U∗)[a := P] /∈ SNβπ. Assume the
former. By Lemma 3.9, (U∗ ? a) ∈ SA(A,B). Then (U∗ ? a) = Sρ for some S ∈ A
or (U∗ ? a) = Wτ for some W ∈ B. Since a /∈ Im(σ), the latter is impossible. The
former case, however, yields S = (U ′ ? a) with U ′ρ = U∗ for some U ′ ∈ A, which
proves our assertion. �

The next lemma states closure of strong normalizability under substitution.

Lemma 3.11 If M,N ∈ SNβπ, then M [x := N] ∈ SNβπ.
Proof We are going to prove a bit more general statement. Suppose M,Ni ∈
SNβπ are proper, type(Ni) = A (1 ≤ i ≤ k). Let τi ∈ ΣA⊥ are such that τi ∈ SNβπ
(1 ≤ i ≤ k) and let ρ = [x1 := N1τ1, . . . , xk := Nkτk]. Then we have Mρ ∈ SNβπ.
The proof is by induction on (cxty(A), ηβπ(M), cxty(M), Σi ηβπ(Ni),Σi cxty(Ni))
where, in Σi ηβπ(Ni) and Σi cxty(Ni), we count each occurrence of the substituted
variable. For example if k = 1 and x1 has n occurrences, then Σi ηβπ(Ni) =
n · ηβπ(N1).

The only nontrivial case is when M = (M1 ? M2) and Mρ /∈ SNβπ. By the
induction hypothesis Miρ ∈ SNβπ (i ∈ {1, 2}). We select some of the typical cases.

(A) M1ρ→βπ λzM
′ and M ′[z := M2] /∈ SNβπ.

10

1. M1 is proper, then there is an M3 such that M1 = λzM3 and M3ρ→βπ

M ′. In this case (M3[z := M2])ρ /∈ SNβπ and since ηβπ(M3[z := M2]) <
ηβπ(M), the induction hypothesis gives the result.

2. M1 ∈ V ar. Then M1 = x ∈ dom(ρ), ρ(x) = Njτj →βπ λzM ′ for
some (1 ≤ j ≤ k). Since Nj is proper, there is an N ′ such that Nj =
λzN ′, N ′τj →βπ M ′. Then N ′τj [z := M2ρ] /∈ SNβπ and type(z) =

type(Nj)
⊥

= type(τj), so, by the previous lemma, we have N ′′ ≺ N ′

and τ ′ such that (N ′′τ ′ ? M2ρ) /∈ SNβπ. Now we have (N ′′τ ′ ? M2ρ) =

(y ? M2ρ)[y := N ′′τ ′], type(N ′′) = type(τ ′)
⊥

= A and ηβπcxty(N ′′) <
ηc(Nj), which contradicts the induction hypothesis.

(B) M1ρ →βπ 〈M ′,M ′′〉 and either (M ′ ? M2) /∈ SNβπ or (M ′′ ? M2) /∈ SNβπ.
Suppose the former.

1. M1,M2 are proper, then there are M3,M4 such that M1 = 〈M3,M4〉
and M3ρ→βπ M

′, or M4ρ→βπ M
′′. Assume the former. Then we have

(M3 ? M2)ρ /∈ SNβπ and ηβπ((M3 ? M2)) < ηβπ(M), a contradiction.

2. M1 = x ∈ dom(ρ), then ρ(x) = Njτj →βπ 〈M ′,M ′′〉, Nj is proper
and Nj = 〈U, V 〉, Uτj →βπ M ′ or V τj →βπ M ′′. Now (Uτj ? M2) =
(y ? M2)[y := Uτj] /∈ SNβπ, but cxty(type(U)) < cxty(type(Nj)), a
contradiction again.

3. M2 ∈ V ar. This is similar to the previous case. By the same argument
as in part (A)-2.-(a) of the proof of the previous lemma, M1 and M2

cannot be both variables. This completes the proof of the lemma.
�

Theorem 3.12 The λβπ-calculus is strongly normalizing.

Proof It is enough to show that, for every term,M , N ∈ SNβπ implies (M?N) ∈
SNβπ. Supposing M,N ∈ SNβπ, Lemma 3.5 gives (M ? x) ∈ SNβπ, which yields,
by the previous lemma, (M ?N) = (M ? x)[x := N] ∈ SNβπ. �

4 The λµµ̃- and the λµµ̃∗-calculus

In this section we introduce the λµµ̃-calculus together with one of its extensions,
the λµµ̃∗-calculus, by which we establish a translation of the λSymProp-calculus and

thus obtain the strong normalization of the λµµ̃∗-calculus as a consequence.

4.1 The λµµ̃-calculus

The λµµ̃-calculus was introduced by Curien and Herbelin (cf. [10] and [3]). We ex-
amine here the calculus de�ned in [3], which is a simply typed one. The λµµ̃-calculus
was invented for representing proofs in classical Gentzen-style sequent calculus: un-
der the Curry-Howard correspondence a version of Gentzen-style sequent calculus
is obtained as a system of simple types for the λµµ̃-calculus. Moreover, the system
presents a clear duality between call-by-value and call-by-name evaluations.

De�nition 4.1 There are three kinds of terms, de�ned by the following grammar,
and there are two kinds of variables. We assume that we use the same set of variables
in the λµµ̃∗-calculus, too. In the literature, di�erent authors use di�erent termi-
nology. Here, we will call them either c-terms, or l-terms or r-terms. Similarly,

11

the variables will be called either l-variables (and denoted as x, y, ...) or r-variables
(and denoted as a, b, ...).

p ::= bt, ec
t ::= x | λxt | µαp
e ::= α | (t.e) | µ̃xp

As usual, we denote by Fv(u), the set of the free variables of the term u.

De�nition 4.2 The types are built from atomic formulas (or, in other words,
atomic types) with the connector →. We assume that the same set of type variables
A is used in the λµµ̃∗-calculus, also. The typing system is a sequent calculus based
on judgements of the following form.

p : (Γ B 4) Γ B t : A | 4 Γ | e : A B 4

where Γ (resp. 4) is a set of declarations of the form x : A (resp. a : A), x (resp.
a) denoting a l-variable (resp. an r-variable) and A representing a type, such that
x (resp. a) occurs at most once in an expression of Γ (resp. 4) of the form x : A
(resp. a : A). We say that Γ an l-context and 4 is an r-context, respectively. The
typing rules are as follows

V ar1
Γ, x : A B x : A | 4

V ar2
Γ | α : A B α : A,4

λ
Γ, x : A B t : B | 4

Γ B λxt : A→ B | 4
(.)

Γ B t : A | 4 Γ | e : B B 4
Γ | (t.e) : A→ B B 4

b, c Γ B t : A | 4 Γ | e : A B 4
bt, ec : (Γ B 4)

µ
p : (Γ B α : A,4)

Γ B µαp : A | 4
µ̃

p : (Γ, x : A B 4)

Γ | µ̃xp : A B 4

De�nition 4.3 The cut-elimination procedure (on the logical side) corresponds to
the reduction rules (on the terms) given below.

(λ) bλxt, (t′.e)c ↪→ λ bt′, µ̃x bt, ecc
(µ) bµαp, ec ↪→ µ p[α := e]
(µ̃) bt, µ̃xpc ↪→ µ̃ p[x := t]
(sl) µαbt, αc ↪→ sl t if α 6∈ Fv(t)
(sr) µ̃xbx, ec ↪→ sr e if x 6∈ Fv(e)

Let us take the union of the above rules. Let ↪→ stand for the compatible closure
of this union and, as usual, ↪→∗ denote the re�exive, symmetric and transitive
closure of ↪→. The notions of reduction sequence, normal form and normalization
are de�ned with respect to ↪→.

We present below some theoretical properties of the λµµ̃-calculus (cf. [10], [3],
[9], [16] and [5]).

Proposition 4.4 (Type-preservation property) If Γ B t : A | 4 (resp. Γ | e :
A B 4, resp. p : (Γ B 4)) and t ↪→∗ t′ (resp. e ↪→∗ e′, resp. p ↪→∗ p′), then
Γ B t′ : A | 4 (resp. Γ | e′ : A B 4, resp. p′ : (Γ B 4)).

Proposition 4.5 (Subformula property) If Π is a derivation of Γ B t : A | 4
(resp. Γ | e : A B 4, resp. p : (Γ ` 4)) and t (resp. e, resp. p) is in normal
form, then every type occurring in Π is a subformula of a type occurring in Γ ∪4,
or a subformula of A (only for t and e).

12

Theorem 4.6 (Strong normalization property) If Γ B t : A | 4 (resp. Γ | e :
A B 4, resp. p : (Γ B 4)), then t (resp. e, resp. p) is strongly normalizable, i.e.
evrey reduction sequence starting from t (resp. e, resp. p) is �nite.

The proof of Theorem 4.6 can be found in [16], as well as in [5], where an
arithmetical proof is presented.

4.2 The λµµ̃∗
-calculus

Since we work in a sequent calculus, where dealing with negation is implicitly built
in the rules, the typing rules of the λµµ̃-calculus do not handle negation. However,
for a full treatment of propositional logic we found it more convenient to introduce
rules concerning negation. Since c-terms, which could have been candidates for
objects of type ⊥, are distinctly separated from terms, adding new term- and type-
forming operators seems to be the easiest way to de�ne negation.

De�nition 4.7 1. The terms of the λµµ̃∗-calculus are de�ned by the following
grammar.

p ::= bt, ec
t ::= x | λx t | µα p | e

e ::= α | (t.e) | µ̃x p | t̃

As an abuse of terminology, in the sequel when speaking about the syntactic
elements of the λµµ̃∗-calculus, we may not distinguish l-, r- and c-terms, we
may speak about terms in general. We denote by T the set of terms of the
λµµ̃∗-calculus.

2. The complexity of a term of T is de�ned as follows.

cxty(x) = cxty(α) = 0,

cxty(λxt) = cxty(t̃) = cxty(t) + 1,

cxty(e) = cxty(e) + 1,

cxty(µαp) = cxty(µ̃x p) = cxty(p) + 1,

cxty(bt, ec) = cxty((t.e)) = cxty(t) + cxty(e).

De�nition 4.8 The type inference rules are the same as in the λµµ̃-calculus with
two extra rules added for the types of the complemented terms. Moreover, we in-
troduce an equation between types (for all types A, (A⊥)⊥ = A) to ensure that our
negation is involutive.

.
Γ | e : AB4

ΓB e : A⊥ | 4
.̃

ΓB t : A | 4
Γ | t̃ : A⊥ B4

We also de�ne the complexity of types in the λµµ̃∗-calculus.

cxty(A) = 0 for atomic types,

cxty(A→ B) = cxty(A) + cxty(B) + 1,

cxty(A⊥) = cxty(A).

That is, the complexity of a type A provides us with the number of arrows in A.
The presence of negation makes it necessary for us to introduce new rules handling
negation.

13

De�nition 4.9 Besides the reduction rules already present in λµµ̃, we endow the
calculus with some more new rules to handle the larger set of terms. In what follows
cl stands for the name: complementer rule. We shall denote the cl1,l- and cl1,r-rules
with a common notation as the cl1-rules.

(cl1,l) t̃ ↪→ cl1,l t

(cl1,r) ẽ ↪→ cl1,r e

(cl2) be, t̃c ↪→ cl2 bt, ec
In the sequel, we continue to apply the notation ↪→ and ↪→∗ in relation with this

new calculus.

Obviously, the statements analogous to Propositions 4.4 and 4.5 are still valid.

5 Relating the λSymProp-calculus to the λµµ̃∗-calculus

In [17], Rocheteau de�ned a translation between the λµµ̃-calculus and the λµ-
calculus, treating both a call-by-value and a call-by-name aspect of λµµ̃. In this
subsection, we give a translation (in both directions) between the λSymProp-calculus and
the λµµ̃∗-calculus, which is a version of the λµµ̃-calculus extended with negation.
The translations are such that strong normalization of one calculus follows from that
of the other in both directions. We omit issues of evaluation strategies, however. In
the end of the section we give an exact description of the correspondence between
the two translations. Preparatory to presenting the translations, let us introduce
some de�nitions and notation below. We assume that the two calculi have the same
sets of variables and atomic types. Moreover, as an abuse of notation, if α : A⊥

stems form the r-variable α : A in the λµµ̃∗-calculus, then we suppose that in the
λSymProp-calculus α denotes a variable with type A⊥.

5.1 A translation of the λµµ̃∗
-calculus into the λSymProp-calculus

De�nition 5.1 1. Let us consider the λSymProp-calculus. For i ∈ {1, 2}, we write
πi(y) = λz(y ? σi(z)). Then, we can observe that y : A1 ∧A2 ` πi(y) : Ai, for
i ∈ {1, 2}.

2. We de�ne a translation .e : T −→ T as follows.

pe = (ue ? ve) if p = bv, uc.

te =

x if t = x,
λy(λx(π2(y) ? ue) ? π1(y)) if t = λxu,
λx(ee ? te) if t = µ̃xbt, ec,
ue if t = u.

ee =

α if e = α,
〈te, he〉 if e = t.h,
λα(ee ? te) if e = µαbt, ec,
he if e = h̃.

3. The translation .e also applies to types.

• Ae = A, where A is an atomic type,

• (A⊥)e = (Ae)⊥,

• (A→ B)e = (Ae)⊥ ∨Be.

14

4. Let Γ, 4 be l- and r-contexts, respectively. Then Γe = {x : Ae | x : A ∈ Γ} and
similarly for 4. Furthermore, for any r-context 4, let 4⊥ = {α : A⊥ | α :
A ∈ 4}.

Lemma 5.2 1. If Γ B t : A | 4, then Γe, (4e)⊥ ` te : Ae.

2. If Γ | e : A B 4, then Γe, (4e)⊥ ` ee : (Ae)⊥.

3. If p : (Γ B 4), then Γe, (4e)⊥ ` pe : ⊥.
Proof The above statements are proved simultaneously according to the length
of the λµµ̃∗-deduction. We remark that .e is de�ned in De�nition 5.1 exactly in the
way to make the assertions of the lemma true. Let us examine some of the more
interesting cases.

1. Suppose
Γ, x : A B u : B | 4

Γ B λxu : A→ B | 4
.

Then we have, by the induction hypothesis and Notation 5.1,

Γe, (4e)⊥, x : Ae, y : Ae ∧ (Be)⊥ ` ue : Be,

Γe, (4e)⊥, y : Ae ∧ (Be)⊥ ` π1(y) : Ae,

Γe, (4e)⊥, y : Ae ∧ (Be)⊥ ` π2(y) : (Be)⊥.

Thus we can conclude

Γe, (4e)⊥, x : Ae, y : Ae ∧ (Be)⊥ ` (π2(y) ? ue) : ⊥,

Γe, (4e)⊥, y : Ae ∧ (Be)⊥ ` λx(π2(y) ? ue) : (Ae)⊥.

From which, we obtain

Γe, (4e)⊥ ` λy(λx(π2(y) ? ue) ? π1(y)) : (Ae)⊥ ∨Be.

2. Assume now
Γ B t : A | 4 Γ | e : B B 4

Γ | t.e : A→ B B 4
.

Then we have

Γe, (4e)⊥ ` te : Ae Γe, (4e)⊥ ` ee : (Be)⊥

Γe, (4e)⊥ ` 〈te, ee〉 : Ae ∧ (Be)⊥
.

3. From
Γ B t : A | 4 Γ | e : A B 4

bt, ec : (Γ B 4)
,

we obtain
Γe, (4e)⊥ ` te : Ae Γe, (4e)⊥ ` ee : (Ae)⊥

Γe, (4e)⊥ ` (ee ? te) : ⊥
.

�

15

Our next aim is to prove that λµµ̃∗ can be simulated by the λSymProp-calculus. To
this end we introduce a new notion of equality in the λSymProp-calculus.

De�nition 5.3 We de�ne an equivalence relation ∼ on T .

• x ∼ x,

• if M ∼M ′, then λxM ∼ λxM ′ and σi(M) ∼ σi(M ′) for i ∈ {1, 2},

• if M ∼ M ′ and N ∼ N ′, then 〈M,N〉 ∼ 〈M ′, N ′〉 and (M ? N) ∼ (M ′ ? N ′)
and (M ?N) ∼ (N ′ ? M ′).

We say that M and N are equal up to symmetry provided M ∼ N .

Lemma 5.4 Let M,M ′, N,N ′ ∈ T .

1. If M ∼M ′ and N ∼ N ′, then M [x := N] ∼M ′[x := N ′].

2. If M ∼M ′ and M ′ → N , then there is N ′ for which M → N ′ and N ∼ N ′.
Proof 1. By induction on cxty(M). 2. By 1. �

Lemma 5.5 Let u, t, e ∈ T. Then (u[x := t])e = ue[x := te] and (u[a := e])e =
ue[a := ee].

Proof By induction on cxty(u). �

Now we can formulate our assertion about the simulation of the λµµ̃∗-calculus
by the λSymProp-calculus.

Theorem 5.6 Let v, w ∈ T.

1. If v ↪→r w and r ∈ {β , µ , µ̃ , sl , sr}, then ve →+ we.

2. If v ↪→r w and r ∈ {cl1,l , cl1,r , cl2}, then ve ∼ we.

Proof

1. Let us only treat the typical cases.

(a) If v = bλxu, (t.e)c ↪→β bt, µ̃xbu, ecc = w, then ve = (〈te, ee〉?λy(λx(π2(y)?
ue)?π1(y)))→β⊥ (λx(π2(〈te, ee〉)?ue)?π1(〈te, ee〉))→∗ (λx(ee?ue)?te) =
we.

(b) If v = bµap, ec ↪→µ p[a := e] = w, then, by Lemma 5.5, ve = (ee ?
λape)→β⊥ p

e[a = ee] = we.

(c) If v = µabw, ac ↪→sl w, a /∈ w, then ve = λa(a ? we)→η⊥ w
e.

2. (a) If v = ũ ↪→cl1,l u = w, then ve = (ũ)e = ue = we.

(b) If v = bv, ũc ↪→cl2 bu, vc = w, then ve = bv, ũce = (ue ? ve) ∼ we.
�

Corollary 5.7 The λµµ̃∗-calculus is strongly normalizable.

Proof Let S be an in�nite reduction sequence in the λµµ̃∗-calculus. By Theorem
5.6 and Lemma 5.4, S cannot contain an in�nite number of β-, µ-, µ̃-, sl- and sr-
reductions. Thus, there would exist an in�nite reduction sequence consisting entirely
of cl1,l-, cl1,r- and cl2-reductions, which is impossible. �

16

5.2 A translation of the λSymProp-calculus into the λµµ̃∗
-calculus

Now we are going to deal with the converse relation. That is we will present a
translation of the λSymProp-calculus into the λµµ̃∗-calculus which faithfully re�ects
the typability relations of one calculus in the other one. Then we prove that our
translation is in fact a simulation of the λSymProp-calculus in the λµµ̃∗-calculus.

De�nition 5.8 1. The translation .f : T −→ T is de�ned as follows.

M f =

x if M = x,

bQf, P̃ fc if M = (P ? Q),

µ̃xN f if M = λxN,

(P f.Q̃f) if M = 〈P,Q〉,
λxµβbN f, x̃c if M = σ1(N), x /∈ Fv(N f) and β /∈ Fv(bN f, x̃c),
λxN f if M = σ2(N) and x /∈ Fv(N f).

2. The translation .f applies to the types as follows.

• αf = α,

• (α⊥)
f

= α⊥,

• (A ∧B)f = (Af → (Bf)⊥)⊥,

• (A ∨B)f = (Af)⊥ → Bf.

We remark that .f maps the terms of the λSymProp-calculus with type ⊥ to c-terms

of the λµµ̃∗-calculus, which have no types. We also have, for all types A,

(A⊥)
f

= (Af)⊥. Therefore the translation .f maps equal types to equal types.

Lemma 5.9 1. If Γ `M : A and A 6= ⊥, then Γf BM f : Af.

2. If Γ `M : ⊥, then M f : (Γf B).

Proof The proof proceeds by a simultaneous induction on the length of the
derivation in the λSymProp-calculus. We can observe again that the notion of .f in
De�nition 5.8 is conceived in a way to make the statements of the lemma true. Let
us only examine some of the typical cases of the �rst assertion.

1. Suppose
Γ, x : A ` u : ⊥
Γ ` λxu : A⊥

.

Then, applying the induction hypothesis,

uf : (Γf, x : Af B)

Γf | µ̃xuf : Af B

Γf B µ̃xuf : (Af)⊥
.

2. If
Γ ` u : A

Γ ` σ1(u) : A ∨B
,

then, we obtain

Γf, x : (Af)⊥ B uf : Af | β : Bf

Γf, x : (Af)⊥ B x : (Af)⊥ | β : Bf

Γf, x : (Af)⊥ | x̃ : Af B β : Bf

buf, x̃c : (Γf, x : (Af)⊥ B β : Bf)

Γf, x : (Af)⊥ B µβbuf, x̃c : Bf

Γf B λxµβbuf, x̃c : (Af)⊥ → Bf
.

17

3. From
Γ ` u : A⊥ Γ ` v : A

Γ ` (u ? v) : ⊥
,

we obtain
Γf B uf : (Af)⊥

Γf | ũf : Af B Γf B vf : Af

bvf, ũfc : (Γf B)
.

�

Now we turn to the proof of the simulation of the λSymProp-calculus in the λµµ̃∗-
calculus.

Lemma 5.10 Let M,N ∈ T . Then (M [x := N])
f

= M f[x := N f].

Proof By induction on cxty(M). �

Theorem 5.11 Let M,N ∈ T . If M → N , then M f ↪→+ N f.

Proof Let us prove some of the more interesting cases.

1. If M = (λxP ? Q)→β P [x := Q] = N , then, applying Lemma 5.10,

M f = bQf,
˜̃
µxP fc ↪→cl1 bQf, µ̃xP fc ↪→µ̃ P

f[x := Qf] = N f.

2. If M = (Q ? λxP)→β⊥ P [x := Q] = N , then

M f = bµ̃xP f, Q̃fc ↪→cl2 bQf, µ̃xP fc ↪→µ̃ P
f[x := Qf] = N f.

3. If M = (〈P,Q〉 ? σ1(R))→π (P ? R) = N , then

M f = bλxµbbRf, x̃c,
˜

(P f.Q̃f)c ↪→cl1 bλxµbbRf, x̃c, (P f.Q̃f,)c ↪→λ

bP f, µ̃xbµbbRf, x̃c, Q̃fcc ↪→µ̃ bµbbRf, P̃ fc, Q̃fc ↪→µ bRf, P̃ fc = N f.
�

We could as well demonstrate that the λµµ̃∗-calculus is strongly normalizable
by applying the method presented in Section 3 (cf. [2]). The following result states
that in this case the strong normalizability of the λSymProp-calculus would arise as a
direct consequence of that of the λµµ̃∗-calculus.

Corollary 5.12 If the λµµ̃∗-calculus is strongly normalizable, then the same is
true for the λSymProp-calculus as well.

Proof By Theorem 5.11. �

5.3 The connection between the two translations

In this subsection we examine the connection between the two transformations. We
prove that both compositions .e

f

: T −→ T and .f
e

: T −→ T are such that we can
get back the original terms by performing some steps of reduction on ue

f

or onM fe ,
respectively. That is, the following theorems are valid. The case of .f

e

is the easier
one.

First we describe the e�ect of .f
e

on the typing relations.

Lemma 5.13 If Γ `M : A, then Γ `M fe : A.

Proof Combining Lemmas 5.9 and 5.2. �

18

Theorem 5.14 Let M ∈ T . Then M fe →∗ M .

Proof By induction on cxty(M). We consider only the more interesting cases.

1. If M = (P ? Q), then (P ? Q)f
e

= bQf, P̃ fce = (P fe ? Qfe)→∗ (P ? Q).

2. If M = 〈P,Q〉, then 〈P,Q〉fe = (P f.Q̃f)
e

= 〈P fe, Qfe〉 →∗ 〈P,Q〉.

3. If M = σ1(N), then

σ1(N)f
e

= λxµβbN f, x̃ce = λy(λx(π2(y) ? (µβbN f, x̃c)e) ? π1(y)) =
λy(λx(π2(y) ? λβ(x ? N fe)) ? π1(y))→β⊥ λy(λx(x ? N fe) ? π1(y))→η⊥

λy(N fe ? π1(y))→β λy(y ? σ1(N fe))→η⊥ σ1(N fe)→∗ σ1(N).
�

We begin to examine the composition .ef : T → T for an arbitrary u. First we
make the following observation.

Lemma 5.15 1. If Γ B t : A | 4, then Γ,4⊥ B tef : A.

2. If Γ | e : A B 4, then Γ,4⊥ B eef : A⊥.

3. If p : (Γ B 4), then pef : (Γ,4⊥ B).

Proof Combining Lemmas 5.2 and 5.9. �

Theorem 5.14 states that, ifM is an λSymProp-term, thenM can be related toM fe by
the reductions in the λSymProp-calculus. We note that we are not able to obtain u from
uef in such a way. We can �nd a term T instead such that uef ↪→∗ T (u). The fonction
T can intuitively be considered as the description how λSymProp-connectives can be
embedded into the λµµ̃∗-calculus. It turns out that the λµµ̃∗-calculus translates
the λSymProp-terms not so smoothly as it was the case with the other direction.

De�nition 5.16 We de�ne a function T assigning a λµµ̃∗-term to a λµµ̃∗-term.

• T (x) = x,

• T (λxu) = µ̃ybT (u)[x := p1(y)], p̃2(y)c,

• T (µαp) = µ̃αT (p),

• T (u) = T (u),

• T (α) = α,

• T ((u.v)) = 〈T (u), T (v)〉,

• T (µ̃xp) = µ̃xT (p),

• T (h̃) = T (h),

• T (bt, ec) = bT (t), T̃ (e)c.

Theorem 5.17 Let u ∈ T. We have uef ↪→∗ T (u).

Proof By induction on cxty(u). We consider only some of the cases.

1. If u = λxv, then

uef = (λy(λx(π2(y) ? ue) ? π1(y)))f = µ̃ybp1(y),
˜

µ̃xbvef, p̃2(y)cc ↪→cl1,r

µ̃ybp1(y), µ̃xbvef, p̃2(y)cc ↪→µ̃ µ̃ybvef[x := p1(y)], p̃2(y)[x := p1(y)]c ↪→∗ T (u).

2. If u = µ̃xbt, vc, then

uef = (λx(ve ? te))f = µ̃xbtef, ṽefc ↪→∗ µ̃xbT (t), T̃ (v)c = µ̃xT (bt, vc) = T (u).
�

19

Remark 5.18 We remark that we cannot expect T (u) to be expressible with the
help of T. Namely, we can show that, if =λµµ̃∗ denotes the re�exive, transitive
closure of the compatible union of the reduction relations in the λµµ̃∗-calculus, then
none of the assertions below are valid.

1. There exists a a λµµ̃∗-term Φ such that, for every c-term c, T (c) =λµµ̃∗ Φ(c).

2. There exists a a λµµ̃∗-term Φ1 such that, for every l-term t, T (t) =λµµ̃∗ Φ1(t).

3. There exists a a λµµ̃∗-term Φ2 such that, for every r-term e, T (e) =λµµ̃∗

Φ2(e).

6 Conclusion

The paper is mainly devoted to an arithmetical proof of the strong normalization
of the λSymProp-calculus introduced by Berardi and Barbanera (cf. [1]). The proof is
an adaptation of the work in [4]. The novelty of our paper is the application of the
method of zoom-in sequences of redexes: we achieve the main theorem by identify-
ing the minimal non-strongly normalizing redexes of an in�nite reduction sequence,
which we call a zoom-in sequence of redexes. The idea of zoom-in sequences was
inspired by the notion of perpetual reduction strategies in [19]. Following the proof
of the strong normalization of the λSymProp-calculus, the λµµ̃-calculus is introduced,
which was de�ned in [3]. The same proof of strong normalization as we have pre-
sented for the λSymProp-calculus would also work for the calculus of Curien and Herbelin
(cf. [2]). However, instead of adapting the proof method for the λµµ̃-calculus, we
designed a translation of the λSymProp-calculus in the λµµ̃∗-calculus and vice versa,
where the λµµ̃∗-calculus is the λµµ̃-calculus augmented with terms explicitly ex-
pressing negation and with rules handling them. The translation allows us to assert
strong normalization for the λµµ̃∗- and, hence, for the λµµ̃-calculus.

On the technical side, we remark that there were two main di�culties that
rendered the proof a little more involved. First, we had to work with an alternat-
ing substitution de�ned inductively starting from two sets of terms. The reason
was that we had to prove a more general statement to locate the supposedly non
strongly normalizing part of a term emerging as a result of a substitution. Simple
substitutions would not have been enough for our purpose. The second di�culty
was that in order to establish a key property of zoom-in sequences in Lemma 3.9 we
had to move forward the Hypothesis "H" from the main theorem, thus making the
application of the hypothesis implicit in the sequel. We think that the elimination
of both problems would considerably enhance the paper's intelligibility.

It seems promising to investigate whether the present method of verifying strong
normalization can be applied to systems other than simple typed logical calculi,
for example, proof nets (see [7]). Another �elds of interest could be intuitionistic
and classical typed systems with explicit substitutions (cf. [18]). To handle these
systems, the present proof must be simpli�ed, we have to pay attention in our proof,
for example, that the substitutions are de�ned by two sets of terms of di�erent
types. Finally, we remark that it is a natural requirement of a proof formalizable
in �rst order arithmetic to enable us to �nd an upper bound for the lengths of the
reduction sequences. At its present form, our proof does not make it possible, this
raises another demand for the simpli�cation of the results.

Acknowledgements. We wish to thank René David and the anonymous ref-
erees for helpful discussions and remarks.

20

References

[1] F. Barbanera and S. Berardi. A symmetric lambda calculus for classical pro-
gram extraction. Information and computation (125), pp. 103-117, 1996.

[2] P. Battyányi. Normalization properties of symmetric logical calculi. PhD thesis,
University of Chambéry, 2007.

[3] P.-L. Curien and H. Herbelin. The duality of computation. ACM SIGPLAN
Notices, 2000.

[4] R. David and K. Nour. Arithmetical proofs of strong normalization results for
the symmetric λµµ′-calculus. TLCA 2005, Lecture Notes in Computer Science
(3461), pp. 162-178, Springer Verlag, Berlin, 2005.

[5] R. David and K. Nour. Arithmetical proofs of strong normalization results for
symmetric lambda calculi. Fundamenta Informaticae (77), pp. 1001-1022, 2007.

[6] T. Gri�n. A formulae-as-type notion of control, POPL 1990, pp. 47-58, ACM
Press, New York, 1990.

[7] O. Laurent. An introduction to proof nets, Course Notes, Ecole normale
supérieure de Lyon, 2013.

[8] C. R. Murthy. An evaluation semantics for classical proofs. Proceedings of the
sixth annual IEEE symposium, pp. 96-107, 1991.

[9] P. de Groote. Strong normalization of classical natural deduction with dis-
junction. TLCA 2001, Lecture Notes in Computer Science (2044), pp. 182-196,
Springer Verlag, Berlin, 2001.

[10] H. Herbelin. Séquents qu'on calcule. PhD thesis, University of Paris 7, 1995.

[11] K. Nour. La valeur d'un entier classique en λµ-calcul. Archive for Mathemat-
ical Logic (36), pp. 461-471, 1997.

[12] K. Nour. Classical combinatory logic. Computational Logic and Application,
DMTCS proc. AF, pp. 87-96, 2006.

[13] M. Parigot. λµ-calculus: an algorithmic interpretation of classical natural
deduction. Lecture Notes in Computer Science (624), pp. 190-201, Springer
Verlag, Berlin, 1992.

[14] M. Parigot. Classical proofs as programs. Lecture Notes in Computer Science
(713), pp. 263-276, Springer Verlag, Berlin, 1993.

[15] M. Parigot. Free Deduction: An Analysis of "Computations" in Classical
Logic. Lecture Notes in Computer Science (592), pp. 361-380, Springer-Verlag,
Berlin, 1990.

[16] E. Polonovski. Substitutions explicites, logique et normalisation. PhD thesis,
Paris 7, 2004.

[17] J. Rocheteau. λµ-calculus and duality: call-by-value and call-by-name. TLCA
2005, Lecture Notes in Computer Science (3461), pp. 204-218, Springer Verlag,
Berlin, 2005.

[18] K. Rose. Explicit subsitution. Technical report, University of Aarhus, 1996.

21

[19] F. van Raamsdonk and P. Severi and M. H. Sørensen and H. Xi. Perpetual Re-
ductions in Lambda-Calculus. Journal of Information and Computation (149),
pp. 173-225, 1999.

[20] W. W. Tait. Intensional Interpretations of Functionals of Finite Type I. Jour-
nal of Symbolic Logic (32), pp. 198-212, 1967.

22

