
HAL Id: hal-01421194
https://hal.science/hal-01421194v2

Preprint submitted on 27 Dec 2016 (v2), last revised 29 Dec 2016 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A revised completeness result for the simply typed
λµ-calculus using realizability semantics

Karim Nour, Mohamad Ziadeh

To cite this version:
Karim Nour, Mohamad Ziadeh. A revised completeness result for the simply typed λµ-calculus using
realizability semantics. 2016. �hal-01421194v2�

https://hal.science/hal-01421194v2
https://hal.archives-ouvertes.fr

A revised completeness result for the simply typed
λµ-calculus using realizability semantics

Karim NOUR & Mohamad ZIADEH
LAMA - Équipe LIMD

Université Savoie Mont Blanc
73376 Le Bourget du Lac, France
email : karim.nour@univ-smb.fr

Abstract

In this paper, we correct some errors in [21]. We define a new realizability
semantics for the simply typed λµ-calculus. We show that if a term is typable,
then it inhabits the interpretation of its type. We also prove a completeness
result of our realizability semantics using a particular term model.

1 Introduction

Since it was realised that the Curry-Howard isomorphism can be extended to the
case of classical logic (cf. [16] and [7]), several calculi have appeared aiming to
give an encoding of proofs formulated either in classical natural deduction or in
classical sequent calculus. One of them was the λµ-calculus presented by Parigot
in [22], which stands very close in nature to the λ-calculus itself. It uses new kinds
of variables, the µ-variables, not active at the moment, but to which the current
continuation can be passed over. Eliminating cuts with these new formulas leads
to the introduction of a new reduction rule : the so-called µ-rule. The result is a
calculus, the λµ-calculus [23], which is in relation with classical natural deduction.
In addition, more simplification rules, for example the ρ- and θ-rules, are defined
by Parigot [23, 24]). Parigot showed that the λµ-calculus is strongly normalizing
in [25], he gave a proof of the result with the help of the Tait-Girard reducibility
method [6, 30]. An arithmetical proof of the same result was presented by David
and Nour in [2].

The idea of the realizability semantics is to associate to each type a set of terms
which realize this type. Under this semantics, an atomic type is interpreted as a
set of λ-terms saturated by a certain relation. Then, an arrow type receives the
intuitive interpretation of a functional space. For example, a term which realizes
the type N → N is a function from N to N. Realizability semantics has been a
powerful method for establishing the strong normalization of type systems à la Tait
and Girard [30, 6]. The realizability of a type system enables one to also show
the soundness of the system in the sense that the interpretation of a type contains
all the terms that have this type. Soundness has been an important method for
characterizing the computational behaviour of typed terms through their types as
has been illuminative in the work of Krivine.

It is also interesting to find the class of types for which the converse of sound-
ness holds i.e., to find the types A for which the realizability interpretation contains
exactly, in a certain sense, the terms typable by A. This property is called com-
pleteness and has not yet been studied for every type system.

Hindley [9, 10, 11] was the first to study the completeness of a simple type system
and he showed that all the types of that system have the completeness property.
Then, he generalised his completeness proof for an intersection type system [8].
[15] has established completeness for a class of types in Girard-Reynolds’s system

1

F known as the strictly positive types. [4, 5] generalised the result of [15] for
the larger class which includes all the positive types and also for the second order
functional arithmetic. [1] established by a different method using Kripke models the
completeness for the simply typed λ-calculus. Finally [12] established the soundness
and completeness for a strict non linear intersection type system with a universal
type.

In [19], Nour and Saber adapted Parigot’s method and established a short seman-
tical proof of the strong normalization of classical natural deduction with disjunction
as primitive. In general all the known semantical proofs of strong normalization use
a variant of the reducibility candidates based on a correctness result, which has been
important also for characterizing computational behavior of some typed terms, as
it was done in J.-L. Krivine’s works [14]. This inspired K. Nour and K. Saber
to define a general semantics for classical natural deduction in [20] and gave such
characterizations. In [21], Nour and Saber proposed a realizability semantics for
the simply typed λµ-calculus and proved a completeness theorem. This semantics
is inspired by the strong normalization proof of Parigot’s λµ-calculus, which con-
sists in rewriting each reducibility candidate as a double orthogonal. In [29], van
Bakel, Barbanera and de’Liguoro prove the completeness of the λµ-calculus with
intersection types using filter models.

The semantics proposed in [21] has several defaults. First of all, there is a
mistake in the proof of the correctness lemma (the case of the typing rule (⊥) in
the proof of Lemma 3.3) which is not correctable. This comes essentially from
the permission to have µ-variables in the sequence of terms by adopting Saurin’s
interpretation. This mistake makes the semantics less interesting even though the
proof of completeness remains correct. Besides, although the statement of Lemma
4.2 of [21] is correct, the proposed proof is false. The correction of these mistakes,
mainly the first, needs the introduction of another realizability semantics which is
completely different from the one proposed in [21].

In the present work we provide another realizability semantics for the simply
typed λµ-calculus, by changing the concept of saturation. For this, we add an
important and an indispensable modification to the notion of µ-saturation using
more bottom sets. The saturation conditions give a very satisfactory correctness
result. The completeness model gives also more intuition about the models that we
consider.

This paper is organized as follows. Section 2 is an introduction to the simply
typed λµ-calculus. We also define the semantics and prove its correctness. Section
3 is devoted to the completeness result.

2 The simply typed λµ-calculus

2.1 The syntax of the system

In this paper, we use the λµ-calculus à la de Groote which is more expressive
than Parigot’s original version. In [3], de Groote has proposed a new version of
the λµ-calculus by modifying its syntax. Namely, in the construction of terms
the distinction between named and unnamed terms has disappeared and the term
forming rules has became more flexible: a µ-operator can be followed now by any
kind of term (in the untyped version), not necessarily by a term beginning with a
µ -variable.

Definition 2.1 (Terms and reductions)

1. Let V and A be two infinite sets of disjoint alphabets for distinguishing λ-
variables and µ-variables. The λµ-terms are given by the following grammar:

2

T := V | λV .T | (T T) | µA.T | (A T)

2. The complexity of a term is defined by c(x) = 0, c(λx.t) = c(µα.t) = c((α t)) =
c(t) + 1 and c((u v)) = c(u) + c(v) + 1.

3. The basic reduction rules are ⊲β and ⊲µ.

• (λx.u v) ⊲β u[x := v]

• (µα.u v) ⊲µ µα.u[α :=∗ v]

where u[α :=∗ v] is obtained from u by replacing inductively each subterm
in the form (α w) in u by (α (w v)).

4. Let ⊲ stand for the compatible closure of the union of the rules given above,
and, as usual, ⊲∗ denotes the reflexive transitive closure of ⊲, and ≃ the equiv-
alence relation induced by ⊲∗. We also denote by t ⊲n t′ that t ⊲∗ t′ and the
length of this reduction (number of reduced redexes) is n. A term is said to be
normal if it does not contain a redex. A term t is called strongly normalizable,
if there is no infinite reduction sequence starting from t.

We find in the current literature of the λµ-calculus other simplification rules
such as: ⊲θ, ⊲ρ, ⊲ν , ⊲η, ⊲µ′ , . . . These rules allow to get less normal forms (see
[17, 23, 25, 26]). In this paper, we do not need these rules for our completeness
result.

Definition 2.2 (Types and typing rules)

1. Types are formulas of the propositional logic built from the infinite set of
propositional variables P = {X,Y, Z, . . .} and a constant of type ⊥, using
the connective →.

2. The complexity of a type is defined by c(⊥) = c(X) = 0 and c(A → B) =
c(A) + c(B) + 1.

3. Let A1, A2, . . . , An, A be types, we denote the type A1 → (· · · → (An → A) . . .)
by A1, . . . , An → A.

4. Proofs are presented in natural deduction system with several conclusions,
such that formulas in the left-hand-side of ⊢ are indexed by λ-variables and
those in right-hand-side of ⊢ are indexed by µ-variables, except one which is
indexed by a term. Let t be a λµ-term, A a type, Γ = {xi : Ai}1≤i≤n and
∆ = {αj : Bj}1≤j≤m contexts, using the following rules, we will define “t
typed with type A in the contexts Γ and ∆” and we denote it Γ ⊢ t : A ; ∆.

Γ ⊢ xi : Ai ; ∆
ax 1 ≤ i ≤ n

Γ, x : A ⊢ t : B; ∆

Γ ⊢ λx.t : A → B; ∆
→i

Γ ⊢ u : A → B; ∆ Γ ⊢ v : A; ∆

Γ ⊢ (u v) : B; ∆
→e

Γ ⊢ t :⊥; ∆, α : A

Γ ⊢ µα.t : A; ∆
µ

Γ ⊢ t : A; ∆, α : A

Γ ⊢ (α t) :⊥; ∆, α : A
⊥

We denote this typed system by Sµ.

We have the following results (for more details, see [2, 25, 26]).

3

Theorem 2.1 (Confluence result) If t⊲∗ t1 and t⊲∗ t2, then there exists t3 such
that t1 ⊲

∗ t3 and t2 ⊲
∗ t3.

Theorem 2.2 (Subject reduction) If Γ ⊢ t : A; ∆ and t ⊲∗ t′ then Γ ⊢ t′ : A; ∆.

Theorem 2.3 (Strong normalization) If Γ ⊢ t : A; ∆, then t is strongly nor-
malizable.

We need some specific definitions and notations.

Definition 2.3

1. Let t be a term. The term ~λµ.t denotes the term t preceded by a sequence of
λ and µ abstractions.

2. Let t be a term and v̄ a finite sequence of terms (the empty sequence is denoted
by ∅). The term (t v̄) is defined by (t ∅) = t and (t uū) = ((t u) ū).

3. Let us recall that a term t either has a head redex (i.e. t = ~λµ.(u v̄) where u

is a redex called the head redex), or is in head normal form (i.e. t = ~λµ.(x v̄)

or t = ~λµ.(α u v̄) where x and α are variables called the head variable).

4. The leftmost reduction (denoted by ⊲l) consits in reducing the redex nearest to
the left of the term. We can also see it as an iteration of the head reduction:
once we find the head normal form, we reduce the arguments of the head
variable.

Lemma 2.1 The leftmost reduction of a normalizing term terminates.

Proof See [26]. �

The previous lemma allows one to define a notion of length for normalizing
terms.

Definition 2.4 Let t be a normalizing term. We define l(t) as the number of
leftmost reductions needed to find the normal form of t.

We need to define the concept of simultaneous substitution to be able to present
the correctness lemma.

Definition 2.5 Let t, u1, . . . , un be terms, v̄1, . . . , v̄m finite sequences of terms,
and σ the simultaneous substitution [(xi := ui)1≤i≤n; (αj :=∗ v̄j)1≤j≤m] which is
not an object of the syntax. Then tσ is obtained from the term t by replacing each
xi by ui and replacing inductively each subterm of the form (αj u) in t by (αj(u v̄j)).

Lemma 2.2 If t ⊲∗ t′ and σ a simultaneous substitution, then tσ ⊲∗ t′σ.

Proof It suffies to check the property for one step of reduction. We then proceed
by induction on c(t). �

2.2 The semantics of the system

In this section, we define the realizability semantics and we prove its correctness
lemma. We begin by the definition of the saturation of sets of terms and then the
operation between these sets which will serve to interpret the arrow on types.

Definition 2.6

1. We say that a set of terms S is saturated if for all terms u and v, if v ⊲∗ u
and u ∈ S, then v ∈ S.

4

2. Consider two sets of terms K and L, we define a new set of terms

K L = {t ∈ T / ∀u ∈ K ; (t u) ∈ L}.

3. We denote T <ω as the set of finite sequences of terms. Let L be a set of terms
and X ⊆ T <ω, then we define a new set of terms

X L = {t ∈ T / ∀ ū ∈ X ; (t ū) ∈ L}.

Lemma 2.3 If L is a saturated set and X ⊆ T <ω, then X L is also a saturated
one.

Proof Let u and v be terms such that v ⊲∗ u and u ∈ X L. Then ∀ w̄ ∈ X ,
(u w̄) ∈ L and (v w̄) ⊲∗ (u w̄). Since L is a saturated set, we have ∀ w̄ ∈ X ,
(v w̄) ∈ L, thus v ∈ X L. �

Now, we are going to define the realizability model for the system Sµ. For
that, we need many bottom sets (⊥⊥i)i∈I including a particular one denoted by
⊥⊥0. We also need several sets of µ-variables (Ci)i∈I which allow to pass from
bottoms to ⊥⊥0 and vice versa. We also allow that the models have particular sets
(Rj)j∈J satisfying some properties. In order to obtain the completeness theorem, it
is possible to take from the beginning I = IN without considering the sets (Rj)j∈J .
However, the flexibility to have I ⊆ IN and some sets (Rj)j∈J will allow to have
more models. This will also allow the use of the correctness lemma in order to study
the computational behaviour of some typed terms (cf. the example given at the end
of this section, Theorem 2.4).

Definition 2.7 1. A model M of Sµ is defined by giving three subsets
〈(Ci)i∈I , (⊥⊥i)i∈I , (Rj)j∈J 〉 where :

• I, J are subsets of N such that 0 ∈ I,

• (Ci)i∈I a sequence of disjoint infinite subsets of µ-variables,

• (⊥⊥i)i∈I and (Rj)j∈J sequences of non-empty saturated subsets of terms

such that

• ∀ i ∈ I, if αi ∈ Ci and u ∈ ⊥⊥0 then µαi.u ∈ ⊥⊥i (i.e. if, fore some
αi ∈ Ci, u[α := αi] ∈ ⊥⊥0, then µα.u ∈ ⊥⊥i),

• ∀ i ∈ I, if αi ∈ Ci and ui ∈ ⊥⊥i, then (αi ui) ∈ ⊥⊥0,

• ∀ j ∈ J , ∃ i ∈ I, ∃Xj ⊆ T <ω, such that Rj = Xj ⊥⊥i.

2. If M = 〈(Ci)i∈I , (⊥⊥i)i∈I , (Rj)j∈J 〉 is a model of Sµ, we denote by |M| the
smallest set containing the sets ⊥⊥i and Rj and closed under the constructor
 .

We will see further that we did not need to get the subsets (Rj)j∈J to have the
correcteness lemma. We allow a model to have such sets to enrich the concept of
model and give the possibility of interpreting the types with more choice.

Now we are going to prove that every element of a realizability model can be
written as the orthogonal of a set of sequence terms. This property is essential to
interpret the µ-variables and announce the generalized correctness lemma (Lemma
2.6). The difficulty here with respect to the semantics proposed in [19, 20, 21] is
the presence of several bottoms. As for the orthogonal of an element of a model,
we will choose the convenient bottom which has the smallest index (Lemma 2.5).

Lemma 2.4 Let M = 〈(Ci)i∈I , (⊥⊥i)i∈I , (Rj)j∈J 〉 be a model and G ∈ |M|.
There exists a set XG ⊆ T <ω and i ∈ I such that G = XG ⊥⊥i.

5

Proof By induction on G.

- If G = ⊥⊥i, take XG = {φ}.

- If G = Rj , then, by definition, G = Xj ⊥⊥i and we take XG = Xj .

- If G = G1 G2, then, by induction hypothesis, G2 = XG2
 ⊥⊥i where

XG2
⊆ T <ω, and take XG = {uv̄ / u ∈ G1 and v̄ ∈ XG2

}.
�

Definition 2.8 If M = 〈(Ci)i∈I , (⊥⊥i)i∈I , (Rj)j∈J 〉 is a model and G ∈ |M|, let

• w(G) the smallest integer i such that G = X ⊥⊥i for some X ⊆ T <ω,

• G⊥ =
⋃
{X ⊆ T <ω / G = X ⊥⊥w(G)}.

Lemma 2.5 Let M = 〈(Ci)i∈I , (⊥⊥i)i∈I , (Rj)j∈J 〉 be a model and G ∈ |M|, then
G = G⊥

 ⊥⊥w(G).

Proof

⊆ : Let t ∈ G. If ū ∈ G⊥, then ū ∈ X ⊆ T <ω and G = X ⊥⊥w(G), thus

(t ū) ∈ ⊥⊥w(G). Therefore t ∈ G⊥
 ⊥⊥w(G).

⊇ : By Lemma 2.4, we have G = X ⊥⊥w(G) for some X ⊆ T <ω, then X ⊆ G⊥.

Let t ∈ G⊥
 ⊥⊥w(G). We have ∀ ū ∈ X , ū ∈ G⊥, then (t ū) ∈ ⊥⊥w(G).

Therefore t ∈ G.
�

We can now interpret the types in a model and also give the definition of the
general interpretation of a type.

Definition 2.9 1. Let M = 〈(Ci)i∈I , (⊥⊥i)i∈I , (Rj)j∈J 〉 be a model.

(a) An M-interpretation I is a function X 7→ I(X) from the set of propo-
sitional variables P to |M| which we extend for any formula as follows:
I(⊥) = ⊥⊥0 and I(A → B) = I(A) I(B).

(b) For any type A, we denote |A|M =
⋂
{I(A) / I an M-interpretation}

the interpretation of A in the model M.

2. For any type A, we denote |A| =
⋂
{|A|M / M a model} the general interpre-

tation of A .

The correctness lemma is sort of a validation of the notion of models that we
considered. It states that a term of a type A is within the general interpretation
of A. As for the semantics defined in [21], the proof of the correctness lemma is
false and the mistake is difficult to find. It is the case of the typing rule (⊥) which
is problematic. The mistake comes from the permission to have µ-variables in the
sequence of terms by adopting Saurin’s interpretation.

Lemma 2.6 (General correctness lemma)
Let M = 〈(Ci)i∈I , (⊥⊥i)i∈I , (Rj)j∈J 〉 be a model, I an M-interpretation,
Γ = {xk : Ak}1≤k≤n, ∆ = {αr : Br}1≤r≤m such that αr ∈ Cw(I(Br)) (1 ≤ r ≤ m),

uk ∈ I(Ak) (1 ≤ k ≤ n), v̄r ∈ (I(Br))
⊥ (1 ≤ r ≤ m)) and

σ = [(xk := uk)1≤k≤n; (αr :=∗ v̄r)1≤r≤m]. If Γ ⊢ u : A ; ∆, then uσ ∈ I(A).

Proof By induction on the derivation, we consider the last rule used.

6

ax: In this case u = xk and A = Ak, then uσ = uk ∈ I(A).

→i: In this case u = λx.v and A = B → C such that Γ, x : B ⊢ v : C ; ∆. Let
w ∈ I(B) and δ = σ + [x := w], by induction hypothesis, vδ ∈ I(C). Since
(λx.vσ w) ⊲∗ vδ, then (λx.vσ w) ∈ I(C). Therefore λx.vσ ∈ I(B) I(C)
and finally uσ ∈ I(A).

→e: In this case u = (u1 u2), Γ ⊢ u1 : B → A ; ∆ and Γ ⊢ u2 : B ; ∆. By induction
hypothesis, u1σ ∈ I(B) I(A) and u2σ ∈ I(B), therefore (u1σ u2σ) ∈ I(A),
i.e. uσ ∈ I(A).

µ: In this case u = µα.v and Γ ⊢ v :⊥ ;α : A,∆. We can assume that α is a new
variable which belongs to Cw(I(A)) (there is always such a variable because

the sets Ci are infinite). Let v̄ ∈ (I(A))⊥ and δ = σ+ [α :=∗ v̄]. By induction
hypothesis, vδ ∈ ⊥⊥0, then µα.vδ ∈ ⊥⊥w(I(A)). Since (µα.vσ v̄) ⊲∗ µα.vδ, then,

(µα.vσ v̄) ∈ ⊥⊥w(I(A)). We deduce that for all v̄ ∈ (I(A))⊥, (µα.vσ v̄) ∈
⊥⊥w(I(A)), therefore µα.vσ ∈ I(A), i.e. uσ ∈ I(A).

⊥: In this case u = (αr v), A =⊥ and Γ ⊢ v : Br ; ∆. By induction hypothesis,
vσ ∈ I(Br), hence (vσ v̄r) ∈ ⊥⊥w(I(Br)), therefore (αr (vσ v̄r)) ∈ ⊥⊥0, i.e.
uσ ∈ I(A).

�

We can now state and prove the correctness lemma.

Corollary 2.1 (Correctness lemma) Let A be a type and t a closed term.
If ⊢ t : A, then, t ∈ |A|.

Proof Let M be a model and I an M-interpretation. Since ⊢ t : A, then, by
the general correctness lemma, t ∈ I(A). This is true for any model M and for any
M-interpretation I, therefore t ∈ |A|. �

According to the cases →i and µ of the proof of Lemma 2.6, we observe that the
saturation conditions can be weakened as follows. We do not need the saturation
by anti-reduction but only the saturation by weak-head anti-reduction.

A set of terms S is saturated if :

• for all terms u, v, w, if (u[x := v] w) ∈ S, then (λx.u vw) ∈ S.

• for all terms u, v, if µα.u[α :=∗ v] ∈ S, then (µα.u v) ∈ S.

We take an example from [21] to show that it is sometimes useful not to have in
a model an infinite number of bottoms as well as the relevance of the sets (Rj)j∈J .
Let e = λx.µα.x, then we have ⊢ e :⊥→ X and for all finite sequence of terms t ū,
(e t ū) ⊲∗ µα.t. We will prove this general result.

Theorem 2.4 Let E be a closed term of type ⊥→ X, then, for each finite sequence
of distinct λ-variables x ȳ, (E x ȳ) ⊲∗ µ.x where µ.x denote the variable x preceded
by µ-abstractions and µ-applications.

Proof Let x ȳ be a finite sequence of distinct λ-variables, C0 = A, ⊥⊥0 = {t ∈
T / t ⊲∗ µ.x}, R = {ȳ} ⊥⊥0, M = 〈C0,⊥⊥0,R〉 and I the interpretation such that
I(X) = R. By Corollary 2.1, E ∈ I(⊥→ X) = ⊥⊥0 ({ȳ} ⊥⊥0). Since x ∈ ⊥⊥0

and ȳ ∈ {ȳ}, we have (E x ȳ) ∈ ⊥⊥0, and finally (E x ȳ) ⊲∗ µ.x. �

7

The model that we considered in the previous proof only contains ⊥⊥0 and the
set R is necessary to find the computational behavior of the term E.

3 The completeness result

Before presenting our completeness result, we need some definitions and some tech-
nical results.

3.1 Some results

Lemma 3.1 is very intuitive. It states that, for a variable y, if the term (t y) is
normalizable, then t is also normalizable. The proof of this result in λ-calculus
is very simple because a reduction of (t y) will automatically give a reduction of t
(the variable y interacts only when t reduces to a λ-abstraction λx.t′ and we get
in this case t′[x := y)). The situation in λµ-calculus is completly different. If the
term t is reduced to a µ-abstraction µα.t′ and we reduce the term (µα.t′ y), we
get µα.t′[α :=∗ y], the variable y can be found in several sub-terms of t′ and may
also create other redex. Hence the need for a detailed and comprehensive proof of
Lemma 3.1. Note also that the proof of this result in [21] is not correct.

Lemma 3.1 Let t be a term and y a variable. If (t y) is normalizable, then t is
also normalizable.

Proof By induction on the pair (l, c) (for the lexicographical order) where l =
l((t y)) and c = c(t).

1. If t does not begin with λ or µ, then (t y) ⊲l (t
′ y) where t ⊲l t

′. By induction
hypothesis (l decreases), t′ is normalizable, then t is also normalizable.

2. If t begins with a µ, then t = µα. ~λµ.(u ū).

• If u = (λx.v w), then

(t y) ⊲l µα. ~λµ.(λx.v[α :=∗ y]w[α =∗ y] ū[α :=∗ y])⊲l

µα. ~λµ.(v[α :=∗ y][x := w[α :=∗ y]] ū[α :=∗ y]) =

µα. ~λµ.(v[x := w][α :=∗ y] ū[α :=∗ y]) = t′′.

On the other hand, t ⊲l µα. ~λµ.(v[x := w] ū) = t′ and (t′ y) ⊲l t
′′, then

(t′ y) is normalizable, therefore, by induction hypothesis (l decreases), t′

is normalizable, thus t is also normalizable.

• If u = (µβ.v w), then

(t y) ⊲l µα. ~λµ.(µβ.v[α :=∗ y]w[x :=∗ y] ū[α :=∗ y])⊲l

µα. ~λµ.(µβ.v[α :=∗ y][β :=∗ w[α :=∗ y]] ū[α :=∗ y]) =

µα. ~λµ.(µβ.v[β :=∗ w[α :=∗ y]] ū[α :=∗ y)] = t′′.

On the other hand, t ⊲l µα. ~λµ.(µβ.v[β :=∗ w] ū) = t′ and (t′ y)⊲l t
′′, then

(t′ y) is normalizable, therefore, by induction hypothesis (l decreases), t′

is normalizable, thus t is also normalizable.

• If u = x, then

(t y) ⊲l µα. ~λµ.(x u1[α :=∗ y] . . . un[α :=∗ y]).

The term ui[α :=∗ y] is normalizable and (µα.ui y) ⊲l µα.ui[α :=∗ y],
then (µα.ui y) is normalizable and, by induction hypothesis (l does not
decrease but c decreases), µα.ui is normalizable, thus ui is also normal-
izable. We deduce that t is also normalizable.

8

• If u = (β u′), then

(t y) ⊲l µα. ~λµ.((β u′[α :=∗ y]) u1[α :=∗ y] . . . un[α :=∗ y]).

As in the previous case, we prove that the terms u′, u1, . . . , un are nor-
malizable, then t is also normalizable.

• If u = (αu′), then

(t y) ⊲l µα. ~λµ.((α (u′[α :=∗ y] y)) u1[α :=∗ y] . . . un[α :=∗ y]).

As in the previous case, we prove that the terms (u′ y),u1, . . . , un are
normalizable, then, by induction hypothesis (l does not decrease but c
decreases), u′, u1, . . . , un are normalizable, then t is also normalizable.

3. If t begins with λ, we do the same proof
�

In the technical results that we prove in this section, a particular kind of redex
appears (the argument of λ-abstraction or µ-abstraction is a variable). It is therefore
helpful to understand what is happening by reducing these redexes. Lemma 3.2 will
not be used in other proofs but will explain what happens at this special reduction.

Definition 3.1 Let y be a variable. A y-redex is a β-redex or a µ-redex having y
as an argument i.e. a term of the form (λx.t y) or (µα.t y).

Lemma 3.2 Let t be a normal term and y a variable such that y 6∈ FV (t).
If (t y) ⊲+ t′, then each redex in t′ is a y-redex preceded by a µ-variable.

Proof By induction the number n of steps to reduce (t y) to t′.

1. If n = 1, then t is a of the form λx.u or µα.u.

• If t = λx.u, then t′ = u[x := y] which is normal.

• If t = µα.u, then t′ = µα.u[α :=∗ y]. Since u is normal, every new redex
of u[α :=∗ y] is of the form (v y) preceded by α.

2. If (t y) ⊲n+1 t′, then (t y) ⊲n t′′ ⊲ t′. By induction, each redex in t′′ is a y-redex
preceded by a µ-variable. We examine the reduction t′′ ⊲ t′.

• If the reduced y-redex of t′′ is of the form (λx.u y), then the redexes of
t′ are the same in t′′ except the redex that we contracted.

• If the reduced y-redex of t′′ is of the form (µβ.u y), then y has evolved
from being an argument to this redex, to become an argument for each
subterm, of these redexes, preceded by β ; so a new y-redex preceded by
a µ-variable has been created and the initial redex could not get a new
argument as it is locked by β.

�

Lemmas 3.3 and 3.4 will allow us to rebuild the typing in the proof of the
completeness theorem. These results are quite technical and to prove them we
have to generalize the needed results. For example, in Lemma 3.3, we need two
substitutions σ and δ in order to prove Lemma 3.4 and also in Lemma 3.4, we need
a simultaneous substitution because the length of such a substitution may increase
(case (b)-1).

Lemma 3.3 Let t be a normal term, y a λ-variables such that y 6∈ FV (t), σ =
[(βj :=

∗ y)1≤j≤m], δ = [(αi :=
∗ y)1≤i≤n] and u = tσ.

If Γ, y : A ⊢ uδ : C; (αi : Bi)1≤i≤n,∆, then Γ, y : A ⊢ u : C; (αi : A → Bi)1≤i≤n,∆.

9

Proof By induction on the normal term t. As t is normal and tσδ is typable, t
is restricted to the following forms : λx.t′, µα.t′, (x t1 . . . tk) and (γ t′).

1. If t = λx.t′, then u = λx.u′ where u′ = t′σ, C = D → E and Γ, y : A, x : D ⊢
u′δ : E; (αi : Bi)i,∆. By induction hypothesis, we have Γ, y : A, x : D ⊢ u′ :
E; (αi : A → Bi)i,∆, then Γ, y : A, x : D ⊢ u′ : E; (αi : A → Bi)i,∆, thus
Γ, y : A ⊢ λx.u′ : D → E; (αi : A → Bi)i,∆ and finally Γ, y : A ⊢ u : C; (αi :
A → Bi)i,∆.

2. If t = µα.t′, then u = µα.u′ where u′ = t′σ and Γ, y : A ⊢ u′δ :⊥;α : C, (αi :
Bi)i,∆. By induction hypothesis, we have Γ, y : A ⊢ u′ :⊥;α : A → C, (αi :
A → Bi)i,∆, thus Γ, y : A,⊢ µα.u′ : A → C; (αi : A → Bi)i,∆, and finally
Γ, y : A ⊢ u : C; (αi : A → Bi)i,∆.

3. If t = (x t1 . . . tk), then u = (xu1 . . . uk) where, for 1 ≤ r ≤ k, ur = trσ, x has
the type C1, . . . , Ck → C and, for 1 ≤ r ≤ k, Γ, y : A ⊢ urδ : Cr; (αi : Bi)i,∆.
By induction hypothesis, we have, for 1 ≤ r ≤ k, Γ, y : A ⊢ ur : Cr; (αi :
A → Bi)i,∆, then Γ, y : A ⊢ (xu1 . . . ur) : C; (αi : A → Bi)i, ∆ and finally
Γ, y : A ⊢ u : C; (αi : A → Bi)i,∆.

4. If t = (γ t′) where γ 6= αi and γ 6= βj , then u = (γ u′) where u′ = t′σ, C =⊥, γ
has the type D and Γ, y : A ⊢ u′δ : D; (αi : Bi)i,∆. By induction hypothesis,
we have Γ, y : A ⊢ u′ : D; (αi : A → Bi)i,∆, then Γ, y : A ⊢ (γ u′) :⊥; (αi :
A → Bi)i,∆ and finally Γ, y : A ⊢ u : C; (αi : A → Bi)i,∆.

5. If t = (γ t′) where γ = βk (1 ≤ k ≤ m), then u = (γ (u′ y)) where u′ = t′σ,
C =⊥, γ has the type D and Γ, y : A ⊢ (u′δ y) : D; (αi : Bi)i,∆, thus
Γ, y : A ⊢ u′δ : A → D; (αi : Bi)i,∆. By induction hypothesis, we have
Γ, y : A ⊢ u′ : A → D; (αi : A → Bi)i,∆, then Γ, y : A ⊢ (γ (u′ y)) :⊥; (αi :
A → Bi)i,∆ and finally Γ, y : A ⊢ u : C; (αi : A → Bi)i,∆.

6. If t = (γ t′) where γ = αk (1 ≤ k ≤ n), then u = (γ u′) where u′ = t′σ,
uδ = (γ (u′δ y), C =⊥ and Γ, y : A ⊢ (u′δ y) : Bk; (αi : Bi)i,∆, then Γ, y : A ⊢
u′δ : A → Bk; (αi : Bi)i,∆. By induction hypothesis, we have Γ, y : A ⊢ u′ :
A → Bk; (αi : A → Bi)i,∆, then Γ, y : A ⊢ (γ u′) :⊥; (αi : A → Bi)i,∆ and
finally Γ, y : A ⊢ u : C; (αi : A → Bi)i,∆.

�

Lemma 3.4 Let t be a normal term, y a λ-variable such that y 6∈ FV (t) and
σ = [(αi :=

∗ y)1≤i≤n].

1. If (tσ y) is normalizable, t′ its normal form and Γ, y : A ⊢ t′ : C; ∆, then

Γ, y : A ⊢ tσ : A → C; ∆.

2. If tσ is normalizable, t′′ its normal form and Γ, y : A ⊢ t′′ : C; ∆, then

Γ, y : A ⊢ tσ : C; ∆.

Proof By simultaneous induction on c(t).

1. As t is normal and t′ is typable, t is restricted to the following forms λx.u,
µβ.u and (xu1 . . . um).

(a) If t = λx.u, then (tσ y)⊲u[x := y]σ⊲∗ t′. By induction hypothesis (2), we
have Γ, y : A ⊢ u[x := y]σ : C; ∆, then Γ, y : A, y′ : A ⊢ u[x := y′]σ : C; ∆
where y′ is a new λ-variable, thus Γ, y : A ⊢ λy′.u[x := y′]σ : A → C; ∆
and finally Γ, y : A ⊢ tσ : A → C; ∆.

10

(b) If t = µβ.u, then (tσ y) ⊲ µβ.u[σ, β :=∗ y] ⊲∗ t′, therefore, t′ = µβ.u′, u′

is the normal form of u[σ, β :=∗ y] and Γ, y : A ⊢ u′ :⊥;β : C,∆. By
induction hypothesis (2), we have Γ, y : A ⊢ uσ[β :=∗ y] :⊥;β : C,∆,
then, by Lemma 3.3, Γ, y : A ⊢ uσ :⊥;β : A → C,∆, thus Γ, y : A ⊢
µβ.uσ : A → C; ∆, and finally Γ, y : A ⊢ tσ : A → C; ∆.

(c) If t = (xu1 . . . um), then t′ = (xu′
1 . . . u

′
my) where, for 1 ≤ j ≤ m, u′

j

is the normal form of ujσ, x has the type C1, . . . , Cn, A → C and, for
1 ≤ j ≤ m, Γ, y : A ⊢ u′

j : Cj ; ∆. By induction hypothesis (2), we have
Γ, y : A ⊢ ujσ : Cj ; ∆, then Γ, y : A ⊢ (xu1σ . . . unσ) : A → C; ∆ and
finally Γ, y : A ⊢ tσ : A → C; ∆.

2. As t is normal and t′′ is typable, t is restricted to the following forms λx.u,
µβ.u, (xu1 . . . um) and (β u).

(a) If t = λx.u, then t′′ = λx.u′′ where u′′ is the normal form of uσ, C =
D → E and Γ, y : A, x : D ⊢ u′′ : E; ∆. By induction hypothesis (2), we
have Γ, y : A, x : D ⊢ uσ : E; ∆, then Γ, y : A ⊢ λx.uσ : D → E; ∆ and
finally Γ, y : A ⊢ tσ : C; ∆.

(b) If t = µβ.u, then t′′ = µβ.u′′ where u′′ is the normal form of uσ and
Γ, y : A ⊢ u′′ :⊥;β : C,∆. By induction hypothesis (2), we have Γ, y :
A ⊢ uσ :⊥;β : C,∆, then Γ, y : A ⊢ µβ.uσ : C; ∆ and finally Γ, y : A ⊢
tσ : C; ∆.

(c) If t = (xu1 . . . um), then t′′ = (xu′′
1 . . . u

′′
m) where, for 1 ≤ j ≤ m, u′′

j is
the normal form of ujσ, x has the type C1, . . . , Cm → C and, for 1 ≤
j ≤ m, Γ, y : A ⊢ u′′

j : Cj ; ∆. By induction hypothesis (2), we have, for
1 ≤ j ≤ m, Γ, y : A ⊢ ujσ : Cj ; ∆, then Γ, y : A ⊢ (xu1σ . . . umσ) : C; ∆
and finally Γ, y : A ⊢ tσ : C; ∆.

(d) If t = (β u) where β 6= αj , then t′′ = (β u′′) where u′′ is the normal form
of uσ, C =⊥, β has the type D and Γ, y : A ⊢ u′′ : D; ∆. By induction
hypothesis (2), we have Γ, y : A ⊢ uσ : D; ∆, then Γ, y : A ⊢ (β uσ) :⊥; ∆
and finally Γ, y : A ⊢ tσ : C; ∆.

(e) If t = (αj u) (1 ≤ j ≤ n), then t′′ = (αj u
′′) where u′′ is the normal form

of (ujσ y), C =⊥ and Γ, y : A ⊢ u′′ : B; ∆. By induction hypothesis (1),
we have Γ, y : A ⊢ uσ : A → B; ∆, then Γ, y : A ⊢ (αj (uσ y)) :⊥; ∆ and
finally Γ, y : A ⊢ tσ : C; ∆.

�

3.2 Completeness model

We will now prove that if t is in the general interpretation of a type A, then t has
the type A. For this, we will construct a particular term model M in which, we
will get the equivalence between “having the type A” and “being within the type
A” (see Lemma 3.6). The construction of this model looks like the constructions of
the completeness models of the papers [8, 9, 10, 11, 15, 4, 5, 12, 21]. We start with
enumerating infinite sets of variables (which will be parameters of this model), then
enumerating sets of types and finally fixing two infinite contexts (by associating
enumerated types to enumerated variables) in which the terms will be typed. This
will allow to define the bottoms and the variable sets associated to the models. Note
that in this completeness model we don’t need the sets (Rj)j∈J .

Definition 3.2 1. Let V1 = {xi / i ∈ N} (resp., V2 = {αi / i ∈ N} be an
enumeration of an infinite set of λ-variables (resp., µ-variables). We put
V = V1

⋃
V2.

11

2. Let T1 = {Ai / i ∈ N} and T2 = {Bi / i ∈ N} be enumerations of all types
where each type comes infinitely many times.

3. We define G = {xi : Ai / i ∈ N} and D = {αi : Bi / i ∈ N}.

4. Let u be a term, such that FV (u) ⊆ V, the contexts Gu (resp. Du) are defined
as the restrictions of G (resp. D) at the declarations containing the variables
of FV (u).

5. The notation G ⊢ u : C; D means that Gu ⊢ u : C; Du, we denote G ⊢∗ u :
C; D iff there exists a term u′, such that u ⊲∗ u′ and G ⊢ u′ : C; D.

6. Let P = {Xi / i ∈ N} be an enumeration of {⊥}∪P. We assume that X0 =⊥.

7. For each i ∈ N, let ⊥⊥i = {t / G ⊢∗ t : Xi; D} and

Ci = {α ∈ V2 / (α : Xi) ∈ D}.

Lemma 3.5 M = 〈(Ci)i∈N
, (⊥⊥i)i∈N, ∅〉 is a model for Sµ.

Proof It is easy to show that (⊥⊥i)i∈N is a sequence of saturated subsets of terms.

• ∀ i ∈ N, if α ∈ Ci and u ∈ ⊥⊥0, then (α : Xi) ∈ D and G ⊢∗ u :⊥; D, therefore
G ⊢∗ µα.u : Xi; D, thus µα.u ∈ ⊥⊥i.

• ∀ i ∈ N, if α ∈ Ci and u ∈ ⊥⊥i, then (α : Xi) ∈ D and G ⊢∗ u : Xi; D,
therefore G ⊢∗ (αu) :⊥; D, thus (αu) ∈ ⊥⊥0.

�

Observe that the model M is parameterized by the two infinite sets of variables
and the enumerations. We need just these infinite sets of variables and not all
the variables. This is an important remark since it will serve us in the proof of
compleness theorem (Theorem 3.1).

Definition 3.3 We define the M-interpretation I as follows ∀ i ∈ N, I(Xi) = ⊥⊥i.

The following lemma is the generalized version of the completeness theorem. It
states the equivalence between “a term t is of type A in the fixed contexts” and “a
term t belongs to the interpretation of the type A in the model M”. The proof is
done by simultaneous induction and uses the technical lemmas from the beginning
of this section.

Lemma 3.6 Let A be a type and t a term.

1. If G ⊢∗ t : A ;D, then t ∈ I(A).

2. If t ∈ I(A), then G ⊢∗ t : A ;D.

Proof By a simultaneous induction on c(A).

1. (a) If A = X or ⊥, the result is immediate from the definition of I.

(b) If A = B → C, then t ⊲∗ t′ such that: G ⊢ t′ : B → C ;D. Let u ∈ I(B).
By induction hypothesis (2), we have G ⊢∗ u : B ;D, this implies that
u ⊲∗ u′ and G ⊢ u′ : B ;D. Hence G ⊢ (t′ u′) : C ;D, so, by the fact that
(t u) ⊲∗ (t′ u′), we have G ⊢∗ (t u) : C ;D, then, by induction hypothesis
(1), (t u) ∈ I(C). Therefore t ∈ I(B → C).

2. (a) If A = X or ⊥, the result is immediate from the definition of I.

12

(b) If A = B → C and t ∈ I(B) I(C), let y be a λ-variable such y 6∈
FV (t) and (y : B) ∈ G. We have y : B ⊢ y : B, hence, by induction
hypothesis (1), y ∈ I(B), then, (t y) ∈ I(C). By induction hypothesis
(2), G ⊢∗ (t y) : C ;D, then (t y) ⊲∗ u such that G ⊢ u : C ;D and, by
the Lemma 3.1, t is a normalizable term. Let t′ (resp. u′) be the normal
form of t (resp. of u). So (t′ y) ⊲∗ u′, by Lemma 3.4, G ⊢ t′ : B → C ;D,
then G ⊢∗ t : B → C ;D,

�

Note that the item 1 of Lemma 3.6 can not be deduced from the correctness
lemma. This comes from the presence of contexts G and D to type a reduced of
term t.

We can now state and prove the completeness theorem.

Theorem 3.1 (Completeness theorem) Let A be a type and t a term.
We have t ∈ |A| iff there exists a closed term t′ such that t ⊲∗ t′ and ⊢ t′ : A.

Proof

⇐: By Corollary 2.1, t′ ∈ |A|, then, t ∈ |A| because |A| is saturated.

⇒: We consider an infinite set of λ and µ variables Ω which contains none of
the free variables of t, then from this set we build the completeness model as
described in Definition 3.2. If t ∈ |A|, then t ∈ I(A), hence by (2) of Lemma
3.6 and by the fact that FV (t′) ⊆ FV (t), we have t ⊲∗ t′ and ⊢ t′ : A.

�

Here are some direct and unexpected consequences of the completeness theorem.

Corollary 3.1 Let A be a type and t a term.

1. If t ∈ |A|, then t is normalizable.

2. If t ∈ |A|, then there exists a closed term t′ such that t ≃ t′.

3. The set |A| is closed under equivalence.

Proof (1) and (2) are direct consequences of Theorems 2.3 and 3.1. (3) can be
deduced from Theorem 3.1 and Lemma 2.6. �

4 Future work

Throughout this work we have seen that the propositional types of the system Sµ

are complete for a realizability semantics. Two questions will be interesting to
study.

1. The models that we have considered in this paper are sufficient to get cor-
rectness and completeness results: the saturation conditions that we have
imposed in these models allow to have these two results. It will be interesting
to understand more this kind of models: for example, build models with more
bottoms to study the computational behaviour of some typed terms.

2. What about the types of the second order typed λµ-calculus? We know that,
for the system F , the ∀+-types (types with positive quantifiers) are complete
for a realizability semantics (see [4, 15]). But for the classical system F , we
cannot easily generalize this result. We think we need to add more restrictions
on the positions of ∀ in the ∀+-types to obtain the smallest class of types that
we suppose can be proved to be complete.

13

Acknowledgements. We wish to thank P. Battyányi and N. Bernard for the
numerous corrections and suggestions.

References

[1] T. Coquand. Completeness theorem and λ-calculus. The 7th International Con-
ference, TLCA 2005, Nara, Japan, April 21-23, 2005, Lecture Notes in Com-
puter Science, pp. 1-9, volume 3461/2005.

[2] R. David and K. Nour. A short proof of the strong normalization of the simply
typed λµ-calculus. Schedae Informaticae vol 12, pp. 27-33, 2003.

[3] Ph. de Groote. An environment machine for the lambda-mu-calculus. Mathe-
matical Structure in Computer Science, vol 8, pp. 637-669, 1998.

[4] S. Farkh and K. Nour. Un résultat de complétude pour les types ∀+ du système
F . CRAS. Paris 326, Série I, pp. 275-279, 1998.

[5] S. Farkh and K. Nour. Résultats de complètude pour des classes de types du
système AF2. Informatique Théorique et Application, vol 31, num 6, pp. 513-
537, 1998.

[6] J.-Y. Girard, Y. Lafont and P. Taylor. Proofs and types. Cambridge University
Press, 1986.

[7] T. Griffin. A formulae-as-types notion of control. Proc. POPL, 1990.

[8] J.R. Hindley, The simple semantics for Coppo-Dezani-Sallé types. In Interna-
tional symposium on programming (Turin, 1982). Lecture Notes and Computer
Science, vol 137, Springer, Berlin, pp. 212-226, 1982.

[9] J. R. Hindley. The completeness theorem for typing λ-terms. Theoretical Com-
puter Science, vol 22, pp. 1-17, 1983.

[10] J. R. Hindley. Curry’s type-rules are complete with respect to the F-semantics
too. Theoretical Computer Science, vol 22, pp. 127-133, 1983.

[11] J.R. Hindley. Basic Simple Type Theory. Cambridge University Press, 1997.

[12] F. Kamareddine and K. Nour. A completeness result for a realizability seman-
tics for an intersection type system. Annals of Pure and Applied Logic, vol 146,
pp. 180-198, 2007

[13] J.-L. Krivine. Lambda calcul, types et modèles. Masson, Paris, 1990.

[14] J.-L. Krivine. Opérateurs de mise en mémoire et traduction de Gödel. Archive
for Mathematical Logic, vol 30, pp. 241-267, 1990.

[15] R. Labib-Sami. Typer avec (ou sans) types auxiliaires. Manuscrit, 1986.

[16] C. R. Murthy. An evaluation semantics for classical proofs. Proceedings of the
sixth annual IEEE symposium, pp. 96-107, 1991.

[17] K. Nour. La valeur d’un entier classique en lambda-mu-calcul. Archive for
Mathematical Logic 36, pp. 461-473, 1997.

[18] K. Nour. Mixed Logic and Storage Operators. Archive for Mathematical Logic,
vol 39, pp. 261-280, 2000.

14

[19] K. Nour and K. Saber. A semantical proof of strong normalization theorem for
full propositional classical natural deduction. Archive for Mathematical Logic,
vol 45, pp. 357-364, 2005.

[20] K. Nour and K. Saber. A Semantics of Realizability for the Classical Proposi-
tional Natural Deduction. Electronic Notes in Theoretical Computer Science,
vol 140, pp. 31-39, 2005.

[21] K. Nour and K. Saber. A completeness result for the simply typed lambda-mu
calculus. Annals of Pure and Applied Logic, vol 161, pp. 109-118, 2009.

[22] M. Parigot. Free Deduction: An Analysis of ”Computations” in Classical Logic.
Lecture Notes in Computer Science (592), pp. 361-380, Springer-Verlag, Berlin,
1990.

[23] M. Parigot. λµ-calculus: An algorithm interpretation of classical natural de-
duction. Lecture Notes in Artificial Intelligence, vol 624, pp. 190-201. Springer
Verlag, 1992.

[24] M. Parigot. Classical proofs as programs. Lecture Notes in Computer Science
(713), pp. 263-276, Springer Verlag, Berlin, 1993.

[25] M. Parigot. Proofs of strong normalization for second order classical natural
deduction. Journal of Symbolic Logic, vol 62 (4), pp. 1461-1479, 1997.

[26] W. Py. Confluence en λµ-calcul. PhD thesis, University of Chambéry, 1998.

[27] K. Saber. Étude d’un λ-calcul issu d’une logique classique. PhD Thesis, Uni-
versity of Chambéry, 2007.

[28] A. Saurin. Separation and the λµ-calculus. Proceedings of the Twentieth An-
nual IEEE Symp. on Logic in Computer Science, LICS 2005, IEEE Computer
Society Press, pp. 356-365, 2005.

[29] S. van Bakel, F. Barbanera and U. de’Liguoro. A Filter Model for the λµ-
Calculus. Proceedings of 10th International Conference on Typed Lambda Cal-
culi and Applications (TLCA’11), Novi Sad, Serbia, June 1-3, 2011. Volume
6690 of Lecture Notes in Computer Science, pages 213-228, Springer-Verlag,
2011.

[30] W. W. Tait. A realizability interpretation of the theory of species. In : R.
Parikh (Ed.), Logic Colloquium Boston 1971/72, vol. 435 of Lecture Notes in
Mathematics, Springer Verlag, pp. 240-251, 1975.

15

