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Abstract

Studies on fish embryo models are widely developed in research. They are

used in several research field such as drug discovery or environmental toxicology.

In this article, we propose an entirely automated assay to detect cardiac arrest

in Medaka (Oryzias latipes) based on image analysis. We propose a multi-scale

pipeline based on mathematical morphology. Starting from video sequences of

entire wells in 24-well plates, we focus on the embryo, detect its heart, and as-

certain whether or not the heart is beating based on intensity variation analysis.

Our image analysis pipeline only uses commonly available operators. It has a

low computational cost, allowing analysis at the same rate as acquisition. From

an initial dataset of 3,192 videos, 660 were discarded as unusable (20.7%), 655

of them correctly so (99.25%) and only 5 incorrectly so (0.75%). The 2,532

remaining videos were used for our test. On these, 45 errors were made, leading

to a success rate of 98.23%.
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1. Introduction

The use of fish embryo model as a potential alternative to laboratory mam-

malian species is increasing in a variety of physiological applications [1] [2].

In compliance with international animal welfare regulations, fish embryo mod-

els provide ethically acceptable systems having the complexity of a complete5

organism. More precisely, embryonic development in fish continues after hatch-

ing through the eleutheroembryo stage. At this stage, the energetic supply to

the developing organism is provided by the yolk sac. The transition to the

larval stage starts with the onset of exogenous feeding. [3, 4]. Eggs (before

hatching) and eleutheroembryos do not meet the European regulatory defini-10

tion of animals used for scientific purposes [5] and are therefore considered an

alternative to (adult) animal testing [1, 6, 7]. However, evaluating effects of

chemical compounds requires many measurements. Hundreds of measurements

have to be conducted for each compound, with thousands of these chemicals

being evaluated every year in the chemical, pharmaceutical, and cosmetic in-15

dustries. These measurements had to be processed manually. Some can be done

semi-automatically, but these approaches are not satisfying [8].

Image processing has been widely used in conjunction with fish studies, for

instance for sizing and aging analysis [9, 10], species recognition [11], auto-

mated counting [12], behavior assessment [13, 14], and more recently for en-20

abling micro-injections in fish embryo [15]. Recent progress was achieved in

automating image procedures analysis on Medaka embryos [16] and more com-

monly with Zebrafish embryos [17, 18, 19].

Fish embryos (Medaka and Zebrafish) are transparent and their cardio-

vascular system is readily visible. At these early stages of development, car-25

diac arrest does not induce an immediate death due to the blood gas exchanges

that occur through skin diffusion [20, 21]. Nonetheless, we will refer to our

cardiac arrest detection assay as a mortality test, since it can be considered

as a prediction of mortality. Here we describe an automated image-processing

pipeline to detect a beating heart with minimal human interaction, maximum30
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speed, and reliability. The proposed procedure improves on a previous feasibility

study [22], which had some limitations. In particular, it required a significant

workload involving gel preparation and the manual positioning of embryos on

the support gel. In addition, the number of plates used was limited due to a

moving platform. In the procedure we will be describing in this article, freshly35

spawned eggs are placed in a liquid incubation medium, where they remain for

9 days, with automatic medium renewal every 3 days. This means having to

conduct an image analysis of the eggs both unhatched and hatched in a liquid

medium. This procedure involves using a fixed platform and a moving camera.

The image analysis pipeline that we propose is based on mathematical morphol-40

ogy [23, 24, 25]. In the next section, we report the difficulties and challenges

encountered in this study and their proposed solutions.

2. Problem statement and challenges

Our procedure is part of a complex process for detecting morphological and

functional abnormalities in fish embryos. This endeavor imposes some exper-45

imental constraints: we have to deal with both eggs and hatched eggs at the

analysis level, and the embryos need to be anaesthetized during morphological

analysis. Because this process is intended to be fully automated, a differenti-

ating procedure between eggs and hatched eggs must be developed. We refer

to the ”hatched eggs” as alevins. We use the designation embryo to refer to50

eggs and alevins simultaneously. Medaka hearts normally beat at a frequency

of around 130 beats per minute (bpm) i.e 2.2Hz [26]. However, this can vary by

between 0 to 300 bpm, i.e 0-5Hz, in extreme cases. To avoid incorrect measure-

ments, our recordings must be made using a frame rate that is high enough for

our purposes. Our current camera records one second long videos at 30 Hz, cor-55

responding to a Nyquist cutoff frequency of 15Hz, which is sufficient. Recorded

videos are 1500×1500 pixels in size, covering the whole well.

Because the incubation medium is liquid, undesirable motion may be present

during acquisition. Embryos may also slide to the edge of each well, render-
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ing them partially or totally invisible. To minimize this, the platform is fixed60

and we use a moving camera. The quantity of liquid in the well is also care-

fully adjusted, so that the embryo moves as infrequently as possible once it is

placed in the well. Incomplete or otherwise corrupted videos may occasionally

be acquired. Shadows and undesirable objects are also a risk. These unusable

sequences must be identified at the start of processing.65

Even with the above precautions and even if all of the embryos were to re-

main immobile under anesthesia, some residual movement is still possible. Such

motion may be caused by involuntary reflex swimming, or it may be induced

by vibrations and shocks in the lab environment, which are easily transmitted

by the liquid in the well and on the embryo, inducing false positives if not cor-70

rected on dead embryos. In particular, the eyes can cause significant difficulties

as they appear as the darkest part of the embryos’ bodies and are not transpar-

ent . Consequently, we chose variance measures in the embryo’s body excluding

the eyes to detect heartbeats. However, artifactual motion caused by even the

slightest uncompensated frame motion may induce artifacts of high variance and75

generate false positives. Because the heart is close to the eyes, this detection

needs to be carefully handled. Moreover, in egg form, embryos are wounded and

the eyes can superimpose with the heart, making the detection of a heartbeat

impossible. More generally, eggs have different optical characteristics compared

to alevins. This is why it is important to determine whether a well contains an80

egg or an alevin so that the processing procedures can be adjusted accordingly.

During the nine-day incubation period in the chemical compound under

study, the medium is regularly changed. At the nine-day mark, a fixed quantity

of medium is removed from the well so that only 0.5mL of liquid remains during

image acquisition. The medium may still contain impurities or the chorion if the85

egg hatched during incubation. The real embryo must be carefully distinguished

from these impurities during image processing.
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3. Materials and Methods

3.1. Organism

Medaka (Oryzias latipes) develops quickly (hatching normally occurs be-90

tween 7 and 9 days post fertilization). In our study, embryos were procured

from Amagen (UMS 3504 CNRS / UMS 1364 INRA). The eggs are incubated

for 9 days at a temperature of 28◦C.

3.2. Computer and software

We used the Python 2.7 environment under Windows 7 (64 bits) in an HP95

computer with a 3.60GHz Intel R© CoreTM i7-4790 CPU and 32 GB of RAM.

We used Numpy, Scipy, and Scikit-image [27], Python Imaging Library (PIL),

Pink [28], and Open CV for Python [29]. Platform control and image data

acquisition were performed using FEI Visilog 7.

3.3. Hardware100

During the incubation period, medium replacements were performed with

an Hamilton MICROLAB STAR automated device. All videos were acquired

using a monochrome camera (reference Basler Camera monochrome CCD 1”

2330*1750p 31 images/s Camera Link Mount C) and an acquisition platform

from FEI.105

3.4. Acquisition protocol

Fish eggs are manually placed in a 24-well plate, one embryo per well, imme-

diately after spawning on day 0. Each well contains 2mL of incubation medium,

together with a predetermined concentration of the water-soluble compound

under study. Embryos are incubated in this medium in their respective well110

until day 9, when image acquisition is performed. Medium replacements are

automatically performed on days 2, 5 and 7. On day 9, we remove 1.5mL of the

incubation medium from each well and the fish embryos are anesthetized with

70 µL of tricaine (1 g/L) in a total volume of 0.57mL. The final tricaine concen-

tration is 0.1g/L. The plate is placed under acquisition platform and recording115
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is automatically performed under the control of a Visilog Visual Basic script.

For each well, 30 uncompressed video frames at a resolution of 1500×1500 pixels

are recorded over a duration of 1 s.

Due to storage constraints, sequence analysis cannot be performed offline.

This means that it must take place in parallel to sequence acquisition. This120

imposes a maximum computation time of about 10 seconds. This limits the

image analysis pipeline to simple, fast yet robust operators, preferably well-

tested and found in off-the-shelf image processing software packages.. On Fig. 1

we depict the flowchart of our assay. It consists of two steps: a stabilization and

denoising phase, followed by a processing phase. The latter detects periodic125

changes in embryos associated with a beating heart. Videos are read as raw

data interpreted as grey-level values.

4. Image analysis solution

In this section, we present our notations and image processing operators,

mostly from mathematical morphology [31]. Table 1 summarizes these. Let130

I be a M × N pixels grey level image, taking 8-bit discrete values, i.e. I :

[1, N ] × [1,M ] → Z ∩ [0, 255]. Bi is a disk structuring element of radius i;

εBi(I) is the erosion of I by the structuring element Bi. δBi(I) is the adjunct

dilation [25], γBi(I) and ϕBi(I) are respectively the morphological opening and

closing [30]. We denote γαλ (X) the area opening of X with parameter λ [32].135

We also denote (I)≥θ the binary, thresholded image of I above value θ, i.e.:

x ∈ [1, N ]× [1,M ], (I)≥θ =

 1 if I(x) ≥ θ

0 if I(x) < θ
(1)
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Figure 1: Flowchart of the embryo mortality image processing assay
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Table 1: Table of mathematical notations.

Notation Name Definition Reference

I an N ×M , 8-bit image ∀p ∈ [1, N ]× [1,M ], I(p) ∈ [0− 255] ∩ Z

Sl sequence l of n images Sl = {Sli, i ∈ {1, . . . n}, Sli an image}

F l first frame of the sequence Sl F l = Sl0∨
pointwise maximum∧
pointwise minimum

Iv translation of image I by vector v

(I)≥θ Thresholding ∀p ∈ I, I(p) = 1 if I(p) ≥ θ; 0 otherwise

Bi Euclidean disk of radius i

δB(I) Dilation with structuring element B
∨
v∈B I−v [30]

εB(I) Erosion with structuring element B
∧
v∈B Iv [30]

ϕB(I) Closing with structuring element B εB(δB)(I) [30]

γB(I) Opening with structuring element B δB(εB)(I) [30]

bottom-hatB Bottom-hat with structuring element B ϕB(I)− I [31]

γαλ (I) Area opening
∨
B,area(B)=λ γB(I) [32]

ρτϑ Segment of length τ and orientation ϑ

γρτ (I) Radial opening
∨
ϑ∈[0,π] γρτϑ(I) [33]

gradM Morphological gradient δB1(I)− εB1(I)

a = average(I) Scalar average a = average({p,∀p ∈ I})

µ = median(I) Scalar median µ = median({p,∀p ∈ I})

v = variance(I) Scalar variance v = variance({p,∀p ∈ I})

A = seq average(S) Image average of sequence S ∀p,A(p) = average({Si(p), Si ∈ S})

M = seq median(S) Image median of sequence S ∀p,M(p) = median({Si(p), Si ∈ S})

V = seq variance(S) Image variance of sequence S ∀p, V (p) = variance({Si(p), Si ∈ S})

skeleton(I) Skeleton [34]

watershed(I) Watershed [35]

Gσ(I) Zero-mean Gaussian of variance σ Gσ(p) = 1
σ
√

2π exp− p2

2σ2

DoGσ(I) Derivative of Gaussian at variance σ ∇ ? Gσ(I) [36]

‖v‖ `2 (Euclidean) norm of vector v = (vx, vy)
√
v2
x + v2

y
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We now present the notion of radial opening [33]. Let ρτϑ be a line segment

of length τ and orientation ϑ. The radial opening γρτ is the algebraic opening

obtained by taking the supremum (i.e. the pointwise maximum) of all the

openings γρτ
ϑ

using ρτϑ as structuring element, with ϑ varying between 0 and π.

γρτ (I) =
∨

ϑ∈[0,π]

γρτ
ϑ
(I) (2)

Intuitively, this opening preserves all structures in the image that can contain a

segment of length τ in any direction. When I is a binary image, the supremum

operator
∨

reduces to the set union ∪.

We introduce the notation Sl to refer to a sequence l of n images. We note140

Sli the frame i of this sequence. For clarity reasons, we write F l = Sl0 the first

frame of the sequence Sl.

4.1. Video quality control and detection of unusable videos

We begin by determining which videos present important and undesirable

changes during the sequence. These changes may be due to the presence of

black frames, shadows or large uncontrolled motion. For this, on each difference

di between two successive frames of the video sequence S0, we compute the

statistical variance (Vi):

∀i ∈ [1, 29], di = S0
i − S0

i+1 (3)

Vi = variance(di) (4)

In the case of a correctly recorded video, two successive frames should be

very similar, and their pixelwise difference yields a near-zero output, so its145

variance remains small. On the contrary, if a large motion appears on a frame,

the difference will show a high contrast. If at least one of all computed variances

is higher than the experimentally determined threshold (set to 30), the video

sequence is deemed unusable.
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4.2. Segmentation of the well and selection of a region of interest150

Embryo segmentation is crucial for several reasons. For speed and reduced

memory usage, we crop the area of interest to a small window centered on

the embryo. During this step, we also detect sequences where the embryo is

not fully visible, i.e. too close to the edges of the well. Moreover, motion

stabilization must be performed on the embryo itself, and not on other elements

of the field of view. We first isolate the region of interest by finding the disk area

corresponding to the inner part of the well. This step also removes all objects

connected to the edges of the well. The procedure for finding the area of this

disk is as follows: edges of the disk appear dark, so we first compute a so-called

bottom-hat filter: see Fig. 2(a) and Eq. (5) for a definition. In this equation, B20

is chosen to remove small artifacts in the well. This yields image A0 (Fig. 2(b)),

which we binarize via an automated thresholding operation to obtain image A1

in Fig. 2(c). The automated thresholding procedure is as follow: we determine

the optimal threshold following the Otsu criterion, i.e. the one that maximizes

the inter-class variance between two classes, foreground and background [37]),

with the added constraint that the area of the foreground must be in the interval

[20,000; 40,000] pixels. This interval is experimentally determined to guarantee

that the edges of the well are present in the foreground. This constraint is

convex and so easily implemented: we consider all thresholds in order from

the highest to the lowest in order. The foreground area necessarily increases

during this process. In the acceptable foreground area interval for the area of

the foreground, we select the threshold with the highest Otsu criterion. We call

this threshold θco (for constrained-Otsu).

A0 = ϕB20(F0)−F0 (5)

A1 = (A0)≥θco (6)

We remove small components from the well with an area opening γα100 of pa-

rameter λ = 100, followed by a closing with a ball B40 to reconstruct fragmented

edges of the well. Then a radial opening γρ100 with linear element ρ of length
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(a) (b) (c)

Figure 2: Bottom-hat application. (a) is the frame F0 before bottom-hat, (b) is the result

A0 and (c) is the subsequent thresholded image A1.

τ = 100 is applied to remove short artifacts from the well, while retaining the

thin well borders [33]. This yields image A2:

A2 = γρ100(ϕB40(γα100(A1))) (7)

From this result shown on Fig.3(a), we only want to keep the internal ring

that represents the separation between the interior of the well and its edges.

For this, we use a well-established morphological approach to segmentation,

based on the Watershed transform. This operator is intuitively defined as in

hydrology, in a grayscale image whose intensity can be assimilated to a 3D155

terrain, as delimiting the borders between adjacent catchment basins [35]. We

compute the magnitude of the Derivative of the Derivative of Gaussian filter

(DoG): DoGσ = ∇ ? Gσ using the Deriche recursive implementation of the

gradient operator for speed [38] with parameter σ = 10 and we use a markers-

based Watershed algorithm [39] on the magnitude of this gradient. A disk at160

the center of the frame is taken as internal marker m1
int and the frame corners

are the external marker m1
ext. We write:

A3 = watershed(‖DoG10(A2)‖,m1
int,m

1
ext) (8)

The resulting contour is shown on Fig.3(b). The result may be incorrect if

the embryo is too close to the edge of the well. To avoid this, we expand the
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(a) (b)

(c) (d)

Figure 3: Segmentation of the inner part of the well. (a) is before watershed algorithm

application (image A2); (b) is the convex hull result (image A3); (c) is the result of convex

hull (image A4) and (d) is the outline of final result D superimposed on F0.
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contour using the smallest convex set that contains A3 [40]. We call A4 the

resulting image (see Fig. 3(c)) and G4 the set of points contained in the central

component of A4. We compute the barycenter C of coordinates (a, b) and the

diameter 2R of G4 as the largest width or height of its bounding box. The final

well segmentation is disk D centered in C and of radius R. Its contour is shown

on Fig.3(d).

D =
{

(x, y), (x− a)2 + (y − b)2 ≤ R2} (9)

with (a, b) = barycenter(G4) and R = max(width(G4),height(G4))
2

4.3. Localization of the embryo in the well

Our image analysis procedure is intended to work for both alevins and eggs,

but some eggs do not develop at all and differ markedly from healthy eggs and165

alevins (see Fig. 4(a) and (c)). They feature low contrast, which makes them

look like empty chorions or impurities that can develop in the wells. An early

pipeline challenge is to reliably detect and identify the embryo in each well.

To achieve this, we begin by performing an initial segmentation adapted to all

components in the well, whatever their level of intensity or variance. In the170

previously calculated bottom-hat image A0 (see Fig. 2(b)), all components of

interest are easy to classify as connected components located strictly inside the

segmented well. We call h the contrast significance, understood as the intensity

variation that connected components must have to be considered significant [24].

The value h is experimentally set to ignore the irrelevant intensity variations due175

to noise, while still detecting the dimmest components that cannot be ignored

(i.e. the undeveloped eggs). We call pipeak the local maximum of intensity in

the neighborhood of the pixel pi. Image B1 contains the so-called h-maxima of

A0 ∩ D, defined as follows:

B1 =

pi ∈ A0 ∩ D with pi =

 0 if (pipeak − pi) > h

pi if (pipeak − pi) ≤ h

 (10)

The image B1 of the h-maxima can be efficiently computed using a morpholog-180

ical reconstruction operator, as explained in [41].
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(a) (b)

(c) (d)

Figure 4: Segmentation of the well and location of the embryo. (a) and (b) show the outlines

of D and M0 on the initial frame F0. (c) and (d) show the first frames of cropped sequences

S1.

Several components can be detected in the resulting frame B1. These com-

ponents may be embryos, empty chorions, or some type of impurity. To identify

the embryo, we use several criteria: presence of eyes, minimal and average in-

tensities, variance, and circularity. A component is considered to have an eye185

if an extremely dark spot, representing less than a quarter of its total area, is

present. Since impurities are generally homogeneous, this procedure filters out

dark impurities, that are uniformly dark, and light impurities and chorions that

are evenly bright. However, it can also filter out under-developed eggs. To avoid

this problem, we add further classification criteria: a high average intensity or190

a low variance. We also verify circularity to differentiate between undeveloped

eggs, chorions, and bright impurities. Finally, this process enables us to classify

components as either ”under-developed eggs,” ”other embryos,” or ”impurities

and chorions.” We delete components identified as impurities or chorions. There

must only be one embryo per well. Therefore, if several components classified as195

”under-developped eggs” remain after this step, only the largest is kept. If sev-
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eral components of the other classes remain, we only keep the largest component

among those from the ”other embryo” class. Indeed, we have experimentally

found that it is more difficult to distinguish under-developed eggs from chorions

than other embryos from impurities. Thus the probability of making a mistake200

from the ”undeveloped egg” class is higher. The result M0 is a binary mask

(with values in {0,1}) containing only one component expected to locate the em-

bryo in the well (see its red contour in Figure 4(a,b)). An empty result occurs

when an embryo intersects the edges of the well. In this case, the corresponding

sequence cannot be analyzed correctly. If an embryo is found, we crop the mask205

M0 and the sequence by defining a bounding box around the segmentation di-

lated by B20, a disk of diameter 20 pixel. This results in a new sequence denoted

S1 centered on the embryo (see Fig. 4(c)). However, because of contrast vari-

ations and the large variability of grey levels between embryos, the mask M0

is only approximate. In particular, for alevins, it delimits a rough area with210

the tail included (see Figure 4(b)) and potentially contains some shadows and

impurities if they are too close to the embryo. For the purpose of heartbeat

detection, we need to restrict the search field to the thorax region.

4.4. Differentiation between eggs and hatched embryos

Because they have different optical properties, it is necessary to identify215

the embryo type for further processing. The differentiation step is based on

the morphological analysis of the embryo contours previously detected. The

previous segmentation provides a reliable localization of the embryo, but only a

rough approximation of its contours (see Fig.5(a) and (b)), so these need to be

refined. For this, we consider the first frame F1 of the cropped sequence S1. In220

particular, it is crucial to weed out potential shadows and impurities, which may

have been segmented with the embryo, while retaining the tail segmentation

for the alevins. We apply the same bottom-hat procedure as in Eq. (5) of

section 4.2 to eliminate the background. Then we experimentally define an

adaptive threshold slightly above the average pixel intensity near the border of225

the cropped frame. For our images, with a 8-bit depth, an increment of 5 was
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experimentally determined as appropriate: θ = average(F1) + 5. We obtain a

binary image, whose small components are filtered out with an area opening

with parameter λ = 5. We apply the morphological gradient of an image I

defined as gradM (I) ≡ δB1(I)− εB1(I) to the resulting image, to obtain image230

C1.

C1 = gradM (γα5 ((ϕB40(F1)−F1)≥θ)) (11)

In order to properly extract the contours of the embryo without confusing

them with residual artifacts that may still be present in the background, we

again use a markers-based watershed methodology on the image C1, as follows:

m2
int = skeleton(γB8(εB15(M0))) (12)

M1 = watershed(C1,m2
int,m

2
ext) (13)

The image’s outline is set as the external marker m2
ext and the ultimate binary

skeleton [42] of the eroded and opened mask M0 is set as the internal marker

m2
int. The erosion and the opening are respectively performed with a radius-15

and a radius-8 disk, in order to remove potential thin impurities linked to the235

previous embryo segmentation.

The outline of the resulting binary maskM1 is shown in Fig. 5(c) and (d).

We now use the shape of M1, to differentiate between the eggs and the

alevins. Eggs are highly circular, so we can use the classical circularity attribute:

circ = 4πA
P 2 (14)

Where A is the area and P is the perimeter of the binary shape under study.

This ratio is at most equal to 1 for a disk, and decreases as the elongation

becomes more pronounced. However, it is still possible for some alevins to be240

so tightly wound that their associated binary shape presents a high circularity.

Eggs also possess hairs on their chorion that may reduce the circular aspect of

their associated mask. To correctly differentiate between both cases, we also

consider two other criteria. We have experimentally determined that a healthy
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(a) (b)

(c) (d)

Figure 5: Segmentation of the embryo. (a,b) are the outline of the mask M0 (before

adjustment) ; (c,d) are those of M1 (after adjustment).

well-segmented egg has a radius of around 60 pixels. Therefore, allowing for245

some margin of error, we apply a morphological opening γB40 that deletes the

alevins’ mask, as alevins are much thinner than eggs. If the component under

study is filtered out during this step, it is considered to be an alevin. If it is

not, we determine the minimum enclosing disk of the mask and we calculate the

area difference d between this disk and the mask M1. Indeed, since the eggs’250

hairs are uniformly distributed on the chorion, the difference between the mask

area and the area of its minimum enclosing disk is higher for hatched alevins

than for eggs. Below an experimentally determined threshold of 3,000 pixels,

we consider the component under study to be an egg. Otherwise, we conclude

that it is an alevin.255

4.5. Segmentation of the thorax of hatched embryos

For the purpose of heartbeat detection, it is essential to restrict the region

of interest to the thorax, in order to minimize the probability of false detection

due to electronic noise or blood flow in the bright tail regions. Therefore, af-

ter the differentiation step, we refine the embryo segmentation in the case of260
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(a) (b) (c)

Figure 6: Segmentation of the initial frame to locate the thorax of the alevin. (a) is the initial

frame F0, (b) the thorax mask M2 and (c) the first frame of S2

alevins. Alevins are darker than the background and their eyes, in particular,

are very dark. They are fairly easy to segment as a large connected component

associated with the darkest minima in the thorax region. We apply the same

threshold process as in Eq. (6). Because we have experimentally determined

that the minimal area of an alevin’s thoracic region is approximately 600 square265

pixels, we apply a morphological area opening using the criterion λ = 100 to

eliminate small components. Moreover, we limit the thorax region to the M0,

by computing the intersection.

M2 =M0 ∩ (γα100((F0)≤θoc)) (15)

The result M2 is a new binary mask representing the alevin’s thorax (see

Fig. 6(b)). We crop the sequence and obtain a new sequence S2 centered on270

this area (Fig. 6(c)). These remained unchanged for egg sequences andM2 and

S2 are respectively equivalent to M1 and S1.

4.6. Registration

Even when anesthetized and subject to vibration isolation, embryos may

still move slightly during acquisition. In order to eliminate false positives, all se-

quences need to be stabilized. For efficiency, we chose a keypoint based method-

ology, specifically using SIFT [43]. SIFT detects and matches pairs of significant
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points P1 and P2 between pairs of frames. This allows us to solve the equation

for rigid transformations:

P1 = P2 ×R+ T. (16)

Here T = (dx, dy) is the translation vector and R is the rotation matrix.

Since embryos do not deform significantly, it is sufficient to consider this class of275

transforms. Our model can select between translation-rotations and translation-

only transformations. Model selection is a useful feature, because simpler models

are usually more robust. Here we distinguish between pure translation (where R

is the identity matrix) and translation-rotation by computing the sum of square

difference between the two model outputs. If they do not differ significantly,280

we choose the simpler model. This latter outcome is the more frequent in our

experiments. Pure rotation never occured in our experiments so we do not

consider that model. Since impurities may be present in the well, movement is

often visible around the embryo. Thus, in order to stabilize the sequence with

respect to the embryo and not the other moving components in the well, we285

ensure that key-points in the embryo only are selected, restricting key-points to

the mask M2. Taking the first frame of the sequence as reference, the selected

model transform is applied to all the following frames. In order that the whole

stabilized sequence be of constant width and height, we consider the bounding

box of the sequence, and crop it by the maximum displacement in both x and290

y, which are respectively max(|dx|) and max(|dy|). We call S3 the stabilized

and cropped sequence of the embryo.

4.7. Denoising

Depending on the illumination conditions, sequence S3 may be more or

less degraded by noise. We use a bilateral filter [44] in the 2D+t domain to

reduce noise. We can interpret the bilateral filter as a neighborhood-dependent

convolution. At each pixel (i, j) belonging to a window W , the filtered frame
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ID is given by:

ID(i, j, t) = 1∑
(k,l,m)∈W w(i, j, t, k, l,m)

∑
(k,l,m)∈W

I(k, l,m)× w(i, j, t, k, l,m)

(17)

Where

w(i, j, t, k, l,m) = exp(− ((i− k)2 + (j − l)2 + (t−m)2)
2σ2

d

−I(i, j, t)− I(k, l,m)2)
2σ2

r

)

(18)

In this formulat, I is the original input image. Depending on parameters,

this filtering could be too strong and could cause the heartbeat to become un-295

detectable. Experimentally, the best parameters for removing the noise without

altering the heartbeat are: window size = 3×3×3, σr= 0.5 , σd= 0.6. The out-

come of this process is a restored sequence S4. Because the bilateral filter is not

as effective on the borders of the sequence, is it preferable to remove them. This

implies that we lose the first and the last frames, and so S4 is only 28-frames300

long.

4.8. Segmentation of the inner parts of the embryo

To ascertain the presence of a heartbeat in the thorax region, we look for

cyclic motion in this region only. To prevent false motion detection in unrelated

areas, we compute a mask M3 corresponding to the region of interest. This

eliminates areas most subject to noise, such that the eyes. We define D1 as the

sequential average image of the sequence S4 (see Table 1):

D1 = seq average(S4) (19)

Blood causes the heart and vessel to appear darker, so they are easy to segment

as a large connected component associated with the darkest minima, simulta-

neously maximizing the inter-class variance.

D2 = (D1)≤(θo+θc) (20)

Here θo is obtained using the Otsu criterion. Because the heart and vessels

are thin compared with the rest of the body, we need to bias the threshold
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(a) (b) (c) (d)

Figure 7: Segmentation of the inner parts of two alevins and two eggs. (a) and (c) are alive

whereas (b) and (d) are dead.

to encompass a larger region, so we add a constant θc to the Ostu threshold,

experimentally optimized to 20. Here D2 is a binary mask, corresponding to the

body of the alevin, including the eyes. We detect the eyes in D2 fairly simply, as

they are large, obvious minima inside this region. We cannot assume that they

eyes are separated but we do know their minimum size. The equation yielding

M3 is:

M3 = εB1(γB3((D2.D1)≥(θo−θd))) (21)

In this equation, θo is again the Otsu optimal threshold, which depends on the

distribution of grey-levels within D2. Because we want to bias the threshold

nearer to the eyes, which are very dark,305

we subtract an experimentally optimized constant θd, which turns out to be

equal to 20 as well, from θo. The outline of the resulting mask M3 in alevins

is exemplified in Fig. 7(a,b). This procedure is used only on alevins in order to

restrict the region of interest to detect heartbeats. It is not suitable for eggs,

due to the folded aspect of the embryo. For these, we compute M3 using the310

same procedure for segmenting the eyes but considering M2 as the geodesic

mask. (Fig. 7(c,d)).

4.9. Elimination of spurious, non-cyclic motion

So far we have assumed that heartbeats can be associated with significant

variations of grey-levels in the thorax region of the alevin. For this, we estimate315
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(a) (b) (c) (d)

Figure 8: False color rending of the temporal variance. (a) and (c) are for the living embryos

in Fig.7(a,c); (b) and (d) for the dead ones in Fig.7(b,d).

a time-wise, grey-level variance at every location in this region. However, a

significant variance during a sequence may be also due to a single, large, spu-

rious motion instead of a regular, periodic heartbeat. To distinguish between

these two cases, we split S4 into four equal length sub-sequences. Each subse-

quence is 7-frames long, which is enough to record a typical, single heartbeat.320

The sub-sequences are called S4
i , i ∈ {1 . . . 4}. We now consider the sequential

variance image Vi = seq variance(S4
i ), i ∈ {1 . . . 4} and the sequential median

V = seq variance {Vi}. We see if that a single, large, spurious motion occurs

during the entire sequence, then only one of the Vi will record high values. The

median V of the Vi will still be low. In contrast, if a regular, signicant variations325

occurs in the majority of the Vi, then V will have high values that we assume

to be due to periodic motion. The result is shown on figure 8.

S4 = S4
1 ∪ S4

2 ∪ S4
3 ∪ S4

4 (22)

∀i ∈ [1, 4], Vi = seq variance(S4
i ) (23)

E1 =M3. seq median({Vi, i ∈ [1, 4]}) (24)

4.10. Segmentation of cyclic motion areas

We obtain a binary image of E1 via a small closing, a threshold by the scalar

median value µ of all strictly positive variances present in E1, and a small area330

opening.

22



(a) (b) (c) (d)

Figure 9: Segmentation of cyclic motion detection in embryos. (a) and (c) are for the living

embryos in Fig.8(a,c); (b) and (d) are for the dead embryos in Fig.8(b,d).

µ = median(E1) (25)

H1 = γα4 (ϕB1(E1)≥µ) (26)

Because the optical properties of eggs are not the same as those of alevins,

we notice more residual cyclic motion due to noise in the case of eggs. Therefore,

we add an area opening with λ=8 only for eggs. If H1 contains only zero-valued

pixels, the embryo is considered dead. Otherwise it is assumed to be alive (see335

Fig. 9).

4.11. Detection of cyclic motion associated with the mouth

Some alevins have no detectable heartbeat in the sequence due to significant

pigmentation in the thorax region. However, sometimes cyclic mouth motion

induced by natural reflex demonstrates that the alevin is alive. To allow for

these specific cases, we recommend the detection of cyclic mouth motion. Once

again, we apply our cyclic motion detection and segmentation based on variance,

but this time on the inverted mask M3. If an area of cyclic motion is detected

(Mmouth), we estimate the distance between each component in this area and

the alevin’s eyes (Meyes), by superposing both corresponding masks: G1 =

Meyes ∪Mmouth, then performing a dilation of G1 by a radius-14 ball: G2 =

δB14(G1). If a single area remains, the area of cyclic motion is close enough to
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(a) (b)

(c) (d)

Figure 10: Distance assessment between areas of cyclic motion and alevin’s eyes. (a) repre-

sents the superposed eyes and areas of cyclic motion masks G1, (b) shows the dilation G2, (c)

is the component of G3 which contains Meyes and (d) is the result G4.

the eyes to be the mouth. In terms of implementation, we keep the component

of G2 that contains the eyes, which we call G3, and check to see if it also contains

a component exhibiting cyclic motion (see Fig. 10).

G4 = G3.G1 (27)

If the number of components in G4 is higher than the number of eye compo-

nents, we consider it a cyclic mouth motion area. An alevin with no heartbeat

detected but mouth motion present is considered to be alive.340
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5. Validation and Discussion

In this section, we present the results obtained using a total of 3,192 videos,

2,532 of which were actually usable to test for heartbeat detection. We begin

describing the establishment of ground truth in part 5.1, before moving on to

discuss processing. Our results are presented in part 5.3. We tackle the problem345

of remaining limitations in part 5.4 and finally discuss about the quality of our

validation method in part 5.5.

5.1. Ground truth establishment

In the context of our test validation, two possible types of ground truth exist:

observations under a microscope and those directly acquired on videos. Each350

present different advantages and drawbacks. The strongest way of assessing the

quality of the complete embryo analysis process, including plate preparation,

data acquisition, and data treatment, is to compare our results to the observa-

tions of embryos under a microscope. On the other hand, the automated method

we developed works on video sequences whose information may be much differ-355

ent from the observations made under microscope. Several aspects linked to

the experimental protocol or the acquisition method can explain this fact. (i)

Video quality is such that some weak heart beats may be undetectable on video

even if they are visible under a microscope. (ii) Observations made while using

a microscope also depend on operator fatigue and subjectivity. (iii) Because360

there is a time gap between the observations made under microscope and videos

acquisition, an embryo may also die during the interval. (iv) Observations made

under microscope facilitate scrutiny of the heart since embryos can be moved

to a favorable position, whereas in videos the embryo’s posture may obscure

the heart. For these reasons, it appears that the most relevant way to assess365

the program’s quality (one of the goals of this article) is through direct video

observation.

In the context of our study, both possible ground truths were considered. In

the table 2 summarizes the establishment of ground truth datasets. Our first
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Dataset 0 Dataset 1 Dataset 2

Screening method Microscope Videos Videos

Dataset size 3192 3192 200

Experts in charge

of the analysis*
Expert 0 Expert 1

Experts 1, 2

and 3

Classification

labels used
”Alive” or ”Dead”

”Unusable”,

”Alive” or ”Dead”
”Alive” or ”Dead”

* Each expert screened the entire dataset.

Table 2: Establishment of ground truth datasets. For Dataset 2, a consensus was reached

between the three experts and a final set of 200 ground truth data was obtained.

expert (named ”expert 0”) originally observed the embryos under microscope370

before the total set of 3,192 videos were acquired. We refer to these observations

as ”Dataset 0”. The expert identified each case as a living or dead embryo by

checking for the presence of a heartbeat. After that, another expert (”expert 1 ”)

analyzed the resulting 3,192 acquired videos (”Dataset 1”). He began manually

assessing the usability of the videos, by checking that they were complete, well-375

recorded, that the well was not empty, and that the embryo was not too close

to the well boundary. In this manner, 655 unusable videos were identified.

Then, for the remaining 2,537 usable sequences only, this expert determined if

the embryo was alive or dead. However, whereas determining videos usability

is easy and thus reliable, detecting a beating heart is sometimes difficult and380

therefore subject to errors. For this reason, we selected a subset of only 200

usable videos (”Dataset 2”) so that the health status of the embryo could be

reassessed by two other independent observers (”experts 2 and 3”). In the end,

three different observers were involved in analyzing the 200 usable data subset.
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Because the experts’ observations pertaining to Dataset 2 were not always385

identical, a consensus was then reached between these three observers concerning

the videos that they assessed differently. The 200 data resulting from this

consensus represent the ground truth we use to validate our automated method,

as explained in the following section 5.3.

5.2. Processing390

Our heartbeat detection method returns three possible results: ”unusable,”

”alive,” or ”dead.” This method processes a sequence in approximately 10 sec-

onds, in accordance with our initial constraints. All parameters were hand

optimized using a training sample of 100 sequences.

5.3. Validation of the method395

Using the 200 Dataset 2 videos, we can now compare the results of our pro-

gram with the previously established consensus data. We consider the program

to be erroneous if it detects a dead embryo that was identified as alive according

to expert consensus (false negative) or if, on the other hand, it detects a living

embryo that was identified as dead by expert consensus (false positive). We400

detected 3 errors made by the program for a corresponding error rate of 1.5%.

(see Table 3). Moreover, this error rate only corresponds to false negatives. In

toxicity tests, this is a more acceptable type of error since it does not provide

a false sense of security with regard to the molecule tested. In Table 3(b), we

present the error rates that were calculated for each expert as compared to the405

final consensus based on Dataset 2. Expert 1, who processed the 3,192 videos

(Dataset 1), has a similarity rate of 98.5% with respect to the consensus data.

Consequently, the experts’ observations can be considered sufficiently reliable to

analyze the results of the entire program. The results of this analysis (program

vs. expert 1) are described below.410

Out of the initial 3,192 Dataset 1 videos, the program correctly flagged 655 as

unusable and incorrectly flagged another 5 as unusable due to some error within

the program itself. If we consider the entire set, 3,187 videos were correctly
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Ground truth

(consensus)

Program results

Dead Alive

Dead 38 (19%) 0 (0%)

Alive 3 (1,5%) 159 (79,5%)

(a)

Expert 1 Expert 2 Expert 3 Program

Error rates between

expert observations

and ground truth (consensus)

1.5% 2.5% 1.5% 1.5%

(b)

Table 3: Results and error rates calculated on Dataset 2 (200 usable videos). (a) shows the

distribution of dead and living embryos in the program results compared to ground truth data

of the consensus. It shows that 1,5% of the Dataset 2 embryos are wrongly identified as dead

by the program. (b) shows the error rates calculated for each expert and for the program

versus consensus data, used as ground truth.

flagged, leading to a success rate of 99.85%. The remaining 2,532 videos were

used for mortality test validation. There were 45 errors in this set, for an error415

rate of 1.77%. Such an error rate is low and can be considered satisfactory.

We noticed that 11 of these 45 errors were due to embryos that had died a

long time before acquisition and had consequently absorbed the blue marker.

These embryos appear very dark on the video and are therefore more affected

by noise, which was incorrectly labeled as periodic motion. This is something420

we can improve in a future version of our software pipeline.
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(a) (b)

Figure 11: Incorrect segmentations due to fluttering.

5.4. Limitations and further optimization

In some cases, even embryos that are dead may appear to move. This may

be caused by movement in the water, fluttering, shadows or embryo rotation

inside the well (see Fig. 11 for an illustration). In dark areas, acquisition noise425

is proportionnally more troublesome [45], and may be confused with cyclic mo-

tion. Artefact motion may be present if we do not correctly stabilize the initial

sequence. This may happen if motion in the original sequence is too large or

too rapid or both, which is infrequent. Finally, the heart may beat too slowly

or weakly. In these cases, it would be difficult for a human to detect it also.430

Conversely, because embryo health status is assessed under the microscope

before videos acquisition, an embryo may be identified as alive during micro-

scopic analysis and die during the time gap. To avoid this, we plan to assess

the embryo twice in our future studies: both before and after video analysis so

that heart failure can be detected.435

5.5. Qualitative assessment of the validation method

We tested our procedure on a total set of 3,192 videos acquired over several

experimental runs. This is a significant number of videos containing healthy as

well as diseased embryos: some with edemas and other malformations. Thus,

this set reflects production usage and allows us to validate the robustness of our440

protocol (see Fig. 12).
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(a) (b)

Figure 12: Heart segmentation in the presence of malformations. (a) is in the presence of

edema and (b) in the presence of axial malformation.

The purpose of this article is to present and assess an image analysis pipeline

for detecting a beating heart on 1 second long videos of fish embryos. Our re-

sults on 2,532 usable sequences show an acceptably low error rate, near 1.5%

overall. This proves the efficacy and reliability of our image analysis method.445

However, when considering its integration within the entire system of embryos

preparation, image acquisition, and processing, several points remain to be dis-

cussed, especially with respect to the validation phase and the establishment of

ground truth.

Since we are discussing living organisms, establishing ground truth is not450

always easy. We rely on multiple visual observations of a subset of video se-

quences, which were not always consistent: expert observers did not always

come to same conclusion. Indeed, we noticed 6 differences between them for

200 assessed videos, a rate of 3%. A second viewing of these videos was con-

sequently performed with all observers present to achieve a consensus. With455

respect to this consensus, each observer had made between 3 and 5 errors, a

rate between 1.5% and 2.5%. We note that our program had also made 3 er-

rors. We conclude that the rate of assessment subjectivity is near 1.5%. Such

a rate is acceptable, because experiments may easily be repeated three times.

Assuming errors are random and independent, the final error rate on repeated460
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experiments is negligible (2.25× 10−4).

However, this low error rate is based on video-based ground truth and is

only representative of the quality of the program itself. To assess the reliability

of the entire procedure, including preparation, acquisition, and treatment, we

need to establish ground truth by observing embryos under a microscope. Nev-465

ertheless, as we explained in part 5.1, we still face video quality and accuracy

issues with the current acquisition procedure. For example, when comparing

the manual health status determination under microscope on Dataset 0 and

the videos on Dataset 1, we noticed a discrepancy in 282 cases, for a rate of

11%. To improve upon this, we are investigating the use of the VAST system:470

http://www.unionbio.com/vast/, which currently is only available for Zebrafish,

not for Medaka.

Many sequences (20.5%) are correctly detected by the program as unusable.

Some of them are due to an empty well, and so are not an issue, but the ma-

jority are due to embryos being too close to the well boundary. This represents475

an actual problem for the efficiency of the global procedure. To solve it, we

are currently experimenting with wells that have a rounded, rather than flat,

bottom. These are not widely available commercially and are not compatible

with our Hamilton MICROLAB automated filling system. However, they are

compatible with our acquisition device, and would solve the problem of embryos480

that are too close to the edges of the well. We hope that with some experimental

protocol adjustments, we will be able to use them in production.

In spite of these issues, our current pipeline is used in production at L’Oreal.

We are confident that we will eventually solve all of the experimental problems

discussed and reach an error rate comparable to that of human observers using485

a microscope under optimal conditions.

6. Conclusion

In this article, we have detailed an image analysis pipeline for detecting the

living status of a Medaka embryo. This is achieved by locating the area around
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its heart and determining if significant, periodic grey-level variations in this area,490

which are assumed to correspond to a heartbeat. We have optimized the pa-

rameters of the proposed procedure on a small subset of 100 sequences. A large

set of 2,537 videos was used as a test set, with these parameters fixed. By com-

parison to multiple human observers, we have round that the error rate of the

video analysis is only 1.77%, which is similar to the error rate human observers495

have between themselves. This error rate is sufficiently low for production use.

Plans for future work include improvement of the experimental protocol so that

the optimal viewing position for automated image analysis is attained and ex-

perimental errors are avoided. Our proposed pipeline is in production usage at

L’Oreal.500
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