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Abstract

Polynomial chaos expansions (PCE) have proven efficiency in a number of fields for prop-

agating parametric uncertainties through computational models of complex systems, namely

structural and fluid mechanics, chemical reactions and electromagnetism, etc. For problems in-

volving oscillatory, time-dependent output quantities of interest, it is well-known that reasonable

accuracy of PCE-based approaches is difficult to reach in the long term. In this paper, we pro-

pose a fully non-intrusive approach based on stochastic time warping to address this issue: each

realization (trajectory) of the model response is first rescaled to its own time scale so as to put

all sampled trajectories in phase in a common virtual time line. Principal component analysis is

introduced to compress the information contained in these transformed trajectories and sparse

PCE representations using least angle regression are finally used to approximate the components.

The approach shows remarkably small prediction error for particular trajectories as well as for

second-order statistics of the latter. It is illustrated on different benchmark problems well known

in the literature on time-dependent PCE problems, ranging from rigid body dynamics, chemical

reactions to forced oscillations of a non linear system.

Keywords: surrogate models – sparse polynomial chaos expansions – stochastic ordinary

differential equations – stochastic time warping – dynamical systems

1 Introduction

In modern engineering, it is of utmost importance to investigate the significant effects of uncer-

tainties when considering the behaviour of complex systems. These uncertainties may arise from
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environmental factors (e.g. excitations, boundary conditions) or inherent sources (e.g. natural

variability of the materials) and are usually represented by random variables. In this context,

the framework of uncertainty quantification was introduced, of which a major component is

the propagation of uncertainty from the input parameters through the system to the output

quantities of interest. The outcomes of uncertainty propagation (e.g. statistical, reliability and

sensitivity measures) allow a better understanding of the system and are critical in decision

making.

So far Monte Carlo simulation (MCS) is universally used for solving uncertainty propagation

problems. The idea behind MCS is to perform the simulation a sufficiently large number of times

by varying input parameters such that the average of the response quantity of interest converges

to the expected value according to the law of large numbers. However, the use of MCS is hindered

by the fact that a large number of simulations is not affordable in many practical problems (e.g.

when each evaluation of the computational model is time- and memory-consuming).

To overcome this issue, spectral methods have been used in the last two decades as an alter-

native approach to traditional MCS. The spectral approach consists in representing the response

quantity of interest in a space spanned by well-defined basis functions. Among a wide variety of

basis functions that have been investigated, polynomial functions have shown particular effec-

tiveness (Ghanem and Spanos, 2003; Le Mâıtre and Knio, 2010; Soize and Ghanem, 2004). The

spectral approach that uses polynomial chaos functions as a basis is simply named polynomial

chaos expansions (PCEs) in the sequel.

In practice, PCEs are widely used as an approximate model to substitute a computationally

expensive model for uncertainty propagation. They can be used in an either intrusive or non-

intrusive setup. The former requires knowledge of the mathematical equations describing the

considered system. One has to interfere with the original set of equations, reformulate it and

then solve the reformulated system to compute the PCE coefficients. In contrast, the latter does

not necessitate any prior knowledge of the governing equations. It considers the deterministic

computational model as a blackbox and only requires to define an experimental design, i.e. a set

of input and corresponding output values. In several studies, PCEs have shown great efficiency

compared to the traditional uncertainty propagation approach with MCS, see e.g. Dossantos-

Uzarralde and Guittet (2008); Rajabi et al. (2014).

PCEs, however, face challenges when used for dynamical systems that are encountered in

the fields of structural and fluid dynamics or in chemical engineering (Wan and Karniadakis,

2006a; Beran et al., 2006a; Ghosh and Iaccarino, 2007; Le Mâıtre et al., 2010). In these cases,

the governing equations are a system of ordinary differential equations with random parameters.

First, the response as a function of time is no longer a scalar quantity but may be cast as

a vector after proper time discretization. Applying PCEs at each time instant might require
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large computational resources. To reduce the computational cost, Blatman and Sudret (2013)

used principal component analysis to capture the main stochastic features of the vector-valued

response quantities by means of a small number of variables which can be represented by PCEs.

The greatest challenge is the decrease in time of the accuracy of the PCE model as reported in

numerous publications (Wan and Karniadakis, 2006a; Beran et al., 2006a; Ghosh and Iaccarino,

2007; Le Mâıtre et al., 2010; Le Mâıtre and Knio, 2010; Gerritsma et al., 2010) though. The

features of the accuracy degeneration, i.e. its onset (the instant at which PCEs start being

insufficiently accurate) or its rate (how fast the accuracy decreases), depend on the considered

problem.

The cause of the decaying accuracy of PCEs in dynamics can be classified into an approach-

related cause and an inherent cause. The approach-related cause refers uniquely to intrusive

techniques. In fact, the latter solves a system of reformulated ordinary differential equations

which are derived from the original system of equations by substituting PCE for the quantity

of interest. At any given instant, the PCE is truncated after P terms, thus introducing a

truncation error. The latter is accumulated in time, therefore the results deteriorates (Ghosh

and Iaccarino, 2007). By means of the non-intrusive approach, one can avoid this source of

error since the responses at different instants can be examined “independently”, which prevents

the accumulation of error at later instants provided the deterministic solver is equally accurate

whatever the realization of the input parameters. The inherent cause refers to the fact that the

problem itself demonstrates increasing complexity as time evolves, as shown through examples

in Pettit and Beran (2006); Ghosh and Iaccarino (2007). The growing complexity makes it

increasingly hard for PCE to capture the behaviour of the system.

The growth in time of the inherent complexity of the problem is characterized by the increas-

ingly complicated relationship between the output quantity and the input parameters, exhibiting

important non-linearity, abrupt changes and possibly discontinuities (see e.g. Witteveen and Iac-

carino (2013); Desai et al. (2013)). It may be related to the difference in terms of frequency and

phase content of the various response time-series obtained with distinct values of the uncertain

input parameters (Le Mâıtre et al., 2010; Witteveen and Bijl, 2008). These discrepancies tend

to be more and more severe when time passes. In other words, trajectories tend to be similar at

early instants and less and less in phase in the long term (Wan and Karniadakis, 2005, 2006a).

Existing approaches available in the literature for dealing with dynamical systems subject to

uncertainties are summarized hereafter. For the sake of clarity, the approaches are classified as

shown in Figure 1.

As explained previously, the model complexity increases in time, thus the PCE degree is

required to increase accordingly in order to achieve an acceptable level of accuracy. In high

dimensional problems, the use of high-order PCEs leads to the exponential increase of the size
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Figure 1: Existing PCE approaches used for uncertain dynamical systems.

of the basis. However, the amount of available information, i.e. the size of the experimental

design used for fitting PCEs, usually remains limited. This approach will not be effective after

a certain period of time because of this so-called curse of dimensionality.

To alleviate this issue, Blatman and Sudret (2010) introduced adaptive sparse PCEs that

allows one to take advantage of the sparsity in the structure of the model (if this sparse structure

exists), thus extending the time range where the computation of PCEs is tractable and the result

is sufficiently accurate. In other words, adaptive sparse PCEs may delay the onset of the accuracy

degeneration. Lucor and Karniadakis (2004) used adaptive generalized PCEs, which consists in

detecting the first-order terms with the most important effects on the fluctuation of the response

and then building the higher-order terms that only include the selected first-order terms. From

the same perspective, Mai and Sudret (2015a) developed the hierarchical PCEs which aims at

updating the set of candidate polynomials adaptively by adding selected interaction terms while

selecting only the regressors with the most importance. In most papers, the proposed high-order

PCE approaches consist in using assumptions to reduce the size of the high-order PCE basis or

using advanced computational techniques for computing them.

Wan and Karniadakis (2005, 2006a,b) proposed multi-element PCEs, in which the random

space is divided into multiple subspaces in such a way that the complexity of the model in each

subspace is reduced, thus requiring only low-order PCEs. Jakeman et al. (2013) also used multi-

element PCEs with a discontinuity detector in order to minimize the number of subspaces. Nouy

(2010) and Soize (2015) approximated a multimodal random variable (i.e. the output quantity

of interest) by a mixture of unimodal random variables, each modelled by PCEs. This approach

might help to improve the effectiveness of PCEs in the context of dynamical systems, when the

responses at late instants usually exhibit multi-modal distributions as will be shown in the current
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paper through numerical applications. In the above approaches, the input space is divided

into subspaces according to the detected discontinuities or dissimilarities. One then builds a

local PCE in each subspace and combines those PCE models to obtain a global metamodel.

Therefore these approaches can be classified as local PCEs. The use of polynomial functions in

local domains, however, requires an accurate decomposition of the input space and will not be

straightforward in high-dimensional problems.

From a different perspective, Gerritsma et al. (2010) proposed to compute time-dependent

PCEs by updating the polynomial chaos basis on-the-fly. If the approximation error is excessive

at a considered time instant, the authors add to the existing set of random variables a new

variable, which is the response quantity at the previous instant. This is based on the idea

that a fixed set of random variables at the beginning of the process is not sufficient to model

the system in the long term and thus, the set of random variables the PCEs depend on needs

to be updated. This approach can be viewed as a nested PCE model, i.e. a PCE model of

another PCE model. Luchtenburg et al. (2014) used flow map composition, which is in principle

similar to time-dependent PCEs. The time-history response is composed of short-term flow

maps, each modelled by PCE. The idea of constructing the basis on-the-fly was also applied

by Cheng et al. (2013) and Choi et al. (2014), who derived intrusively a system of equations

governing the evolution of the time-dependent spatial and stochastic basis. In the context of

structural dynamics, Spiridonakos and Chatzi (2015a,b) proposed the combination of PCEs and

autoregressive models which consists in representing the response as a function of its past values.

This approach is currently investigated with the use of sparse adaptive PCEs by Mai et al. (2016).

Recently, Ozen and Bal (2016) introduced the dynamical PCEs, which is also based on the idea

that the future evolution of the response depends on the present solution.

As explained earlier, the accuracy of PCEs may degenerate in time due to the time-increasing

dissimilarity between the response trajectories when considering distinct values of the uncertain

input parameters. To alleviate the accuracy decay, one may naturally think of increasing the

similarity between the response trajectories. For this purpose, an attractive approach is to pre-

process the response trajectories in order to increase the similarity between them. To this end,

Witteveen and Bijl (2008); Desai et al. (2013) represented the dynamic response trajectories as

functions of the phase φ instead of time t in order to obtain in-phase vibrations. The phases are

extracted from the observations, based on the local extrema of the time series. The response

trajectories are then transformed from time-histories to phase-histories. PCEs are eventually

applied in the phase space. Finally, Le Mâıtre et al. (2010) represented the responses in a

rescaled time τ such that the dynamic responses vary in a small neighbourhood of a reference

trajectory. The time scale τ is intrusively adjusted at each time step so that the distance

between the dynamic response and the reference solution is minimized, thus in-phase vibrations
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are achieved.

As a summary, PCEs fail to represent long-term time-dependent system responses because

of their inherent increasing complexity. To the authors’ knowledge there is no versatile tool that

helps overcome the problem in a non-intrusive setup. This paper aims at filling this gap by

introducing a fully non-intrusive approach that allows efficient use of PCEs for time-dependent

problems showing oscillatory behaviours. The proposed approach relies on a stochastic time

warping and the subsequent rescaling of the response trajectories.

The paper is organised as follows: in Section 2, the fundamentals of PCEs for time-independent

problems are recalled. We introduce so-called time-frozen PCEs that will be used for compari-

son. In Section 3, we propose an original non-intrusive PCE approach for uncertain dynamical

systems based on stochastic time-warping. Five applications are finally considered to show the

efficiency of the proposed approach.

2 Polynomial chaos expansions

2.1 Spectral representation

Let us consider the model Y = M(X) where X = (X1, . . . , XM ) is a M -dimensional input

vector of random variables with given joint probability density function fX defined over an

underlying probability space (Ω,F ,P) and M : x ∈ DX ⊂ RM 7→ R is the computational

model of interest, where DX is the support of the distribution of X. Herein, we assume that

the input random variables are independent, i.e. the joint probability density function (PDF) is

the product of the marginal PDFs:

fX(x) = fX1
(x1) . . . fXM (xM ). (1)

Assuming that the scalar output Y is a second order random variable, i.e. E
[
Y 2
]
< +∞,

is equivalent to require that the computational model M belongs to the Hilbert space H of

square-integrable functions with respect to the inner product:

< u , v >H=

∫

DX

u(x)v(x)fX(x)dx. (2)

Denote by Hi the Hilbert space of square-integrable functions with respect to the marginal

probability measure PXi(dxi) = fXi(xi)dxi. Let us equip Hi with an inner product:

< u , v >Hi=
∫

DXi

u(xi)v(xi)fXi(xi)dxi, (3)
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where DXi is the support of the distribution of Xi and denote by {φik, k ∈ N} an orthonormal

basis of Hi which satisfies:

< φik , φ
i
l >Hi= δkl, (4)

in which δkl is the Kronecker symbol, which is equal to 1 if k = l and equal to 0 otherwise.

As shown by Soize and Ghanem (2004), the Hilbert space H is isomorphic to the tensor

product ⊗Mi=1Hi. Thus a basis of H may be obtained by the tensor product of the univariate

bases
{
φik, k ∈ N

}
, i = 1, . . . ,M . As a consequence, the random variable Y = M(X) that

results of the propagation of the uncertainties modelled by X through the computational model

M may be cast as:

Y =
∑

α1∈N
. . .

∑

αM∈N
yα1...αMφ

1
α1

(X1) . . . φMαM (XM ). (5)

For the sake of simplicity, introducing multi-indices α = {α1, . . . , αM}, Y may be rewritten as:

Y =
∑

α∈NM
yαφα(X). (6)

where φα(X) =
M∏
i=1

φiαi(Xi) are the multivariate basis functions and yα are the associated

deterministic coefficients.

2.2 Polynomial chaos expansions

Univariate basis functions φik, k ∈ N, i = 1, . . . ,M may be constructed using orthonormal

polynomials (Abramowitz and Stegun, 1970) leading to the so-called generalized polynomial

chaos expansion (Xiu and Karniadakis, 2002; Soize and Ghanem, 2004). For instance when

Xi is a uniform (resp. standard normal) random variable, the corresponding polynomial basis

comprises orthonormal Legendre (resp. Hermite) polynomials. Then Eq. (6) becomes:

Y =
∑

α∈NM
yαψα(X), (7)

in which α = (α1, . . . , αM ) are the multi-indices with αi, i = 1, . . . ,M denoting the degree

of the univariate polynomial in Xi and ψα(X) =
M∏
i=1

ψiαi(Xi) are multivariate orthonormal

polynomials obtained by the tensor product of univariate polynomials.

In practice, the use of infinite-dimensional PCEs is not tractable. One always truncates the

expansion to obtain an approximate representation:

Y =
∑

α∈A
yαψα(X) + ε, (8)
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in which A is a truncation set and ε is the truncation-induced error. A classical truncation

scheme consists in selecting all polynomials of total degree less than or equal to p, when the

truncation set reads:

AM,p = {α ∈ NM : ‖ α ‖1def= α1 + . . .+ αM 6 p}. (9)

2.3 Computation of PC coefficients and error estimation

The computation of the coefficients {yα, α ∈ A} in Eq. (8) can be conducted using intrusive

(i.e. Galerkin scheme) or non-intrusive approaches (e.g. projection, regression and quadrature

methods). In the following, we will compute the coefficients of the expansions using the adaptive

sparse PCE technique proposed by Blatman and Sudret (2011) which is a non-intrusive least-

square minimization technique based on the least angle regression algorithm (Efron et al., 2004).

The reader is referred to Blatman and Sudret (2011) for more details on this approach.

The accuracy of the representation is estimated by means of the leave-one-out (LOO) cross-

validation, which allows a fair error estimation at an affordable computational cost (Blatman

and Sudret, 2010; Blatman, 2009). The principle of cross validation is to use different sets of

points to build PCEs, then compute the errors with the actual model. Assume that one is

given a sample set X =
{
x(i), i = 1, . . . , n

}
. The computational model M is run for each

point in X , resulting in the vector of output quantity values Y =
{
y(i), i = 1, . . . , n

}
. Setting

one point x(i) apart from X , one can build a PCE model MPC\i(·) from the remaining points

X\x(i) =
{
x(1), . . . ,x(i−1),x(i), . . . ,x(n)

}
. The predicted residual error at point x(i) reads:

∆(i) def
= M(x(i))−MPC\i(x(i)). (10)

The LOO error is defined as follows:

ÊrrLOO =
1

n

n∑

i=1

∆2
i . (11)

At first glance, one could think that evaluating the LOO error is computationally demanding

since it requires n different predicted residuals, each of them obtained from a different PCE.

However, by means of algebraic derivations, one can compute ÊrrLOO from a single PCEMPC(·)
built with the full experimental design as follows (Blatman, 2009):

ÊrrLOO =
1

n

n∑

i=1

(M(x(i))−MPC(x(i))

1− hi

)2

, (12)

where hi is the ith diagonal term of the projection matrix A
(
ATA

)−1
AT and the information
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matrix A is defined by
{
Aij = ψj(x

(i)), i = 1, . . . , n, j = 1, . . . , cardA
}

, i.e. the ith row of A

is the evaluation of the polynomial basis functions at the point x(i) in the ED. Note that in

practice, a normalized version of the LOO error is used:

ε̂LOO =
ÊrrLOO
Var [Y]

, (13)

where Var [Y] is the empirical variance of the sample of outputs.

2.4 Time-frozen polynomial chaos expansions

In the context of time-dependent problems, i.e. Y (t) = M(X, t), the polynomial chaos repre-

sentation of the response quantity reads:

Y (t) =
∑

α∈A
yα(t)ψα(X) + ε(t) (14)

in which the notation yα(t) indicates the time-dependent coefficients of PCEs. The represen-

tation of a time-dependent quantity by means of PCEs as in Eq. (14) is widely used in the

literature, see e.g. Pettit and Beran (2006); Le Mâıtre et al. (2010); Gerritsma et al. (2010).

At a given time instant t, the coefficients {yα(t),α ∈ A} and the accuracy of the PCEs are

estimated by means of the above mentioned techniques (see Section 2.3). The metamodel of the

response is computed independently at each time instant, hence the name time-frozen PCEs.

We now introduce the use of time-frozen PCEs for computing the time-dependent statistics

of the response. The multivariate polynomial chaos functions are orthonormal, i.e. :

E
[
ψα(X)ψβ(X)

] def
=

∫

DX

ψα(x)ψβ(x) fX(x) dx = δαβ ∀α, β ∈ NM , (15)

in which δαβ is the Kronecker symbol that is equal to 1 if α = β and equal to 0 otherwise. Indeed,

each multivariate polynomial is orthogonal to ψ0(X) = 1, which means E [ψα(X)] = 0 ∀α 6= 0

and Var [ψα(X)] = E
[
(ψα(X))

2
]

= 1 ∀α 6= 0. Thus, the time-dependent mean and standard

deviation of the response can be estimated by means of a mere post-processing of the truncated

PC coefficients (in Eq. (14)) with no additional cost as follows:

E [Y (t)] ≈ E

[∑

α∈A
yα(t)ψα(X)

]
= y0(t), (16)

σ2
Y (t) = Var [Y (t)] ≈ Var

[∑

α∈A
yα(t)ψα(X)

]
=
∑

α∈A
α 6=0

y2α(t). (17)
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3 Stochastic time-warping polynomial chaos expansions for

random oscillations

3.1 Introduction

An interesting problem emerges in nonlinear oscillating systems possessing a limit cycle1 which

may depend on the uncertain parameters. Limit cycle oscillations (LCO) represent a class of

time-dependent problems that plays an important role in several fields, see e.g. aerospace engi-

neering (Bunton and Denegri, 2000) and mechanical engineering (Sarrouy et al., 2013) among

others. Use of PCEs to represent LCO systems has attracted a large attention and actually

almost all novel ideas with PCEs are applied first to LCO systems or systems involving periodic-

ity. For instance, Wan and Karniadakis (2006a) used multi-element PCEs whereas Beran et al.

(2006b) proposed different methods namely use of Haar wavelets as local bases or use of B-spline

functions. These approaches aim at resolving the highly nonlinear behaviour of LCO responses

in the stochastic domain. There are also techniques that are designed specifically for LCO. Le

Mâıtre et al. (2010) proposed an intrusive time transform of the trajectories which aims at rep-

resenting the transformed time-histories in a small neighbourhood of a reference trajectory, i.e.

to reduce their variability by making them in-phase. A transformed time line τ is introduced,

of which the varying clock speed τ̇ =
dτ

dt
is adjusted in an intrusive setup at each time step.

This is achieved by minimizing the Euclidean distance between the distinct trajectories and the

reference counterpart. From a similar perspective, Witteveen and Bijl (2008) interpolated the

oscillatory responses on the phase space to obtain in-phase oscillations. Inspired by the two men-

tioned approaches, a non-intrusive time transform, which consists in finding a suitable stochastic

warping of the time line to increase the similarity between different trajectories in the trans-

formed (warped) time scale, is introduced in this section. The proposed approach focuses on

increasing the frequency and phase similarity of the considered trajectories in problems involving

periodicity.

It is worth noting that in the engineering literature, the time-warping technique has been of

interest for decades. In the context of voice recognition, Sakoe and Chiba (1978) first proposed

the time-warping to eliminate the timing differences and obtain maximum coincidences between

two speech patterns. Wang and Gasser (1997) introduced a novel cost function to determine the

time-warping function. Later, Ramsay and Li (1998) used the technique under the name “curve

registration” for biological data. The essential idea consists in the registration (or alignment) of

salient curve features by means of a suitable smooth monotone transformation of the temporal

variable t. The actual analyses are then carried out on the aligned curves. Note that the

1Limit cycle is a closed isolated trajectory in the phase-space of self-oscillated oscillators. The nearby trajectories
can either spiral in toward or away from the limit cycle.
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same idea can also be conducted in the spatial domain. For instance, Bookstein (1997) showed

particular applications of registering the outcomes over surfaces or volumes in medical imaging.

Herein, we are adding one dimension to the time-warping technique by incorporating the ef-

fects of uncertainties in the transformation function. This results in a stochastic time-transform

framework. Indeed, due to the inherent randomness of the stochastic problem, a time transfor-

mation function with deterministic parameters is not suitable. Therefore, stochastic transform

parameters must be used and will be cast as functions of the original random parameters. The

theoretical foundation of this work was originally presented by Mai and Sudret (2015b).

3.2 Stochastic time-warping polynomial chaos expansions

Consider a dynamical system (e.g. a structural dynamic or chemical system) whose behaviour

is modelled by a system of ordinary differential equations (ODEs):

dy

dt
= f(y, ξ, t), (18)

where the initial condition is y(t = 0) = y0 and the random vector ξ comprises independent

second-order random variables defined over a probability space (Ω,F ,P). ξ may include the

parameters governing the system behaviour, e.g. masses, stiffness, damping ratio, reaction pa-

rameters, frequency and amplitude of excitation. The initial condition can also be uncertain,

in which case it becomes a random variable belonging to ξ. The time-dependent response of

the system is denoted by y(t, ξ). Without loss of generality, we consider one component of the

output quantity, e.g. y(t, ξ) with the initial condition y(t = 0) = y0. At each time instant, y(t, ξ)

is assumed to be a second-order random variable. As in Wan and Karniadakis (2005, 2006a);

Witteveen and Bijl (2008); Le Mâıtre et al. (2010), herein we focus on the class of problems

when y(t, ξ) is an oscillatory response with random frequencies and amplitudes.

The time-dependent response y(t, ξ) is represented by time-frozen PCEs as:

y(t, ξ) =
∑

α∈A
yα(t)ψα(ξ) + ε(t). (19)

A virtual time variable τ(t, ξ), which is obtained by a stochastic time-warping, is introduced as

follows:

τ(t, ξ) =

Nτ∑

i=1

ci(ξ) fi(t) = F (t, ξ), (20)

where {fi(t), i = 1, . . . , Nτ} are functions of time t and {ci(ξ), i = 1, . . . , Nτ} are coefficients

which depend on the input random variables ξ. The coefficients ci(ξ) can be represented by
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PCEs as:

ci(ξ) =
∑

α∈NM
ciαψα(ξ), (21)

where ψα(ξ) and ciα are respectively the orthonormal polynomial functions and the coefficients

of the expansion. The only constraint on the time-warping is that τ is a strictly monotonically

increasing function of t. Then the inverse transform may be cast as:

t(τ, ξ) = F−1(τ, ξ). (22)

Note that, in the sequel, linear transform of the form:

τ(t, ξ) = k(ξ) t+ φ(ξ) (23)

are considered. Such a presentation is used to ease the presentation. For each realization ξ0, i.e.

each trajectory of the system response, we assume a one-to-one mapping between t and τ . The

response trajectory may then be represented in the transformed (warped) time scale by:

y(τ, ξ) =
∑

β∈B
yβ(τ)ψβ(ξ) + ε(τ), (24)

in which B is the truncation set of the multi-indices β. The inverse time transform allows one

to obtain the PCEs of the response in the physical time scale as follows:

y(t, ξ) = y(F−1(τ, ξ), ξ). (25)

The objective is to find a suitable time-warping defined by Eq. (20) and (21) so that the

cardinality of B remains small (i.e. low-degree PCEs can be used) to achieve an acceptable error

ε(τ) even at late instants. This can be obtained if the trajectories y(τ(t, ξ)) become in-phase,

as suggested by Le Mâıtre et al. (2010) and Witteveen and Bijl (2008). First, a deterministic

reference trajectory yr(t) is introduced. The stochastic time-warping (Eq. (20)) is determined by

maximizing the similarity between y(τ(t, ξ)) and the reference counterpart yr(t) for all values of

ξ, which makes the responses become in-phase. This allows the effective computation of Eq. (24).

Having at hand the time-warping (Eq. (20)) and the PCEs of the response in the virtual time

line τ (Eq. (24)), one can finally obtain the PCEs in the physical time line t by conducting the

inverse time-warping. The proposed non-intrusive time-warping approach is explained in detail

in the following. For the sake of clarity, it is graphically summarized in Figure 2.

• One first chooses a reference trajectory yr(t) which is for instance obtained by considering

the mean values of the input vector ξ, i.e. yr(t) = y(t,E [ξ]). In general, yr(t) may be

12



Figure 2: Stochastic time-warping approach: computation of PCEs

any realization of the response quantity y(t) obtained with a specific sample ξ0. For the

numerical case studies considered in the current chapter, the choice of yr(t) did not affect

the accuracy of the final results.

• Let us start now the time-warping, which consists in transforming the time line with the

purpose of increasing the similarity between different realizations of the output y(t, ξ). As-

sume that one is given a set of trajectories yi(t) ≡ y(t, ξi), i = 1, . . . , n for n realizations of

ξ corresponding to an experimental design in the input space DΞ . Then for the realization

#i, i = 1, . . . , n, the following steps are performed:

– Define a linear time-warping τ = ki t+ φi. In general, the functions fi(t) in Eq. (20)

might be polynomials of t. However, when investigating the problem of vibration with

random frequencies, a linear transform usually suffices. This is due to the periodicity

of the considered response trajectories. In the intrusive time transform approach

(Le Mâıtre et al., 2010), although a linear warping function is not specified for the

considered examples, the resulting transformed time τ eventually represents a linear

relationship when plotted against t. Wang and Gasser (1997) also used a linear warping

function. In particular, given the complexity of the problems under investigation, use

of a linear function facilitates the inverse transform in the next phase, which is highly

convenient. This linear warping represents two actions, namely scaling and shifting,

respectively driven by the parameters ki and φi. The time line is stretched (resp.

compressed) when ki > 1 (resp. 0 < ki < 1) and is shifted to the left (resp. to

the right) when φi < 0 (resp. φi > 0). In fact, the scaling factor ki (resp. shifting

factor φi) allows to maximize the similarity in frequency (resp. phase) between the

considered trajectories.
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– Determine the parameters (ki, φi) governing the time-warping as the solution of an

optimization problem which aims at maximizing the similarity between the response

trajectory yi(ki t + φi) and the reference counterpart yr(t). The details of the opti-

mization problem, in which a measure of similarity is introduced, will be described in

Section 3.3.

– Represent yi(t) on the transformed time line τ . For this purpose, one chooses a grid

line of τ with the desired time interval. In fact, the finer the grid is, the smaller

is the error introduced by the interpolation. The trajectory yi(t) is projected onto

τi = ki t + φi to obtain yi(τi). In order to assure that all transformed time lines τi

start at 0, when t ≤ t0, one uses the following transform τi =
ki t0 + φi

t0
t. The small

value t0 is chosen so that ki t0+φi > 0 ∀i = 1, . . . , n. For instance, t0 = 0.2 s is used

for the numerical applications that follow. Finally the projected trajectory is linearly

interpolated on the selected time line τ yielding yi(τ).

• One builds PCEs of k(ξ), φ(ξ) and y(τ, ξ) using the realizations {ki, φi, yi(τ)}, i = 1, . . . , n

as the experimental design (or training set):

k(ξ) =
∑

γ∈G
kγ ψγ(ξ) + εk, (26)

φ(ξ) =
∑

θ∈T
φθ ψθ(ξ) + εφ, (27)

y(τ, ξ) =
∑

β∈B
yβ(τ)ψβ(ξ) + εy(τ). (28)

In the above equations, γ, θ and β are multi-indices belonging to the truncation sets G, T
and B of the expansions. kγ , φθ and yβ(τ) are coefficients computed by means of sparse

adaptive PCEs (Blatman and Sudret, 2011). k(ξ) and φ(ξ) are scalar quantities, therefore

the computation of their PCE models is straightforward. However, for the vector-valued

response y(τ, ξ), it might be computationally expensive when the number of discretization

points of the τ -line is large. This computational cost can be reduced significantly by

coupling PCEs with the principal component analysis Blatman and Sudret (2013). The

combination of PCA and PCEs will be described in detail in Section 3.4.

3.3 Determination of time-warping parameters

This section describes the optimization problem used for determining the parameters k and φ

of the time-warping process. We first propose a function to measure the similarity between two
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trajectories y1(t) and y2(t):

g(y1(t), y2(t)) =

∣∣∣∣∣
T∫
0

y1(t)y2(t)dt

∣∣∣∣∣
‖y1(t)‖‖y2(t)‖ , (29)

in which
T∫
0

y1(t)y2(t)dt is the inner product of the two considered time histories and ‖ · ‖ is the

associated L2-norm. In practice, the trajectories are discretized and thus, the inner product

(resp. the L2-norm) becomes the classical dot product between two vectors (resp. the Euclidean

norm). By the Cauchy-Schwarz inequality, this similarity measure always takes values in the

interval [0, 1]. It attains its maximum when the considered trajectories have the same frequency

and phase content.

The parameters (ki, φi), i = 1, . . . , n are determined as the maximizers of the similarity

measure between yi(τ) and yr(t). The objective function reads:

g(ki, φi) =

∣∣∣∣∣
T∫
0

yi(ki t+ φi)yr(t)dt

∣∣∣∣∣
‖yi(ki t+ φi)‖‖yr(t)‖

. (30)

Note that the optimal warping parameters (ki, φi) are different for each trajectory. This results

in varying total durations of the trajectories after the warping process. This also occurred in the

intrusive time transform approach (Le Mâıtre et al., 2010, Figure 4). The objective function is

therefore computed on the overlapped duration between the warped trajectory and the reference

one.

Let us now examine the solution (ki, φi) of the proposed optimization problem. The constraint

that τ is a strictly monotonically increasing function of t requires that ki > 0. In case yr(t)

and yi(t, ξi) are both monochromatic signals, the value of ki that maximizes their similarity in

frequency is unique. However, there are multiple values for the shifting factor φ that make the

considered trajectories in phase. This will be investigated in the next paragraph.

Figure 3 depicts the objective function g(k, φ) as a similarity measure between the reference

trajectory yr(t) = sin(π t) and a response y(t) = sin(2π t). The two trajectories are chosen in

such a way that (k, φ) = (2, 0) is the maximizer of g(k, φ). However, there are three global

maxima in the depicted interval [−1.5, 1.5] of φ. This is due to the fact that in the virtual time

line τ , if the transformed trajectory y(τ) is shifted (whether to the left or to the right) a distance

equal to one half of the period Tr = 2 s of the reference counterpart, the similarity measure

reaches another global maximum. In fact, if Tr/4 ≤ φ ≤ Tr/2 (resp. −Tr/2 ≤ φ ≤ −Tr/4)

maximizes the similarity measure, then φ− Tr/2 (resp. φ+ Tr/2) in the interval [−Tr/4, Tr/4]

is also a maximizer. In addition, for the sake of simplicity, it is preferable that φ is as close to
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0 as possible, i.e. the time line of the scaled trajectory is shifted as least as possible. Therefore,

the selected value of φ needs to satisfy the condition that the shifted distance (in time) is not

larger than 1/4 of the period Tr of the reference trajectory yr(t), i.e. |φ| ≤ Tr/4. This constraint

ensures that the solution is unique. By adopting the constraint on φ, one finds the solution

(k, φ) = (2, 0) for the considered example.
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Figure 3: Similarity measure as a function of k and φ

Finally, one can set up the global optimization problem for determining the time-warping

parameters as follows:

(ki, φi) = arg max
ki∈R+

|φi|6Tr/4

g(ki, φi). (31)

This problem can be solved by means of global optimization methods.

3.4 Principal component analysis and time-warping polynomial chaos

expansions

The instant-wise application of PCEs to model the response in the transformed time line (Eq. (28))

might lead to an important computational burden when the discretized vector τ is of large length.

To overcome this issue, Blatman and Sudret (2013) proposed a two-step approach which com-

bines principal component analysis (PCA) and PCEs. The first step consists in conducting PCA

to capture the stochastic features of the random vector-valued response with a small number

of deterministic principal components and the associated non-physical random variables. The

second step relies on representing the resulting random variables with adaptive sparse PCEs.

Consider a sample set of the response trajectories Y =
{
y(1)(τ), . . . , y(n)(τ)

}
represented at

the discretized points {τ1, . . . , τk} in the transformed time line. By stacking up the discretized

responses, one obtain a matrix of trajectories of size n×K denoted by Y . The response can be
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represented by PCA as follows:

y(τ, ξ) = ȳ(τ) +

K∑

i=1

Ai(ξ) ṽi(τ), (32)

where ȳ(τ) is the empirical mean vector, ṽi(τ) is an empirical eigenvector determined with Y

and Ai(ξ) is a finite variance random variable. Only a few eigenvectors are retained in the

decomposition, which leads to:

y(τ, ξ) = ȳ(τ) +
K′∑

i=1

Ai(ξ) ṽi(τ) + ε1(τ). (33)

The number of principal components is selected so that the relative error 1 −

K′∑
i=1

λi

K∑
i=1

λi

is smaller

than a prescribed threshold, e.g. ε = 0.01. The samples of the random coefficient Ai(ξ) can be

obtained using ai = (Y − Ȳ ) ṽi with Ȳ = {ȳ(τ), . . . , ȳ(τ)} being a n×K matrix obtained by

replicating n times the empirical mean ȳ(τ). The computed samples of Ai(ξ) are then used as

the experimental design to compute the PCE of this random coefficient:

Ai(ξ) =
∑

α∈A
ci,αψα(ξ) + ε2,i. (34)

Finally, the response in the transformed time scale is represented by coupling PCA and PCEs

as follows:

y(τ, ξ) = ȳ(τ) +

K′∑

i=1

∑

α∈A
ci,αψα(ξ) ṽi(τ) + ε(τ). (35)

Note that Blatman and Sudret (2013) introduced a measure of the upper bound of the total

error induced by the truncation of the principal component analysis and the approximation of

the random coefficients Ai(ξ) by PCEs. The reader is referred to the mentioned publication

for more details. Herein this error measure can be used as an indicator of the accuracy of the

computed surrogate models.

3.5 Predicting random oscillations with time-warping polynomial

chaos expansions

Let us now demonstrate the use of time-warping PCEs to predict responses of the model given

a new set of input parameters ξ′. For the sake of clarity, the procedure is depicted in Figure 4

and explained in two steps as follows:

• First, one predicts k(ξ′), φ(ξ′) and y(τ, ξ′) using the computed PCEs in equations (26),
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(27) and (35).

• Second, one maps y(τ, ξ′) into y(t, ξ′) using the inverse time-warping t =
τ − φ(ξ′)

k(ξ′)
. To

this end, the discretized trajectory in the warped time, say
{
y(τ1, ξ

′), . . . , y(τK , ξ
′)
}

is

attached to the real time instants t1 =
τ1 − φ(ξ′)

k(ξ′)
, . . . , tK =

τK − φ(ξ′)

k(ξ′)

Figure 4: Stochastic time-warping approach: prediction of the response trajectories using PCEs

4 Numerical applications

The time-warping-based polynomial chaos expansions (PCEs) developed in Section 3 are now ap-

plied to five engineering problems, namely a model of rigid body dynamics, the Kraichnan-Orszag

three-mode model, the nonlinear Duffing oscillator, the so-called Oregonator model describing

the chemical reaction between three species and a Bouc-Wen oscillator subject to a stochas-

tic sinusoidal excitation. In each case, time-frozen sparse adaptive PCEs2 are applied first to

show the degradation of the prediction accuracy after a certain time. Time-warping PCEs with

simple linear time transforms are then investigated. The PCE surrogate models are computed

using a small number of numerical simulations of the original model as experimental design,

then validated on a large independent validation set of size Nval = 10, 000. The accuracy of the

time-frozen and time-warping PCE models are judged on the basis of predicting the responses to

specific values of input parameters and estimating the time histories of first- and second-order

statistics of the responses.

The accuracy of the prediction #i is indicated by the relative error which reads:

εval,i =

K∑
t=1

(y(t, ξi)− ŷ(t, ξi))
2

K∑
t=1

(y(t, ξi)− ȳ(t, ξi))
2

, (36)

2The term “time-frozen sparse adaptive PCEs” refers to the instantaneous computation of sparse adaptive PCEs.

18



where ŷ(t, ξi) is the output trajectory predicted by PCEs and ȳ(t, ξi) is the mean value of the

actual response time series y(t, ξi) which is obtained with the original numerical solver. The

above formula is also used to assess the accuracy of the predicted time-dependent statistics (i.e.

mean and standard deviation).

These problems are solved in the UQLab framework (Marelli and Sudret, 2014), more specif-

ically using the least angle regression algorithm implemented in the polynomial chaos expansion

module (Marelli and Sudret, 2015).

4.1 Rigid body dynamics

We first consider the rotation of a rigid body described by Euler’s equations (Peraire and Widnall,

2009). The conservation of angular momentum reads:





Mx = Ixx ẋ− (Iyy − Izz) y z,
My = Iyy ẏ − (Izz − Ixx) z x,

Mz = Izz ż − (Ixx − Iyy)x y,

(37)

in which Mx, My, Mz are the external moments, Ixx, Iyy, Izz are the moments of inertia and

x, y, z are the angular velocities about the principal axes. In the case when the rigid body

rotates freely under no external excitation, i.e. Mx = My = Mz = 0 and Ixx =
1− ξ

2
Iyy,

Izz =
1 + ξ

2
Iyy, one obtains the following set of reduced equations:





ẋ(t) = y(t) z(t),

ẏ(t) = ξ x(t) z(t),

ż(t) = −x(t) y(t).

(38)

The initial conditions are set equal to x(0) = 0, y(0) = 1, z(0) = 1. Assume that ξ is mod-

elled by a random variable with uniform distribution: ξ ∼ U(−1, 1). Suppose a solver of the

coupled ODEs is available. For any realization of ξ, this solver provides discretized trajectories

{{x(ti), y(ti), z(ti)} , ti = 0,∆t, . . . ,K ∆t ≡ T}. In this example, the equations are solved using

the Matlab ordinary differential equation solver ode45 (Runge-Kutta method, total duration

T = 50 s, time step ∆t = 0.01). We aim at building PCEs of the angular velocity x(t) as a

function of the random variable ξ. Note that the corresponding polynomial functions are from

the family of orthonormal Legendre polynomials since ξ is uniformly distributed.

Figure 5 depicts a set of 50 trajectories of x(t) obtained for different realizations of the

random variable ξ. This set is used as the experimental design for fitting the time-frozen PCEs.

x(t) are oscillatory trajectories which fluctuate around zero at different frequencies. This is a

typical example of the problem of stochastic oscillation with uncertain frequencies (Wan and
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Karniadakis, 2005, 2006a). At the early instants (t < 10 s), one can differentiate between the

distinct trajectories, whereas this is hardly the case at later instants, since the patterns are mixed

up completely. Due to the growing difference in frequency and phase, x(t, ξ) is more and more

non-linear as a function of ξ for increasing t (Figure 6(A)). Subsequently, the probability density

function of x(t) becomes bi-modal at late instants (Figure 6(B)). This explains why increasing-

degree time-frozen PCEs are required in order to represent x(t) properly. As analyzed previously,

this is not a sustainable approach since the required degree of PCEs will certainly become too

high at some point.
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Figure 5: Rigid body dynamics – N = 50 different trajectories x(t) in the original time scale t.
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Figure 6: Rigid body dynamics – x(t, ξ) as a function of ξ for particular instants and its probability
density function.

Time-frozen sparse PCEs are now utilized to model the variability of the response trajectories,

and exemplify the deficiency of such an approach. At each instant t, an adaptive PCE scheme
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with candidate polynomials up to total degree 20 is used (Eq. (19)) based on the available 50

data points from the experimental design made of the 50 trajectories. The PCE model which

results in the smallest leave-one-out (LOO) error is retained. Figure 7 depicts the LOO error

of these time-frozen PCEs, which is increasing in time, showing that the accuracy of the PCE

model degenerates.
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Ê
r
r
L
O
O

Figure 7: Rigid body dynamics – Leave-one-out error of time-frozen PCEs.

For validation purpose, a set of 10, 000 trajectories is computed using the ode45 Matlab

solver. Figure 8 depicts two particular response trajectories predicted by time-frozen PCEs

versus the actual responses obtained by numerically solving the system of ordinary differential

equations (38). After 15 s (when the LOO error is approximately 10−2) the PCE prediction

deviates significantly from the actual trajectory. In particular, there are signs of instability in

the PCE model, e.g. the PCE-based prediction for consecutive instants differ noticeably in terms

of accuracy.

We now consider the time-dependent mean and standard deviation of the response x(t) which

are depicted in Figure 9. In the early time instants (t < 15 s), time-frozen PCEs represent the

statistics with relatively small error compared to Monte Carlo simulation (MCS). However, after

15 s, the accuracy declines quickly. In particular, PCEs cannot mimic the oscillatory behaviour of

the standard deviation. Another interpretation is that even degree-20 time-frozen PCEs cannot

capture the complex distribution of the response at late time instants.

Let us now apply the time-warping approach to pre-process the trajectories x(t). Provided

that the initial condition is equal to 0, it suffices to use a linear time-warping τ = k t. For

each computed realization of the angular velocity x(t, ξi), i = 1, . . . , 50, the parameters ki is

estimated as the maximizer of the similarity measure described in Eq. (30). Note that the same

50 trajectories are used as the experimental design for this approach and the reference trajectory

is obtained with the mean value of the input parameter. The optimization problem is solved
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Figure 8: Rigid body dynamics – Two particular trajectories and their predictions by time-frozen
and time-warping PCEs.
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Figure 9: Rigid body dynamics – Mean and standard deviation of the trajectories: comparison of
the two approaches.

using the global optimization toolbox in Matlab. The function fmincon based upon an interior-

point algorithm is used while allowing for a maximum of 2, 000 function evaluations. Adaptive

sparse PCEs for candidate bases up to total degree 20 are used to represent the parameter k.

The relative LOO error is 3.82× 10−4, which indicates a high accuracy of the PCE model.

The time-warping is carried out using the estimated parameters and the responses are inter-

polated into the transformed time line τ , leading to in-phase trajectories x(τ) (see Figure 10(A)).

As expected, x(τ) are smooth functions of ξ at all instants, which allows the effective use of PCEs

(Figure 10(B)).

Principal component analysis (PCA) is then conducted on the obtained transformed trajec-
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Figure 10: Rigid body dynamics – Different trajectories x(τ) in the warped time scale τ and x(τ)
as a function of the random variable ξ.

tories. The first 18 principal components are retained in order to achieve a PCA truncation error

ε1 =
K∑

i=K′+1

λi/
K∑
i=1

λi smaller than 1× 10−3. The first eight principal components are plotted in

Figure 11. Figure 12 depicts the PCA truncation error ε1 as a function of the number of retained

principal components, the LOO error ε2 of the PCE for the coefficient of each principal compo-

nent and the upper bound of the total error of the PCA-PCE model. It shows that the PCA

truncation error ε1 decreases exponentially with the number of retained principal components.

Using PCE to represent the first PCA coefficient, the obtained relative LOO error is 7.7× 10−3.

It is also clear that it is harder to represent the higher mode PCA coefficients by PCEs, as was

observed by Blatman and Sudret (2013). However, it is worth noting that most of the stochastic

features of the response is captured by the first few components.
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Figure 11: Rigid body dynamics – The first eight principal components.
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of the total error.

Figure 8 depicts two specific realizations of the angular velocity x(t) predicted by time-

warping PCEs, which are plotted together with the predictions by time-frozen sparse PCEs and

the actual responses obtained by the numerical solver. As mentioned previously, one observes

that starting from 15 s, the direct approach encounters instability, which results in inaccu-

rate predictions. The time-warping approach allows one to improve notably the quality of the

surrogate model. The predictions by time-warping PCEs are in excellent agreement with the

actual responses. A relative error exceeding 0.1 is recorded in only 79 simulations among 10, 000

validations.

In Figure 9, the time-dependent mean and standard deviation of the response are plotted.

Time-frozen PCEs allow one to represent the mean trajectory with relatively small discrepancy

compared to the trajectory obtained with the MCS. It can faithfully predict the standard devia-

tion at the early instants t < 15 s, however becomes suddenly unstable afterwards. In contrast,

time-warping PCEs provide estimates of the statistics that are almost indistinguishable from

the MCS estimates. The relative errors between the reference and predicted mean and standard

deviation are 7.31× 10−4 and 7.19× 10−4, respectively.

4.2 Kraichnan-Orszag model

Let us investigate dynamical systems with random initial conditions, e.g. the so-called Kraichnan-

Orszag three-mode problem. It was introduced by Kraichnan (1963) to model a system of several

interacting shear waves and later was studied by Orszag (1967) in the case of Gaussian initial
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conditions. This model is described by the following system of ODEs:





ẋ(t) = y(t) z(t),

ẏ(t) = z(t)x(t),

ż(t) = −2x(t) y(t).

(39)

The initial condition of x(t) is considered stochastic, i.e. x(t = 0) = α + 0.01 ξ with ξ ∼
U [−1, 1] whereas y(t = 0) = 1.0, z(t = 0) = 1.0. Herein, we consider α = 0.99 as investigated

by Gerritsma et al. (2010) with the time-dependent PCEs. Note that when α is in the range

[0, 0.9], the responses are insensitive to the initial conditions. For α ∈ [0.9, 1], there is a strong

dependence of the responses on the initial state. Figure 13(A) depicts the large discrepancies

between time-histories of x(t) due to a minor variability of the initial condition x(t = 0).
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Figure 13: Kraichnan-Orszag model – N = 50 different trajectories in the original and warped time
scales.

The surrogate model of the response x(t) is computed with time-frozen and time-warping

PCEs using an experimental design of size N = 50 (Figure 13(A)). On the one hand, adaptive

sparse PCEs with candidate bases up to total degree 20 are used for the time-frozen approach.

On the other hand, a time-transform scheme τ = k t with one governing parameter is used for the

time-warping scheme. The trajectories resulting from the time-warping process are depicted in

Figure 13(B). The adaptive sparse PCE representing k has the relative LOO error 2.2×10−6. The

first 13 principal components are retained so that 99.9% of the response’s variance is explained.

The relative LOO errors of PCEs for the first two components are 9.4 × 10−5 and 7 × 10−3,

respectively.

The time-warping PCE model is then validated by accessing the accuracy of its predictions.

Figure 14 plots two specific predictions of the surrogate model which are graphically indistin-
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guishable from the actual time-histories obtained with the original Matlab solver. Only 1.27%

of the 10, 000 predictions experiences a relative error larger than 0.1. Regarding the mean and

standard deviation trajectories (Figure 15), the time-warping approach leads to respective rela-

tive errors 2.1×10−4 and 5.3×10−4, which shows an excellent agreement between the predictions

and the references. These figures also show that the time-frozen sparse PCEs computed with

the same experimental design of size 50 lead to predictions which are not sufficiently accurate.
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Figure 14: Kraichnan-Orszag model – Two particular trajectories and their predictions by time-
warping PCEs.
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Figure 15: Kraichnan-Orszag model – Mean and standard deviation of the trajectories: comparison
of the two approaches.

This numerical application illustrates the potential application of the proposed time-warping

approach to systems subject to uncertain initial conditions. The excellent performance of the

approach is even more impressive given the chaotic behaviour of the considered system, i.e. the
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responses are strongly sensitive with respect to a minor variability of the initial condition.

4.3 Duffing oscillator

Let us consider a non-linear damped single-degree-of-freedom (SDOF) Duffing oscillator under

free vibration, which is described by the following equation of motion:

ÿ(t) + 2ω ζ ẏ(t) + ω2 (y(t) + ε y3(t)) = 0. (40)

The oscillator is driven by uncertain parameters ξ = (ζ, ω, ε) described in Table 1. The initial

conditions are considered deterministic with y(t = 0) = 1 and ẏ(t = 0) = 0. Note that a

simplified form of this equation which represents an undamped linear oscillator was used in

other publications for illustrating the time-dependent generalized polynomial chaos (Gerritsma

et al., 2010), the intrusive time-transform approach (Le Mâıtre et al., 2010) and the flow map

composition PCEs (Luchtenburg et al., 2014).

Table 1: Uncertain parameters of the Duffing oscillator

Parameters Distribution Mean Standard deviation Coefficient of variation

ζ Uniform 0.03 0.015/
√

3 0.2887

ω Uniform 2π π/
√

3 0.2887

ε Uniform −0.5 0.25/
√

3 0.2887

Hereafter, we aim at building PCEs of the displacement y(t) as a function of the random

variables (ζ, ω, ε). First, we use 200 trajectories of y(t) as experimental design to compute time-

frozen sparse PCEs of adaptive degree up to 20. Next, we use the time-warping approach, which

requires only 50 trajectories y(t) as experimental design. The 50 trajectories in the original

time scale are plotted in Figure 16(A). The same trajectories after time-warping are plotted in

Figure 16(B). A linear time-warping with two parameters, i.e. τ = k t + φ, is used for each

trajectory. Using sparse PCEs of degree up to 20, the metamodels of k and φ are obtained with

relative LOO errors 1.87 × 10−5 and 2.08 × 10−4 respectively, which indicates a high level of

accuracy. PCA is then applied to retrieve eight principal components that results in the PCA

truncation error smaller than 1×10−3. The relative LOO errors of PCE models for the first two

components are 8× 10−4 and 4× 10−3, respectively.

An independent validation set of 10, 000 runs is used to judge the accuracy of the PCE models.

Figure 17 presents two specific realizations of the displacement y(t) obtained with two distinct

sets of parameters (ζ, ω, ε). Without time-warping, PCEs are capable of predicting the response

at the early time instants (t < 3 s), then their accuracies degenerate with time, resulting in

incorrect predictions. By introducing the time-warping of the trajectories, PCEs can faithfully

capture the damped oscillatory behaviour. Only 0.18% of 10, 000 predictions exhibits a relative
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Figure 16: Duffing oscillator – N = 50 different trajectories of the response in the original and
warped time scales.

error exceeding 0.1. Note that an experimental design of size 200 is used for time-frozen PCEs,

whereas only 50 trajectories are used for computing time-warping PCEs. This emphasizes the

fact that the time-warping pre-processing of the response allows one to build accurate PCEs at

an extremely small computational cost.
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Figure 17: Duffing oscillator – Two particular trajectories and their predictions by time-frozen and
time-warping PCEs.

In terms of time-dependent statistics (Figure 18), time-frozen PCEs can predict rather well

the mean trajectory, however fail to represent the standard deviation after early instants (t > 3 s).

In contrast, the time-warping approach provides excellent accuracy on the mean and standard

deviation time histories. The relative discrepancies between mean and standard deviation time

histories predicted by time-warping PCEs with the reference trajectories are 3.27 × 10−5 and
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3.47× 10−4, respectively.
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Figure 18: Duffing oscillator – Mean and standard deviation of the trajectories: comparison of the
two approaches.

4.4 Oregonator model

We consider now the Oregonator model which describes the dynamics of a well-stirred, homoge-

neous chemical system governed by a three species coupled mechanism. Note that this benchmark

problem was used by Le Mâıtre et al. (2010) to illustrate the intrusive time-transform approach.

This chemical system undergoes an oscillation governed by the following system of ODEs:





ẋ(t) = k1 y(t)− k2 x(t) y(t) + k3 x(t)− k4 x(t)2,

ẏ(t) = −k1 y(t)− k2 x(t) y(t) + k5 z(t),

ż(t) = k3 x(t)− k5 z(t),
(41)

in which (x, y, z) denotes the three species concentration and the coefficients ki, i = 1, . . . , 5

are the reaction parameters. Hereafter, all the reaction parameters are considered independent

random variables with uniform and normal distributions (see Table 2). It is worth noting that

Le Mâıtre et al. (2010) considered only k4 and k5 as uniform random variables while fixing the

remaining parameters (i.e. k1 = 2, k2 = 0.1, k3 = 104). The initial condition is (x0, y0, z0) =

(6, 000; 6, 000; 6, 000), which corresponds to a deterministic mixture. We aim at building PCEs

of the concentration x(t) as a function of the random parameters ξ = (k1, k2, k3, k4, k5).

Figure 19(A) depicts 50 trajectories among 500 realizations of x(t), which are used as the

experimental design for fitting time-frozen PCEs. One notices that after 5 seconds, the different

trajectories are completely out-of-phase. Time-frozen sparse PCEs with candidate polynomials

up to total degree 20 are used. The PCE model actually starts degenerating at t = 3 s. In
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Table 2: Reaction parameters of the Oregonator model

Parameters Distribution Mean Standard deviation Coefficient of variation

k1 Uniform 2 0.2/
√

3 0.0577

k2 Uniform 0.1 0.005/
√

3 0.0289

k3 Gaussian 104 1.04 0.01

k4 Uniform 0.008 4× 10−4/
√

3 0.0289

k5 Uniform 26 2.6/
√

3 0.0577

particular, Figure 20 shows that when used for predicting the responses, time-frozen PCE provide

negative values of the concentration at some instants, which is non physical for the considered

problem.
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Figure 19: Oregonator model – N = 50 different trajectories of the response x(t). The figures in
the first row are zoomed in the range [15, 20] to obtain the figures in the second row.

We now apply the proposed non-intrusive time-warping approach to this problem. Note that

only 50 trajectories of x(t) are used as an experimental design for this approach. A linear time-

30



transform τ = k t+φ is again utilized. The parameters k and φ are determined and sparse PCEs

of k and φ are then computed. The relative LOO errors of the PCE models for k and φ are

respectively 4.42×10−5 and 4.8×10−2, which indicate a high accuracy. The response trajectories

are interpolated into the transformed time line τ (Figure 19(B)) and adaptive sparse PCEs with

candidate polynomials up to total degree 20 combined with PCA are then used. The first 18

components are retained in PCA to obtain a truncation error ε1 smaller than 1 × 10−2. The

PCEs for the first two coefficients have relative errors 7.57× 10−4 and 1.5× 10−3, respectively.

A validation set of 10, 000 trajectories is used to get reference trajectories of the concentration

x(t). Figure 20 depicts two particular realizations computed by the numerical solver (Matlab

ordinary differential equation solver ode45, using a time step ∆t = 0.01 for the total duration

T = 40 s) and predictions by PCEs with and without time-warping. It is shown that without

time-warping, PCEs fail to capture the oscillatory behaviour of the response. In contrast, the

use of time-warping allows PCEs to predict the response with great accuracy. Only 1.24% of

the predictions (among 10, 000 samples) has a relative error larger than 0.1. Figure 21 depicts

the statistics of x(t) predicted by time-frozen and time-warping PCEs in comparison with MCS-

based trajectories. Without time-warping, the estimates by PCEs differ significantly from the

reference trajectories already from 3 s. The discrepancies then quickly increase in time. For

instance, PCEs without time-warping estimate a decreasing trend in time for the standard

deviation, whereas the latter actually oscillates around a constant value (around 1400) with

high frequency. By introducing the time-warping pre-processing, one can use sparse PCEs to

capture the complex behaviour of the time-dependent statistics of the response all along the

trajectories. The relative error for the mean and standard deviation trajectories are 3.11× 10−4

and 3.6× 10−3, respectively.

Finally, the time-warping PCE scheme is applied to surrogate the responses y(t) and z(t) of

the system using the same experimental design of size 50 and the same procedure. Figure 22

shows a great agreement between two specific trajectories, the mean and standard deviation of

(x, y, z) in the state-space predicted by time-warping PCEs and the reference functions.

4.5 Forced vibration of a Bouc-Wen oscillator

In the previous case studies, self-oscillating systems were considered. In this example, we show

that the proposed approach is also applicable to forced-vibration systems. Let us now consider

the SDOF Bouc-Wen oscillator (Kafali and Grigoriu, 2007) subject to a stochastic excitation.

The equation of motion of the oscillator reads:





ÿ(t) + 2 ζ ω ẏ(t) + ω2(ρ y(t) + (1− ρ) z(t)) = −x(t) ,

ż(t) = γẏ(t)− α |ẏ(t)| |z(t)|n−1 z(t)− β ẏ(t) |z(t)|n .
(42)
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Figure 20: Oregonator model – Two particular trajectories x(t) and their predictions by time-frozen
and time-warping PCEs. The figures in the first row are zoomed in the range [15, 20] to obtain the
figures in the second row.

in which ζ is the damping ratio, ω is the fundamental frequency, ρ is the post- to pre-yield

stiffness ratio, γ, α, β, n are parameters governing the hysteretic loops and the excitation x(t)

is a sinusoidal function given by x(t) = A sin(ωx t).

Deterministic values are used for the following parameters of the Bouc-Wen model: ρ = 0,

γ = 1, n = 1, β = 0. The remaining parameters ξ = (ζ, ω, α, A, ωx) are considered independent

random variables with associated distributions given in Table 3.

One aims at representing the oscillator displacement y(t) as a function of the uncertain

input parameters using time-frozen and time-warping PCEs. To this end, 100 simulations of the

oscillator are carried out using the Matlab solver ode45 with time increment ∆t = 0.005 s for

the total duration T = 30 s and initial condition y(t = 0) = 0, ẏ(t = 0) = 0. The displacement

trajectories are depicted in Figure 23(A).
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Figure 21: Oregonator model – Mean and standard deviation of x(t): comparison of the two
approaches.
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Figure 22: Oregonator model – Trajectories of (x(t), y(t), z(t)) predicted by time-warping PCEs vs.
the reference trajectories.
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Table 3: Uncertain parameters of the Bouc-Wen model

Parameters Distribution Mean Standard deviation Coefficient of variation

ζ Uniform 0.02 0.002 0.1

ω Uniform 2π 0.2π 0.1

α Uniform 50 5 0.1

A Uniform 1 0.1 0.1

ωx Uniform π 0.1π 0.1
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Figure 23: Bouc-Wen oscillator – N = 100 different trajectories of the solution in the original time
scale t and in the transformed time line τ .

First, the time-frozen sparse PCEs are computed with candidate polynomials up to total

degree 20. For this case study, a time-warping scheme τ = k t with only one parameter is used.

After the time-warping process, the trajectories become in-phase as depicted in Figure 23(B).

Adaptive sparse PCE representing k has the relative LOO error 5 × 10−5. In order to achieve

a truncation error ε1 smaller than 1× 10−3, 13 first principal components are retained in PCA.

The relative LOO errors of PCEs for the first two components are 6 × 10−3 and 6.21 × 10−2,

respectively.

Let us validate the accuracy of the time-warping PCE model. In Figure 24, two specific

predictions of the PCE model are plotted against the actual responses obtained with the original

Matlab solver. A remarkable agreement can be observed. Among 10, 000 validations, only 4.87%

has a relative error larger than 0.1. Regarding the time-dependent mean and standard deviation

of the oscillator, time-warping PCE-based estimates outstandingly match the reference trajec-

tories (Figure 25). Only a minor discrepancy can be observed at the end of the considered time

duration T = 30 s, which is due to the modest number of simulations used as the experimental

design. The corresponding relative errors are both 2.4 × 10−3. On the contrary, time-frozen

PCEs exhibit a low level of accuracy after 5 seconds.
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Figure 24: Bouc-Wen oscillator – Two particular trajectories and their predictions by the two
approaches.
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Figure 25: Bouc-Wen oscillator – Mean and standard deviation of the trajectories: comparison of
the two approaches.

It is worth noting that in the current case study, we considered both uncertainties from the

mechanical properties and the excitations. In particular, complicated hysteretic behaviour was

investigated. To the best of the authors’ knowledge, this is the first time that such a system

is considered in the literature of uncertainty quantification for the purpose of deriving time-

dependent surrogate models.

5 Discussion

The various numerical applications in chemical and mechanical engineering have proved the

effectiveness of the time-warping PCE approach, which may be shortly explained as follows. It
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was observed that when represented in the space of the temporal variable t, the system’s responses

are increasingly non-linear functions of the uncertain parameters. When projecting the responses

onto a suitable space, in this case the transformed time line τ , the resulting trajectories become

smooth functions of the uncertain input parameters, whose complexity does hardly increase with

time. Therefore, PCEs can be applied effectively to the projected responses and represent well

the solutions at late instants. In this paper, a measure of similarity was proposed to define a

suitable space for projecting the responses, which exploits the periodicity of the trajectories.

Further investigations are required to clearly determine such a suitable space in a more general

case.

In the proposed approach, the virtual time τ is a function of the uncertain parameters ξ. In

other words, the basis “function” τ onto which the responses are projected is not deterministic.

This differs significantly from approaches commonly used in the literature, in which the response

trajectories are first projected onto a set of deterministic reduced basis determined a priori

using a set of numerical simulations of the system. This is usually done with a simple linear

transform, for instance data compression techniques such as principal component analysis or

wavelet decomposition.

When analysing further, one discovers a particular feature which constitutes a major differ-

ence between the classical time-frozen PCE approach and the proposed time-warping method.

The PC coefficients yβ(τ) in the time-warping representation (Eq. (24)) are functions of τ , there-

fore being dependent on ξ. This contradicts the representation of time-frozen PCEs (Eq. (19)),

in which t and ξ intervene in the solution in a separated manner.

From a more general perspective, the effectiveness of the approach can be explained by

analysing the functionalities of the time-warping process and PCEs. The most important fea-

ture of an oscillatory trajectory consists in its spectral content, which is characterized by the

vibration periodicity. The other feature is the temporal content characterized by the vibration

amplitude. The pre-processing step handles partially the dynamics of the system by dealing with

the frequency content. Using the time-warping process, the resulting trajectories have similar

frequencies and phases. In other words, in terms of frequencies, the transformed trajectories ex-

hibit a similar dynamical behaviour, which is close to that of the reference trajectory. The other

aspect of the dynamics, i.e. the random temporal amplitude of the trajectories, is handled with

sparse PCEs. As a summary, the dynamics is captured by the time-warping process, whereas

the uncertainties are represented by PCEs.

As explained, sparse PCEs alone are not capable of dealing with the dynamics. The proposed

approach illustrates a novel way to solve stochastic dynamical problems, in which a specialized

technique might be used to capture the dynamical aspect whereas sparse PCEs are used to

propagate uncertainties. From this perspective, Yaghoubi et al. (2016) have recently applied the
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warping-based approach in the frequency domain to surrogate the frequency response function

of mechanical systems. This principle is further developed by Mai et al. (2016) to tackle more

complex problems in which non-linear uncertain structures subject to stochastic motions are of

interest and where the response trajectories are non-stationary, i.e. they do not show pseudo-

periodic oscillations. The projection of the responses onto a special basis made of auto-regressive

functions will allow us to represent the non-linear dynamical behaviour of the systems.

Finally, it is worthwhile mentioning that the proposed methodology is fully non-intrusive, i.e.

the surrogate models of the systems’ response trajectories are obtained by using a pre-computed

set of trajectories related to an experimental design. In this respect, the methodology is readily

applicable to any other problems featuring randomized limit cycle oscillations.

6 Conclusions and perspectives

Polynomial chaos expansions (PCEs) represent an effective metamodelling technique which has

been efficiently used in several practical problems in a wide variety of domains. It is, however,

well known that PCEs fail when modelling the stochastic responses at late instants of dynamical

systems. In this paper, we pointed out the cause of the failure, which is mainly associated with

the large dissimilarities between distinct responses introduced by the variability of the uncertain

parameters.

To address the above issue, we suggested an approach which consists in representing the

responses into a virtual time line where the similarities between different response trajectories

are maximized. The virtual time line is obtained by warping, i.e. scaling and shifting, the original

time grid. The parameters governing the trajectory-dependent time warping are determined by

means of a global optimization problem using an objective function herein introduced to quantify

the similarity between distinct trajectories. The proposed approach allows one to effectively solve

complex benchmark problems from mechanics and chemistry using only low-order PCEs. This

approach also suggests that when representing the original response quantities onto a suitable

transformed space, the complexity of the responses may reduce significantly, thus allowing more

effective application of PCEs. In general, pre-processing the experimental design before applying

PCEs is a promising approach that needs further investigation.
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