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SPATIAL RISK MEASURE FOR GAUSSIAN PROCESSES

M. AHMED, V. MAUME-DESCHAMPS, P.RIBEREAU, AND C.VIAL

Abstract. One of the main characteristic of climate events is the spa-
tial dependence. In this paper, we study the quantitative behavior of
a spatial risk measure R(A,D) corresponding to a damage function D
and a region A ⊂ R2, taking into account the spatial dependence of the
underlying process. This kind of risk measure has already been intro-
duced and studied for some max-stable processes in [11]. In this paper,
we consider isotropic Gaussian processes X = (X(s))s∈R2 and the ex-
cess damage function D+

X,u = (X − u)+ over a threshold u ∈ R+. We
performed a simulation study and a real data study.

1. Introduction

A heat wave is a prolonged period where maxima temperatures are unusu-
ally high with respect to the usual ones. Most of the times, these heat waves
have also a huge spatial component. For example, in 1936, an extremely se-
vere heat wave hits North America. Many states record high temperatures
set during this canicule stood until the canicule of 2012. In 2003, a ma-
jor heat wave hit Europe (cf [6], [8]), specially France, leaving over 70,000
deaths (around 15,000 only in France). In France, this climatic event was
exceptional due to its intensity since some cities registered eight consecutive
days with temperature greater than 40◦, but it was also exceptional due to
its spatial extent, covering almost all the country. In probability, this means
that the underlying spatial process has a strong spatial dependence even at
long distance.

On the other hand, a “classical” storm type in the south of France is a
cevenol event. These storms are a particular kind of rainfall, hiting usually
the Cevennes in France. They are characterized by extremely heavy and lo-
calized rainfalls that lead to severe floods. For example, on september 2002,
the Gard department was hitted by an exceptional storm. Some locations
received more than 700mm of rain in 24h. This event caused the death of
23 persons. Another example, on june 15th 2010 Draguignan was severly
flooded (cf [16], [14]), leaving 27 dead and 1 billion Euros of damages.

In both situations, one of the main characteristic of the event is its spatial
dependence: very strong even for large distances for the heat waves and
strong at short distances and weak at larger for the cevenol events. When
trying to detect the dangerousness of a region using risk measure, the notion
of spatial dependence must taken into account.

Risk measures has been widely studied in literature in the univariate
setting (i.e. for random variables). The axiomatic formulation of univariate
risk measures has been presented in [2]. [7] is concerned with financial
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products on a network, collections of risk measures indexed by the network
are considered. The extension of definitions of risk measures to spatial
processes may take various forms. As mentioned previously, one of the
main characteristics of these phenomenon is the spatial dependence, for
example, in the two previous examples (canicule and cevenol event), after
normalisation of the marginals, the risk measure should not be the same
since the phenomenons are spatially very different.
In [9], the authors proposed to evaluate the risk on a region by a probability
P(S < s) where S is an integrated damage function. In [11] or [10] this idea
is developed to define spatial risk measures taking into account the spatial
dependence. In these works, the sensitivity of the risk measures with respect
to spatial dependence and space is studied. In the same spirit as [2], the
author propose a set of axioms that a risk measure in the spatial context
should verify. The author focus on max-stable processes.

We consider similar spatial risk measures well suited for Gaussian pro-
cesses. Gaussian processes are relevant for some climate models (tempera-
tures e.g.). As an example, in [13], a spatial rainfall generator based on a
Gaussian process is proposed.

Our main contributions concern the risk measure based on the excess
damage function D+

X,u = (X − u)+ over a threshold u ∈ R+. We calculate
the risk measure for Gaussian processes; we study its properties with respect
to the parameters of the model (with a focus on the dependence parameter).
Moreover, we study the axiomatic properties of a class of risk measures.

This paper is organized as follows: in Section 2 we consider quite general
spatial risk measures and develop the axiomatic setting of [10]. Section 3 is
devoted to the study of the risk measure with damage function (X − u)+

and Gaussian processes. We propose explicit forms of this risk measure and
derive its behavior. We present in Section 4 a simulation study in order to
evaluate this spatial risk measure. Finally, we compute the risk measure on
the air pollution in Northern Italy model proposed in [3] in Section 5 and
concluding remarks are discussed in Section 6.

2. Spatial risk measures.

Considering a process X we will define a risk measure associated to X
on a region A ⊂ R2 of the space. It will be a non negative quantity which
represents an average damage or cost due to X on A.
Throughout the paper, X is a spatial process: X = (X(s), s ∈ S) with
S ⊂ R2. ‖ ‖ denotes the euclidian norm on R2.

2.1. Normalized loss function. A damage function D represents the re-
lationship between the aggregate losses (e.g economic, health) and the envi-
ronmental (climate) indicator (e.g air pollution, temperature levels), some
economic interpretations may be found in [4].

Definition 1. (Normalized loss function) Consider a damage function
D : Rd → R+. For any set A ∈ B(Rd) the normalized aggregate loss function
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on A is

(2.1) L(A,D) =
1

|A|

∫
A
D(s) ds,

where |A| stands for the volume (or the Lebesgue measure) of A.

The quantity

∫
A
D(s)ds represents the aggregated loss over the region

A. Therefore the function L(A,D) is the proportion of loss on A. In our
context, D will be a function of the process X, denoted DX .

More precisely, we will focus on the excess damage function: let u > 0 be
fixed threshold for s ∈ S,

(2.2) D+
X,u(s) = (X(s)− u)+.

For example, when considering air pollutants (like in [3]), u is a regulatory
level which is determined by experts.

2.2. Spatial risk measures. As already mentioned, in spatial contexts
the spatial dependency is an important characteristic. Considering the risk
measure as the expectation of a normalized loss will not take into account
the spatial dependency, it is nevertheless useful to quantify the magnitude
of risk with respect to different thresholds u.

We shall consider the spatial risk measure composed from two compo-
nents: the expectation and variance of the normalized loss,

R(A,DX) = {E[L(A,DX)],Var
(
L(A,DX)

)
},(2.3)

=: {R0(A,DX),R1(A,DX)}

For stationary processes, the expectation component gives informations on
the severity of the phenomenon, while the variance component is impacted
by the dependence structure.
Let us remark that

(2.4) R1(A,DX) =
1

|A|2

∫
A×A

Cov
(
DX(s),DX(t)

)
dsdt.

2.3. Axiomatic properties of spatial risk measures. In [2],[12],[18] and
others, axioms and the behavior of univariate risk measures are presented,
while [11] provides an axiomatic setting of risk measures in a spatial context.

In this section we will present a set of spatial axiomatic properties describ-
ing the behavior of a real valued spatial risk measure R∗(A,D). Axioms 1.
and 4. below have been introduced in [11], and studied for some max-stable
processes.

Definition 2. Let A ⊂ R2 be a region of the space.

(1) Spatial invariance under translation
Let A+ v ⊂ R2 be the region A translated by a vector v ∈ R2. Then
for v ∈ R2, R∗(A+ v,D) = R∗(A,D).

(2) Spatial anti-monotoncity
Let A1,A2 ⊂ R2, two regions such that |A1| ≤ |A2|, then R∗(A2,D) ≤
R∗(A1,D).
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(3) Spatial sub-additivity
Let A1,A2 ⊂ R2 be two regions disjointed, then R∗(A1 ∪ A2,D) ≤
R∗(A1,D) +R∗(A2,D).

(4) Spatial super sub-additivity
Let A1,A2 ⊂ R2 be two regions disjointed, then R∗(A1 ∪ A2,D) ≤
mini=1,2 [R∗(Ai,D)].

(5) Spatial homogeneity
Let λ > 0 and A ⊂ R2 then R∗(λA,D) = λkR∗(A,D), that is R∗ is
homogenous of order k, where λA is the set {λx, x ∈ A}.

Remark that in [11], the following damage functions are considered for
some max-stable processes: DX(s) = 1{X(s)>u}, DX(s) = X(s)β. The au-
thor proves the invariance by translation in this context, he also proves the
monotonicity and super sub-additivity in the case where A1,A2 are either
disks or squares. We shall prove monotonicity for Gaussian processes and
the damage function DX(s) = D+

X,u(s) = (X(s) − u)+ in the case where

A1,A2 are either disks or squares (see Section 3).

Theorem 2.1. Let X be a stationary process and DX be a positive damage
function of X. The risk measure R1(·,DX) is invariant by translation and
sub-additive.

Proof. The invariance by translation follows directly from the stationarity.
On one other hand, consider A1,A2 ⊂ R2 two disjointed regions.

R1(A1 ∪ A2,DX) = Var
(
L(A1 ∪ A2,DX)

)
=

1

(|A1|+ |A2|)2
[
|A1|2R1(A1,DX) + |A2|2R1(A2,DX)

+ 2Cov

∫
A1

DX(s)ds,

∫
A2

DX(s)ds

 .
≤ 1

(|A1|+ |A2|)2
[
|A1|2R1(A1,DX) + |A2|2R1(A2,DX)

+ 2|A1||A2|
√
R1(A1,DX)

√
R1(A2,DX)

]
by using the Cauchy-Schwarz inequality,

≤ R1(A1,DX) +R1(A2,DX).

So that we have proved the sub-additivity.
�

3. Risk measures for spatial Gaussian processes.

We consider the excess damage function D+
X,u = (X − u)+, and X an

isotropic standard spatial Gaussian process on S ⊂ R2, with auto-correlation
function ρ. Then for the fixed threshold u and A ⊂ S, we have

(3.1) L(A,D+
X,u) =

1

|A|

∫
A

(
X(s)− u

)+
ds,
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and R1(A,D+
X,u) = Var(L(A,D+

X,u)).

In what follows, ϕ is the density of the univariate standard normal dis-
tribution, Φ is the survival function of the standard normal distribution,
`
(
u, v, w

)
is the total probability of a truncated bivariate standard normal

distribution with correlation w, that is

(3.2) `
(
u, v, w

)
=

1

2π(1− w2)1/2

∫ ∞
u

∫ ∞
v

e

{
−1

2(1−w2)
[x2−2wxy+y2]

}
dxdy.

In this Section, we first give explicit forms for the risk measure, then we
will study the behavior of R1(λA,D+

X,u) with respect to λ.

3.1. Explicit forms for R(A,D+
X,u). We are interested in the explicit cal-

culation of the expectation and variance of L(A,D+
X,u).

Proposition 3.1. Consider X := {X(s), s ∈ S} an isotropic standard
Gaussian process with auto-correlation function ρ. Let u ∈ R+ be a fixed
threshold. We have:

(3.3) R0(A,D+
X,u) = ϕ(u)− uΦ(u),

and

(3.4) R1(A,D+
X,u) =

1

|A|2

∫
A×A

G(τs,t, u) dsdt,

with τs,t = ‖s− t‖ and for any h, s ∈ S

(3.5)

G(h, u) :=Cov
(
D+
X,u(s),D+

X,u(s+ h)
)
;

G(h, u) =
(
ρ(h) + u2

)
`
(
u, u, ρ(h)

)
− 2uϕ(u)Φ

(
u(1− ρ(h))

(1− ρ2(h))1/2

)
+
(
1− ρ2(h)

)1/2
ϕ

(
u

(1 + ρ(h))1/2

)2

−
(
ϕ(u)− uΦ(u)

)2
.

Proof. Let X be an isotropic standard Gaussian process and u ∈ R+,

E
[
L(A,D+

X,u)
]

=
1

|A|

∫
A
E
[
(X(s)− u

)+]
ds

=
1

|A|

∫
A

[ ∫ ∞
u

xϕ(x)dx− u
∫ ∞
u

ϕ(x)dx

]
ds

=
1

|A|

∫
A

(ϕ(u)− uΦ(u))ds

=ϕ(u)− uΦ(u).

(3.6)

On one other hand,

Var
(
L(A,D+

X,u)
)

=
1

|A|2

∫
A×A

Cov
(
D+
X,u(s),D+

X,u(t)
)
dsdt.

We calculate Cov
(
D+
X,u(s),D+

X,u(t)
)

by using the results from [17] on mo-
ments m10,m11 of truncated bivariate normal distributions. Let fX1,X2 be
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the density function of the random vector (X1, X2).

E
[
D+
X,u(s)D+

X,u(t)
]

=

∫ ∞
u

∫ ∞
u

(
xy − 2ux+ u2

)
fX(s),X(t)

(
x, y
)
dxdy

=`
(
u, u, ρ(τs,t)

)
m11 − 2u`

(
u, u, ρ(τs,t)

)
m10 + u2`

(
u, u, ρ(τs,t)

)
,

(3.7)

with

`
(
u, v, ρ

)
m10 =

1

2π(1− ρ2)1/2

∫ ∞
u

∫ ∞
v

x exp

{
− 1

2(1− ρ2)
[
x2 + 2ρxy + y2

]}
dxdy,

= ϕ(u)Φ

(
v − ρu

(1− ρ2)1/2

)
+ ρϕ(v)Φ

(
u− ρv

(1− ρ2)1/2

)
;

and

`
(
u, v, ρ

)
m11 =

1

2π(1− ρ2)1/2

∫ ∞
u

∫ ∞
v

xy exp

{
− 1

2(1− ρ2)
[
x2 + 2ρxy + y2

]}
dxdy,

= ρ`
(
u, v, ρ

)
+ ρuϕ(u)Φ

(
v − ρu

(1− ρ2)1/2

)
+ ρvϕ(v)Φ

(
u− ρv

(1− ρ2)1/2

)
+

(1− ρ2)1/2√
2π

ϕ

(
(u2 − 2ρuv + v2)1/2

(1− ρ2)1/2

)
.

For v = u, we have,

`
(
u, u, ρ

)
m10 = (1 + ρ)ϕ(u)Φ

(
u(1− ρ)

(1− ρ2)1/2

)
and

`
(
u, u, ρ

)
m11 = ρ`

(
u, u, ρ

)
+2ρuϕ(u)Φ

(
u(1− ρ)

(1− ρ2)1/2

)
+

(1− ρ2)1/2√
2π

ϕ

(
(2u2(1− ρ))1/2

(1− ρ2)1/2

)
.

Finally we get,

E
[
D+
X,u(s)D+

X,u(t)
]

=
(1− ρ2(τs,t))1/2√

2π
ϕ

(
(2u2(1− ρ(τs,t)))

1/2

(1− ρ2(τs,t))1/2

)
+2uρ(τs,t)ϕ(u)Φ

(
u(1− ρ(τs,t))

(1− ρ2(τs,t))1/2

)
+ρ(τs,t)`

(
u, u, ρ(τs,t)

)
− 2u(1 + ρ(τs,t))ϕ(u)Φ

(
u(1− ρ(τs,t))

(1− ρ2(τs,t))1/2

)
+u2`

(
u, u, ρ(τs,t)

)
=`
(
u, u, ρ(τs,t)

)(
ρ(τs,t) + u2

)
− 2uϕ(u)Φ

(
u(1− ρ(τs,t))

(1− ρ2(τs,t))1/2

)
+
(
1− ρ2(τs,t)

)1/2
ϕ

(
u

(1 + ρ(τs,t))1/2

)2

.

The result follows. �
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Corollary 3.2. Let Y := {Y (s), s ∈ S} be an isotropic Gaussian process

with mean µ and variance σ2. Let X = Y−µ
σ an isotropic and standard

Gaussian process. The spatial risk measure R(A,D+
Y,u) statisfies

(3.8) R(A,D+
Y,u) =

{
σE[L(A,D+

X,u0
)], σ2Var

(
L(A,D+

X,u0
)
)}
,

with u0 = (u− µ)/σ.

Proof. From the definition of D+
Y,u, we have:

E[L(A,D+
Y,u)] =

1

|A|

∫
A
E(Y (s)− u)+ds

=
1

|A|

∫
A
E(µ+ σX(s)− u)+ds

=
σ

|A|

∫
A
E
(
X(s)− (

u− µ
σ

)
)+

ds

=σE[L(A,D+
X,u0

)].

(3.9)

On one other hand,

Var
(
L(A,D+

Y,u)
)

=
1

|A|2

∫
A×A

E
[
D+
Y,u(s)D+

Y,u(t)
]
− E

[
D+
Y,u(s)

]
E
[
D+
Y,u(t)

]
dsdt

=
1

|A|2

∫
A×A

E
[
(Y (s)− u)+(Y (t)− u)+

]
− E

[
(Y (s)− u)+

]
E
[
(Y (t)− u)+

]
dsdt

=
1

|A|2

∫
A×A

σ2E
[
(X(s)− u0)+(X(t)− u0)+

]
− σ2E

[
(X(s)− u0)+

]
E
[
(X(t)− u0)+

]
dsdt

=
σ2

|A|2

∫
A×A

E
[
D+
Xs,u0

(s)D+
Xt,u0

(s)
]
− E

[
D+
Xs,u0

(s)
]
E
[
D+
Xt,u0

(s)
]
ds.dt

Therefore,

(3.10) Var
(
L(A,D+

Y,u)
)

= σ2Var
(
L(A,D+

X,u0
)
)
.

�

Corollary 3.2 implies that without loss generality, we may calculate the
risk measure for an isotropic standard Gaussian process, expressions for
an isotropic non standard Gaussian process will follow. Furthermore from
these results we can see that R0(A,D+

Y,u) does not depend on the region A
but only on the characteristics of the underlying Gaussian process. Then
in the following study of the risk measure we will focus on the component
R1(A,D+

Y,u).
The following Theorem is useful to compute the risk measure because it

reduces to a one dimension integration.

Theorem 3.3. Let X := {X(s), s ∈ S} be an isotropic standard Gauss-
ian process. If the region A is either a disk or a square, the expression
Var
(
L(A,D+

X,u)
)

reduces to a one dimensional integration.
When A is a disk of radius R

(3.11) Var
(
L(A,D+

X,u)
)

=

∫ 2R

h=0
G(h, u)fdisk(h,R)dh,
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where

(3.12) fdisk(h,R) =
2h

R2

(
2

π
arccos

( h
2R

)
− h

πR

√
1− h2

4R2

)
,

and G is defined in Equation (3.5).
When A is a square of side R

(3.13) Var
(
L(A,D+

X,u)
)

=

∫ √2R
h=0

G(h, u)fsquare(h,R)dh,

where, for h ∈ [0, R]

fsquare(h,R) =
2πh

R2
− 8h2

R3
+

2h3

R4

and for h ∈ [R,
√

2R],
(3.14)

fsquare(h,R) =
2h

R2

[
−2−b+3

√
b− 1+

b+ 1√
b− 1

+2arcsin(
2− b
b

)− 4

b
√

1− (2−b)2
b2

]
,

where b = h2

R2 .

Proof. The strategy of proof is the one adopted in [11] for some max-stable
processes.
Let S and T be two independent random variables uniformly distributed on
A. For any function γ defined on R+, we have

E
[
γ(||S − T ||)

]
=

1

|A|2

∫
A×A

γ(||s− t||)dsdt.

Using [15] if A is a square of side R,

(3.15) E
[
γ(||S − T ||)

]
=

∫ √2R
h=0

γ(h)fsquare(h,R)dh,

with fsquare given by Equation (3.14). If A is a disk of radius R then

(3.16) E
[
γ(||S − T ||)

]
=

∫ 2R

h=0
γ(h)fdisk(h,R)dh.

Moreover, by (3.4)

Var
(
L(A,D+

X,u)
)

= E
[
G(||S − T ||, u)

]
.

Using (3.15) and (3.16) with the function γ(h) = G(h, u) we obtain the
result. �

In what follows, we write our results for square regions A, but the results
hold for disks as well.
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3.2. Behavior of R1(λA,D+
X,u) with respect to λ. The following expres-

sion of R1(λA,D+
X,u) is a keystone to understand its behavior.

Lemma 3.4. Let λ ≥ 0 and A be a square of side R, then

(3.17) R1(λA,D+
X,u) =

∫ √2R
h=0

fsquare(h,R)G(λh, u)dh.

Proof. Theorem 3.3 gives:

R1(λA,D+
X,u) = Var

(
L(λA,D+

X,u)
)

=

∫ √2λR
h=0

fsquare(h, λR)G(h, u)dh.

=

∫ √2R
h=0

fsquare(λh, λR)G(λh, u)λdh.

Remark that fsquare(λh, λR) = λ−1fsquare(h,R). Thus,

R1(λA,D+
X,u) =

∫ √2R
h=0

fsquare(h,R)G(λh, u)dh.

The same calculations would give the same result if A is a disk of radius R
(by replacing fsquare by fdisk). �

Lemma 3.4 gives the following two results on the behavior of the mapping
λ 7→ R1(λA,D+

X,u).

Corollary 3.5. Let X be an isotropic standard Gaussian process on S ⊂ R2

with auto-correlation function ρ. Let A ⊂ S be either a disk or a square.
The mapping λ 7→ R1(λA,D+

X,u) is non-increasing if and only if h 7→ ρ(h),
h > 0 is non-increasing and non-negative .

Proof. It suffices to remark that by its definition, for any h > 0, the function
λ 7→ G(λh, u) is non-increasing provided the auto-correlation function is
non-negative and non-increasing. �

Corollary 3.6. Let X := {X(s), s ∈ S} be an isotropic standard Gaussian
process with auto-correlation function satisfying decreasing to 0 as h goes to
infinity. Then, for A either a disk or a square, we have

(3.18) lim
λ→∞

R1(λA,D+
X,u) = 0.

Proof. Let A be a square of side R,

(3.19) R1(λA,D+
X,u) =

∫ √2R
h=0

fsquare(h,R)G(λh, u)dh,

the monotonic convergence theorem gives:

(3.20) lim
λ→∞

R1(λA,D+
X,u) =

∫ √2R
h=0

fsquare(h,R) lim
λ→∞

G(λh, u)dh.

Since ρ(h) goes to 0 as h goes to infinity

lim
λ→∞

G(λh, u) = u2`
(
u, u, 0

)
− u2Φ2

(u)

and the result follows. �
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We finish this section with the remark that Lemma 3.4 implies the anti-
monotonicity for regions A1, A2 which are either a disk or a square.

Property 3.7. Let X := {X(s), s ∈ S} be an isotropic standard Gaussian
process with non-negative and non-increasing auto-correlation function, let
A1, A2 be either squares or disks such that |A1| ≤ |A2| then

R1(λA2,D+
X,u) ≤ R1(λA1,D+

X,u).

Proof. Let us do the proof in the square case. By invariance by translation,
we may assume A1 = λA2 for some λ ≤ 1. Equation (3.17) gives the
result. �

We now perform some simulation study for various shapes of auto-correlation
functions.

4. Simulation study

In this section, we study the behavior of the proposed spatial risk measure
R(A,D+

X,u), through some simulations.

4.1. Analysis of G(h, u) and R1(λA,D+
X,u). We begin this simulation sec-

tion with the study of the covariance damage function G which plays a
central role in the behavior of R(A,D+

X,u). Following [1], we consider five
Gaussian models depending on the choice of the correlation structure, more
precisely,

(1) Spherical correlation function:

ρsphθ (h) =

[
1− 1.5

(
h

θ

)
+ 0.5

(
h

θ

)3]
1{h>θ}.

(2) Cubic correlation function :

ρcubθ (h) =

[
1− 7

(
h

θ

)
+

35

2

(
h

θ

)2

− 7

2

(
h

θ

)5

+
3

5

(
h

θ

)7]
1{h>θ}.

(3) Exponential correlation functions:

ρexpθ (h) = exp
[
− h

θ

]
,

(4) Gaussian correlation functions:

ρgauθ (h) = exp
[
−
(h
θ

)2]
;

(5) Matérn correlation function:

ρmat(h) =
1

Γ(κ)2κ−1
(h/θ)κKκ(h/θ),

where Γ is the gamma function, Kκ is the modified Bessel function of second
kind and order κ > 0, κ is a smoothness parameter and θ is a scaling
parameter.

In order to emphasize the dependence of the damage covariance function
G to the correlation parameter we will denote it by Gθ(h, u) for any triplet
(h, u, θ).
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Figure 1. Behavior of Gθ(h, u) with respect to the thresh-
old u, the correlation length θ and the distance h. Five non-
negative correlation functions (exponential, Gaussian, spher-
ical, cubic and Matérn with κ = 1) have been examined.
The graphs (a), (b) and (c) show the behavior of G·(·, ·) with
respect to: (a) the distance h, when u = Φ−1(0.75) and
θ = 0.50; (b) the correlation length θ, when u = Φ−1(0.75)
and h = 0.30; (c) the threshold u = Φ−1(p), p ∈ [0, 1], when
θ = 0.50 and h = 0.30.

Figure 1.(a) shows the behavior of the spatial covariance between two
damage functions D+

X,u(·) and D+
X,u(· + h) with respect to the distance

h, when the correlation length is set to θ = 0.50 and the threshold to
u = Φ−1(0.75), where Φ−1 is the quantile function of the standard normal
distribution. It shows that Gθ(h, u) tends to 0 as h tends to infinity with
different decreasing speed. This is obviously the expected behavior, be-
cause the process (D+

X,u(s), s ∈ S) is (spatially) asymptotically independent.

Whereas, for spherical and cubic correlation functions, Gθ(h, u) = 0 as soon
as h > θ, which means that the process (D+

X,u(s), s ∈ S) is θ-independent

(independent at distance larger that θ).
In order to study the behavior of the damage covariance function with

respect to θ, we set the threshold u = Φ−1(0.75) and the distance h = 0.30.
In Figure 1.(b) we remark that Gθ(h, u) is increasing with θ.
Finally, we study the behavior of the damage covariance function with re-
spect to the threshold u = Φ−1(p), p ∈ [0, 1]. We set θ = 0.50 and h = 0.30.
Remark (see Figure 1.(c)) that even if h is small, Gθ(h,Φ−1(p)) goes to
zero as p goes to 1, so that it will be difficult to approximate correctly the
covariance damage function when u is large.



12 M. AHMED, V. MAUME-DESCHAMPS, P.RIBEREAU, AND C.VIAL

Figure 2. The behavior of R1(λA,D+
X,u) for A = [0, 1]2.

Exponential, Gaussian, spherical, cubic and Matérn with κ =
1 non-negative correlation functions. The graphs (a), (b) and
(c) show the behavior of R1(λA,D+

X,u) for a fixed h = 0.30

with respect to : (a) λ, when u = Φ−1(0.75) and θ = 0.50; (b)
θ, when u = Φ−1(0.75) and λ = 1; (c) u = Φ−1(p), p ∈ [0, 1],
when λ = 1 and θ = 0.50.

Figure 2. focusses on the behavior of R1(λA,D+
X,u) with respect to

(λ, u, θ), when A is a square of side R = 1. In order to see the influence of
the homothety rate λ, we set u = Φ−1(0.75) and θ = 0.50.

To tackle the behavior with respect to θ we choose λ = 1 and u =
Φ−1(0.75).

To study the behavior of the variance with respect to the threshold u =
Φ−1(p), p ∈ [0, 1], we set λ = 1 and θ = 0.50.

4.2. Numerical computation. We generated isotropic standard spatial
Gaussian processes X on S = R2 with different non-negative correlation
functions (exponential, Gaussian, spherical, cubic and Matérn with κ = 1)
for θ = 0.5. The process X is simulated on a (15 × 15) irregular grid with
n = 125 locations over A = [0, 1]2.We set the threshold u = Φ−1(p), for
p := {0.75, 0.85, 0.95}.

This section is devoted to a numerical study of the computation ofR1(λA,D+
X,u),

where A = [0, 1]2. We compare the computation of R1(λA,D+
X,u) by the one

dimensional integration using (3.4) with the intuitive Monte-Carlo compu-
tation (M1). The (M1) computation is obtained by generating a m = 1000
sample of X on the grid. That is,
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(4.1) Lj(A,D+
X,u) =

1

|A|

[
1

n− 1

]2 n−1∑
i=1

(X(sij)− u)+ j = 1, ...,m.

(4.2) RM1
0 (λA,D+

X,u) =
1

m

m∑
j=1

Lj(A,D+
X,u)

and

(4.3) RM1
1 (λA,D+

X,u) = Var(Lj(A,D+
X,u)).

Boxplots in Figure 3 represent the relative errors over 100 (M1) computa-
tions with respect to the one dimensional integration. Because exponential,

Figure 3. The boxplots represent the relative errors of
R1(λA,D+

X,u) between the one dimensional integration com-
putation and the M1 method for different thresholds u =
Φ−1(p), p := {0.75, 0.85, 0.95} and five correlation functions
(exponential, Gaussian, spherical, cubic and Matérn with
κ = 1) for correlation length θ = 0.5 over A = [0, 1]2.

Gaussian and matern correlation models have relatively simple forms, the
relative errors are expected to be smaller compared to spherical and cubic
ones. For cubic and spherical models, the discontinuity at h = θ induces
more instability in the simulations.
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5. Piemonte case study

We terminate this paper with the computation of the risk measureR1(λA,D+
X,u)

on pollution in Piemonte data. The air pollution is measured by the con-
centration in PM10, particulate matter with an aerodynamic diameter less
than 10µm. The observed values of PM10 are frequently larger than the
legal level fixed by the European directive 2008/50/EC (see [5] for details).
The data has been fitted and analyzed in [3]. The data contains the daily
concentration of PM10 during the winter season 2005-March 2006. The au-
thors considered 24 monitoring stations for estimating the parameters of
this model and 10 stations for validation.

The log of PM10 has been fitted on an isotropic Gaussian process with

Figure 4. [3]. Locations of the 24 PM10 monitoring sites
(red dots) and 10 validation stations (blue squares) in north-
ern Italy between Alps and Appenises (Piemonte region).

Matérn auto-correlation function. In what follows, Y = logPM10. Follow-
ing the parameter estimation (see [3]), we will use κ = 1 and θ = 100.
The estimation of the marginal parameters leads us to use µ = 3.69 and
σ2 = 1.2762.
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We use the above parameters to compute the risk measure(
R0(λA,D+

Y,log u),R1(λA,D+
Y ,log u)

)
,

with A a square of side 10km and u the legal level, i.e. u = 50. We use
Corollary 3.2, let Y0 = Y−µ

σ and u0 = (log(50) − 3.96)/
√

1.2762 = 0.1965,
we have

R0(λA,D+
Y,log u) =

√
1.2762

(
ϕ(0.1965)− 0.1965Φ(0.1965)

)
=0.3483621

and

R1(λA,D+
Y,log u) =1.2762

∫ 14.15

h=0
fs(h, 1)G(h, 0.1956)dh.

=0.4119461.

The random variable L(A,D+
Y,log u) is the average over the square A of the

values of Y that exceed the legal threshold log u. This is a quantity of interest
for health public policies. Our study shows that the standard deviation of
L(A,D+

Y,log u) is large with respect to its expectation. This means that the

dependence structure of the underlying process highly impacts the random
variable L(A,D+

Y,log u).

6. Conclusion

We have proposed a spatial risk measureR(A,D+
X,u). It takes into account

the spatial dependence over a region. We showed that some proposed axioms
are valid for any stationary processes. Properties such as anti-monotonicity
is verified for isotropic Gaussian processes andA a disk or a square (the same
result holds for some max-stable processes, see [11]). A simulation study
emphasized the behavior of the risk measure with respect to the various
parameters. Finally, the computation on pollution data showed the interest
of using the variance of L(A,D+

Y,log u) as a spatial risk measure in concrete
cases.
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[17] S. Rosenbaum, Moments of a truncated bivariate normal distribution, Journal of the
Royal Statistical Society. Series B (Methodological) (1961), 405–408.

[18] A. Tsanakas and E. Desli, Risk measures and theories of choice, British Actuarial
Journal 9 (2003), no. 04, 959–991.
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