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Last minute panic in zero sum games

Stefan Ankirchner ∗ Christophette Blanchet-Scalliet†

Kai Kümmel ‡

December 29, 2017

We set up a game theoretical model to analyze the optimal attacking in-
tensity of sports teams during a game. We suppose that two teams can
dynamically choose among more or less offensive actions and that the scor-
ing probability of each team depends on both teams’ actions. We assume a
zero sum setting and characterize a Nash equilibrium in terms of the unique
solution of an Isaacs equation. We present results from numerical experi-
ments showing that a change in the score has a strong impact on strategies,
but not necessarily on scoring intensities. We give examples where strategies
strongly depend on the score, the scoring intensities not at all.

Introduction

Towards the end of professional sports games one can frequently observe that teams
change their proneness for risk: the team being behind starts playing more offensively,
and the team ahead starts playing more defensively. E.g. if a soccer team is behind by
one goal, then close to the end of the game some of the defenders move to the front and
act as forwards. Conversely, the soccer team that is ahead tends to pull back all players
and to reinforce the defense unit. Similarly, near the end of ice hockey games the loosing
team usually is pulling the goalie, i.e. is removing the goaltender for an extra attacker.

The loosing team often switches to a more offensive strategy even if this increases the
probability of conceding a goal by much more than the probability of scoring a goal.
Such a strategy change seems reasonable, since close to the end of the game the team
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has nothing to loose anymore, while it can gain a lot by equalizing. There is a debate,
however, on when it is optimal for the team behind to start playing more offensively.
Some trainers are reluctant to switch to more offensive strategies, whereas others are
willing to take risks early.

The aim of the present article is to provide a method for determining the optimal
degree of aggressiveness during a game. We strive for this aim by taking into account
that teams can react to the opponent’s strategy changes. E.g. if one team starts playing
more offensively, then the other team can respond by playing more defensively. Moreover,
we allow for smooth transitions between defensive and offensive strategies. The reason
is that in many sports, e.g. soccer, teams can smoothly modify the aggressiveness by
gradually changing the positions of the players.

We set up a game theoretical model (see Section 1), where sports teams can make their
strategies dependent on the score and the remaining time. We model a game, where two
teams can choose among a continuum of actions. The actions determine the intensity
of two stochastic processes counting the goals of each team. For simplicity we restrict
our analysis to zero sum games, i.e. games where the sum of the points assigned to both
teams is constant. A paradigm are playoff elimination games, bringing both teams into
’do-or-die’ situations.

The zero-sum assumption means that for each team the aim of maximizing its own
expected payoff is equivalent to the aim of minimizing the opponent’s expected payoff.
Therefore, in this case a Nash equilibrium can be determined by solving a minimax
problem. We show in Section 2 that, under some general assumptions, the Isaacs equa-
tion associated to the minimax problem has a unique classical solution. A verification
argument then allows to identify the solution with the value function of the minimax
problem. Moreover, a unique pure strategy Nash equilibrium is characterized as the
value function’s saddle point.

In general, the solution of the Isaacs equation is not given in closed form and hence
needs to be approximated numerically. In Section 3 we discuss several numerical methods
for approximating the solution. We provide sufficient conditions for finite difference
schemes and an iterative scheme to converge.

In Section 4 we present results from numerical experiments. Here is a summary of our
main findings:

• As soon as a team falls behind, it is optimal for them to switch to a more offensive
strategy – and this even if the strategy change makes the opponent relatively
stronger (i.e. increases the opponent’s scoring likelihood by more than the own
scoring likelihood). Similarly, as soon as a team gains the lead, it is optimal for
them to play more defensively.

• The closer the end of the game, the bigger the impact of the score on the teams’
strategies. Close to the end, the losing team should play extremely offensively,
whereas the winning team extremely defensively.

• Although a change of the score has a strong impact on strategies, the impact on
the scoring intensities is less pronounced. Indeed, there are situations where the
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teams’ actions change considerably after a goal, but the changes mutually cancel
out the impact on the scoring intensities.

• The lower the overall scoring intensities, the more likely a weaker team can beat
a stronger one.

There are already contributions in the literature proving that it can be indeed optimal
for the loosing team to play more offensively towards the end of the game. A series of
articles provide evidence that it is reasonable for a loosing ice hockey team to pull the
goalie shortly before the end of the game, even if this increases the opponent’s scoring
intensity far more than the own intensity (see e.g. [12], [15] and [4]). Morrison and
Wheat [12] assume that pulling the goalie is irreversible, which allows to determine the
optimal pulling time via a simple one-dimensional optimization. Washburn [15] uses a
dynamic programming approach for determining the optimal time for pulling the goalie.
Beaudoin and Swartz [4] describe a simulation method for characterizing optimal pulling
times. To the best of our knowledge there are no game theoretical models aiming at
analyzing the optimal attacking intensity of sports teams.

In case both teams are equally strong, the loosing team tends to increase the overall
scoring intensities, whereas the winning team tends to decrease them. Strategies that
increase the fluctuations in unfavorable situations and reduce fluctuations in favorable
ones have been shown to be optimal in some control problems without interaction. Mc-
Namara [11] considers a control problem, where the volatility of a Brownian martingale
can be chosen to take any value between σ1 and σ2, with 0 < σ1 < σ2. He characterizes
the reward functions for which it is optimal to choose the minimal volatility when the
martingale is above zero, and the maximal volatility when it is below zero. In [1] the
authors consider an exponential martingale model in which a bang-bang diffusion control
is optimal.

The numerical methods presented in Section 3 are similar to approximation methods
that have been developped already for other types of differential games. The articles
of Part I in [3] provide an overview on numerical approximation methods for determin-
istic differential games. See also [6] or [7] for an overview on numerical methods for
pursuit-evasion games. The Isaacs equation associated to a zero-sum differential game
with continuous state dynamics can be approximated with a Semi-Lagrangian scheme.
Alternatively, if the value function can be identified with a fixed point of a contracting
mapping, then one can construct an approximing sequence by iteratively applying the
mapping. In Section 3 we apply both approximation ideas to the Isaacs equation of the
stochastic game introduced in the present article. In constrast to the models considered
in [3] and [6, 7], in our model the state process is a two-dimensional Poisson process
taking values in Z2, and hence no discretization of the state space is needed.

1. The model

We model the score of a sports game with two point processes counting the goals/points
scored by the own and the opposing team, respectively. The intensity of the point
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processes will depend on the strategies chosen by both teams. We suppose that at any
time between 0 (the beginning of the game) and T ∈ R>0 (the end) both teams can
choose an action determining the strategy. We model the set of actions of the own team
and opposing team as bounded intervals A and B in R respectively.

The family of control functions of the own team is denoted by A and consists of all
functions α : [0, T ] × Z → A such that for each k ∈ Z the path t 7→ α(t, k) is càdlàg.
Similarly, a control of the opposing team is a càdlàg function β : [0, T ]×Z→ B, and we
denote the set of all opposing team controls by B. For i = 1, 2 let λi : A× B → R≥0 be
measurable mappings. We interpret λ1(a, b) as the intensity with which the own team
scores a goal, given that both teams choose the actions a and b respectively. Similarly,
λ2(a, b) stands for the opposing team’s goal scoring intensity. In order to apply a minimax
theorem we make the following assumption:

Hypothesis (Λ). For each fixed b ∈ B the mappings

a 7→ λ1(a, b) and a 7→ −λ2(a, b) are quasi-concave and upper semi-continuous

and for each fixed a ∈ A the mappings

b 7→ λ1(a, b) and b 7→ −λ2(a, b) are quasi-convex and lower-semicontinuous.

Notice that Hypothesis (Λ) is satisfied if λ1 and −λ2 are concave in a and convex in b.
This special case means that the marginal scoring benefit from playing more offensively
is decreasing. The marginal benefit to the opponent, however, is increasing.

We model the goal counting processes as point processes with stochastic intensity.
We recall the precise definition of such processes before proceeding with the model
description. Throughout we are assuming that (Ω,F , P ) is a probability space rich
enough for carrying the probabilistic objects considered.

Definition 1.1 (cf. with [5]). Let (Nt)t∈[0,T ] be an non-decreasing, right-continuous
process with values in the set of non-negative integers such that N0 = 0 and ∆Nt =
Nt−Nt− ∈ {0, 1} for all t ∈ (0, T ]. Let (Ft)t∈[0,T ] be a filtration such that N is adapted to
(Ft). Let (λt)t∈[0,T ] be a (Ft)–progressively measurable, non-negative process satisfying∫ t

0

λs ds <∞, P− a.s. (1)

for each t ∈ [0, T ]. The process (Nt) is said to be a point process with (Ft)–intensity λ
if

Nt −
∫ t

0

λs ds is a local martingale on [0, T ]. (2)

Notice that (2) is equivalent to requiring that for all non–negative, (Ft)–predictable
processes (ϕt)t∈[0,T ] we have

E
[ ∫ T

0

ϕs dNs

]
= E

[ ∫ T

0

ϕsλs ds

]
. (3)
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We now proceed by describing the model. We assume that there exists a single filtra-
tion (Ft)t∈[0,T ] such that for every α ∈ A and β ∈ B there exist point processes N

λ1(α,β)
t

and M
λ2(α,β)
t with (Ft)-intensity λ1

(
α(t,Kα,β

t ), β(t,Kα,β
t )
)

and λ2

(
α(t,Kα,β

t ), β(t,Kα,β
t )
)

respectively, where

Kα,β
t = N

λ1(α,β)
t −Mλ2(α,β)

t

denotes the score difference at time t. For an explicit construction of the filtration and
the processes we refer to the appendix.

We model the reward with a bounded and non-decreasing function R : Z → R. We
assume that there exists a constant c such that

R(−k) = c−R(k) for all k ∈ Z. (4)

Such reward functions describe the situation of zero sum games, when the total amount
of points assigned at the end of the game is constant. A particular choice representing
elimination games is

R(k) :=


2, if k ≥ 1

1, if k = 0

0, if k ≤ −1.

(5)

If R(k) = 2, then the own team enters the next round and if R(k) = 0, then it is
eliminated. R(k) = 1 means that the game has to be extended until a winner has been
determined.

For every (t, k) ∈ [0, T ]× Z and control pair (α, β) ∈ A× B the expected gain of the
own team is given by

J(t, k, α, β) = E
[
R
(
Kt,k,α,β
T

)]
,

and the expected gain of the opposing team by

I(t, k, α, β) = E
[
R
(
−Kt,k,α,β

T

)]
,

where Kα,β,k,t
T := k +N

λ1(α,β)
T −Nλ1(α,β)

t −Mλ2(α,β)
T +M

λ2(α,β)
t .

The zero sum assumption (4) implies that I(t, k, α, β) = c − J(t, k, α, β) and hence
maximizing I is equivalent to minimizing J .

In the next section we show, under Hypothesis (Λ), that there exists a pair (α∗, β∗) ∈
A× B that is a saddle point for J , i.e. it satisfies

J(t, k, α∗, β∗) = min
β∈B

J(t, k, α∗, β) = max
α∈A

J(t, k, α, β∗).

In particular, this implies that (α∗, β∗) is a pure strategy Nash equilibrium.
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For the proof we introduce the minimax and maximin value function for the own team,
namely

V+(t, k) = inf
β∈B

sup
α∈A

J(t, k, α, β) and

V−(t, k) = sup
α∈A

inf
β∈B

J(t, k, α, β).

Notice that both satisfy the terminal condition

V±(T, k) = R(k). (6)

In the next section we show that V+ = V− and that there exists a saddle point. We refer
to the function V = V+ = V− as the value of the game.

2. The value function is a solution of the Isaacs
equations

For every (t, k, a, b) ∈ [0, T ]× Z× A×B and function v : [0, T ]× Z→ R we define

G(t, k, a, b, v) =
{
λ1(a, b)

(
v(t, k + 1)− v(t, k)

)
+ λ2(a, b)

(
v(t, k − 1)− v(t, k)

)}
. (7)

Recall that the Isaacs equation associated to the minimax value function V+ is given by

−wt(t, k) = min
b∈B

max
a∈A

G(t, k, a, b, w), (8)

for (t, k) ∈ [0, T ] × Z. A natural choice of the solution space for the Isaacs equation is
C1
(
[0, T ], l∞

)
, the space of continuously differentiable functions on [0, T ] taking values

in l∞, the space of bounded integer-indexed sequences.
By interchanging the min and max in (8) we obtain the Isaacs equation for the maximin

value function V−. We show in this section, by using Banach’s fixed point theorem,
that both Isaacs equations have a unique solution satisfying the terminal condition (6).
Hypothesis (Λ) guarantees that a minimax theorem applies and both solutions coincide.
By using a verification we can thus identify the solution with both value functions V+

and V−. The following theorem summarizes the main results.

Theorem 2.1. There exists a unique solution w ∈ C1
(
[0, T ], l∞

)
of (8) with terminal

condition R, and w = V+ = V−. Moreover, a saddle point (and hence Nash equilibrium)
is given by

β∗(t, k) ∈ argminb∈B G(t, k, α̂(t, k, b), w) (9)

α∗(t, k) = α̂(t, k, β∗(t, k)), (10)

where α̂(t, k, b) ∈ argmaxa∈AG(t, k, a, b, w).
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We first show that Equation (8) has a solution. To this end let X := Cb
(
[0, T ], l∞

)
be

the space of continuous and bounded functions on [0, T ] with values in l∞. We apply
Banach’s fixed point theorem on the space X with the mapping

Φ: X → X ; v 7→
(

(t, k) 7→ R(k)−
∫ T

t

H(s, k, v) ds

)
, (11)

where H : [0, T ]× Z×X → R is given by

H(t, k, v) := min
b∈B

max
a∈A

G(t, k, a, b, v).

Lemma 2.2. For each fixed (t, k) ∈ [0, T ] × Z the mapping v 7→ H(t, k, v) is Lipschitz
continuous with Lipschitz constant L := 2 max

{
λ1(a, b) + λ2(a, b) : a ∈ A, b ∈ B

}
.

Proof. Let v1, v2 ∈ X . We can assume H(t, k, v1) > H(t, k, v2) (else interchange v1 and
v2). By definition of H we obtain∣∣H(t, k, v1)−H(t, k, v2)

∣∣ = H(t, k, v1)−H(t, k, v2)

= min
b1∈B

max
a1∈A

{
λ1(a1, b1)

(
v1(t, k + 1)− v1(t, k)

)
+ λ2(a1, b1)

(
v1(t, k − 1)− v1(t, k)

)}
− min

b2∈B
max
a2∈A

{
λ1(a2, b2)

(
v2(t, k + 1)− v2(t, k)

)
+ λ2(a2, b2)

(
v2(t, k − 1)− v2(t, k)

)}
≤ max

b2∈B

{
max
a1∈A

{
λ1(a1, b2)

(
v1(t, k + 1)− v1(t, k)

)
+ λ2(a1, b2)

(
v1(t, k − 1)− v1(t, k)

)}
−max

a2∈A

{
λ1(a2, b2)

(
v2(t, k + 1)− v2(t, k)

)
+ λ2(a2, b2)

(
v2(t, k − 1)− v2(t, k)

)}}
≤ 2 max

b∈B
max
a∈A

{
λ1(a, b) + λ2(a, b)

}∥∥v1 − v2

∥∥
∞. (12)

Lemma 2.3. There exists a unique solution of Equation (8) with terminal condition R.

Proof. We separate the proof in two steps. First we define a suitable Banach space. Then
we show that the mapping Φ is a contraction, which entails existence and uniqueness.

Step 1. The space Cb
(
[0, T ], l∞

)
endowed with the norm ‖ · ‖∞,L given by

‖v‖∞,L := sup
k∈Z

sup
t∈[0,T ]

{
e−2L(T−t)∣∣v(t, k)

∣∣}
is a Banach space.

Indeed, both l∞ and Cb = Cb
(
[0, T ],R

)
endowed with the standard norms are Banach

spaces. We can ignore the bounded weight. Now let
(
vn
)
n∈N be a Cauchy sequence in

X , i.e. for each ε > 0 there is a N(ε) such that

sup
k∈Z

sup
t∈[0,T ]

∣∣vm(t, k)− vn(t, k)
∣∣ < ε
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for each n,m > N(ε). In particular,
∥∥vm(·, k) − vn(·, k)

∥∥
∞ < ε for each k ∈ Z and

n,m > N(ε). Since Cb is a Banach space, there is a v(·, k) for each k ∈ Z, such
that vn(·, k) → v(·, k) in Cb uniformly in k (since N(ε) does not depend on k). Since
vn(·, k)→ v(·, k) in Cb uniformly, we obtain

sup
k∈Z

sup
t∈[0,T ]

∣∣vn(t, k)− v(t, k)
∣∣ = sup

t∈[0,T ]

sup
k∈Z

∣∣vn(t, k)− v(t, k)
∣∣→ 0 as n→∞,

and obviously, v ∈ X and the first part is done.

Step 2. Thanks to Lemma 2.2 we can conclude

∥∥Φ(v1)− Φ(v2)
∥∥
∞,L ≤ sup

k∈Z
sup
t∈[0,T ]

e−2L(T−t)
∫ T

t

∣∣H(s, k, v1)−H(s, k, v2)
∣∣ ds

≤
∥∥v1 − v2

∥∥
∞,L sup

t∈[0,T ]

e−2L(T−t)
∫ T

t

Le2L(T−s) ds

=
∥∥v1 − v2

∥∥
∞,L sup

t∈[0,T ]

1

2

(
1− e−2L(T−t)) ≤ 1

2

∥∥v1 − v2

∥∥
∞,L.

According to Banach’s fixed point theorem, there is a unique fixed point w ∈ Cb
(
[0, T ], l∞

)
satisfying

w = Φ
(
w
)
,

i.e. w satifies the Isaacs Equation (8) for each (t, k) ∈ [0, T ]×Z with terminal condition
V (T, k) = R(k) for each k ∈ Z. Moreover, the fact that w is a fixed point of Φ entails
w ∈ C1([0, T ], l∞).

We now verify that w coincides with V+.

Lemma 2.4. The solution w of (8) coincides with the value function, i.e. w = V+.

Proof. Note that for any pair (α, β) ∈ A× B we have, with Ito’s formula,

w
(
T,Kα,β,t,k

T

)
= w

(
t,Kα,β,t,k

t

)
+

∫ T

t

wt
(
s,Kα,β,t,k

)
ds

+
∑
t<s≤T

{[
w
(
s,Kα,β,t,k

s− + 1
)
− w

(
s,Kα,β,t,k

s−
)]

∆Ns

+
[
w
(
s,Kα,β,t,k

s− − 1
)
− w

(
s,Kα,β,t,k

s−
)]

∆Ms

}
.

Hence we obtain

E
[
R
(
Kα,β,t,k
T

)]
= w(t, k) + E

∫ T

t

(
wt
(
s,Kα,β,t,k

s−
)

+G(s,Kα,β,t,k
s− , α, β, w)

)
ds. (13)
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We now show that w ≤ V+. To this end fix β ∈ B and define

α∗β(t, k) ∈ argmax
a∈A

G(t, k, a, β(t, k), w).

Since A is compact and t→ G(t, k, a, β(t, k), w) is cadlag, we can assume α∗ ∈ A. Notice
that 0 ≤ wt(t, k) + maxa∈AG(t, k, a, β(t, k), w) = wt(t, k) + G(t, k, α∗β(t, k), β(t, k), w).
Together with Equation (13) this entails

w(t, k) ≤ E
(
R
(
K
α∗β ,β,t,k

T

))
≤ max

α∈A
E
(
R
(
Kα,β,t,k
T

)
.

)
Since β is arbitrary, this further implies w(t, k) ≤ V+(t, k).

We proceed by showing that w ≥ V+. Fix α ∈ A and define

β∗α(t, k) ∈ argmin
b∈B

G(t, k, α(t, k), b, w).

As for α∗, we can assume that β∗ ∈ B. Observe that

0 ≥ wt(t, k) + min
b∈B

G(t, k, α(t, k), b, w) = wt(t, k) +G(t, k, α(t, k), β∗α(t, k), w),

and hence, with Equation (13),

w(t, k) ≥ E
(
R
(
K
α,β∗α,t,k
T

))
.

Since α is arbitrarily chosen, we get

w(t, k) ≥ max
α∈A

E
(
R
(
K
α,β∗α,t,k
T

))
≥ min

β∈B
max
α∈A

E
(
R
(
Kα,β,t,k
T

))
= V+(t, k).

End of the proof of Theorem 2.1. So far we have shown that w = V+. Similar argu-
ments show that there exists a unique solution u of the Equation (8) with min and max
interchanged, and that u = V−.

Observe that V+(t, k) ≤ V+(t, k+1) for each t ∈ [0, T ] and k ∈ Z (by the monotonicity
assumption on R and definition of V+). Therefore, w is non-decreasing in k. Hypothesis
(Λ) entails that we can apply Sion’s minimax theorem (see [14] and Section 7.1.9 in [2])
to conclude that

max
a∈A

min
b∈B

G(t, k, a, b, w) = min
b∈B

max
a∈A

G(t, k, a, b, w).

This further implies that w = u, and hence V+ = V−.
The calculations in the proof of Lemma 2.4 show that the strategies (9) and (10) form

a saddle point.
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3. Numerical Approximation of the Isaacs equation

In general, we do not have a closed form representation of the solution of the Isaacs
Equation (8). In this section we discuss three numerical methods for approximating the
solution of (8).

3.1. Explicit finite difference scheme

One can numerically approximate the solution of the Isaacs Equation (8) by using a
finite difference scheme. Let N ∈ N, ∆t = T

N
and tj = j∆t for j ∈ {0, . . . , N}.

As the Equation (8) is defined on Z, we need to introduce some artificial boundaries.
For C ∈ N let Ṽ C be the solution of the following scheme with Dirichlet boundary
conditions:
Ṽ C(tn−1, k) = Ṽ C(tn, k) + ∆tH(tn, k, Ṽ

C), for 0 ≤ n ≤ N − 1, k = −C + 1, . . . ,C− 1

Ṽ C(tn,C) = R(C), Ṽ C(tn,−C) = R(−C), for 0 ≤ n ≤ N − 1,

Ṽ C(T, k) = R(k), for k = −C, . . . ,C.

(14)
We next show that Ṽ C converges to the value function as N and C→∞. The proof is
divided into two step. First, we introduce Dirichlet boundary conditions in the Isaacs
equation which allows to reduce the state space to a finite space (see Subsection 3.1.1).
In a second step we prove convergence of the time discretization (see Subsection 3.1.2).

3.1.1. Localization

To reduce the state space, we choose homogeneous Dirichlet boundary conditions. These
conditions are convenient as they still allow for a probabilistic interpretation of the Isaacs
equation. Indeed, to prove convergence as C→∞, we use a method introduced in Jaillet
et al. [10] and Zhang [17] for American options.
We define τC = inf{s ∈ [t, T ], |Kα,β

s | ≥ C} and

V̄ C(t, k) = sup
α

inf
β
E
[
R
(
Kt,k,α,β
T∧τC

)]
. (15)

The following proposition says that V̄ C converges to V as C →∞. Moreover, the proof
reveals that the rate of convergence is exponential.

Proposition 3.1. Let C ∈ N. Then V̄ C is the unique C1 solution of
−V̄ C

t (t, k) = H(t, k, V̄ C), for k = −C + 1, . . . ,C− 1,

V̄ C(t,C) = R(C), V̄ C(t,−C) = R(−C), for t ∈ [0, T ],

V̄ C(T, k) = R(k), for k = −C, . . . ,C.

(16)

Moreover, we have limC→+∞ supt∈[0,T ] supk∈[−C,C]

∣∣V̄ C − V
∣∣ = 0.

Before we prove the previous proposition, we introduce an auxiliary lemma.
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Lemma 3.2. There exists a constant D, independent of C, such that for a ∈ A and
b ∈ B

P

(
N
λ1(a,b)
T −Nλ1(a,b)

t >
C

2

)
≤ De−C/2

and

P

(
M

λ2(a,b)
T −Mλ2(a,b)

t >
C

2

)
≤ De−C/2.

Proof. Note that

P

(
N
λ1(a,b)
T −Nλ1(a,b)

t >
C

2

)
≤ e−C/2E

(
eN

λ1(a,b)
T −Nλ1(a,b)

t

)
(17)

≤ e−C/2E
(
eN

λ1(a,b)
T

)
. (18)

Note that λ1 is bounded, say by λ̄. Thus we get E
(
eN

λ1(a,b)
T

)
≤ e−λ̄(1−e).

Proof of Proposition 3.1. Adapting the proof of Proposition 2.3 and Theorem 2.4, we
obtain the first assertion.

To prove the second assertion, note that if M > 0 is an upper bound for the reward
function R, then

|V (t, k)− V̄ C(t, k)| ≤M sup
α,β

P

(
sup
t≤s≤T

|Kk,t,α,β
s | ≥ C

)
. (19)

Using the explicit form of K, we get

P

(
sup
t≤s≤T

|Kk,t,α,β
s | ≥ C

)
≤ P

(
N
λ1(α,β)
T −Nλ1(α,β)

t ≥ C

2

)
(20)

+ P

(
M

λ2(α,β)
T −Mλ2(α,β)

t ≥ C

2

)
. (21)

Lemma 3.2 leads to limC→+∞ supt∈[0,T ] supk∈[−C,C]

∣∣V̄ C − V
∣∣ = 0.

3.1.2. Convergence of the time discretization

The second step is to prove that the numerical approximation converges to the Isaacs
solution on the compact set [−C,C] as the time discretization goes to zero.

Theorem 3.3. We have

lim
N→+∞

sup
k∈[−C,C]

sup
n∈[0,N ]

|V̄ C(tn, k)− Ṽ C(tn, k)| = 0.

11



Proof. We adapt the standard proof of finite difference schemes for ODE (see e.g. [13]).

Stability : The numerical scheme is stable in the following sense: if y and ỹ solve

ỹ(tn−1, k) = ỹ(tn, k) + ∆tH(tn, k, ỹ)

y(tn−1, k) = y(tn, k) + ∆tH(tn, k, y) + εn(k)
(22)

with the boundary conditons ỹ(·,C) = y(·,C) = R(C) and ỹ(·,−K) = y(·,−K) =
R(−K), then

max
n∈[0,N ]

max
k∈[−C,C]

|ỹ(tn, k)− y(tn, k)| ≤ eLT

(
max

k∈[−C,C]
|ỹ(tN , k)− y(tN , k)|+

N∑
i=0

max
k∈[−C,C]

|εn(k)|

)
,

(23)

where L is the Lipschitz constant of H (sometimes this property is referred as zero-
stablility, see [8]). Indeed, one has

|ỹ(tn−1, k)− y(tn−1, k)| = |ỹ(tn, k)− y(tn, k) + ∆t [H(tn, k, ỹ)−H(tn, k, y)]− εn(k)|
≤ (1 + ∆tL) max

k∈[−K,K]
|ỹ(tn, k)− y(tn, k)|+ max

k∈[−C,C]
|εn(k)|. (24)

It follows that

max
k∈[−C,C]

|ỹ(tn−1, k)− y(tn−1, k)| ≤ (1 + ∆tL) max
k∈[−C,C]

|ỹ(tn, k)− y(tn, k)|+ max
k∈[−C,C]

|εn(k)|

(25)

Applying the discrete Gronwall Lemma to Equation (25), we obtain Equation (23).

Consistency : For every k ∈ [−C,C] we define the consistency error

en(k) = V̄ C(tn−1, k)− V̄ C(tn, k)−∆tH(tn, k, V̄
C).

For all k ∈ [−C,C], the function V̄ C(·, k) is in C1; therefore for each ε > 0 there exists
N0 such that for each N > N0

|V̄ C(s, k)− V̄ C(tn, k)| ≤ ε, (26)

for all n, k ∈ [−C,C] and s ∈ [tn−1, tn]. Moreover, for fixed n and k, there exists
s ∈ [tn−1, tn] such that

|en(k)| = ∆t

∣∣∣∣− ∂

∂t
V̄ C(s, k)−H(tn, k, V̄

C)

∣∣∣∣
≤ ∆t|H(s, k, V̄ C)−H(tn, k, V̄

C)|
≤ ∆tLε.

The first inequality is obtained by using that V̄ C is the solution of the Isaacs equation.
The second inequality follows similar to the proof of Lemma 2.2 and Equation (26).

12



Hence, taking the supremum in k, this entails

max
k∈[−C,C]

|en(k)| ≤ 2∆tmax
b∈B

max
a∈A
{λ1(a, b) + λ2(a, b)}ε, (27)

and we obtain
∑N−1

i=0 maxk∈[−C,C] |en(k)| ≤ TLε. Since this holds true for each ε > 0 we

get limN→+∞
∑N−1

i=0 maxk∈[−C,C] |en(k)| = 0 and the numerical scheme is consistent with
order 1.

Now the rest of the proof is standard. The stability and consistency imply the con-
vergence of the scheme.

Remark 3.4. In the numerical experiments (see Section 4) we make the technical as-
sumption that ∆t = T

n
satisfies 1−∆tmax{λ1(a, b) + λ2(a, b) : a ∈ A, b ∈ B} > 0. This

guarantees that the approximating solution is positive for all t.

3.2. Implicit finite difference scheme

Similar to the explicit scheme we fix a localization parameter C ∈ N, the number of time
steps N ∈ N and set tj = j∆t with ∆t = T

N
, for j ∈ {0, . . . , N}. Replacing the time

derivative with a forward difference quotient we obtain
Ṽ C(tn−1, k) = Ṽ C(tn, k) + ∆tH(tn−1, k, Ṽ

C), for 0 ≤ n ≤ N − 1, k = −C + 1, . . . ,C− 1

Ṽ C(tn,C) = R(C), Ṽ C(tn,−K) = R(−K), for 0 ≤ n ≤ N − 1,

Ṽ C(T, k) = R(k), for k = −C, . . . ,C.

(28)
Again one can prove convergence for the implicit scheme by showing stability and consis-
tency. In contrast to the explicit scheme, we need the additional assumption 1−∆tL > 0
to ensure stability of the implicit scheme.

In the following we provide just the stability and consistency for the implicit scheme.
To prove convergence we refer to the proof of Theorem 3.3.

Similar to Inequality (24) we have∣∣∣ỹ(tn−1, k)− y(tn−1, k)
∣∣∣ ≤ ∣∣∣ỹ(tn, k)− y(tn, k) + ∆t

[
H(tn−1, k, ỹ)−H(tn−1, k, y)

]
− εn(k)

∣∣∣,
where y and ỹ are given by

ỹ(tn−1, k) = ỹ(tn, k) + ∆tH(tn−1, k, ỹ)

y(tn−1, k) = y(tn, k) + ∆tH(tn−1, k, y) + εn(k).
(29)

This entails

max
k

∣∣∣ỹ(tn−1, k)− y(tn−1, k)
∣∣∣ ≤ 1

1−∆tL

(
max
k

∣∣ỹ(tn, k)− y(tn, k)
∣∣+ max

k

∣∣εn(k)
∣∣) .

With the discrete Gronwall lemma we obtain

max
k

∣∣∣ỹ(tn−1, k)− y(tn−1, k)
∣∣∣ ≤ eTL max

k

∣∣ỹ(tn, k)− y(tn, k)
∣∣+

1

L

(
eLT − 1

) N∑
i=0

max
k

∣∣εn(k)
∣∣

13



and hence the stability is verified.
The consistency proof of the explicit scheme can be transferred, without further

changes, to prove consistency of the implicit scheme since we are still working on the
subintervals [tn−1, tn]. Hence we obtain convergence of the implicit scheme exactly the
same way we do for the explicit scheme.

3.3. Iterative scheme

Recall that in Section 2 we prove existence and uniqueness of the Isaacs equation with
the help of Banach’s fixed point theorem. There is a natural approximation scheme
connected to this approach. We approximate the fixed point operator Φ: X → X with
a sequence (ΦN) of operators ΦN : X → X , such that all ΦN are contractions and the
corresponding fixed points wN , with wN = ΦN(wN), converge to the fixed point w of Φ.
It is well-known (cf. [16]) that the following two properties are sufficient for the converge
of wN to w:

(i) the contraction constants are uniformly bounded by a constant less than 1;

(ii) for each x ∈ X we have limN→∞ΦN(x) = Φ(x).

Let N ∈ N and ∆t = T
N

. Set tk = k ·∆t for k = 1, . . . , N . We define the operator ΦN by

ΦN : X → X ; v 7→

{(
(t, k) 7→ R(k)−

∑N−1
i=j H(ti, k, v)∆t

)
, if t = tj < tN ,

linear, on
[
tj, tj+1

]
,

(30)

with boundary condition (T, k) 7→ R(k). One can prove that ΦN is a contraction with
the same contraction constant as Φ. Hence the conditions (i) and (ii) are satisfied and
we obtain convergence wN → w as N →∞.

In order to study the rate of convergence we separate two types of approximation
errors. First we get an error by using ΦN instead of Φ (which solely depends on N), and
an error made by the approximation of wN by iterating ΦN over and over again (which
solely depend on the number of iterations). Indeed, let vNm be the approximation for
given N ∈ N after m iterations and vN∞ = vN the exact fixed point of ΦN , then∥∥vNm − w∥∥∞ ≤ ∥∥vNm − vN∞∥∥∞ +

∥∥vN∞ − w∥∥∞.
Thanks to Banach’s fixed point theorem the first term converges exponentially fast.
Moreover, a straightforward estimation entails that the second term converges with rate
1/N, which gives in the end a rate of convergence of O(1/N).

4. Numerical experiments

In this last section we present results from various numerical examples and experiments.
Throughout we choose A = B = [0, 1] and assume that the reward function R is given

14



by (5). For approximating the Isaacs Equation (8) and the optimal strategies (α∗, β∗)
we use the explicit finite difference scheme (see Subsection 3.1). The explicit scheme
does not require any assumption on the time step to ensure the stability (contrary to
the implicit scheme). For all experiments we choose T = 1, N = 90 and C = 10.
Moreover, we discretize the strategy spaces A = B = [0, 1] into the subset {m · 0.01|m ∈
{0, 1, . . . , 100}}.

In some examples and experiments we assume that the intensity functions λi are
differentiable and additively decomposable into λ1(a, b) = f1(a)+g1(b) and λ2 = g2(a)+
f2(b), where fi is concave and gi convex for i ∈ {1, 2}. In this case the Nash equilibrium
can be determined by solving the equations

∂G

∂a
= f ′1(a)∆(k + 1, t)− g′2(a)∆(k, t) = 0, (31)

∂G

∂b
= g′1(b)∆(k + 1, t)− f ′2(b)∆(k, t) = 0, (32)

where ∆(k, t) = V (k, t)− V (k − 1, t). Notice that α∗ depends on β∗ implicitly, because
∆(k, t) depends on both strategies.

4.1. Do or die

To illustrate the impact of the score on the optimal strategies we consider two examples.
The first example is additive with λ1(a, b) = λ2(a, b) = f(a) + g(b), where

f(x) = 1− (1− x)2(1−
√
x) and g(x) = 1− f(1− x), x ∈ [0, 1]. (33)

Notice that f is concave and g is convex. Moreover, f ′(0) = g′(1) = ∞ and f ′(1) =
g′(0) = 0. The own team does not choose the strategy 0, because in 0 the marginal
increase of the opponent’s goal intensity is zero, whereas the marginal increase of the
own intensity is infinite. Similarly, the own team does not choose the strategy 1, because
in 1 the marginal increase of the opponent’s intensity is infinite, whereas the marginal
increase of the own intensity is zero.

In this example both teams are equally strong. Therefore, whenever the game is
tied, both teams choose the same action and score a goal with the same intensity. The
strategies change significantly after a goal. Figure 1 shows the graph of α∗t and β∗t as a
function of time, conditional to the own team being behind by one goal, i.e. Kt = −1.
The figure reveals that it is optimal for the winning team to switch to a more defensive
strategy and for the losing team to a more offensive one.

The effect of the score on the strategies is already significant at the beginning of a
game. The effect becomes the larger, the closer the end of the game. If there is no tie,
then towards the end of the game the winning team starts playing extremely defensively
and the losing team extremely offensively. In Figure 1, α∗t converges to 1, the most
offensive action, and β∗t converges to 0, the most defensive action, as time approaches
the end of the game. Any spectator seeing both teams choosing extreme actions towards
the end may have the impression of a last minute panic among the players.
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We now turn to a second example, with multiplicatively decomposable intensity func-
tions. More precisely, we consider λ1(a, b) = λ2(b, a) = (1 + f(a)) · (1 + g(b)), where
f and g are again defined as in (33). As in the first example, both teams are equally
strong and a change in the score has a strong impact on the strategies. Figure 2 depicts
the graph of α∗ and β∗, conditional to Kt = −1.

Both examples reveal that the winning team strives to reduce the scoring intensities
whereas the loosing team aims at increasing them. Since both effects cancel out, we
expect to observe a smaller impact of the score on the scoring intensities than on the
actions. Indeed, as shown in the next subsection, there are situations where the effects
cancel out fully and the scoring intensities are the same for any score and at any time.

The aggregate scoring intensity, i.e. the intensity of any goal scored by the own team
or the opponent, is given by λ1 + λ2. The part of the aggregate intensity allotted to the
own team and the opponent is given by the ratios λ1

λ1+λ2
and λ2

λ1+λ2
, respectively.

The losing team aims at increasing the scoring intensities. To this end it is willing to
concede a part of the scoring ratio to the opponent. Similarly, the winning team aims
at decreasing the scoring intensities and, for this purpose, is willing to concede a part
of the scoring ratio. Whether in an equilibrium the winning team or the losing team
concedes more, depends on which team has a stronger impact on the scoring intensities.

To illustrate this, consider a situation where only the own team can change its strategy,
while the opponent always has to stick to the same action. In others words, the intensities
λ1 and λ2 depend on a but not on b. As soon as the own team falls behind, it switches to
a more offensive strategy. By doing so it increases its own scoring intensity by a smaller
factor than the opponent’s intensity. Thus, the ratio λ1

λ1+λ2
decreases. Conversely, as

soon as the own team takes the lead, it starts playing more defensively. It thus reduces
the own scoring intensity by a larger factor than the opponent’s intensity. Again, the
ratio λ1

λ1+λ2
decreases. This exemplifies that in any case a team is willing to accept a

relative increase of the opponent’s scoring intensity in order to maximize its expected
gain. The willingness remains also in a game with interaction, even though it may not
be observed in the actual equilibrium.

4.2. When goals don’t reveal the strategies

Suppose that the intensity functions of both teams are given by λ1(a, b) = λ2(b, a) =
f(a) + g(b), where the functions f and g are strictly concave and convex, respectively,
and satisfy g(x) = 1 − f(1 − x),∀x ∈ [0, 1]. Notice that in this case both teams are
equally strong and we have g′(a) = f ′(1−a) for all a ∈ [0, 1]. The following result shows
that in this case the scoring intensities do neither depend on time nor on the score.

Proposition 4.1. The unique Nash equilibrium (α∗, β∗) satisfies α∗(t, k) = 1− β∗(t, k)
and λi(α

∗(t, k), β∗(t, k)) is constant equal to one for all i = 1, 2 and (t, k) ∈ [0, T ]× Z.
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Figure 2: graph of α∗ and β∗ conditional
to Kt = −1 in the multiplicative
example.

Proof. As the intensities are additive and symmetric, the first order condition is

∂G

∂a
= f ′(a)∆(k + 1, t)− f ′(1− a)∆(k, t) = 0, (34)

∂G

∂b
= f ′(1− b)∆(k + 1, t)− f ′(b)∆(k, t) = 0. (35)

This implies that β∗(t, k) = 1 − α∗(t, k). Indeed, we first remark that ∂G
∂a

is decreasing
and ∂G

∂b
is increasing. We can distinguish the following cases.

1. There is a unique solution α∗(t, k) to equation (34) in ]0, 1[. In this case β∗(t, k) =
1− α∗(t, k) is a solution to (35).

2. For all we have a ∈]0, 1[, ∂G
∂a
> 0. In this case α∗(t, k) = 1 and β∗(t, k) = 0.

3. For all we have a ∈]0, 1[, ∂G
∂a
< 0. In this case α∗(t, k) = 0 and β∗(t, k) = 1.

We further obtain

λ1(α∗(t, k), β∗(t, k)) = f(α∗(t, k)) + g(β∗(t, k)) = f(α∗(t, k)) + 1− f(α∗(t, k)) = 1.

The same result follows for λ2(α∗(t, k), β∗(t, k)).

Notice that the additive example of Subsection 4.1 satisfies the assumptions of Propo-
sition 4.1. This example reveals that the score can have a large impact on the strategies,
but not impact at all on the scoring intensities (cf. Figure 1).

4.3. Are weaker teams more likely to win in football than in
basketball?

It can happen that a team wins the game although it is weaker than the other one. Our
numerical experiments show that the likelihood for the weaker team to win depends on
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Figure 3: Expected reward of the better
team if it is leading by one goal.
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Figure 4: Expected reward of the better
team if it is behind by one goal.

the average number of goals that are scored in typical games of the sport considered. To
illustrate the dependence, consider the situation where the own team scores, in average,
1,5 times more often than the opposing team. More precisely, let f and g be defined as
in (33), and set λ1(a, b) = c(f(a) + g(b)) and λ2(a, b) = 2

3
λ1(b, a), where c ∈ {2, 4, 6, 8}.

Figure 3 shows the expected reward of the own team, conditional to being ahead by
one goal, i.e. Kt = 1. A higher scoring intensity entails that both teams score more often
and hence the expected scoring lead at T of the better team becomes larger. Therefore,
at the beginning of the game the expected reward of the better team increases with the
overall scoring intensity. In other words, weaker teams are more likely to win in soccer
than in basketball. Shortly before the end of the game, however, a high intensity can
be an advantage for the weaker team if it is behind. A higher overall intensity implies a
larger likelihood for the weaker team to equalize before the end of the game.

Figure 4 shows the expected reward of the own team, conditional to being behind by
one goal, i.e. Kt = −1. In this case, a higher overall scoring intensity is an advantage
for the better team at any time of the game.

A. Appendix

In this appendix we explain how to choose a filtered probability space (Ω,F , (Ft),P)
such that for every α ∈ A and β ∈ B we can define point processes N and M with
intensity λ1(α(t,Kα,β

t ), β(t,Kα,β
t )) and λ2(α(t,Kα,β

t ), β(t,Kα,β
s )) respectively.

Consider a probability space (Ω,F ,P) endowed with a Poisson random measure µ.
Recall that this means that for all B ∈ B(R) with λ(B) <∞ the process t 7→ µ

(
[0, t]×

B
)

is a Poisson process with parameter λ(B), where λ denotes the Lebesgue measure.
Moreover, the Poisson processes corresponding to two disjoint Borel sets are independent.
Now we set Ft := σ

(
XB
s : s ≤ t, B ∈ B(R)

)
, where XB

s := µ
(
[0, s]×B

)
. This gives us a

suitable filtration without the need to know Kα,β.
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We define Kα,β as the solution of the stochastic integral equation

Kα,β
t =

∫ t

0

∫
R

[
1[

0,λ1(α(t,Kα,β
s ),β(t,Kα,β

s ))
](u)− 1[

−λ2(α(t,Kα,β
s ),β(t,Kα,β

s )),0
](u)

]
µ(ds, du)

(36)

and

N
λ1(α,β)
t :=

∫ t

0

∫
R
1[

0,λ1(α(s,Kα,β
s ),β(s,Kα,β

s ))
](u)µ(ds, du), (37)

M
λ2(α,β)
t :=

∫ t

0

∫
R
1[
−λ2(α(s,Kα,β

s ),β(s,Kα,β
s )),0

](u)µ(ds, du). (38)

Standard arguments (see e.g. § 1.c, Chapter II, [9]) imply that Nλ1(α,β) and Mλ2(α,β) are
point processes with intensity λ1(α, β) and λ2(α, β) respectively.

The definitions (37) and (38) entail that the increments of N and M between two con-
secutive jumps are conditionally independent and Poisson distributed. More precisely,
for 0 ≤ s < t, ρ := inf{u ≥ s : Ku 6= Ks} and i, j ∈ {0, 1} with i+ j ≤ 1, we have

P
(
Nλ1
t∧ρ −Nλ1

s = i,Mλ2
t∧ρ −Mλ2

s = j
∣∣Fs)

= P
(
Nλ1
t∧ρ −Nλ1

s = i
∣∣Fs)P

(
Mλ2

t∧ρ −Mλ2
s = j

∣∣Fs)
= e−

∫ t∧ρ
s

(
λ1(u)+λ2(u)

)
du

(∫ t∧ρ

s

λ1(u) du

)i(∫ t∧ρ

s

λ2(u) du

)j
. (39)
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