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Abstract—This work addresses the question of achieving capac-
ity with lattice codes in multi-antenna block fading channels when
the number of fading blocks tends to infinity. In contrast to the
standard approach in the literature which employs random lattice
ensembles, the existence results in this paper are derived from
number theory. It is shown that a multiblock construction based
on division algebras achieves rates within a constant gap from
block fading capacity both under maximum likelihood decoding
and naive lattice decoding. First the gap to capacity is shown
to depend on the discriminant of the chosen division algebra;
then class field theory is applied to build families of algebras
with small discriminants. The key element in the construction is
the choice of a sequence of division algebras whose centers are
number fields with small root discriminants.

Index Terms—MIMO, block fading, number theory, division
algebras

I. INTRODUCTION

The closed-form expression of the capacity of ergodic
multiple-input multiple-output (MIMO) channels was given in
[1] and [2]. In this work we consider the question of achieving
MIMO capacity with lattice codes and we prove that there
exists a family of so-called multi-block division algebra codes
[3, 4] that achieve a constant gap to capacity over the block
fading MIMO channel when the number of fading blocks tends
to infinity.

Our constructions are based on two results from classical
class field theory. First we choose the center K of the algebra
from an ensemble of Hilbert class fields having small root
discriminant and then we prove the existence of a K-central
division algebra with small discriminant. Our lattices belong
to a very general family of division algebra codes introduced
in [3, 4, 5], and developed further in [6] and [7]. We will use
the most general form presented in [8].

While we discuss specific lattice codes from division alge-
bras, our proofs do work for any ensemble of matrix lattices
with asymptotically good normalized minimum determinant.
The larger this value is, the smaller the gap to the capacity.

This work suggests that capacity questions in fading chan-
nels are naturally linked to problems in the mathematical
research area of geometry of numbers. Unlike our previous
work in the single antenna case [9], many of the questions
that arise have not been actively studied by the mathematical
community.

We note that, while studying diversity-multiplexing gain
tradeoff (DMT) of multiblock codes in [4], H.-f. Lu conjec-
tured that these codes might approach MIMO capacity. Our
work confirms that conjecture; however, we point out that it
is unlikely that DMT-optimality alone is enough to approach
capacity. Instead one should pick the code very carefully by
maximizing the normalized minimum determinant.

II. PRELIMINARIES

A. Channel model

We consider a MIMO system with n transmit and nr receive
antennas, where transmission takes place over k quasi-static
Rayleigh fading blocks of delay T = n. Each multi-block
codeword X ∈ Mn×nk(C) has the form (X1, X2, . . . , Xk),
where the submatrix Xi ∈Mn(C) is sent during the i-th block.
The received signals are given by

Yi = HiXi +Wi, i ∈ {1, . . . , k} (1)

where Hi ∈Mnr×n(C) and Wi ∈Mnr×T (C) are the channel
and noise matrices. The coefficients of Hi and Wi are modeled
as circular symmetric complex Gaussian with zero mean and
unit variance per complex dimension, and the fading blocks
Hi are independent. We assume that perfect channel state
information is available at the receiver, and that decoding is
performed after all k blocks have been received. We will call
such a channel an (n, nr, k)-multiblock channel.

A multi-block code C in a (n, nr, k)-channel is a set of
matrices in Mn×nk(C). In particular we will concentrate on
finite codes that are drawn from lattices. Let R denote the
code rate in bits per complex channel use; equivalently, |C| =
2Rkn

2

. We assume that every matrix X in a finite code C ⊂
Mn×nk(C) satisfies the average power constraint

1

nk
‖X‖2 ≤ P. (2)

B. Lattices and spherical shaping

Definition 2.1: A matrix lattice L ⊆ Mn×T (C) has the
form L = ZB1 ⊕ ZB2 ⊕ · · · ⊕ ZBs, where the matrices
B1, . . . , Bs are linearly independent over R, i.e., form a lattice
basis, and s is called the rank or the dimension of the lattice.

In the following we will use the notations R(L) for the
linear space which is generated by the basis elements of the



lattice L, and Vol(L) for the volume of a fundamental region
of L according to the Lebesgue measure in R(L).

Lemma 2.2: [10] Let us suppose that L is a lattice in
Mn×kn(C) and S is a Jordan measurable bounded subset of
R(L). Then there exists X ∈Mn×kn(C) such that

|(L+X) ∩ S| ≥ Vol(S)

Vol(L)
.

C. Minimum determinant for the multiblock channel

Let us first assume that we have an l-dimensional square
matrix lattice L in Mn×n(C). The minimum determinant of
the lattice L is defined as

detmin (L) = inf
X 6={0}

{|det(X)|}.

The pairwise-error probability based determinant criterion by
Tarokh et al. [11] motivates us to define the normalized
minimum determinant δ(L), which is obtained by scaling the
lattice L to have a unit volume fundamental parallelotope
before taking the minimum determinant. A simple computation
proves the following:

Lemma 2.3: Let L ⊂Mn×n(C) be an l-dimensional matrix
lattice. We then have that

δ(L) = detmin (L) /(Vol(L))n/l.

This concept generalizes to the multiblock case as follows.
Let us suppose that L ⊂ Mn×kn(C) is a multiblock code

and that X = (X1, X2, . . . Xk) is a codeword in L. The
received signal matrix

(H1X1, H2X2, . . . ,HkXk) + (W1,W2, . . . ,Wk),

can just as well be written in the form

(H1, H2, · · · , Hk)diag(X) + diag(W1,W2, . . . ,Wk),

where the diag-operator places the i-th n×n entry in the i-th
diagonal block of a matrix in Mkn×kn(C). This reveals that
optimizing a code L for the (n, nr, k)-multiblock channel is
equivalent to optimizing diag(L) for the usual one shot nk×
knr MIMO channel, where diag(L) is defined as {diag(X) |
X ∈ L}.

Definition 2.4: By abusing notation we define

detmin (L) := detmin (diag(L)) and δ(L) := δ(diag(L)).

III. LATTICES FROM DIVISION ALGEBRAS

Let us now describe how lattice codes from division alge-
bras are typically built.

Definition 3.1: Let K be an algebraic number field of
degree m and assume that E/K is a cyclic Galois extension
of degree n with Galois group Gal(E/K) = 〈σ〉. We can
define an associative K-algebra

D = (E/K, σ, γ) = E ⊕ uE ⊕ u2E ⊕ · · · ⊕ un−1E,

where u ∈ D is an auxiliary generating element subject to the
relations xu = uσ(x) for all x ∈ E and un = γ ∈ K∗. We
call the resulting algebra a cyclic algebra.

It is clear that the center of the algebra D is precisely the
field K. That is, an element of D commutes with all other
elements of D if and only if it lies in K.

Definition 3.2: We call
√

[D : K] the degree of the algebra
D. It is easily verified that the degree of D is equal to n.

Definition 3.3: A Z-order Λ in D is a subring of D having
the same identity element as D, and such that Λ is a finitely
generated module over Z which generates D as a linear space
over Q.

To every Z-order Λ in D we can associate a non-zero integer
d(Λ/Z) called the Z-discriminant of Λ [12, Chapter 2].

IV. ASYMPTOTICALLY GOOD FAMILIES OF DIVISION
ALGEBRA CODES

A. Number fields with small root discriminants

The following theorem by Martinet [13] proves the exis-
tence of infinite sequences of number fields K with small
discriminants dK . As we will see, choosing such a field as
the center of the algebra D is the key to obtaining a good
normalized minimum determinant.

Theorem 4.1: There exists an infinite tower of totally com-
plex number fields {Kk} of degree 2k = 5 · 2t, such that

|dKk |
1
2k = G, (3)

for G ≈ 92.368, and an infinite tower of totally real number
fields {Fk} of degree k = 2t such that

|dFk |
1
k = G1, (4)

where G1 ≈ 1058.

B. Division algebra based 2kn2-dimensional codes in
Mn×nk(C)

Let us now suppose that we have a totally complex field K
of degree 2k and a K-central division algebra D of degree n.

Proposition 4.2: [8, Proposition 5] Let Λ be a Z-order in D.
Then there exists an injective mapping ϕ : D 7→ Mn×nk(C)
such that ϕ(Λ) is a 2kn2-dimensional lattice in Mn×nk(C)
and

detmin (ϕ(Λ)) = 1, Vol(ϕ(Λ)) =
√
|d(Λ/Z)| · 2−2kn2 ,

δ(ϕ(Λ)) =

(
22kn2

|d(Λ/Z)|

)1/4n

.

We can now see that in order to maximize the minimum
determinant of a multiblock code, we should minimize the
Z-discriminant of the corresponding OK-order Λ, given by

d(Λ/Z) = NK/Q(d(Λ/OK))(dK)n
2

,

where NK/Q is the algebraic norm in K.
Let P1 and P2 be some prime ideals of K with norms

NK/Q(P1) and NK/Q(P2). According to [14, Theorem 6.14]
there exists a degree n division algebra D having Z-order Λ
with discriminant

d(Λ/Z) = (NK/Q(P1)NK/Q(P2))n(n−1)(dK)n
2

. (5)



Let us now aim for building the families of (n, n, k) multi-
block codes with as large as possible normalized minimum
determinant.

A trivial observation is that every number field of degree
2k has prime ideals P1 and P2 such that

NK/Q(P1) ≤ 22k and NK/Q(P2) ≤ 32k. (6)

Armed with this observation, we have the following.
Proposition 4.3: Given n there exists a family of 2n2k-

dimensional lattices Ln,k ⊂Mn×nk(C), such that

detmin(Ln,k) = 1, Vol(Ln,k) ≤ 6kn(n−1)

(
G

2

)n2k

.

Proof: Suppose that K is a degree 2k field extension
in the Martinet family of totally complex fields such that (3)
holds. We know that this field K has some primes P1 and
P2 such that NK/Q(P1) ≤ 22k and NK/Q(P2) ≤ 32k. Then,
there exists a central division algebra D of degree n over K,
and a maximal order Λ of D, such that

d(Λ/Z) = (Nk/Q(P1)NK/Q(P2))n(n−1)(dK)n
2

≤
≤ (62k)n(n−1)(G2k)n

2

.

Let us now show how we can design multiblock codes C
having rate R, and satisfying average power constraint P , from
a scaled version αLn,k ⊆ Mn×nk(C) of the lattices defined
in Proposition 4.3. Here α is a suitable energy normalization
constant. We denote by B(r) the set of matrices in Mn×nk(C)
with Frobenius norm smaller or equal to r. According to
Lemma 2.2, we can choose a constant shift XR ∈Mn×nk(C)
such that for C = B(

√
Pkn) ∩ (XR + αLn,k) we have

2Rnk = |C| ≥ Vol(B(
√
Pkn))

Vol(αLn,k)
=

Cn,kP
n2k

α2n2k Vol(Ln,k)
,

where Cn,k = (πnk)n
2k

(n2k)! . We find the following condition for
the scaling constant:

α2 =
C

1
n2k

n,k P

2
R
n Vol(Ln,k)

1
n2k

≥
C

1
n2k

n,k P

2
R
n (G/2)61− 1

n

. (7)

C. Division algebra based kn2-dimensional codes in
Mn×nk(C)

Let K/Q be a totally real number field of degree k and D
a K-central division algebra of degree n. Then there exists
an embedding ϕ : D → Mn×nk(C) [7] with the following
properties.

Proposition 4.4: Let us suppose that Λ is a Z-order in D.
Then ϕ(Λ) is an n2k-dimensional lattice in Mn×nk(C) and

detmin (ϕ(Λ)) = 1, Vol(ϕ(Λ)) =
√
d(Λ/Z), and

δ(ϕ(Λ)) =

(
1

|d(Λ/Z)|

)1/2n

.

Next, we will focus on a particular instance of this family of
lattices. We use the notation H for matrices of the form(

c −b∗
b c∗

)

and M1×k(H) for matrices in M2×2k(C) such that each 2×2
block is of type H.

Proposition 4.5: [15] Let K be a totally real number field
of degree k. Then there exists a degree 2 K-central division
algebra D and a Z-order Λ ⊂ D such that ϕ(Λ) is a 4k-
dimensional lattice in M1×k(H) ⊆M2×2k(C) and

detmin (ϕ(Λ)) = 1, Vol(ϕ(Λ)) = |dK |2.

Assuming that the center K belongs to the family of real
fields from Theorem 4.1, we have the following.

Corollary 4.6: For every k = 2m, there exists a 4k-
dimensional lattice LAlam,k ⊂M1×k(H) such that

detmin (ϕ(Λ)) = 1, Vol(ϕ(Λ)) = G2k
1 ,

where G1 ≈ 1058.
Similarly to the previous section, we will produce codes C

having rate R and satisfying average power constraint P from
the lattices LAlam,k ⊆M2×2k(C). Let α be an energy normal-
ization constant. According to Lemma 2.2, ∃XR ∈M2×2k(C)
such that for C = B(

√
2Pk) ∩ (XR + αLAlam,k) we have

22Rk = |C| ≥ Vol(B(
√
Pk2))

Vol(αLAlam,k)
=

CAlam,kP
2k

α4k Vol(LAlam,k)
,

where CAlam,k = (2kπ)2k

(2k)! . Solving for α, we find

α2 =
C

1
2k

Alam,kP

2R Vol(Ln,k)
1
2k

≥
C

1
2k

Alam,kP

2RG1
. (8)

V. ACHIEVING CONSTANT GAP

A. The codes for the (n, n, k)-multiblock channel

Let us now consider the lattice codes C of section IV-B.
Here the underlying lattice Ln,k ⊂ Mn×nk(C) is 2n2k-
dimensional. We are considering the channel model (1) in the
symmetric MIMO case where nr = n. We will analyze the
performance of these codes when the number of antennas n
is fixed and the number of blocks k tends to infinity.
Let ψ(x) = d

dx ln Γ(x) denote the Digamma function. Then
we have the following:

Proposition 5.1: Over the (n, n, k) multiblock channel, re-
liable communication is guaranteed when k →∞ for rates

R < n

(
log

P

n
e

1
n

∑n
i=1 ψ(i) − log n+ log

πe

2
− log 61− 1

nG

)
when using the multiblock code construction in Section IV-B.

Remark 5.2: We can compare the achievable rate with the
tight lower bound in [20, eq. (7)] for n transmit and receive
antennas1:

C ≥ n log

(
1 +

P

n
e

1
n

∑n
i=1 ψ(i)

)
1We note that the capacity (per channel use) of the block fading MIMO

channel of finite block length T with perfect channel state information at the
receiver is independent of T [21, eq. (9)]. So the bounds in [2] and [20] still
hold in our case.



Proof of Proposition 5.1: Let dH denote the minimum
Euclidean distance in the received constellation:

d2
H = min

X,X̄∈C
X 6=X̄

k∑
i=1

∥∥Hi(Xi − X̄i)
∥∥2
.

Suppose that the receiver performs maximum likelihood de-
coding or “naive” lattice decoding (closest point search in the
infinite lattice). For both, the error probability is bounded by

Pe ≤ P

{
‖W‖2 ≥

(
dH
2

)2
}
,

where W = (W1, . . . ,Wk) is the multiblock noise. Note that

d2
H ≥ α2n min

X∈Ln,k\{0}

k∑
i=1

|det(HiXi)|
2
n ≥

≥ α2nk min
X∈Ln,k\{0}

k∏
i=1

|det(HiXi)|
2
nk ≥ α2nk

k∏
i=1

|det(Hi)|
2
nk

where the first step comes from the Minkowski inequality, the
second step comes from the arithmetic mean - geometric mean
inequality, and the third from observing that

∏k
i=1 |det(Xi)| ≥

1 for all X ∈ Ln,k \ {0}. Therefore

Pe ≤ P

{
‖W‖2

kn2
≥ α2

4n

k∏
i=1

|det(Hi)|
2
nk

}
Given ε > 0, we can bound the error probability by

P
{
‖W‖2

kn2
≥ 1 + ε

}
+ P

{
α2

4n

k∏
i=1

|det(Hi)|
2
nk < 1 + ε

}
(9)

Note that 2 ‖W‖2 ∼ χ2(2kn2), and the tail of the chi-square
distribution is bounded as follows for ε ∈ (0, 1) [16]:

P

{
‖W‖2

kn2
≥ 1 + ε

}
≤ 2e−

kn2ε2

8 . (10)

Therefore the first term in (9) when k →∞. In order to upper
bound the second term, we need to analyze the distribution of
the random variable

∏k
i=1 |det(Hi)|2.

In the single block case, it is well-known [17, 18] that if
H is an n × n matrix with i.i.d. complex Gaussian entries
having variance per real dimension 1/2, the random variable
2n |det(H)|2 is distributed as the product Vn = Z1 · · ·Zn of
n independent chi square random variables Zj ∼ χ2(2j), j ∈
{1, . . . , n} with density pZj (x) = 1

2jΓ(j)x
j−1e−

x
2 . We have

E[lnZj ] =
1

2jΓ(j)

∫ ∞
0

xj−1e−
x
2 lnx dx = ψ(j) + ln 2.

where ψ(x) is the Digamma function. Let

Mn = E[lnVn] = n ln 2 +

n∑
j=1

ψ(j). (11)

Observe that

E[Z−vj ] =
1

2jΓ(i)

∫ ∞
0

xj−1−ve−
x
2 dx =

Γ(j − v)

2vΓ(j)
, (12)

E[Z−vj lnZj ] =
1

2jΓ(j)

∫ ∞
0

xj−1−ve−
x
2 lnx dx =

=
Γ(j − v)

2vΓ(j)
(ψ(j − v) + ln 2). (13)

Now let’s turn to the multiblock case, and let Sk =
2nk

∏k
i=1 |det(Hi)|2. We have Sk = V

(1)
n · · ·V (k)

n , where
V

(i)
n = Z

(i)
1 · · ·Z

(i)
n are i.i.d. products of n independent chi

squared random variables Z(i)
j ∼ χ2(2j). Note that E[lnSk] =

kE[lnVn] = kMn. Consider the zero-mean random variable

Bk = − lnSk + kMn = −
k∑
i=1

lnV (i)
n + kMn =

k∑
i=1

T (i)
n ,

where T (i)
n are i.i.d. with distribution Tn = −

∑n
j=1 lnZj +

Mn. From the Chernoff bound [19] for Bk, given δ > 0,
∀v > 0 we have

P {Bk ≥ nkδ} ≤ e−vδnkE[evBk ]. (14)

The tightest bound in (14) is obtained for vδ such that

E[Bke
vδBk ] = δnkE[evδBk ]. (15)

It is easy to see that

E[evTn ] = evMn

n∏
j=1

E[Z−vj ] = ev(Mn−n ln 2)
n∏
j=1

Γ(j − v)

Γ(j)

Recalling that the variables Zj are independent, we find

E[Tne
vTn ] = E

[(
−

n∑
j=1

lnZj +Mn

)
evMn

( n∏
l=1

Z−vl

)]
=

= evMn

( n∑
j=1

E[−Z−vj lnZj ]
∏
l 6=j

E[Z−vl ] +Mn

n∏
l=1

E[Z−vl ]
)

=

= ev(Mn−n ln 2)
( n∏
l=1

Γ(l − v)

Γ(l)

)(
Mn − n ln 2−

n∑
j=1

ψ(j − v)
)
.

We can finally compute

E[evBk ] = E
[
ev

∑k
i=1 T

(i)
n

]
=
(
E[evTn ]

)k
=

= evk(Mn−n ln 2)
n∏
j=1

Γ(j − v)k

Γ(j)k

Similarly,

E[Bke
vBk ] =

k∑
i=1

E
[
T (i)
n evT

(i)
n

]
E
[
e
∑
l6=i vT

(l)
n

]
=

= kekv(Mn−n ln 2)
(
Mn − n ln 2−

n∑
j=1

ψ(j − v)
) n∏
l=1

Γ(l − v)
k

Γ(l)k

Thus, the tightest bound (15) is achieved for vδ such that

nδ = Mn − n ln 2−
n∑
j=1

ψ(j − vδ) =

n∑
j=1

(ψ(j)− ψ(j − vδ))

Clearly, for fixed n, vδ → 0 when δ → 0. From (14) we get

P{S
1
nk

k ≤ e
Mn
n −δ} = P {Bk ≥ nkδ} ≤



≤ e
k(vδ(−nδ+Mn−n ln 2)−

n∑
j=1

(ln Γ(j)−ln Γ(j−vδ)))
=

= e
k(ln Γ(1−vδ)+vδψ(1−vδ)+

n∑
i=2

(− ln Γ(i)+ln Γ(i−vδ)+vδψ(i−vδ)))
.

Recall that Γ(x) is monotone decreasing for 0 < x < a0 =
1.461632 . . . and monotone increasing for x > a0. Using the
mean value theorem for the function ln Γ(x) in the interval
[i−vδ, i] we get that for i = 1, vδψ(1−vδ)+ln Γ(1−vδ) ≤ 0,
and for i ≥ 2, vδψ(i− vδ) ≤ ln Γ(i)− ln Γ(i− vδ). Thus,

P

{
2

k∏
i=1

|det(Hi)|
2
nk ≤ e

Mn
n −δ

}
= P

{
S

1
nk

k ≤ e
Mn
n −δ

}
≤

≤ e−kKn,δ

for some positive constant Kn,δ . The second term in (9)
vanishes when k → ∞ provided that 8n(1+ε)

α2 < e
Mn
n −δ .

Recalling the bound for α from (7), a sufficient condition is

4n(1 + ε)2
R
n 61− 1

nG

(Cn,k)
1
n2kP

< e
Mn
n −δ.

From Stirling’s approximation, for large k we have
(Cn,k)

1
n2k ≈ πe/(n(2πn2k)

1
2n2k ). Thus, we find that any rate

R < n

(
logP − 1

2n2k
log(2πn2k) + log

πe

4(1 + ε)
+

+ log(e
Mn
n −δ)− 2 log n− log 61− 1

nG
)
, (16)

where the logarithms are understood to be binary, is achiev-
able asymptotically as k → ∞. Note that e

Mn
n =

eln 2+ 1
n

∑n
i=1 ψ(i) = 2e

1
n

∑n
i=1 ψ(i). Since (16) holds ∀δ >

0,∀ε > 0, this concludes the proof.
Remark 5.3: The number field towers we used are not the

best known. In fact there exists a family of totally complex
fields such that G < 82.2 [22], but this would add some
notational complications. Just as well the estimate given in
equation (6) is not optimal and it is likely that we can reduce
the term log 6 in the achievable rate formula.

B. The (2, 1, k)-multiblock channel
Let us now consider the codes of Corollary 4.6 in the 2×1

block fading channel. Here the matrices Hi are simply vectors
[h1, h2] and we suppose that the delay is 2. The codewords in
the lattice LAlam,k have block structure X = [X1, . . . , Xk],
where each Xi ∈ H.
For these codes we can prove the following:

Proposition 5.4: Over the (2, 1, k) multiblock channel, re-
liable communication is guaranteed when k →∞ for

R < log

(
Pe1−γ

2

)
+ log

πe

4
− logG1

when using the multiblock code construction LAlam,k.
The proof is similar to the one in the previous section and

is omitted for lack of space. We can compare the achievable
rate in Proposition 5.4 to the tight lower bound on ergodic
capacity in [20, eq. (7)] for n = 2 and nr = 1:

C ≥ log

(
1 +

P

2
e1−γ

)
.
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