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2Aix Marseille Université, CNRS, LPL UMR 7309, 13100, Aix-en-Provence, France
imed.laaridh@alumni.univ-avignon.fr, corinne.fredouille@univ-avignon.fr, christine.meunier@lpl-aix.fr

Abstract
Perceptive evaluation of speech disorders is still the standard method in clinical practice for the diagnosing and the following of the
condition progression of patients. Such methods include different tasks such as read speech, spontaneous speech, isolated words,
sustained vowels, etc. In this context, automatic speech processing tools have proven pertinence in speech quality evaluation and
assistive technology-based applications. Though, a very few studies have investigated the use of automatic tools on spontaneous speech.
This paper investigates the behavior of an automatic phone-based anomaly detection system when applied on read and spontaneous
French dysarthric speech. The behavior of the automatic tool reveals interesting inter-pathology differences across speech styles.
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1. Introduction
Dysarthria is a motor speech disorder resulting from neu-
rological damages located either in the central or in the
peripheral nervous system. This may lead to disturbances
in any of the components involved in the speech produc-
tion, including respiratory, phonatory, resonatory, articu-
latory and prosodic elements. Consequently, this may be
reflected by weakness, spasticity, incoordination, involun-
tary movements, or abnormal muscle tone, depending on
the location of the neurological damage. Dysarthric speech
has been studied according to different axes : perceptual
evaluation of speech alterations for dysarthria classification
(Darley et al., 1969; Duffy, 2005; Darley et al., 1975), dif-
ferent speech tasks (Van Lancker Sidtis et al., 2012; Kem-
pler and Van Lancker, 2002), perceptual measurement of
dysarthria severity, notably related to the speaker’s intelligi-
bility (Enderby, 1983; Yorkston et al., 1996; Hustad, 2008;
Lowit and Kent, 2010) or articulatory or/and acoustic anal-
ysis (Kent et al., 1999; McAuliffe et al., 2006; Rosen et al.,
2006; Green et al., 2013; Whitfield and Goberman, 2014)
in order to observe and characterize the effects of dysarthria
in the speech signal. These studies aim at helping clinicians
in their knowledge of the speech impairment and its clinical
evaluation, crucial for following the condition progression
of patients in the case of treatment or/and of speech reha-
bilitation to enhance them.
In this context, automatic speech processing approaches
have been seen, very early, as potential solutions to pro-
vide objective tools to deal with speech disorders (Ferrier et
al., 1992; Rosen and Yampolsky, 2000; Carmichael, 2007;
Middag et al., 2009; Nuffelen et al., 2009; Kim and Kim,
2012). In addition, they can also help people with speech
disorders in their everyday life through Alternative and
Augmented Communication (AAC) tools, involving auto-
matic speech recognition for instance (Green et al., 2003;
Parker et al., 2006; Rudzicz et al., 2012; Christensen et al.,
2013a; Christensen et al., 2013b).
In the literature, the set of acoustic-perceptual cues in-
cluding imprecision of consonants, distorsion of vowels,

slow rate, monopitch, monoloudness, hypernasality is com-
monly used to characterize the main disturbances of the
various types of dysarthria in the speech production. But,
more descriptive acoustic and phonetic analyses are still
necessary to take into account the large variability in terms
of speech alterations observed among people in differ-
ent groups of diseases, within the same group (Tomik
and Guiloff, 2010) or across different speech styles (read
speech, spontaneous speech, singing, isolated words, etc).
Moreover, so that such analyses are relevant, they require a
large number of people with speech disorders, a variety of
diseases related to the different types of dysarthria (spastic,
flaccid, ataxic, hyper- or hypokinetic, unilateral upper mo-
tor neuron, or mixed), various levels of condition progres-
sion and of severity degree in order to observe their effects
on the speech production as well as the possible compen-
sation strategies set up by speakers. Still here, automatic
speech processing approaches would be of major interest
in the task of focusing the attention of human experts on
specific speech segments (among a large amount of speech
productions) exhibiting unexpected acoustic patterns com-
pared with a normal speech production.
As reported in (Chandola et al., 2007) in a more general
context, anomaly detection refers to the problem of finding
patterns in data that do not conform to an expected behav-
ior. In dysarthric speech, anomalies can refer to the unex-
pected acoustic patterns mentioned above and observed at
different units of speech like phones for instance.
In previous works (Fredouille and Pouchoulin, 2011;
Laaridh et al., 2015a), the authors have proposed an au-
tomatic phone-based anomaly detection approach in two
steps : a text-constrained phone alignment to obtain the
phone segmentation and a classification of speech segments
into normal and abnormal phones (anomalies). Further-
more, in (Laaridh et al., 2015b), the quality of the automatic
phone alignment was studied and found to be depending
on phonetic categories, pathologies and the severity of the
dysarthria. In this paper, the authors investigate the impact
of the speech styles on the automatic anomaly detection and



classification process, focusing on read and spontaneous
speech. Indeed, comparative studies on motor speech disor-
ders have found different articulatory and voice character-
istics (for instance speech rate and breath-pause positions
(Brown and Docherty, 1995)) between speech styles. Also,
it could be expected that dysarthric speakers develop strate-
gies to avoid ”difficult” linguistic contexts. Such strategies
could only be applied during spontaneous speech. Within
this context, it is interesting to study whether our classi-
fication system is able to detect anomalies in spontaneous
speech and whether it has the same behavior as when facing
read dysarthric speech. This study is conducted in the con-
text of French dysarthric speech produced by people suffer-
ing from four different pathologies.
The rest of this paper is organized as follows. In section 2,
both steps of the automatic anomaly detection approach are
described. The corpora used in this study are presented in
section 3. In section 4, the behavior of the approach fac-
ing both read and spontaneous speeches is compared and
discussed. Finally, section 5 provides a conclusion and di-
rections for future works.

2. Automatic Anomaly Detection

The anomaly detection approach studied here relies on two
steps. The first step is a text-constrained phone alignment.
The second step consists of a two class (normal and abnor-
mal phones) supervised classification. In each class, phones
are characterized by a set of features considered as relevant
for the discrimination task.

2.1. Automatic Phone-based Alignment

The segmentation of speech utterances into phones is car-
ried out thanks to an automatic text-constrained phone
alignment tool. This tool takes as input the sequence
of words pronounced in each utterance and a phonetized
phonologically-varied lexicon of words based on a set of
37 French phones. The sequence of words comes from a
manual orthographic transcription performed by a human
listener following some annotation rules. For this manual
transcription, inter-pausal units (IPUs) are annotated by the
human listener. An IPU is defined as a pause-free unit of
speech separated from another IPU by at least 250ms of
silence or non-speech. The automatic alignment process
is then based on a Viterbi decoding and graph-search al-
gorithms, the core of which is the acoustic modeling of
each phone, based on a Hidden Markov Model (HMM). In
this work, each phone is modeled using a 3-state context-
independent HMM topology which are built using the Max-
imum Likelihood Estimate paradigm on the basis of about
200 hours of French radiophonic speech recordings (Gal-
liano et al., 2005). In order to get speaker-dependent mod-
els, a three-iteration Maximum A Posteriori (MAP) adap-
tation is performed to adapt all the HMM parameters. This
automatic alignment process results in a couple of start and
end boundaries per phone produced in the speech record-
ings.

2.2. Normal And Abnormal Speech
Classification

This step aims at characterizing each phone with a set of
features found to be relevant for the anomaly detection task.
The set of features used is mainly derived from the auto-
matic text-constrained phone alignment outputs. For each
phone p and its associated speech segment yp, the following
features and acoustic scores are extracted:

• the phone duration, expressed in terms of the number
of 10ms frames covered by yp;

• the number of frames in yp for which the one-best state
search among the HMM-based phone models, applied
at the frame level, corresponds to those of p;

• the acoustic score of the best matching phone p′, ob-
tained by computing the scores of all the HMM phone
models on segment yp; if p is the best matching phone,
the second-best matching phone is considered instead;

• the phonetic category of p′;

• the acoustic score of the second-best matching phone
p′′; if p is one of the two best matching phones, the
third one is considered instead;

• the phonetic category of p′′;

• the acoustic score of p and its rank compared to the
scores of all the HMM phone models.

The classification task is based on Support Vector Machines
(SVM), which have been largely applied to pattern recogni-
tion problems (Vapnik, 1995)(Scholkopf and Smola, 2001).
Here, the SVM classification method is applied to a two-
class problem: discriminating between normal and abnor-
mal phones (anomalies). Each phone is characterized with
the set of features defined above. All the SVMs are used
with a polynomial kernel.
In order to better take into account each phonetic category
specificities and to refine abnormal and normal classes, dif-
ferent SVM models are trained by distinguishing the speech
productions by gender and phonetic categories (unvoiced
consonants, voiced consonants, oral vowels, nasal vowels).
The different SVM models are trained using the SVMlight
tool (see (Joachims, 1999) for more information).

3. Corpora
The current study is based on two speech corpora.

Table 1: Information related to the LSD-corpus used in
the modeling process including the # of speakers, the #
of recordings and the minimum and maximum Dysarthria
Severity Degrees (DSD) per disease.

Disease # of # of (Min;Max)
speakers recordings DSD

LSD 8 35 (1.5;3.0)
Control 6 17 -



Table 2: Information related to the Typaloc corpus including the # of speakers, the average Dysarthria Severity Degrees
(DSD) and the average and (Min;Max) of recording duration (sec.) and # of phones from the automatic alignment per
disease and speech style.

Read speech Spontaneous speech
Disease # of Avg. DSD Avg. Avg. # of Avg. DSD Avg. Avg. # of

speakers dur. (Min;Max) phones (Min;Max) dur. (Min;Max) phones (Min;Max)
ALS 12 2.0 111 (65;214) 532 (382;578) 2.0 102 (45;317) 463 (184;1089)
PD 8 0.8 74 (48;122) 567 (550;599) 1.0 65 (40;109) 365 (315;404)
CA 8 1.3 107 (73;142) 569 (544;595) 1.2 78 (40;124) 423 (223;838)
Control 12 - 70 (56;82) 558 (552;568) - 522 (296;1028) 4072 (2762;7104)

The first corpus (LSD-corpus) contains 8 dysarthric speak-
ers and 6 control subjects. The dysarthric speakers had been
diagnosed with rare Lysosomal Storage Diseases (LSD), re-
sulting in a mixed dysarthria, and showed disparities in the
Dysarthria Severity Degree (DSD). All the speakers were
asked to read the same text, a French fairytale called “Le
cordonnier” (The cobbler), as naturally as possible and they
each recorded 3 to 6 longitudinal records approximately ev-
ery six months. All the speech utterances were annotated
by a human expert in order to identify acoustic anomalies
at the phone level. Consequently, this corpus was involved
in the estimate of the normal and abnormal models required
in the classification step described in section 2.2.. Table 1
provides information on this corpus.

The second corpus, named Typaloc (Meunier et al., 2016),
contains 28 dysarthric speakers and 12 control subjects.
Each speaker read the same text as the LSD-corpus and
made an additional spontaneous speech record. For both
dysarthric and control speakers, the spontaneous speech sit-
uation was an interview conducted by a researcher/clinician
in which they had to talk about their everyday life, per-
sonal history or even particular events. Unlike the first cor-
pus in which only LSD patients were recorded, this corpus
presents various diseases and types of dysarthria: Amy-
otrophic Lateral Sclerosis (ALS)/mixed dysarthria, Parkin-
son’s Disease (PD)/hypokinetic dysarthria and Cerebel-
lar Ataxia (CA)/ataxic dysarthria distributed over various
DSDs. All the patient’s speech recordings were evaluated
perceptually by a jury of 11 experts who were asked to rate
each patient on perceptual items of speech quality. Among
these items, we focus on the DSD rated on a scale of 0
to 3 (0 -no dysarthria, 1 -mild, 2 - moderate, 3 -severe
dysarthria). Table 2 provides information on the Typaloc
corpus grouped per pathology and speech style. This in-
cludes the number of patients, the average values of the
DSD and the average and (Min;Max) of recording duration
(sec.) and number of phones in the automatic alignment per
speaker within each population.
We can point out that the spontaneous speech productions
are shorter (duration and # of phones) than the read speech
productions independently of pathologies. Indeed, patients
are usually less prone to talk spontaneously due, not only
to their pathologies and the fatigue effect, but also to the
speech elicitation techniques used, which are not always
fully adapted to this kind of speakers.

4. Results And Discussions
This section details and discusses the behavior of the auto-
matic anomaly detection approach for both read and spon-
taneous speech on the Typaloc corpus.
As reported in (Laaridh et al., 2015a) on read speech,
the approach tends to detect more anomalies on patients
with severe dysarthria. This behavior, though less dis-
tinct, seems preserved on spontaneous speech. Indeed,
the correlation between the automatic anomaly rates and
the DSD reaches 0.81 and 0.60 for read and sponta-
neous speech respectively. Similarly, figure 1 depicts the
automatic anomaly rates for both read and spontaneous
speech according to the patients’ DSD rated on the read
speech uniquely (this typical configuration permits to lo-
cate anomaly rates for both read and spontaneous speech
for each speaker more easily). This confirms that the sys-
tem is able to detect the evolution of dysarthria regardless
of the production task performed by the patients (read or
spontaneous speech).

Table 3: Average anomaly rate (%) per pathology and
speech style computed over all phones.

Disease Read speech Spontaneous speech
ALS 35.8 31.9
PD 10.6 17.8
CA 20.6 24.4
Control 5.4 13.7

In a more detailed way, table 3 reports automatic anomaly
detection rates on read and spontaneous speech grouped by
population.
First, We observe that over the control speakers, the ap-
proach detects more anomalies over spontaneous speech
compared to read speech. This could be related to the fact
that our models of normal and abnormal phones (section
2.2.) were built over read speech only. Indeed, sponta-
neous speech may present more acoustic variability that is
atypical (compared to read speech) without being patho-
logical. This variation may be due to faster speech rate,
false starts, hesitations and phone reductions more fre-
quent in spontaneous speech. Figure 2 depicts the rela-
tion between the read speech DSD and the difference of
automatic anomaly detection rates between spontaneous
and read speech (anomaly rate over spontaneous speech −



Figure 1: Relationship between the automatic anomaly rate and the dysarthria severity degree when applied on the Typaloc
corpus.

anomaly rate over read speech); each point representing one
speaker (either control or patient). Observing table 3 and
figure 2, we find that, as for control speakers, the automatic
approach detects more anomalies on spontaneous speech
for PD and CA patients.

Figure 2: Distribution of differences between spontaneous
and read speech anomaly rates according to read speech
DSD.

These observations are consistent with results found in (Van
Lancker Sidtis et al., 2012; Kempler and Van Lancker,
2002) on patients suffering from PD. In these papers, spon-
taneous speech was found to be less intelligible and con-
tained more disfluencies than read speech. However, pa-
tients suffering from ALS present similar and even lower
anomaly rates on spontaneous speech compared to reading
(32% and 36% respectively). In our corpus, these patients
have the most severe dysarthria (highest DSDs). Further
analysis of this behavior is still necessary to study whether
this observation is related to intrinsic characteristics of ALS
which would affect more the reading task than spontaneous
speech production. A second hypothesis is that this behav-
ior is more linked to the severity of the dysarthria of the
patients suffering from ALS than the pathology itself. In-

deed, the spontaneous speech production task offers to pa-
tients more freedom to manage their fatigue, their speech
rate and the different phones and sequences of phones or
words to produce, which could lead to less anomalies at the
phone level.
Finally, table 3 shows a more important increase in auto-
matic anomaly rates computed over spontaneous speech for
control speakers compared to dysarthric patients. addition-
aly, Figure 2 suggests that the difference in anomaly rates
between spontaneous and read speech is inversely propor-
tional to the DSD measures. This would suppose that con-
trol speakers change more their productions according to
the speech style (which results in our case in more anoma-
lies detected over spontaneous speech considering the na-
ture of our models built over read speech) while patients
(especially severely dysarthric) loose this capacity to adapt
themselves to different styles and tend to make their pro-
ductions uniform regardless of the task (which results in
less differences between measures computed over read and
spontaneous speech).
Table 4 reports the automatic anomaly detection rates per
pathology, phonetic category and speech style.
For control speakers, all the phonetic categories show
higher anomaly rates over spontaneous speech compared to
read speech. Fricatives, however, present a more important
increase in the anomaly rates from 7% over read speech to
23% over spontaneous speech. For PD patients, fricatives
present the highest anomaly rates for both speech styles.
Unlike other phonetic categories for which the increase of
automatic anomaly rates over spontaneous speech is low,
fricatives show an absolute increase of 29% (112% rela-
tive). This behavior suggests more an intensification of an
already observed phenomenon (high anomaly rate over read
speech) linked to the Parkinsonian dysarthria than the emer-
gence of a new one. Observing patients suffering from ALS
and even though anomaly rates are more stable across both
speech styles, we find still that vowels present less anoma-
lies on spontaneous than read speech (-4% and -18% for
oral and nasal vowels respectively). The global decrease



Table 4: Average automatic anomaly rate (%) computed per pathology, phonetic category and speech style (read and
spontaneous speech).

Read speech Spontaneous speech
Phonetic category Control PD CA ALS Control PD CA ALS
Plosives 7 12 22 37 11 16 24 35
Fricatives 7 26 48 37 23 55 53 38
Nasal consonants 7 12 21 31 19 10 19 35
Liquid consonants 7 9 23 41 15 9 27 44
Oral vowels 2 6 10 33 11 10 13 29
Nasal vowels 4 8 20 44 8 13 13 26
Other 10 16 26 46 19 13 26 37

of anomaly rates observed over ALS patients in table 3
between read and spontaneous speech is the result of the
decrease observed over vowels since consonants maintain
similar anomaly rates between both speech styles.

Control_R Control_S ALS_R ALS_S PD_R PD_S CA_R CA_S
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Figure 3: Box plot of automatic anomaly rate per popula-
tion and speech style.

For each population, a one-way ANOVA was conducted in
order to test the effect of speech style (2 levels: read speech,
spontaneous speech). Figure 3 depicts the box plot repre-
sentation of automatic anomaly rates for each population
and speech style. For control and PD speakers, signifi-
cant differences are found between read and spontaneous
speech ((p<0.001,F(1,22)=28) and (p<0.05, F(1,14)=5.4)
respectively). These differences are emphasized when
focusing only on fricatives ( (p<0.001,F(1,22)=19) and
(p<0.01,F(1,14)=14) for control and PD speakers respec-
tively). The difference between both speech styles is
less distinct for patients suffering for CA and ALS. In-
deed, the speech style effect can be masked by the higher
intra-pathological variability observed over both popula-
tions unlike patients suffering from PD, having all a mild
dysarthria.

5. Conclusion
The study of the behavior of an automatic phone-based
anomaly detection system over read and spontaneous
dysarthric speech has shown different effects of the task
and the speech style according to pathologies. ALS pa-
tients, in contrast to all other populations (control, PD, CA),

showed more anomalies over read speech than spontaneous
speech. Globally, the control speakers show the most im-
portant differences according to the speech style. Consider-
ing patients, the more severe the dysarthria is, the less dif-
ference between styles there is. A hypothesis could be that
control speakers adapt their productions according to the
speech style whereas dysarthric patients tend to gradually
loose this capacity. By comparing the phonetic categories,
fricatives show an important increase in terms of anomaly
rates on spontaneous speech compared to read speech com-
pared over the control speakers and the patients suffering
from PD.
Future work will examine the effect of the localization of
the phones (first, second, etc. syllable) on the anomaly de-
tection process in order to investigate further on these dif-
ferent behaviors.
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