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Abstract—We consider a fading wiretap channel model where
the transmitter has only statistical channel state information, and
the legitimate receiver and eavesdropper have perfect channel
state information. We propose a sequence of non-random lattice
codes which achieve strong secrecy and semantic security over
ergodic fading channels. The construction is almost universal
in the sense that it achieves the same constant gap to secrecy
capacity over Gaussian and ergodic fading models.

I. INTRODUCTION

The wiretap channel model was introduced by Wyner [21],
who showed that secure and reliable communication can be
achieved simultaneously over noisy channels even without
the use of secret keys. In the information theory community,
the most widely accepted secrecy metric is Csiszar’s strong
secrecy: the mutual information I(M;Z"™) between the confi-
dential message M and the channel output Z™ should vanish
when the code length n tends to infinity.

While in the information theory community confidential
messages are often assumed to be uniformly distributed, this
assumption is not accepted in cryptography. A cryptographic
treatment of the wiretap channel was proposed in [3] to com-
bine the requirements of the two communities, establishing
that achieving semantic security in the cryptographic sense
is equivalent to achieving strong secrecy for all distributions
of the message. This equivalence holds also for continuous
channels [10].

In the case of Gaussian wiretap channels, [10] considered
the problem of designing lattice codes which achieve strong
secrecy and semantic security. Following an approach by
Csiszéar [5, 4], strong secrecy is guaranteed if the output
distributions of the eavesdropper’s channel corresponding to
two different messages are indistinguishable in the sense of
variational distance. Moreover, the flatness factor of a lattice
was proposed in [10] as a fundamental criterion which implies
that conditional outputs are indistinguishable. Using random
coding arguments, it was shown that there exist families of
lattice codes which are “good for secrecy”, meaning that their
flatness factor is vanishing, and achieve semantic security for
rates up to 1/2 nat from the secrecy capacity.

In this paper, we consider a fading wiretap channel model
where the transmitter has only access to statistical channel
state information (CSI), while the legitimate receiver and
the eavesdropper both have perfect knowledge of their own
channels. We extend the criterion based on the flatness factor
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to the case of fading channels and propose a family of non-
random lattice codes from algebraic number fields satisfying
this criterion. We note that ideal lattices from number fields
were already considered for secrecy under an error probability
criterion for Gaussian and fading channels in [1, 2, 8, 16].

In this work, we consider a particular sequence of algebraic
number fields with constant root discriminant. In [20, 11], it
was shown that these lattice codes are “almost universal” in
the sense that they achieve a constant gap to channel capacity
over any ergodic stationary fading channel. The underlying
multiplicative structure and constant root discriminant property
guarantee that the received lattice after fading has a good
minimum distance when the channel is not in outage.

The sequences of number fields that we consider are also
used in cryptography for worst-case to average-case reductions
of hard lattice problems [18].

In this paper, we show that these lattices also achieve strong
secrecy and semantic security. The key feature is that the dual
of the faded lattice has good minimum distance, so that the
average flatness factor of the faded lattice vanishes.

In particular, for the Gaussian case this suggests a simple
design criterion where the packing density of the lattice and
its dual should be maximized simultaneously. We note that the
dual code also plays a role in the design of LDPC codes for
binary erasure wiretap channels [19].

We also improve the rate of almost universal codes by
replacing spherical shaping with a discrete Gaussian distri-
bution over the infinite lattice as in [10]. As a consequence,
our nested lattice schemes achieve the same constant gap to
secrecy capacity over all static and ergodic fading models.

The proposed lattice codes can be generalized in a straight-
forward manner to the multi-antenna case using the multiblock
matrix lattices from division algebras in [11]. This generaliza-
tion will be presented in an upcoming journal version.

II. PRELIMINARIES
A. Flatness factor and discrete Gaussian distribution

In this section, we define some fundamental lattice param-
eters that will be used in the rest of the paper. For more
background about the smoothing parameter and the flatness
factor in information theory and cryptography, we refer the
reader to [15, 10, 17].

Consider C* as a 2k-dimensional real vector space with a real
inner product (x,y) = R(xy). This inner product naturally



defines a metric on C* by setting ||x|| = 1/(x,x). ! Given a
complex lattice A C C*, we define the dual lattice as

AN ={xeCF|VyeA, (xy)ecZ}

Let f /5 .(2z) denote the k-dimensional complex normal dis-
tribution with mean ¢ and covariance matrix X:

b eoinieo
k det(X)

Definition 1: Given a complex lattice A C C*, the flatness
factor ex(\/X) is defined as the maximum deviation of the
Gaussian distribution over A from the uniform distribution
over a fundamental region R(A) of A, with volume V(A):

eA(VE) = VY Tsal@) =1

Compared to [10], in this paper we use an extended version
of the flatness factor for correlated Gaussians, related to the
extended notion of the smoothing parameter in [17]. We will
use the notation e (o) for ex (o).

Note that correlations can be absorbed by the lattice in the
sense that ej(VE) = € ss-1,(1), and that ex(vEr) <
ea(v/X2) if X1 and ¥, are positive definite with ¥y > s,
i.e. X1 — X is positive semidefinite.

Definition 2: Given a lattice A and € > 0, the smoothing
parameter’® n.(A) is the smallest s = v/2mo > 0 such that
DoateA\ {0} e=™ 7" INI* < ¢ where A* is the dual lattice.
For scalar covariance matrices the smoothing parameter is
related to the flatness factor as follows [10]:

V2mo =n.(A) if and only if ex(ol) =e.

f\/ic(z) = Vz € (Ck.

max )
zER(N)

More generally, for ¥ > 0 we can say that
V2rE = n(A) if ex(X) <e. (1

The smoothing parameter is upper bounded by the minimum
distance of the dual lattice [15]: for e = 272,

2vk
ne(A) < MAT

2

Finally, given ¢ € CF and o > 0, we define the discrete
Gaussian distribution over the (shifted) lattice A —c C C* as
the following discrete distribution taking values in A — c:

fys(A—¢
DAfc,\/f()‘_c) = %

The following result is a consequence of [17, Theorem 3.1]
and extends Lemma 8 in [10].

IThis inner product corresponds to identifying C* with R2* with
the canonical real inner product, through the isometry ¢(z1,...,2;) =
(R(21),- -, R(2k), S(2k), - - -, (21)). Note also that if & = XT, then

(2,%2) = RNE='Zz) = 21Tz = ¢(=)TZpe(z), where Tp =
RE) —S(2) . . . -
(C\‘y (=) R(E) ) In particular, the properties of real Gaussian distribu-

tions carry over to circularly symmetric complex Gaussian distributions.

’Note that we define the smoothing parameter per complex dimension,
which differs by a factor v/2 from the definition in [15]. We have adjusted
the bounds on n(A) accordingly.

Lemma 1: Let X; be sampled according to the discrete
Gaussian distribution D, , . s and X2 be sampled according
to the continuous Gaussian f vy Let X = ¥ + Yo and
Yl=urt 4 uh 0

eaA(VE) <e<1/2, 3)
then the distribution g of X = X; + X3 is close to f 5

V(gv f\/X‘T)) < 4e,
where V(, ) is the L' distance.

B. Ideal lattices from number fields with constant root dis-
criminant

Let F be a number field of degree [F' : Q] = n, with ring of
integers Op. We denote by dp the discriminant of the number
field. We define the codifferent of F' as

Of ={z € F : Trp)g(20r) C Z}.

The codifferent is a fractional ideal, that is, there exists some
integer a such that aO} is a proper ideal of O, and its
algebraic norm is the inverse of the discriminant:

N(OY) = 1/dp. )

We focus on the case of totally complex extensions F'/Q
of degree n = 2k. The relative canonical embedding of
F into CF is given by ¢(z) = (o1(z),...,01(x)), where
{o1,...,0} is a set of Q-embeddings F' — C such that we
have chosen one from each complex conjugate pair.

Then A = ¢(OF) is a lattice in C*. The codifferent embeds
as the complex conjugate of the dual lattice:

A* = 25(0). 5)

Using (2), we obtain

Vk
ne(A) < N vate (6)
M (¥(Op))
Due to the arithmetic mean - geometric mean inequality, for
any fractional ideal Z of Op, A (¥(Z)) > VE(N(Z))2*. In
particular, from (4) we get

MWBOR) = M(B(O%) > VE/ [de| . (D)

Combining equations (6) and (7), we find that the smoothing
parameter of A is upper bounded by the root discriminant [18,
Lemma 6.5]: given € = 27 2%,

ne(A) < |dp|?F . 8)

The following theorem by Martinet [13] proves the exis-
tence of infinite towers of totally complex number fields with
constant root discriminant:

Theorem 2.1: There exists an infinite tower of totally com-
plex number fields {F}} of degree 2k =5 - 2, such that

1
ldr, |?* =G, )
for G ~ 92.368.



We now focus on the corresponding lattice sequence A*)
CF. Their volume is a function of the discriminant:

Vol(A®)) = 2% /|dp| = 27FG*

Let € = 2725 From Theorem 2.1 and equation (8),

(10)

n(AW) < |dp|F = G.

flatness factor is a decreasing function of o,

Vo’>i

Vor’

III. FADING WIRETAP CHANNEL

EAR) (U) < 22k,

(1)

We consider an ergodic fading channel model where the
outputs Y* and ZF at Bob and Eve’s end are given by

{Yi = Hyp. i X; + W,

i=1,....k
Z; = He ;: Xi +We g,

(12)

where Wy, ;, W, ; are i.i.d. complex Gaussian vectors with zero
mean and variance o7, o2 per complex dimension. The input

XF satisfies the average power constraint

k

1

T Z X;|* < P.
=1

We suppose that Hy, ;, H, ; are isotropically invariant channels
such that the channel capacities C}, and C, are well-defined
and the weak law of large numbers holds: V4 > 0,

1< P
. 2
kl;rr;OP{‘k E_lln (1-1— 0713 [P i > -

1 P
. 2
P2 (1 ) .

All rates are expressed in nats per complex channel use.
We suppose that Alice has no instantaneous CSI (apart from
knowledge of channel statistics), and Bob and Eve have perfect
CSI of their own channels. A confidential message M and an
auxiliary message M’ with rate R and R’ respectively are en-
coded into X*. We denote by M the estimate of the confidential
message at Bob’s end. With slight abuse of notation, we define
He = diag(Hevl, ey He,k), Hb = diag(Hb’l, ey Hb,k)-

Definition 3: A coding scheme achieves strong secrecy if

lim P{M # M} =0,
k—o0

13)

> 5} =0, (14)

> 5} =0. (15)

(reliability condition)

lim I(M;Z* H,) =0.

(secrecy condition)
k—o0

The secrecy capacity for this wiretap model is given by [9]

= Cy — C,. (16)

Let A®) < C* be the lattice sequence defined in the
previous section. We consider scaled versions A, = a, A%,
A, = a.A®) guch that A, C A, and |Ap/Ae| = eFE.

We consider the secrecy scheme in [10], where each con-
fidential message m € M = {1,...,eF} is associated to
a coset leader A,, € Ay N R(A.) for a fundamental region

R(A.). To transmit the message m, Alice samples X* from
the discrete Gaussian Dj, 1, o, With o2 = P. It follows
from [10, Lemma 6] that as k — oo, the variance per complex
dimension of X* tends to P provided that

Jim ea,(VP) = 0. (17)

From [10, Lemma 7], the information rate R’ of the auxiliary
message (corresponding to the choice of a point in A.) is

R’ ~1In(reP) — %ln V(Ae) = In(meP) — %ln(ang*ka).

Therefore, we have
o _ 2meP

Qe ™ GeR'
From (11), ep,(VP) = €qa(VP) =

i VP G
provided that w > Nort

R’ > In(eG) = In(G) + 1.

(18)

en (\/13/a6> =0
and (17) holds for

19)

We now state the main result of the paper which will be
proven in the following sections:

Proposition 1: The proposed wiretap coding scheme with
02 = P achieves strong secrecy for any message distribution
pwm (and thus semantic security) for any secrecy rate

R<Cy,—C.,—In (2G2/7r) .
A. Secrecy

The received lattice at Eve’s end is H.A. Since M and H,.
are independent, the leakage can be expressed as follows:

I(M; Z* H,) = I(M; H,) + I(M; Z*|H,) = I(M; Z*[H,) =
= En, [I(pmn,; pzepn.)] = En, [L(pm; pzen,)]

We want to show that the average leakage with respect
to the fading is small. In order to do so, we will show
that the output distributions pzky, are close to a Gaussian
distribution with high probability. For a fixed realization H, =

diag(he1, .-y hek), HXF ~ DHeAE+HEAm,\/m\/?' Us-

ing Lemma 1 with ¥y = H . HI P, $3 = 021, we have
V(pzria,, fo) < € (20)

provided that

eman. (VE) =& gy, (1) Se< % @
where we define g = H HIP+02I, 27! = %‘Fé'

If (20) holds, then it follows from [10, Lemma 2] that
[(pm; pzr |, ) < 8keR — 8elog 8e. (22)

Recalling the upper bound (2), we have

ey p— 23)

A (VE(HD) A7)
Using (5) and the arithmetic mean - geometric mean inequality,

M(VEH]DTIAY) = 2] (VE(H]) T (0F) =



= I'l’lln
weox\{O}

b Po?
>2 min \/EH —_—
zeOp\{0} =5 \ 02 + P |he il
B 2\/%\/1506
Gy (02 + P lhe )2
The last equality follows from the fact that

|[vEwh 9@ 2

x"“
M»—A

H |oi(x

i=

in I o = min [ Nigsglo)|*
min J(z)|* =  min x -
veoijop LLiz1 17 seovjoy | K@
1 1
= N(O})F = ——— = —. (24)

Replacing in (23), we find that for e = 272,
k
ne(VETHA) <G

1=

Equivalently, in terms of flatness factor we have

k 2\ L
GIIizy (02 + P fhel”) ) -

(024 Plhe")7 /VPo..

V271 Po.

for fixed fading H.. Given 6 > 0, the lawlof large numbers
(15) implies that P {Hf_l (1 n U% |h€’i|2)z - eCe+6} o
Now suppose that

EV/S—TH A (

Ceots
a.Ge 2

(25)
We can bound the leakage as follows:

En, [I(pm; pzejn, )] <
2

k
<p{I[(1+ 0t

i=1

I(pm; pzr . ‘ H(H‘P‘Zi“')%g eCF‘H] (26)

)% > ece”}(kR)Jr

+ En,

The first term vanishes when k£ — oo.
Now consider the second term. Under the hypothesis that

1T 1(1+ 2‘h61‘ )k < %+ we have

k 2,1
GH1:1(03 + P hei|”) 2" < 92k
v2rPo, -

Using (22), the second term is also vanishing and the lattice
coding scheme achieves strong secrecy over Eve’s channel.
From the conditions (25) and (18), we find that in order to
have strong secrecy we need eGe® 0 < e®, or equivalently
R’ > C.+ 0+ 141n(G). Since this is true for any § > 0, we
find that a rate

S EysTTHA <

R > C.+1+In(G). 27)

is required for strong secrecy.

Ceots
Ge : k
evs=aa. (D) = o vsmip (D) S €ys=rpa ( oD > < Pparameter o if Vt € C%,

Remark 1: Although we focused on ergodic fading, the
same scheme achieves strong secrecy over the Gaussian and
static fading wiretap channels. In fact, for these models the
first term in (26) is zero, and the second term still vanishes.

B. Reliability
Let y = Hpyx + w; be the received signal at Bob. We

suppose that Bob performs MMSE-GDFE preprocessing as
in [6]: let pp = 2, and consider the QR decomposition

e (£)-(3)
v Q@

Observe that [ly — Hyx||” + L [[x|* = HQly RxH +C,
where C' is some constant which does not depend on x.
Since the distribution of x is not uniform, MAP decoding is
not equivalent to ML. However, similarly to [10, Theorem 5],
for fixed H; which is known at the receiver, the result of MAP
decoding can be written as

Xmap = argmax p(x|y) = argmax p(x)p(y|x) =

XENy XENy
gz — L= Hll®
= argmaxe 2P e =

xEA
2

= argmin ( IxI1* + ly — Hex|| ) = argmin HQ y— RxH

xXENy xXENy
Thus, Bob can compute

Y =Qly = Rx+v,
where v = Qlw;, — —~(R™")™x [6]. The noise v is the
sum of a discrete Gaussian w1th distribution D), s, where
r = L i =2 i

A*pb( DAy, X1 = ’“(RR)
Gaussian random variable f Nt where Yo = anlQI.

For any message m € M, P,(m) < P{v ¢ V(RA;)} and
consequently the same upper bound holds for the the average:

P.= Y Pum)p(m) <P{v ¢ V(RA,)}.

meM

, and of a continuous

Although v is not Gaussian, we will show that its tails behave
similarly to a Gaussian random variable.
A random vector z taking values in C¥ is 5-sgtbgaussian with
E[e®(t'2)] < eS¢ T It1° Note that
for a complex Gaussian vector z ~ N (0, %), E[eR(t'2)] =
e3t!St
Suppose that a fixed message m has been transmitted, so that
Xk~ Dy i, 7 The following result holds (see also [14,
Lemma 2.8]:).

Lemma 2: Let Xk ~ Dp4e,s be a k-dimensional discrete
complex Gaussian random variable, and let A € M;(C).
Suppose that €5 (o) < 1. Then Vt € CF,

B[R 4% < <1 + 6A(">> e AT,

1—ea(0)

It follows that X* is J-subgaussian with parameter /P for
5§ = 1n(1+f en,(VP) < 1, which is

) provided that € =



guaranteed by (19). This is weaker than the condition (27)
we have already imposed for secrecy, so it doesn’t affect the
achievable rate. Consequently, for the equivalent noise v,

E[RCV) R {e%(tTQIwb)} E |:e—§R<plth(R1)Tx):| <

o2
< <1 + 6) cFt (g (RTIRT e (1 * 6) A

1—e€
This implies that the tails of v vanish exponentially fast: from
[7, Theorem 2.1], it follows that V¢ > 0,

P{IIVI* /hof > 1+ 2y/t/k+2th < e,

, we find that Vn > 0,

1—c¢

In particular, taking n =
P{HVHQ kot >1+ n} < efemhn’,
Let dr denote the minimum distance in the received lattice:

k k
. 2 2 : 2
d% = )\611{151{1{0} E |Ri)\i| = Oég |R102($)| 2

i=1

> i k h/7, (2 12
H( i) Tt
Zaka( ) : (28)

The previous bound follows from the AM-GM inequality and
the fact that the minimum non-zero norm of the code is 1. We
use the same argument as in [11] to bound F,: given n > 0,

P <P{vé V(RA)} <P{v¢ B(dr/2)} <

|| || dh
>
1+n,+P 4k;

Since the first term vanishes exponentially fast when k£ — oo,
we can focus on the second term. From (28), the second term
in (29) is upper bounded by

o? k 1 G
P 471)2 <+|hb,i|2> <l+n,=
Tb i=1 \Po

k
B 1 9 4P(1+n) B

b

k
1 2 2Geft (1 +1)
z ;_1 In (1 + o [ i ) <In ( ;

min
mEOF\{O}

<P

(29)

=P
me

recalling that o} = é’fﬁ; from (18) and the fact that

|Ap/Ae| = eFE. Since the left hand side tends to Cj, when
k — oo due to (14), the last expression vanishes if R, <
Cy —In (2¢) — In(1 4 n). Since 7 is arbitrary, any rate

Ry =R+ R < Cy —ln(QG/WQ)

is achievable for Bob. From equations (27) and (30), the pro-
posed coding scheme achieves strong secrecy for any message
distribution (and thus semantic security) for any secrecy rate

R<Cy—Ce—In(2G*/7).

(30)

This concludes the proof of Proposition 1.
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