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Abstract

This paper investigates the problem of observer design for a general class of linear singular time-delay systems, in which the
time delays are involved in the state and its derivatives, the output and the known input (if there exists). The involvement of the
delay could be multiple which however is rarely studied in the literature. Sufficient conditions are proposed which guarantees the
existence of a Luenberger-like observer for the general system.
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1. Introduction

Singular systems (known also as Descriptor
systems/Algebraic-Differential systems) enable us to model
many physical, biological and economical systems Camp-
bell (1982), which has been well discussed in Wang et al.
(2014). For such systems, time delay can be also encountered
Niculescu and Rasvan (2000). Thus, the singular time-delay
systems have been extensively analyzed during last decade.
Lots of researches are focused on the stabilization of singular
time-delay systems, such as H∞ control, observer-based control
and so on Gu et al. (2013).

Concerning the concepts of observability and observer for
the singular time-delay systems, a direct adaptation of exist-
ing results on observability and observers from regular systems
to singular systems is not immediate due to the fact that they
involve both differential and algebraic equations. Up to now,
most of the existing works are based on the simple case with
only one delay in the state, i.e. Eẋ(t) = A0x(t) + A1x(t − h)
where the input could be also involved. For this simple case,
a general solution was derived in Wei (2013), based on which
a sufficient condition for exact observability in finite time was
deduced. When designing an observer for the mentioned simple
linear singular time-delay systems, a few results can be found
in the literature. In Feng et al. (2003), three kinds of observers
(functional observer, reduced-order observer and full-order ob-
server) are studied for the above simple case. In Ezzine et al.
(2011), a functional observer for singular time-delay systems
with unknown inputs was presented, and the existence condi-
tion of such observer and the gain implemented in the design
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are obtained by solving LMIs. A Luenberger-like observer is
proposed in Khadhraoui et al. (2014) for the linear singular
time-delay systems with unknown inputs not affected by time
delays.

In this paper, we deal with a quite general linear singular
time-delay system of the form: ∑

l
i=0 Eiẋ(t− ih) = ∑

k
i=0 Aix(t−

ih), which in fact covers different types of time-delay system
(singular or not, with or without neutral term). For such a pre-
sentation, there exist lots of applications, such as LC electrical
lines Brayton (1968) and so on. More concrete applications can
be found in Niculescu (2001). For such a general form, ob-
servability analysis and observer design become more difficult.
Recently, inspired by the well-known Silverman and Molinari
algorithm (see Silverman (1969); Molinari (1976)) to analyze
the observability for linear systems (with or without unknown
input), a similar and checkable sufficient condition was pro-
posed in Bejarano and Zheng (2016a) to analyze the observ-
ability for this general singular time-delay systems. As far as
we know, the only work on the observer design for this general
case is Perdon and Anderlucci (2006), where a Luenberger-like
observer is proposed by using a virtual discrete time system
with the matrices of the originally considered continuous-time
system. In this method, a geometric notion of conditioned in-
variant submodule is introduced for this class of systems over
a ring and a design procedure is presented. However, the suffi-
cient condition deduced in that paper is difficult to be checked,
since it highly depends on the assumption of the existence of
Hurwitz polynomial. The contributions of this paper are as fol-
lows. Firstly, the class of the studied systems is quite general
(we allow multiple delays both in the x(t) and its derivative),
which in fact can cover four different classes of systems. As
far as we known, there exist some methods to eliminate (or re-
duce the degree of) the delay, such as Lee et al. (1982), Ger-
mani et al. (2001) and Garate-Garcia et al. (2011). It has been
proven in Garate-Garcia et al. (2011) that the elimination or the
reduction of delay degree via a bicausal transformation with
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the same dimension is possible if some conditions on A(δ ) and
B(δ ) are satisfied. In other words, the elimination or the reduc-
tion of delay degree is not always possible. This issue has been
highlighted in Zheng et al. (2015); Bejarano and Zheng (2016c,
2014, 2016b). Therefore, allowing multiple delays in the state,
in the derivative, and in the output is an essential generalization.
The second contribution of this paper is to deduce a checkable
sufficient condition such that a Luenberger-like observer exists
for such a general linear singular time-delay system. More-
over, it provides as well a constructive way to synthesize the
proposed observer.

2. Notations and problem statement

In this paper, we consider the following class of linear sys-
tems with commensurate delays:

ke
∑

i=0
Ẽiẋ(t− ih) =

ka
∑

i=0
Ãix(t− ih)

ỹ(t) =
kc
∑

i=0
C̃ix(t− ih)

(1)

where the vector x(t) ∈ Rn, the system output vector ỹ(t) ∈
Rp, h represents the basic delay, the initial condition ϕ (t) is
a piece-wise continuous function ϕ (t) : [−kh,0] → Rn (k =
max{ka,kc,ke}); thereby x(t) = ϕ (t) on [−kh,0]. Ãi, B̃i and
Ẽi are matrices of appropriate dimension with entries in R. It is
worth noting that the studied system of the form (1) is quite gen-
eral, and it covers different types of time-delay systems. More
precisely:

• if ke = 0 and Ẽ0 = I, then system (1) becomes the classical

linear time-delay system of the form ẋ =
ka
∑

i=0
Ãix(t− ih);

• if ke = 0 and the rank of Ẽi is not full, then system (1) is
equivalent to a linear singular time-delay systems of the

form Ẽ0ẋ(t) =
ka
∑

i=0
Ãix(t− ih);

• when ke > 0 and Ẽ0 = I, then system (1) can be written as

ẋ(t) =
ka
∑

i=0
Ãix(t− ih)−

ke
∑

i=1
Ẽiẋ(t− ih) which is typically a

linear time-delay neutral system;

• moreover, if ke > 0 and the rank of Ẽ0 is not full, system (1)
represents a general linear singular time-delay neutral sys-

tem of the form Ẽ0ẋ(t) =
ka
∑

i=0
Ãix(t− ih)−

ke
∑

i=1
Ẽiẋ(t− ih).

Nevertheless, the form (1) is so general that it might include
as well advanced systems for which the existence of the so-
lution cannot be always guaranteed. In order to exclude such
ill-conditioned systems, it is assumed in this paper that system
(1) admits at least one solution. It is worth noting that the exis-
tence of a unique solution is not necessary for the observability
analysis and the observer design. Take any system with several
solutions as an example, this issue can be easily identified if the
output of this system is all the state. In this case, the system is
always observable even if several solutions exist.

Remark 1. For the special class of systems mentioned above,
there exist some results on observer design in the literature, for
example Darouach and Boutayeb (1995), Hou et al. (2002) and
Ezzine et al. (2011), and lots of the existing works consider only
one delay in x(t), i.e. ke = kc = 0 and ka = 1 in (1). However, for
a linear system with commensurate delays of the general form
(1) covering a large class of linear singular (or not) time-delay
neutral (or not) systems, to the best of our knowledge, rare re-
sults on observer design have been reported in the literature.
Therefore, the problem of designing an observer is still an open
problem for the general form (1).

Motivated by this fact, this paper proposes a Luenberger-like
observer and sufficient conditions are deduced which guarantee
the existence of such an observer.

In the following, for the purpose of simplifying the analy-
sis, let us introduce the delay operator δ : x(t)→ x(t−h) with
δ kx(t) = x(t− kh), k ∈ N0. Then the following notations will
be used in this paper. R is the field of real numbers. The set of
positive integers is denoted by N. In for n ∈ N means the iden-
tity matrix of order n. R [δ ] is the polynomial ring over the field
R. Rn [δ ] is the R [δ ]-module whose elements are the vectors
of dimension n and whose entries are polynomials. By Rq×s [δ ]
we denote the set of matrices of dimension q× s, whose entries
are in R [δ ]. For a matrix M (δ ), rankR[δ ]M (δ ) means the rank
of the matrix M (δ ) over R [δ ]. M(δ ) ∼ N(δ ) means the sim-
ilarity between two polynomial matrices M(δ ) and N(δ ) over
R[δ ], i.e. there exist two unimodular matrices U1(δ ) and U2(δ )
over R[δ ] such that M(δ ) =U1(δ )N(δ )U2(δ ).

After having introduced the delay operator δ , system (1) may
be then represented in the following compact form:{

Ẽ(δ )ẋ(t) = Ã(δ )x(t)
ỹ(t) = C̃ (δ )x(t)

(2)

where Ã(δ ) ∈ Rn̄×n[δ ], C̃ (δ ) ∈ Rp×n[δ ] and Ẽ (δ ) ∈ Rn̄×n[δ ]
are matrices over the polynomial ring R [δ ], defined as Ã(δ ) :=
ka
∑

i=0
Ãiδ

i, C̃ (δ ) :=
kc
∑

i=0
C̃iδ

i and Ẽ (δ ) :=
ke
∑

i=0
Ẽiδ

i. Without loss

of generality, it is thus assumed in this paper that n̄ ≤ n,
rankR[δ ]Ẽ(δ ) = q≤ n̄ and rankR[δ ]C̃(δ ) = p.

Remark 2. The above assumptions are not restrictive.
rankR[δ ]Ẽ(δ ) = q ≤ n̄ ≤ n is due to the fact that the stud-
ied system might be singular or neutral. Moreover, if
rankR[δ ]C̃(δ ) = p̃ < p, we can always eliminate the dependent
outputs of (2). More precisely, if rankR[δ ]C̃(δ ) = p̃ < p,
then there exists a polynomial matrix U(δ ) ∈ R p̃×p[δ ] such
that U(δ )C̃(δ ) ∈ R p̃×n[δ ] is of full row rank. In this case,
we can rewrite the output as U(δ )ỹ = U(δ )C̃(δ )x with
rankR[δ ]U(δ )C̃(δ ) = q̃.

3. Definition, assumptions and preliminary result

For each instant t, the available measurements are only y(t)
and its delayed values which can be used to estimate x(t). We
cannot in fact utilize the future value of y(t), otherwise it is not
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causal. Therefore, it is desired to use only the actual and the
past information (not the future information) of the measure-
ment to design an observer for time-delay systems due to the
requirement of the causality. Thus the following definition of
backward observability is given.

Definition 1. System (2) is said to be backward observable on
[t1, t2] if and only if, for each τ ∈ [t1, t2] there exist t̄1 and t̄2 ≤ τ

such that y(t) = 0 for all t ∈ [t̄1, t̄2] implies x(τ) = 0.

The above definition of backward observability is related to
the final observability given Lee and Olbrot (1981), and it can
be interpreted that x(t) depends only on the previous values of
y(t), its time delayed values, and its derivatives.

Since we are going to analyze system (2) which is described
by the polynomial matrices over R[δ ], let us firstly give the
following definition of unimodularity over R[δ ].

Definition 2. Antsaklis and Michel (2007) A polynomial matrix
A(δ ) ∈ Rn×q[δ ] is said to be left (or right) unimodular (or in-
vertible) over R[δ ] if there exists A−1

L (δ ) ∈ Rq×n[δ ] with n≥ q
(or A−1

R (δ ) ∈ Rq×n[δ ] with n ≤ q), such that A−1
L (δ )A(δ ) =

Iq×q (or A(δ )A−1
R (δ ) = In×n). A square matrix A(δ ) ∈ Rn×n[δ ]

is said to be unimodular (or invertible) over R[δ ] if A−1
L (δ ) =

A−1
R (δ ) = A−1(δ ).

It is well known that for any polynomial matrix D(δ ) ∈
Rp×m[δ ] with rankR[δ ]D(δ ) = r ≤ min{p,m}, there exists a
unimodular matrix U(δ ) over R [δ ] such that U (δ )D(δ ) =[

D̄(δ )
0

]
where rankR[δ ]D̄(δ ) = rankR[δ ]D(δ ) and D̄(δ ) is of

full row rank over R [δ ]. Also, there exist two unimodular ma-
trices U (δ ) and V (δ ) over R [δ ] such that D(δ ) is reduced to
its Smith form, i.e.,

U (δ )D(δ )V (δ ) =

[
SD(δ ) 0

0 0

]
(3)

with SD(δ ) being a diagonal matrix as SD(δ ) =

diag{ψ1
D(δ ), · · · ,ψ

r
D(δ )} where

{
ψ i

D(δ )

}
are the invari-

ant factors of D(δ ). For simplicity, let us denote
InvS [D(δ )] =

{
ψ i

D(δ )

}
1≤i≤r

as the set of its invariant factors

of the Smith form of D(δ ), the following result, adapted from
the result on the left unimodularity stated in Hou et al. (2002),
is obvious.

Lemma 1. For any polynomial matrix D(δ ) ∈ Rp×m[δ ], it is
left (or right) unimodular over R[δ ] if and only if the following
conditions are satisfied:

1. rankR[δ ]D(δ ) = m≤ p (or rankR[δ ]D(δ ) = p≤ m );
2. InvS [D(δ )]⊂ R.

Concerning the definition of backward observability, and fol-
lowing the ideas of Silverman (1969) and Molinari (1976), de-
fine

{
Ñk (δ )

}
the matrices generated by the following algo-

rithm for the triple
(
Ẽ(δ ), Ã(δ ),C̃(δ )

)
, proposed in Bejarano

and Zheng (2016a):

• Initialization: Set ∆̃1(δ ), C̃(δ ) and Ñ1 (δ ), ∆̃1 (δ );

• Iteration: For k ≥ 1, there exists a unimodu-

lar matrix S̃k (δ ) =

[
S̃k,1(δ ) S̃k,2(δ )
S̃k,3(δ ) S̃k,4(δ )

]
such

that S̃k (δ )

[
In̄ Ẽ (δ )
0 Ñk (δ )

]
,

[
S̃k,1 (δ ) Λ̃k (δ )
S̃k,3(δ ) 0

]
with rankR[δ ]Λ̃k(δ ) = rankR[δ ]

[
Ẽ(δ )
Ñk(δ )

]
; then set

∆̃k+1(δ ) = S̃k,3(δ )Ã(δ ) and define

Ñk+1(δ ) =

[
Ñk(δ )

∆̃k+1(δ )

]
(4)

With the above algorithm, the following result was stated in
Bejarano and Zheng (2016a).

Lemma 2. Bejarano and Zheng (2016a) If there exists a
least integer k∗ such that Ñk∗+1(δ ) is left unimodular over
R [δ ], then system (2) is backward observable (or the triple(
Ẽ(δ ), Ã(δ ),C̃(δ )

)
is backward observable).

Due to the above result, the following assumption is imposed.

Assumption 1. For system (2) with the triple(
Ẽ(δ ), Ã(δ ),C̃(δ )

)
, there exists a least integer k∗ such

that Ñk∗+1(δ ) defined in (4) is left unimodular over R [δ ].

Let us highlight that the condition imposed in Assumption 1 is
only sufficient but not necessary for system (2) to be backward
observable. However, it becomes to be necessary and sufficient
condition of observability for system (2) without delays.

Since rankR[δ ]Ẽ(δ ) = q ≤ n̄, then there exists a unimodular

matrix Π(δ ) =

[
Π1(δ )
Π2(δ )

]
over R [δ ] such that

Π(δ )Ẽ(δ ) =
[

E(δ )
0

]
Π(δ )Ã(δ ) =

[
A(δ )
A(δ )

] (5)

with E(δ ) ∈ Rq×n[δ ] of full row rank over R[δ ] which is equal
to q. It is worth noting that the choice of Π(δ ) is not unique,
thus different choices of Π(δ ) will give different E(δ ) and
A(δ ). The influence of different choices of Π(δ ) will be an-
alyzed in Section 4. It is obvious that if q = n, then we can
just choose Π(δ ) = In and E(δ ) = Ẽ(δ ). By noting C(δ ) =[

A(δ )
C̃(δ )

]
and y(t) =

[
0

ỹ(t)

]
, system (2) can be rewritten as

follows: {
E(δ )ẋ(t) = A(δ )x(t)

y(t) = C (δ )x(t) (6)

with E(δ ) ∈ Rq×n[δ ], A(δ ) ∈ Rq×n[δ ] and C(δ ) ∈
R(n̄+p−q)×n[δ ].

Lemma 3. If Assumption 1 is satisfied, then the triple
(E(δ ),A(δ ),C(δ )) for system (6) is backward observable.
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Proof. Suppose that there exists a least integer k∗ such that
Ñk∗+1(δ ) defined in (4) is left unimodular over R [δ ]. Applying
the algorithm for system (2) of the triple

(
Ẽ(δ ), Ã(δ ),C̃(δ )

)
,

when k = 1, we have Ñ1(δ ) = ∆̃1(δ ) = C̃(δ ). Due to the fact
that[

In̄ Ẽ (δ )
0 Ñ1 (δ )

]
=

[
Π−1(δ ) 0

0 Ip

][
Π(δ ) Π(δ )Ẽ (δ )

0 Ñ1 (δ )

]
=

[
Π−1(δ ) 0

0 Ip

] Π1(δ ) E (δ )
Π2(δ ) 0

0 Ñ1 (δ )


then there exists a unimodular matrix S̄1(δ ) = S̄1,1(δ ) 0 S̄1,2(δ )

0 In̄−q 0
S̄1,3(δ ) 0 S̄1,4(δ )

 such that

S̄1(δ )

 Π1(δ ) E (δ )
Π2(δ ) 0

0 Ñ1 (δ )

=

 S̄1,1(δ )Π1(δ ) Λ̃1 (δ )
Π2(δ ) 0

S̄1,3(δ )Π1(δ ) 0


with rankR[δ ]Λ̃1(δ ) = rankR[δ ]

[
Ẽ(δ )
Ñ1(δ )

]
. Thus we have

Ñ2(δ ) =

 ∆̃1(δ )
Π2(δ )Ã(δ )

S̄1,3(δ )Π1(δ )Ã(δ )

=

 C̃(δ )
A(δ )

S̄1,3(δ )A(δ )

.

Applying the same algorithm for system (6) of the triple
(E(δ ),A(δ ),C(δ )), when k = 1, we have N1(δ ) = ∆1(δ ) =

C(δ ) =

[
A(δ )
C̃(δ )

]
thus there exists a unimodular matrix ϒ1(δ )

over R [δ ] such that N1(δ ) = ϒ1(δ )

[
Ñ1(δ )
A(δ )

]
. Moreover, by

applying the same matrix S̄1(δ ) obtained above, we have

S̄1(δ )

[
Iq E (δ )
0 C(δ )

]
= S̄1(δ )

 Iq E (δ )
0 A(δ )
0 C̃(δ )

=

 S̄1,1(δ ) Λ̄1 (δ )
0 A(δ )

S̄1,3(δ ) 0


with rankR[δ ]Λ̄1(δ ) = rankR[δ ]

[
E(δ )
C̃(δ )

]
. Thus there exists a

unimodular matrix S1(δ ) over R[δ ] such that

S1(δ )

[
Iq E (δ )
0 C(δ )

]
=

[
S1,1(δ ) Λ1 (δ )
S1,3(δ ) 0

]
=

 S1,1(δ ) Λ1 (δ )
SA

1 (δ ) 0
S̄1,3(δ ) 0


with rankR[δ ]Λ1(δ ) = rankR[δ ]

 E(δ )
A(δ )
C̃(δ )

, which gives

N2(δ ) =

 C(δ )
SA

1 (δ )A(δ )
S̄1,3(δ )A(δ )

. This means that there ex-

ists a unimodular matrix ϒ2(δ ) over R [δ ] such that

N2(δ ) = ϒ2(δ )

[
Ñ2(δ )

SA
1 (δ )A(δ )

]
. By iteration, we can

find the following relation:

Nk+1(δ ) = ϒk+1(δ )

[
Ñk+1(δ )

SA
k (δ )A(δ )

]

where ϒk+1(δ ) is a unimodular matrix over R [δ ]. If there ex-
ists a least integer k∗ such that Ñk∗+1(δ ) is left unimodular over
R [δ ], then Nk∗+1(δ ) is also left unimodular over R [δ ], which
implies that the triple (E(δ ),A(δ ),C(δ )) for system (6) is back-
ward observable.

Assumption 2. For the triple
(
Ẽ(δ ), Ã(δ ),C̃(δ )

)
of system

(2), it is assumed that the following condition:

InvS

 Ẽ(δ ) Ã(δ )
0 Ẽ(δ )
0 C̃(δ )

= InvS

[
Ẽ(δ ) 0

0 In

]
(7)

is satisfied.

Remark 3. When the treated system (2) does not contain any
delay, i.e. the triple

(
Ẽ(δ ), Ã(δ ),C̃(δ )

)
becomes a constant

triple
(
Ẽ, Ã,C̃

)
. The set of invariant factors can be character-

ized by using the rank condition over R. Therefore, the condi-
tion (7) imposed in the above assumption is equivalent to the
following one:

rankR

 Ẽ Ã
0 Ẽ
0 C̃

= rankR

[
Ẽ 0
0 In

]
= n+ rankRẼ

It has been shown in Darouach and Boutayeb (1995) that the
above condition is necessary for the existence of a Luenberger-
like observer. In this sense, the required condition (7) in As-
sumption 2 is not restrictive.

Lemma 4. The condition (7) in Assumption 2 is equivalent to
the following one:

InvS

 E(δ ) A(δ )
0 E(δ )
0 C(δ )

= InvS

[
E(δ ) 0

0 In

]
(8)

Proof. With the decomposition by the unimodular matrix Π(δ )
over R [δ ] defined in (5), we have the following similarity prop-
erty:  Ẽ(δ ) Ã(δ )

0 Ẽ(δ )
0 C̃(δ )

 ∼


E(δ ) A(δ )

0 A(δ )
0 E(δ )
0 C̃(δ )


∼

 E(δ ) A(δ )
0 E(δ )
0 C(δ )


Following the same argument, we have:[

Ẽ(δ ) 0
0 In

]
∼
[

E(δ ) 0
0 In

]
Therefore, the condition (7) in Assumption 2 is equivalent to
(8).

Lemma 5. For system (6), the matrix
[

E(δ )
C(δ )

]
is left unimod-

ular over R[δ ] if and only if Assumption 2 is satisfied for system
(2).
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Proof. According to Lemma 4, it is equivalent to prove that[
E(δ )
C(δ )

]
is left unimodular over R[δ ] if and only if (8) is sat-

isfied.
Since E(δ ) is full row rank over R[δ ] which is equal to q, de-

noting by SE(δ ) = diag{ψ1
E(δ ), · · · ,ψ

q
E(δ )} the diagonal matrix

of the invariant factors of E (δ ), then (8) can be rewritten as:

InvS

 SE(δ ) A(δ )
0 E(δ )
0 C(δ )

= InvS

[
SE(δ ) 0

0 In

]
The above equation implies that

rankR[δ ]

 SE(δ ) A(δ )
0 E(δ )
0 C(δ )

= rankR[δ ]

[
SE(δ ) 0

0 In

]
(9)

Therefore, we have:

rankR[δ ]

[
E(δ )
C(δ )

]
= n.

Denote SEC(δ ) = diag{ψ1
EC(δ ), · · · ,ψ

n
EC(δ )} as the diagonal

matrix of the invariant factors of
[

E(δ )
C(δ )

]
, then (9) becomes

rankR[δ ]

[
SE(δ ) A(δ )

0 SEC(δ )

]
= rankR[δ ]

[
SE(δ ) 0

0 In

]
The above equation implies that

InvS

[
E(δ )
C(δ )

]
⊂ R.

According to Lemma 1, we can then state that
[

E(δ )
C(δ )

]
is left

unimodular over R[δ ] if and only if Assumption 2 is satisfied.

Corollary 1. If Assumption 2 is satisfied, then there exists a
unimodular matrix P(δ )∈R(n̄+p)×(n̄+p)[δ ] over R [δ ] such that

P(δ )
[

E(δ )
C(δ )

]
=

[
In
0

]
.

Proof. As stated in Lemma 5, if Assumption 2 is satisfied, then

we have rankR[δ ]

[
E(δ )
C(δ )

]
= n. and InvS

[
E(δ )
C(δ )

]
⊂R. Thus,

there exists a unimodular matrix SEC (δ ) over R [δ ] that trans-

forms
[

E(δ )
C(δ )

]
into the following Hermite form:

SEC(δ )

[
E(δ )
C(δ )

]
=

[
Q̃(δ )

0

]

where rankR[δ ]

[
E(δ )
C(δ )

]
= n and Q̃(δ ) ∈ Rn×n[δ ] is of

full rank over R[δ ]. Since
[

E(δ )
C(δ )

]
is left unimod-

ular over R[δ ], then Q̃(δ ) is unimodular over R[δ ] as

well, which implies that there exists Q̃−1(δ ) such that
Q̃−1(δ )Q̃(δ ) = In. Therefore, for the left unimodular matrix[

E(δ )
C(δ )

]
over R[δ ], there exists a unimodular matrix P(δ ) =[

P1(δ ) P2(δ )
P3(δ ) P4(δ )

]
=

[
Q̃−1(δ ) 0

0 In̄+p−n

]
SEC(δ ) over R [δ ],

with P1(δ ) ∈ Rn×q[δ ], P2(δ ) ∈ Rn×(n̄+p−q)[δ ], P3(δ ) ∈
R(n̄+p−n)×q[δ ] and P4(δ ) ∈ R(n̄+p−n)×(n̄+p−q)[δ ], such that

P(δ )
[

E(δ )
C(δ )

]
=

[
In
0

]
, i.e., the following equations:

P1(δ )E(δ )+P2(δ )C(δ ) = In
P3(δ )E(δ )+P4(δ )C(δ ) = 0 (10)

are always satisfied.
In the following, let us denote

Ā(δ ) = P1(δ )A(δ ) ∈ Rn×n[δ ] (11)

and

C̄(δ ) =

[
P3(δ )A(δ )

C(δ )

]
∈ R(2n̄−n−q+2p)×n[δ ] (12)

Then define the following polynomial matrix over R[δ ]:

Ōl(δ ) =


C̄(δ )

C̄(δ )Ā(δ )
...

C̄(δ )Āl−1(δ )

 ∈ R(2n̄−n−q+2p)l×n[δ ] (13)

where l ∈ N, and we arrive to the following lemma.

Lemma 6. Suppose Assumptions 1 and 2 are both satisfied for
system (2), then there exists a least integer l∗ ∈ N such that
Ōl∗(δ ) defined in (13) is left unimodular over R [δ ].

Proof. If Assumption 2 is satisfied, then according to Lemma 5

the matrix
[

E(δ )
C(δ )

]
is left unimodular over R[δ ]. Moreover,

if Assumption 1 is satisfied, i.e. there exists a least integer k∗

such that Ñk∗+1(δ ) for (2) is left unimodular over R [δ ], then
Lemma 3 ensures that there exists a least integer k∗ such that
Nk∗+1(δ ) for (6) is left unimodular over R [δ ] when applying
the proposed algorithm.

For system (6), note now ∆1(δ ) = C(δ ), N1(δ ) = ∆1(δ ).

Since
[

E(δ )
C(δ )

]
is left unimodular over R [δ ], then there ex-

ists a unimodular matrix P(δ ) =
[

P1(δ ) P2(δ )
P3(δ ) P4(δ )

]
over R [δ ]

such that (10) is satisfied. Set S1(δ ) = P(δ ), we have

S1(δ )

[
Iq E(δ )
0 N1(δ )

]
= S1(δ )

[
Iq E(δ )
0 C(δ )

]
=

[
P1(δ ) In
P3(δ ) 0

]
Then we have ∆2(δ ) = P3(δ )A(δ ), and

N2(δ ) =

[
∆1(δ )
∆2(δ )

]
=

[
C(δ )

P3(δ )A(δ )

]
5



Since
[

E(δ )
C(δ )

]
is left unimodular over R [δ ], then E(δ )

C(δ )
P3(δ )A(δ )

 =

[
E(δ )
N2(δ )

]
is also left unimodular over

R [δ ], thus there exists a unimodular matrix S2(δ ) = P1(δ ) P2(δ ) 0
P3(δ ) P4(δ ) 0

P3(δ )A(δ )P1(δ ) P3(δ )A(δ )P2(δ ) −In̄+p−n

over R [δ ]

such that

S2(δ )

[
Iq E(δ )
0 N2(δ )

]
=

 P1(δ ),P2(δ ) 0
P3(δ ),P4(δ ) 0

P3(δ )A(δ ) [P1(δ ),P2(δ )] −In̄+p−n

 Iq E(δ )
0 C(δ )
0 P3(δ )A(δ )


=

 P1(δ ) In
P3(δ ) 0

P3(δ )A(δ )P1(δ ) 0


thus we have ∆3(δ ) =

[
P3(δ )A(δ )

P3(δ )A(δ )P1(δ )A(δ )

]
, and

N3(δ ) =

[
N2(δ )
∆3(δ )

]
=

 C(δ )
P3(δ )A(δ )

P3(δ )A(δ )P1(δ )A(δ )

. By induc-

tion, for k ≥ 2, if Assumption 2 is satisfied we have

Nk+1(δ ) =


C(δ )

P3(δ )A(δ )
...

P3(δ )A(δ ) [P1(δ )A(δ )]
k−1


Now, if there exists a least integer k∗ such that Ñk∗+1(δ ) de-

fined in (4) for (2) is left unimodular over R [δ ], it implies that,
according to Lemma 3,

Nk∗+1(δ ) =


C(δ )

P3(δ )A(δ )
...

P3(δ )A(δ ) [P1(δ )A(δ )]
k∗−1


is left unimodular over R [δ ]. Since

Ōk∗(δ ) =


C̄(δ )

C̄(δ )Ā(δ )
...

C̄(δ )Āk∗−1(δ )

∼


Nk∗(δ )
C(δ )P3(δ )A(δ )

...
C(δ ) [P3(δ )A(δ )]

k∗


thus Ōk∗(δ ) is left unimodular over R [δ ].

With the above lemma, we can state the following result.

Lemma 7. If there exists a least integer l∗ ∈N such that Ōl∗(δ )
defined in (13) is left unimodular over R [δ ] , then there exists a
matrix Γ(δ ) and a left unimodular matrix T (δ ) over R [δ ] such
that T (δ )

[
Ā(δ )−Γ(δ )C̄(δ )

]
T−1

L (δ ) is constant (independent
on δ ) and Hurwitz.

Proof. The proof is based on the results stated in Hou et al.
(2002) in which it has been proven that there exists a left uni-
modular matrix T (δ ) over R [δ ] such that

T (δ )Ā(δ )T−1
L (δ ) = A0 +F(δ )C0

C̄(δ )T−1
L (δ ) =C0

(14)

where F(δ ) =
[
FT

1 (δ ), · · · ,FT
l∗ (δ )

]T and

A0 =


0 I2n̄−n−q+2p 0 · · · 0
0 · · · I2n̄−n−q+2p · · · 0
...

...
...

. . .
...

0 · · · 0 · · · I2n̄−n−q+2p
0 0 0 · · · 0


C0 =

[
I2n̄−n−q+2p 0 · · · 0

]
(15)

if and only if Assumption 2 is satisfied. Moreover, the matrix
T (δ ) is given by:{

T1(δ ) = C̄(δ )

Ti+1(δ ) = Ti(δ )Ā(δ )−Fi(δ )C̄(δ ), for 1≤ i≤ l∗−1
(16)

with Fi(δ ) being determined through the following equation:

[Fl∗(δ ), · · · ,F1(δ )] = C̄(δ )Āl∗(δ )
[
Ōl∗(δ )

]−1
L (17)

Obviously, the pair (A0,C0) is observable, thus there exists a
constant matrix Γ0 such that (A0−Γ0C0) is Hurwitz. There-
fore, if Assumption 2 is satisfied, we have

T (δ )
[
Ā(δ )−Γ(δ )C̄(δ )

]
T−1

L (δ ) = A0 +F(δ )C0−T (δ )Γ(δ )C0

By choosing Γ(δ ) = T−1
L (δ ) [F(δ )+Γ0], we obtain

T (δ )
[
Ā(δ )−Γ(δ )C̄(δ )

]
T−1

L (δ ) = A0−Γ0C0 (18)

which is Hurwitz, independent of the time-delay.

4. Observer and design procedure

Based on the deduced result, we are ready to present our main
result.

Theorem 1. Suppose Assumptions 1 and 2 are both satisfied
for system (2), then there exist the following matrices:

N(δ ) = P1(δ )A(δ )−M(δ )P3(δ )A(δ )−H(δ )C(δ )
K(δ ) = P2(δ )−M(δ )P4(δ )
L(δ ) = H(δ )+N(δ )K(δ )

(19)

where Pi(δ ) for 1≤ i≤ 4 are defined in (10) and[
H(δ ) M(δ )

]
= T−1

L (δ ) [F(δ )+Γ0] (20)

with T−1
L (δ ) and F(δ ) being defined in (16) and (17), and

Γ0 being a constant matrix which makes (A0−Γ0C0) Hurwitz,
such that the following dynamical system:{

ẇ = N(δ )w+L(δ )y
x̂ = w+K(δ )y (21)

is an exponential observer for system (2).
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Proof. As we have proved that, if Assumption 2 is satisfied,
then there exists a matrix P(δ ) such that (10) is satisfied. De-
note e = x− x̂, then

e = [In−K(δ )C(δ )]x−w

which gives:

ė = [In−K(δ )C(δ )] ẋ− ẇ

By choosing K(δ ) = P2(δ )−M(δ )P4(δ ) where M(δ ) is given
in (20), then we have

In−K(δ )C(δ ) = [P1(δ )−M(δ )P3(δ )]E(δ )

Therefore we obtain

ė = [P1(δ )−M(δ )P3(δ )]E(δ )ẋ− ẇ
= [P1(δ )−M(δ )P3(δ )]A(δ )x−N(δ )w−L(δ )y
= [P1(δ )A(δ )−M(δ )P3(δ )A(δ )

−L(δ )C(δ )+N(δ )K(δ )C(δ )]x−N(δ )x̂

By choosing

L(δ ) = H(δ )+N(δ )K(δ )

and

N(δ ) = P1(δ )A(δ )−M(δ )P3(δ )A(δ )−H(δ )C(δ )

we have

ė = [P1(δ )A(δ )−M(δ )P3(δ )A(δ )−H(δ )C(δ )]x
−N(δ )x̂

=
[
Ā(δ )− [H(δ ),M(δ )]C̄(δ )

]
e = N(δ )e

(22)

According to Lemma 7, if Assumptions 1 and 2 are both
satisfied for system (2), then there exists a left unimodu-
lar matrix T (δ ) defined in (16) and a gain matrix Γ(δ ) =
T−1

L (δ ) [F(δ )+Γ0] such that T (δ )
[
Ā(δ )−Γ(δ )C̄(δ )

]
T−1

L (δ )
is Hurwitz. By setting

Γ(δ ) =
[

H(δ ), M(δ )
]
= T−1

L (δ ) [F(δ )+Γ0]

then we obtain that ė = N(δ )e with N(δ ) = Ā(δ )−Γ(δ )C̄(δ ).
By noting z = T (δ )x and ez = T (δ )e, we arrive at

ėz = T (δ )ė = T (δ )N(δ )e
= T (δ )N(δ )T−1

L (δ )T (δ )e
= [A0−Γ0C0]T (δ )e
= [A0−Γ0C0]ez

where we used the equality (18). Since [A0−Γ0C0] is Hurwitz
and independent of δ , thus we proved that ez = T (δ )e is ex-
ponentially stable for any value of delay. Due to the fact that
T (δ ) is left unimodular over R[δ ], we can conclude that the
observation error e = T−1

L (δ )ez exponentially tends to zero.

Remark 4. When designing observers for time-delay systems,
the convergence of observation error dynamics might either de-
pend or not depend on the delays. For the case depending on

the delays, the most existing methods need to impose some con-
ditions (like boundedness of time delay and its derivative) on
the delay in order to prove the stability of the observation error
dynamics Bhat and Koivo (1976); Fattouh et al. (1999); Sename
(2001); Fridman and Shaked (2002); Richard (2003); Nguyen
et al. (2016). However, the proposed method is based on the
output injection (delayed) technique. Since the basic delay h is
constant, thus all the delays involved in the studied system are
constant. It can be seen that the observation error dynamics
(22) is equivalent to ėz = [A0−Γ0C0]ez. It is obvious that the
convergence speed of ez is independent of the delay, which im-
plies that this method can be applied to any commensurate and
constant delay. In other words, no limitations of delays are re-
quired for such a method, the only limitations are Assumptions
1 and 2, and these assumptions impose structural conditions
which are independent of the delay size.

Remark 5. It is worth noticing that the stability of the obser-
vation error depends on neither the choice of the matrix Π nor
that of the matrix P. This is clear since the previous theorem is
valid for any selection of such matrices. Moreover, the conver-
gence rate depends only on the choice of the matrix Γ0, which
modifies the eigenvalues of the closed-loop matrix A0−Γ0C0.
In this sense, we may say that matrices Π and P do not play
an important role in the asymptotic behavior of the observation
dynamics.

Remark 6. The proposed method can be easily extended to
treat the linear singular time-delay system with known input
of the following form:{

E(δ )ẋ(t) = A(δ )x(t)+B(δ )u(t)
y(t) =C (δ )x(t)+D(δ )u(t) (23)

By applying the same procedure, it can be proven that, if As-
sumptions 1 and 2 are both satisfied for system (2), then the
following dynamics:{

ẇ = N(δ )w+L(δ )y+Q(δ )u
x̂ = w+K(δ )y+R(δ )u (24)

with N(δ ), K(δ ) and K(δ ) defined in (19), and

R(δ ) =−K(δ )D(δ )
Q(δ ) = P1(δ )B(δ )−M(δ )P3(δ )B(δ )−L(δ )D(δ )

is an exponential observer for system (2).

If all conditions of Theorem 1 are satisfied for (2), then the
following summarizes the procedure to design the proposed ob-
server for system (2):

Step 1: For the triple
(
Ẽ(δ ), Ã(δ ),C̃(δ )

)
, calculate a unimodular

matrix Π(δ ) over R [δ ] such that Π(δ )Ẽ(δ ) =
[

E(δ )
0

]
and Π(δ )Ã(δ ) =

[
A(δ )
A(δ )

]
. Then define C(δ ) =

[
A(δ )
C̃(δ )

]
;

Step 2: For the deduced triple (E(δ ),A(δ ),C(δ )), determine

the unimodular matrix P(δ ) such that P(δ )
[

E(δ )
C(δ )

]
=[

In
0

]
;
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Step 3: With the deduced P(δ ), compute Ā(δ ) = P1(δ )A(δ ) and

C̄(δ ) =

[
P3(δ )A(δ )

C(δ )

]
;

Step 4: After having obtained Ā(δ ) and C̄(δ ), deduce T (δ ) and
F(δ ) defined in (16) and (17) respectively;

Step 5: With A0 and C0 defined in (15), calculate Γ0 such that
(A0−Γ0C0) is Hurwitz, and get M(δ ) and H(δ ) according
to (20);

Step 6: Following (19), compute N(δ ), L(δ ) and K(δ ) based on
which the observer of the form (24) can be achieved.

5. Illustrative example

Consider the following linear singular time-delay neutral sys-
tem of form (1):

ẋ1(t) =−ẋ2(t−h)+ x1(t−h)+ x4(t−h)
ẋ2(t) =−ẋ3(t−h)+ x1(t)+ x4(t)
ẋ3(t) =−ẋ1(t−h)+ x1(t)+ x2(t)
0 = x1(t)+ x2(t)+ x3(t)
y1(t) = x3(t−h)
y2(t) = x4(t)

which can be written into the form (2) with

Ẽ(δ ) =


1 δ 0 0
δ 0 1 0
0 1 δ 0
0 0 0 0

 , Ã(δ ) =


δ 0 0 δ

1 1 0 0
1 0 0 1
1 1 1 0


and

C̃(δ ) =

[
0 0 δ 0
0 0 0 1

]
Step 1:
It is clear that we can choose Π(δ ) = I4 such that

E(δ ) =

 1 δ 0 0
δ 0 1 0
0 1 δ 0

 , A(δ ) =

 δ 0 0 δ

1 1 0 0
1 0 0 1


and

C(δ ) =

 1 1 1 0
0 0 δ 0
0 0 0 1


Step 2:
It is easy to check that for the given triple (Ẽ(δ ), Ã(δ ),C̃(δ ))

Assumption 2 is satisfied, thus
[

E(δ )
C(δ )

]
is left unimodular

over R[δ ]. In fact we can find

P(δ ) =

[
P1(δ ) P2(δ )
P3(δ ) P4(δ )

]

=


1 0 −δ 0 δ 0
0 0 1 0 −1 0
−δ 1 δ 2 0 −δ 2 0
0 0 0 0 0 1

δ −1 −1 δ −1−δ 2 1 1−δ +δ 2 0
δ 2 −δ −δ 3 0 1+δ 3 0



Step 3:
We have

Ā(δ ) =


0 0 0 0
1 0 0 1
1 1 0 0
0 0 0 0


and

C̄(δ ) =

[
P3(δ )A(δ )

C(δ )

]
=


−2 −1 0 −1
−δ −δ 0 0
1 1 1 0
0 0 δ 0
0 0 0 1


We can check that

Ō1(δ ) =


−2 −δ 1 0 0 −1 −δ 2 δ 0
−1 −δ 1 0 0 0 0 1 δ 0
0 0 1 δ 0 0 0 0 0 0
−1 0 0 0 1 −1 −δ 1 0 0


T

which is left unimodular over R[δ ].
Step 4:
Then according to (17) we have

[F2(δ ),F1(δ )] =


0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 −1 0 0 0 0
0 0 0 0 0 −δ 0 0 0 0
0 0 0 0 0 0 0 0 0 0


which yields the following transformation

T (δ ) =


−2 −δ 1 0 0 −1 −δ 0 −δ 0
−1 −δ 1 0 0 0 0 0 0 0
0 0 1 δ 0 0 0 0 0 0
−1 0 0 0 1 −1 −δ 0 −δ 0


T

Step 5:
Finally we get

A0 = T (δ )Ā(δ )T−1
L (δ ) =

[
05×5 I5
05×5 05×5

]
and

C0 =C(δ )T−1
L (δ ) =

[
I5 05×5

]
It is clear that the pair (A0,C0) is observable. By choosing

Γ0 =


55 0 0 0 0 250 0 0 0 0
0 70 0 0 0 0 1000 0 0 0
0 0 30 0 0 0 0 200 0 0
0 0 0 35 0 0 0 0 250 0
0 0 0 0 30 0 0 0 0 125


T

we assign (−5,−5,−10,−10,−20,−20,−25,−25,−50,−50)
as the eigenvalues to the Hurwitz matrix A0 − Γ0C0. After
having determined Γ0, we can then follow (19) to calculate all
necessary matrices N(δ ), K(δ ) and L(δ ) for the observer:
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N(δ ) =


250−30δ 250−30δ 250 0
30δ −444 30δ −445 −445 1

197 197 196 −30
30δ 30δ 0 0


T

K(δ ) =


0 30δ 3 +d +30 0
0 −30δ 3−31 0
0 −δ 2 0
0 −30δ 3−30 1


L(δ ) =


−250 −280δ 2 +280δ −250 0
445 475δ 2−474δ +445 1
−196 900δ 3−196δ 2 +197δ +703 0

0 30δ (δ −1) 0


The corresponding simulation results are depicted in the fol-
lowing figure.
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Figure 1: Estimation errors for x1, x2, x3 and x4 with h = 0.5s.

6. Conclusion

For linear singular time-delay systems, the most existing re-
sults focus on the simple case, i.e. Eẋ(t) = A0x(t)+A1x(t−τ).
Few results have been stated for the general linear singular
time-delay systems of the form ∑

l
i=0 Eiẋ(t− iτ) = ∑

k
i=0 Aix(t−

iτ), which covers also neutral delay systems. For such a gen-
eral case, this paper deduced sufficient conditions, with which
a simple Luenberger-like observer can be designed in order to
exponentially estimate the states.
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