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A unified approach to Nevanlinna-Pick interpolation problems.

Laurent Baratchart1 and Martine Olivi1 and Fabien Seyfert1

Abstract— This work deals with Complex-valued interpola-
tion by a Schur rational function of given degree at a set of
nodes located in the closed lower half-plane, with prescribed
maximum points for the modulus (i.e. points where it is equal
to 1) on the real axis. The motivation comes from broadband
matching, for which the technique we develop offers a new tool.

I. INTRODUCTION

From the seventies on, Nevanlinna-Pick interpolation has
been widely studied in connection with various problems in
signal processing and control [2]. The theoretical approach
developed in [16], in which interpolants are viewed as oper-
ator dilations, is at the origin of a wide literature including
constructive results [19], [10]. Among the most relevant (and
also historical) application domains, we mention sensitivity
minimization ([18], [19]), filter design and broadband match-
ing [17].

Pick’s theorem yields necessary and sufficient conditions
on a set of interpolation data in order that there exists a
complex analytic function bounded by 1 in modulus (a so-
called Schur function) to meet these conditions on the disc
or the half-plane. Composing with the Cayley transform z 7→
(1−z)/(1+z), the problem may be equivalently be stated in
terms of Carathéodory functions rather than Schur functions
(a Carathéodory function is an analytic function with non-
negative real part).

Nevanlinna’s theorem gives a description of all solutions
to this interpolation problem [9, Ch. I, sec. 2, Ch. IV, sec. 6].
However, in applications, it is essential to control the degree
of the interpolant. Interpolation with a degree constraint
was considered in connection with the covariance extension
problem in [12], in which the spectral density plays a key role
in controlling the degree. Subsequently in [10], the following
interpolation problem was studed: describe all Caratheodory
functions Y (z) of degree at most l solving l+1 interpolation
conditions

Y (z j) = w j, j = 0, . . . , l,

where z0,z1,z2 . . .zl lie interior to the analyticity domain and
the interpolation values w0,w1,w2 . . . ,wl are such that the
associated Pick matrix P is positive definite; the last condi-
tion corresponds to the indeterminate case (i.e. the problem
has more than one solution [8], [1]). An existence result was
proved [10, Theorem 5.2], showing that to each polynomial
d(z) of degree at most 2l there is a pair of polynomials (π,χ)
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such that Y = π

χ
is a Carathodory function of degree at most

l satisfying the above interpolations conditions, and having
d(z) as “dissipation polynomial”:

d(z) = π(z)ξ ∗(z)+π
∗(z)ξ (z) (1)

where the superscript * indicates the paraconjugate polyno-
mial (see definitions below). In fact, after normalization, the
correspondence between dissipation polynomials and rational
solutions π/χ is one-to-one. This result was proved in [6]
for the covariance extension problem when d(z) is strictly
positive on the boundary of the analyticity domain, and in
[11] in the general case where d(z) ≥ 0 there. Later, the
theory was further adapted to issues in control and filter
design, where freedom in the choice of d(z) can been used
to shape the interpolants in order to meet additional design
specifications (see e.g. [14]).

In the present work, we analyze a still more general
version of this problem where both the interpolation con-
ditions and the zeros of the dissipation polynomial may lie
on the boundary. Our motivation comes from broadband
matching, and it is more natural to formulate the problem
in terms of the scattering matrix representation of a two-
port, which is a 2×2 matrix of complex-valued functions of
the frequency. Both for technical and practical reasons, we
choose to work on the lower half-plane C− rather than the
disk or the more classical right-half-plane. In this framework,
the paraconjugate of a polynomial p is p∗(s) = p(−s). The
scattering matrix of a lossless filter is thus a 2×2 function,
analytic in C−, and assuming unitary values on the real line
(real points represent frequencies). Such a matrix is called
inner. The filter is finite-dimensional if its scattering matrix
is rational, and finite-dimensional filters are those realizable
in practice.

Fig. 1. Filter plugged to a load L with reflection coefficient L11

Hereafter, we identify two-ports with their scattering ma-
trix. The problem of synthesizing the filter S in Figure 1 so
that the reflexion coefficient G11 of the scattering matrix of
the global system is smallest possible on some bandwidth is a
very old one. It corresponds to the need of conveying energy
to the system L in the bandwidth, rather than having the
energy bouncing back. When the filter is finite-dimensional,
the so-called matching theory of Fano and Youla [7] provides
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one with a parametrization of all G that can be realized as in
Figure 1 for fixed L and varying S of given degree. However,
it is still unknown at present how to set up matching filtering
characteristics from this parametrization, as soon as the load
has degree greater that one. Another approach was proposed
by J. Helton [13] in an infinite dimensional setting, where the
matching problem gets reformulated as a H∞ approximation
problem of Nehari type, the solution to which is elegantly
produced in terms of the norm and maximizing vectors of
a Hankel operator. However, the “infinite degree” of this
optimal filter makes it hardly realizable or even computable
in practice.

We propose here an intermediate approach [3] where a
finite-dimensional filter response of prescribed degree is be-
ing synthesized by imposing matching and stopping frequen-
cies with respect to some general frequency varying load. A
classical computation show that the reflection coefficient G11
of the overall system at frequency ω is

G11(ω) = det(S(ω))
S22(ω)−L11(ω)

1−S22(ω)L11(ω)
.

A matching frequency, that is, a frequency ω for which
G11(ω) = 0, satisfies (whenever |L11(ω)|< 1) that

S22(ω) = L11(ω). (2)

In contrast, a stopping frequency ω , defined by the property
that |G11(ω)| = 1, satisfies (whenever |L11(ω)| < 1) that
|S22(ω)|= 1 or equivalently that

S12(ω) = S21(ω) = 0. (3)

Writing S (of McMillan degree l) in Belevitch form [5],
normalized so that lims→∞ S(s) = I2 (see remark 2.1), we
have that

S =
1
q

[
p∗ −r
r∗ p

]
, (4)

where p,q are monic complex polynomials of degree l and
r is a complex polynomial of degree at most l−1, satisfying
the Feldtkeller equation:

qq∗ = pp∗+ rr∗. (5)

If (x1,x2, . . . ,xl) denotes a set of matching frequencies and
if we set γ j = L11(x j) for j = 1, . . . , l, the matching problem
amounts to solve (7) whith fixed transmission polynomial
r by imposing l − 1 stopping frequencies. This problem
looks quite similar to the one considered in [10], how-
ever there is a major difference: interpolation takes place
on the boundary. In [3], existence and uniqueness of the
solutions were proved under the restrictive assumption that
r has no root on the real axis, which is not suited for
the application to broadand matching just described. In this
paper, we remove this requirement. Moreover, we consider
two different normalizations and deal with mixed type of
interpolation conditions (in the analyticity domain and on the
boundary). We propose a topological approach that provides
an algorithmic way to compute the solutions. The tricky part
is to address both interpolation points on the real line and

non strictly positive dissipation polynomials. This is possible
upon moving back and forth from Schur to Carathéodory
functions and using representation formulas in the Hardy
space H2(C−) for Carathéodory functions.

II. MAIN RESULTS.

Let X = (x1,x2 . . .xm) be m distinct real points associated
to m interpolation values γ = (γ1,γ2 . . .γm) in Dm, with D the
unit disk. Let further Z = (z1,z2 . . .zl) ∈ (C−)l be l distinct
complex numbers associated to l complex interpolation val-
ues β = (β1,β2 . . . ,βl). We define P(Z,β ) to be the so-called
Pick matrix associated with the interpolation data (zk,βk),
namely the Hermitian l× l matrix defined by:

Pk, j(Z,β ) =
1−βkβ j

i(zk− z j)
. (6)

We denote by P+
Z (or simply P+), the set of those β ∈ Cl

such that (Z,β ) is positive definite. The total number of
interpolation conditions is thus equal to N = m+ l.

We consider the following two problems, each of which
corresponds to a specific normalization :
Given X ∈ Rm, γ ∈ Dm, Z ∈ (C−)l , β ∈ P+ and r 6= 0 a
complex polynomial of degree at most N − 1, such that
r(xk) 6= 0, k = 1, . . . ,m,
to find (p,q) a pair of complex polynomials such that,

p
q
(xk) = γk, for k = 1, ..,m (7)

p
q
(zk) = βk, for k = 1, .., l (8)

qq∗− pp∗ = rr∗ (9)

where
Problem P: p and q are monic of degree N and q is stable
in the broad sense (no root in the open lower half-plane C−).
Problem P̂: p and q have degree at most N−1, q is stable
in the broad sense, and verifies the normalization q(−i)> 0.

Remark 2.1: Problem P imposes a normalization at in-
finity on the interpolant p/q, since p, q are monic of degree
N hence (p/q)(∞) = 1. In connection with the matching
problem discussed in Section I, where p/q is thought of
as the entry S22 of the scattering matrix S of a filter, this is
justified in that the low-pass equivalent model of LC-resonant
filters behaves like an open circuit at infinite frequency,
which translates into the normalization S(∞) = Id. However,
if for example we add a transmission line in front of the filter,
this line can be modeled in the narrow band approximation
by a reflection coefficient which is unimodular with free
phase at infinity. This extra design parameter can be used
to meet an additional interpolation condition or, in a dual
way, to reduce the degree of p and q while keeping the
interpolation properties of p/q. This leads us naturally to
problem P̂ .

Let PN designate the set of complex polynomials of degree
at most N and PMN the subset of monic polynomials. To each
Q∈P2N which is non-negative on R, we associate by spectral
factorization a unique polynomial ϕ̂(Q) ∈ PN of degree half
the degree of Q such that ϕ̂(Q)(ϕ̂(Q))∗ = Q, which is stable
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in the broad sense and satisfies ϕ̂(Q)(−i)> 0. If in addition
Q is monic of degree 2N, we put ϕ(Q) ∈ PMN for the
corresponding polynomial, normalized this time so as to be
monic. We also put N̂ = N− 1. Now, for fixed r, Equation
(5) associates
• to each p ∈ PMN a unique monic polynomial q =

ϕ(pp∗+ rr∗) ∈ PMN ,
• to each p∈ PN̂ a unique polynomial q = ϕ̂(pp∗+rr∗)∈

PN̂ .
The two spectral factorizations ϕ and ϕ̂ allow us to define

two evaluation maps which play an essential role in the study
of problem P and problem P̂:

ψ : p ∈ PMN →



p(x1)/q(x1)
...

p(xm)/q(xm)
p(z1)/q(z1)

...
p(zl)/q(zl)


, (10)

where q∈ PMN is computed from p using the map ϕ , and

ψ̂ : p ∈ PN̂ →



p(x1)/q(x1)
...

p(xm)/q(xm)
p(z1)/q(z1)

...
p(zl)/q(zl)


, (11)

where q ∈ PN̂ is computed from p using the map ϕ̂ .
Since |p|2 ≤ |p|2 + |r|2 = |q|2 on R in both cases, the

rational function p/q has no real pole and no pole in C−
since q is stable in the broad sense. Thus, by the maximum
principle, we conclude that |p/q| ≤ 1 on C−. In addition,
since no xk is a root of r by assumption, we have that
|p(xk)/q(xk)| < 1 hence p/q is not a Blaschke product.
Therefore the Pick matrix associated with the interpolation
data (zk, p(zk)/q(zk)) must be positive definite whence ψ and
ψ̂ take their values in Dm×P+

Z .
Below, we say that a polynomial p ∈ PN̂ has n zeros at

infinity if p has degree N̂−n. Zeros at infinity are considered
to lie on the real line. Hereafter the degree of p is abbreviated
as deg p. The main result of the paper may now be stated as
follows.

Theorem 2.1: 1) ψ is a homeomorphism from PMN onto
the product space Dm×P+. If p ∈ PMN has no real root in
common with r, then ψ is continuously differentiable in a
neighborhood of p with invertible derivative, hence it is a
local diffeomorphism at p.
2) ψ̂ is a homeomorphism from PN̂ onto Dm×P+. If p ∈ PN̂

has no common real root with r (including at infinity), then
ψ̂ is differentiable at p and its differential is invertible, hence
it is a local diffeomorphism at p.

Remark 2.2: Theorem 2.1 shows that, if no root of r co-
incides with an interpolation point on the real line, Problems
P and P̂ have one and only one solution. If p has a common

real root with r, then the associated scattering matrix (4)
drops in degree.

We now come to a Proposition that enables us to use
continuation techniques in order to practically solve for
problem P . We define PMN(r) to be the open subset of
PMN comprised of those polynomials that have no common
real root with r.

Proposition 2.1: ψ(PMN(r)) is an open, dense and con-
nected subset of Dm×P+. Suppose that ν0,ν1 both lie in
ψ(PMN(r)), and that γ is a continuous path from ν0 to ν1
in Dm×P+. Then, for every ε > 0 there exists a continuous
path γ̂ from ν0 to ν1 in ψ(PMN(r)) such that

sup
t∈[0,1]

‖γ̂(t)− γ(t)‖ ≤ ε,

where ‖.‖ designates an arbitrary but fixed norm on R2N ∼
CN ⊃ Dm×P+.

We also point out an interesting relation between problem
P and P̂ . In the statement we write ψr and ψ̂r to stress the
dependency of ψ , ψ̂ with respect to the polynomial r.

Proposition 2.2: Suppose ν ∈ Dm × P+, and (αk) is a
sequence of real numbers tending to +∞. Let pk = ψ−1

αkr(ν)

and write the leading term of ϕ̂(α2
k rr∗+ pk p∗k) in the form

eiβk , noting that it is unimodular. Then, we have that

lim
k→∞

eiβk
pk

αk
= ψ̂

−1
r (ν).

III. A TASTE OF PROOFS.
We give an idea of the proof of Theorem 2.1, part 1). A

complete proof may be found in [4]. The proof of part 2)
must be adapted, but follow the same lines.
Step 1. The map ψ is continuous at every p and if p has
no real common root with r, then ψ is differentiable at p.
This mainly relies on analogous properties for the spectral
factorization ϕ .
Step 2. ψ is injective.
Step 3. ψ is proper: the pre-image of each compact set in
Dm×P+ is compact.
Step 4. ψ is a homeomorphism from PMN onto Dm×P+.
This result is established using a famous result by Brouwer,
known as invariance of the domain [15, chap. 10, sect. 62]. If
Ω⊂Rn is open and f : Ω→Rn is continuous and injective,
it says that f is an open map, meaning that it maps open
sets to open sets. Hence f (Ω) is open and the inverse map
f−1 : f (Ω)→Ω is continuous, that is: f is a homeomorphism
onto its image. Finally, the fact that the image of PMN is all
of Dm×P+ rests on the properness of ψ which implies that
ψ(PMN) is closed (and open according to the above) in the
connected space Dm×P+.
Step 5. The map ψ is a diffeomorphism from PMN(r) onto
its image.

Our proof of the injectivity of ψ as well as the fact that the
differential of ψ is locally invertible in a neighborhood of p∈
ψ(PMN(r)) relies on representation formulas in the Hardy
space H2(C−). Every f ∈H2(C−) is the Cauchy integral of
the non-tangential limit of its real part:

f (z) =− 1
iπ

∫
R

ℜ f (t)
t− z

dt, z ∈ C−, (12)
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and the non-tangential limit of its imaginary part is the
Hilbert transform of the nontangential limit of its real part
[9, Ch. III, sec. 2]:

ℑ f (x) =
1
π

lim
ε→0+

∫
|x−t|>ε

ℜ f (t)
t− x

dt, a.e. x ∈ R. (13)

Consequently, the nontangential limit of f can be recovered
from its real part as

f (x) = ℜ f (x)+
i
π

lim
ε→0+

∫
|x−t|>ε

ℜ f (t)
t− x

dt, a.e. x ∈ R.
(14)

To use these formulas, we move from the Schur class S
to the Carathéodory class C . The map f 7→ (1− f )/(1+ f )
maps C to S and back. However, the image of f ∈S under
this map may not be in H2(C−). This has to do with the
fact that real parts of Carathéodory functions, unlike those of
Schur functions, may be Poisson integrals of measures rather
than functions, and therefore cannot in general be recovered
from their pointwise trace on R.

We now briefly explain how injectivity is proved. Assume
that there exist distinct polynomials p1(z) and p2(z) in PMN

such that ψ(p1) = ψ(p2). For j = {1,2}, let q j = ϕ(p j), we
have

p1

q1
(xk) =

p2

q2
(xk), 1≤ k ≤ m, (15)

p1

q1
(z`) =

p2

q2
(z`), 1≤ l ≤ l. (16)

Since, there are at most degr real numbers t for which
|p j(t)/q j(t)| = 1, we can find a complex number ξ of
modulus 1, distinct from −1, such that 1+ξ p j/q j is never
zero on R for j = {1,2}. Consider the Cayley transforms of
the Schur functions ξ p j/q j, that is

1−ξ
p j(z)
q j(z)

1+ξ
p j(z)
q j(z)

=
1−ξ

1+ξ
+Yj(z), (17)

where
Yj :=

(
2ξ

1+ξ

)
q j(z)− p j(z)

q j(z)+ξ p j(z)
(18)

is a Carathéodory function which belongs to H2(C−). By a
straightforward computation we obtain

ℜ(Yj) = Yj +Y ∗j =
d
g j

, (19)

where

d =
2rr∗

|1+ξ |2
, g j =

(q j +ξ p j)(q j +ξ p j)
∗

|1+ξ |2
, (20)

are non-negative polynomials, g j being monic. At each real
interpolation point xk, we rewrite (15) using (13):

J(xk) =
∫

∞

−∞

d(t)
g2(t)−g1(t)

g1(t)g2(t)
dt

t− xk
= 0, (21)

where we omitted the principal value in the integral (21)
because the integrand is in fact nonsingular. At each complex
interpolation point zk, we rewrite (16) using (12)

I(zk) =
∫

∞

−∞

d(t)
g2(t)−g1t)
g1(t)g2(t)

dt
t− zk

= 0, (22)

and taking conjugates

I(zk) =
∫

∞

−∞

d(t)
g2(t)−g1(t)

g1(t)g2(t)
dt

t− zk
= 0. (23)

We now combine linearly equations (22), (23) and (21) using
2l+m arbitrary complex coefficients. Putting everything over
a common denominator yields∫

∞

−∞

d(t)
g2(t)−g1(t)

g1(t)g2(t)∏
l
k=1 |t− zk|2

Q(t)dt
∏

m
k=1(t− xk)

= 0, (24)

for any polynomial Q in P2l+m−1. Observing now that
g2 − g1 vanishes at the xk, and choosing Q(t) = (g2(t)−
g1(t))/∏

m
1 (t− xk) (note that g2 and g1 being monic g2−g1

has degree at most 2l + m− 1), we conclude since the
integrand is nonnegative that g1 = g2. But, given d,g j non
negative polynomials such that d/g j belongs to L2(R), there
exist a unique Yj ∈ H2(C−) satisfying (19). Thus Y1 = Y2,
which in turn implies p1 = p2 and q1 = q2.
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