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This online appendix provides formal assumptions, additional propositions and complete
proofs to the theoretical part developed in Section 2 of the main text. It also provides
background for the sufficient-statistic formula discussed in Section 4. Graphical illustrations
are produced with the model specifications detailed in Section 4.

A1. Setup

The homeowner maximizes lifetime-discounted utility U0(·, ·) with respect to an intertem-
poral energy-service vector s:

(1) U0(θ, s) ≡
l∑

t=1

[
θVt(st)− ptE0

t (st)
]

(1 + r)−t

where V (·) is the value derived from energy service (e.g., heating comfort), θ > 0 is a
taste parameter (e.g., a cold-intolerant person having a high θ), E0(·) is energy use , p is the
price of energy, l is investment lifetime and r is the discount rate.

The homeowner’s lifetime-discounted net utility after retrofit U(θ, s, q) reads

(2) U(θ, s, q) ≡
l∑

t=1
[θVt(st)− ptEt(st, q)] (1 + r)−t − T + ε

where q is the quality of installation offered by the contractor, T > 0 is the price of the
retrofit and ε is the value derived from non-energy attributes (e.g., acoustic or aesthetic
benefits if positive, inconvenience due to job completion if negative).

In what follows, we assume time invariance of energy price, technology and homeowner
value function. We remove t subscripts and consider vector s as a scalar s constant over
time. We further simplify notation with a discount factor Γ such that:

(3) Γ ≡ Γ(r, l) ≡
l∑

t=1
(1 + r)−t = 1− (1 + r)−l

r

Firms are homogenous in the industry. The profit of a representative contractor is the
revenue from the sale minus the cost of the quality provided:

(4) Π(q) ≡ T − C(q)
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The following assumptions hold (subscripts denote partial derivatives):

Assumption 1. Technology
(i) At constant homeowner behavior s, investment reduces energy use: E(s, q) < E0(s)
∀q ≥ qmin, where qmin is the minimum input.
(ii) Contracting parties’ actions have opposite effects: E0

s > 0, Es > 0 and Eq < 0
(iii) Energy savings exhibit decreasing returns: −E0

ss ≤ 0, −Ess ≤ 0 and −Eqq ≤ 0
(iv) Contracting parties’ actions are substitutes: Eqs < 0 and Es < E0

s

(v) Non-energy benefits are not sufficient to motivate investment: ε ≤ C(qmin)

Assumption 2. Preferences
Contracting parties are (i) value-maximizers, (ii) risk-neutral and (iii) have twice differen-
tiable, concave value functions: V ′(·) > 0, V ′′(·) ≤ 0 and −C ′(·) < 0, −C ′′(·) ≤ 0

Assumption 3. Market structure
The industry is competitive with free entry: Π(q) = 0.

Corollary. T = C(q)

Remark. Assumptions 1(i)-(v) are mild: The energy service has a convex effect on energy
use, and quality has diminishing returns on energy savings. Moreover, both factors impede
each other: The marginal increase in energy savings due to increased quality is larger when
the underlying energy service is high (e.g., a house heated in a cold climate) rather than low
(e.g., a house heated in a warm climate). Reciprocally, the marginal increase in energy use
due to increased energy service is lower when the quality installed is high rather than low.

Assumptions 2(i)-(iii) are meant to be as standard as possible, in order to isolate the
moral-hazard problem from possibly interacting market failures and behavioral anomalies.

Assumption 3 is not essential. Whatever the structure of the market, home energy retrofits
are very specific to a bundle of home and homeowner characteristics, and hence do not lend
themselves to arbitrage. A monopolist could thus perfectly price discriminate. This would
not change equilibrium quantities in the model, but only the surplus repartition.

The energy efficiency contract can be modeled as a two-stage game, of which the home-
owner is the principal and the contractor is the agent. In the first stage of the game, a
homeowner of type θ invests if the j-equilibrium net present value of investment NPV j(θ) is
positive, given her beliefs about her future optimal energy service sjθ and the optimal quality
qjθ she will be offered by the contractor:

(5) NPV j(θ) ≡ U(θ, sjθ, q
j
θ)− U0(θ, s0

θ) ≥ 0
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In the second stage, both agents determine their own action given their belief about the
other party’s action.

A2. Supply-side moral hazard

A2.1. Energy efficiency contract

We compare the equilibrium of the game under two information structures, namely perfect
and asymmetric information. The resulting equilibria can be seen as the social and private
optimum, respectively.

Perfect information (PI). The contract between the contractor and a homeowner of type θ
is set cooperatively so as to maximize joint surplus, subject to boundary conditions s ≥ smin
and q ≥ qmin. The optimal actions sPIθ and qPIθ that solve the first-order conditions for
maximization4 below will be such that their marginal benefit (in terms of value to the
homeowner and cost savings to the firm) equates their marginal effect on homeowner’s energy
bill:

(6) ∀t θV ′

 = pEs if sPIθ > smin
< pEs otherwise

(7) C ′

 = −pEq if qPIθ > qmin
< −pEq otherwise

The perfect-information equilibrium (sPIθ , qPIθ ) can be characterized as a reaction function
equilibrium. Assuming interior solutions and applying the Implicit Function Theorem to
the first-order conditions, we find that the reaction functions s∗θ(q) and q∗(s) are strictly
increasing:

(8) ∀t ds∗θ
dq = pEqs

θV ′′ − pEss
> 0

(9) dq∗
ds = −pEsq

C ′′/Γ + pEqq
> 0

4Throughout the objective functions are well-behaved and the first-order conditions discussed are necessary
and sufficient conditions for maximization.
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Asymmetric information (AI). The agreement is no longer cooperative. Both parties
maximize their private value, given their beliefs about the other party’s action and subject to
boundary conditions s ≥ smin and q ≥ qmin. While this yields the same reaction function as
in the cooperative agreement s∗θ(q) for the homeowner, this does not hold for the contractor.
He fails to internalize the benefits his action delivers to the homeowner and simply chooses
the level of quality qAI that minimizes his cost:

(10) ∀s qAI(s) = arg min
q≥qmin

C(q) = qmin

Lemma 1. For a participating homeowner of given type θ:
(i) the asymmetric-information equilibrium (sAIθ , qAIθ ) exists and is unique
(ii) the perfect-information equilibrium (sPIθ , qPIθ ) exists and is unique if and only if:

(11) dq
ds∗θ

>
dq∗
ds

Proof. (i) The asymmetric-information equilibrium is uniquely defined as (s∗θ(qmin), qmin).
(ii) Likewise, if for at least one agent his or her optimal cooperative action is a corner
solution, then the perfect-information equilibrium is uniquely defined. If optimal actions are
interior for both agents, condition (11) implies that the composite function s∗θ(q∗(s)) defined
for all s ≥ smin is a contraction mapping. Hence, by the Banach fixed-point theorem, it
admits a unique fixed point. �

Figure A1 illustrates the reaction function equilibria. The following proposition states
that the prefect and asymmetric-information equilibria will involve unambiguous locations:
Proposition 1. Assuming condition (11) holds, a participating homeowner of given type θ:
(i) is offered less quality under asymmetric information: qAIθ ≤ qPIθ
(ii) uses less energy service under asymmetric information: s0

θ < sAIθ ≤ sPIθ
(iii) faces a lower net present value under asymmetric information: NPV AI(θ) ≤ NPV PI(θ)

Proof. (i) For a given θ, qPIθ ≥ qmin = qAIθ . (ii) Since s∗θ(·) is increasing, sPIθ = s∗θ(qPIθ ) ≥
s∗θ(qAIθ ) = sAIθ . For all s, E0

s > Es implies Us > U0
s . Therefore, assuming interior solutions:

U0
s |s0

θ
= 0 = Us|sAI

θ
> U0

s |sAIθ . Since U0 is concave in s, U0
s is decreasing in s and sAIθ > s0

θ.
(iii) Comparing net present values NPV PI(·) and NPV AI(·) is equivalent to comparing the
utility functions after investment U(θ, sPIθ , qPIθ ) and U(θ, sAIθ , qAIθ ). Under the assumption of
perfect competition, the utility after investment is equivalent to the joint surplus. Therefore,
the net present value of investment is maximized under perfect information: NPV PI(θ) ≥
NPV AI(θ). �
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Recall that E(sPIθ , qPIθ ), E(sAIθ , qAIθ ) and E(s0
θ) cannot be compared unambiguously. We

shall now make a distinction between two types of backfire rebound effect, which will prove
useful later in the analysis.

Definition 1. Investment-induced backfire
An investment-induced backfire rebound effect occurs if energy use after investment is larger
than before investment: s > s0 and E(s, q) > E0(s0).

Definition 2. Policy-induced backfire
A policy-induced backfire rebound effect occurs between two policy options H and L if energy
use after investment is larger in the more energy-efficient option H: qH > qL, sH > sL and
E(sH , qH) > E(sL, qL).

A2.2. Energy efficiency gap at the market level

We now turn to a continuum of homeowners of mass 1. Applying the Implicit Function
Theorem to Equation 6:

(12) ∀t ds∗θ
dθ = −V ′

θV ′′ − pEss
> 0

Therefore, for any given quality q offered by the contractor, a higher valuation of energy
service shifts the homeowner’s reaction function upward:

(13) ∀q, ∀θh > θl s∗θh(q) > s∗θl(q)

This effect is illustrated in Figure A2.

As long as condition (11) is satisfied, new equilibria are determined with the properties
below:

Lemma 2. If condition (11) is satisfied for two participating homeowners of types θh and θl,
with θh > θl, then the higher θ implies higher actions by either contracting party, in either
equilibrium:
(i) qAIθh = qAIθl = qmin
(ii) sAIθh ≥ sAIθl
(iii) sPIθh ≥ sPIθl
(iv) qPIθh ≥ qPIθl .
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Proof. (i) is straightforward. (ii) Combined with (13), it implies: sAIθh = s∗θh(qAIθh ) ≥ s∗θl(q
AI
θl

) =
sAIθl . (iii) Likewise, (13) implies, for all s, s∗θh(q∗(s)) ≥ s∗θl(q

∗(s)). In particular, sPIθh =
s∗θh(q∗(sPIθh )) ≥ s∗θl(q

∗(sPIθh )). From (11), s∗θl(q
∗(·)) is increasing with slope lower than 1.

Any point that is greater than its image by s∗θl(q
∗(·)) is thus greater than the fixed point

of s∗θl(q
∗(·)): ∀a > sPIθl , s

∗
θl

(q∗(a)) − s∗θl(q
∗(sPIθl )) < a − sPIθl ⇔ s∗θl(q

∗(a)) < a. Therefore,
sPIθh ≥ sPIθl . (iv) Lastly, since g∗(·) is increasing, qPIθh = g∗(sPIθh ) ≥ g∗(sPIθl ) = qPIθl . �

For any equilibrium situation j ∈ {PI,AI}, we have, by the Envelope Theorem:

(14) dNPV j

dθ =
[
V (sjθ)− V (s0

θ)
]

Γ

As V (·) is increasing and ∀θ sjθ > s0
θ, the net present value of investment strictly increases

with θ. This is illustrated in Figure A3. For any equilibrium situation j, participation will
depend on the limits of the net present value function, the sign of which is indeterminate:

(15) NPV j(θ) ≡
[
θ
(
V (sjθ)− V (s0

θ)
)
− p

(
E(sjθ, q

j
θ)− E0(s0

θ)
)]

︸ ︷︷ ︸
≥0

Γ−T + ε︸ ︷︷ ︸
≤0

The right inequality is given by Assumption 1(v). The left inequality comes from the
following inequalities: θV (s0

θ) − pE0(s0
θ) ≤ θV (s0

θ) − pE(s0
θ, q

j
θ) ≤ θV (sjθ) − pE(sjθ, q

j
θ). The

former is due to technological assumptions about E and E0 and the latter is due to sjθ
maximizing U .

According to Lemma 2, equilibrium actions sjθ and qjθ decrease with θ. As they are
bounded below by smin and qmin, the limit of NPV (θ) when θ tends toward zero is finite.
Three cases arise:

• If lim
θ→0

NPV (θ) ≥ 0 then all homeowners participate. Participation is given by N j ≡∫+∞
0 dF (θ) = 1.

• If lim
θ→0

NPV (θ) < 0 and lim
θ→+∞

NPV (θ) > 0 then by Equation 14, there exists a unique
cutoff type θ0 such that NPV j(θ0) = 0.
• If lim

θ→0
NPV (θ) < 0 and lim

θ→+∞
NPV (θ) ≤ 0 then participation is nil. In this case,

the gross utility gains accruing to the homeowner never offset the increase in the
payment to the contractor.
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In what follows, we are interested in the most relevant case where the cutoff type is
uniquely defined. Assuming that F (·) is the cumulative distribution function of θ, partici-
pation to investment N j is given by:

(16) N j ≡ 1− F (θj0)

Finally, under zero-profit condition, aggregate welfare is the sum of utility before invest-
ment for non-participating homeowners (0 ≤ θ < θ0), plus the utility after investment for
participants (θ ≥ θ0):

(17) W j ≡
∫ θj0

0
U0(θ, s0

θ)dF (θ) +
∫ +∞

θj0

U(θ, sjθ, q
j
θ)dF (θ)

We can now provide a definition of the energy efficiency gap:

Proposition 2. Assuming that condition (11) is satisfied for all homeowners with θ > 0:
(i) the market is thinner under asymmetric information: NAI ≤ NPI

(ii) aggregate welfare is lower under asymmetric information : WAI ≤ W PI

Proof. (i) Assume θPI0 (respectively θAI0 ) is the cutoff value of θ in the social (respectively
private) optimum. Proposition (2iii) imposes the following inequality: NPV PI(θPI0 ) = 0 =
NPV AI(θAI0 ) ≤ NPV PI(θAI0 ). Since NPV j(·) is increasing, θPI0 ≤ θAI0 . Hence, NPI −
NAI =

∫ θAI0
θPI0

dF (θ) ≥ 0. (ii) W PI − WAI =
∫ θAI0
θPI0

NPV PI(θ)dF (θ) +
∫+∞
θAI0

[U(θ, sPIθ , qPIθ ) −
U(θ, sAIθ , qAIθ )]dF (θ) ≥ 0. �

A2.3. Comparative statics

We discuss below further comparative statics with respect to a composite indicator of all
market and behavioral parameters: ζ ≡ pΓ(r, l). Any value of p, r or l that does not reflect
perfect competition, perfect rationality or perfect information translates into a biased ζ.
Specifically, a higher ζ is equivalent to a higher energy price p or a higher Γ, that is, a lower
discount rate r or a longer lifetime l. Comparative statics of ζ thus provides insight into the
interaction between moral hazard and other market failures or behavioral anomalies.

Applying the Implicit Function Theorem to Equations 6 and 7, we see that an increase
in ζ shifts reaction functions s∗θ(·) downward and q∗(·) upward:
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(18) ∀t ds∗θ
dζ = Es

θV ′′/ζ − Ess
< 0

(19) dq∗
dζ = −Eq

C ′′/ζ + Eqq
> 0

This is illustrated in Figure A1 with energy-use externalities.

By the same reasoning as in Lemma 2, a higher ζ entails a higher energy service under
asymmetric information. But optimal actions cannot be compared unambiguously under
perfect and asymmetric information.

The influence of ζ on NPV ∗, established by the Envelope Theorem, depends on the
homeowner’s reaction to higher energy efficiency:

(20) dNPV ∗
dζ = −

[
E(s∗θ, q∗θ)− E0(s0

θ)
]

As long as energy efficiency investments decrease energy use for all homeowners, the
net present value is increasing in ζ. By the same type of reasoning as in Lemma 2, this
leads to a higher participation and a higher average welfare. This conclusion is reversed if all
homeowners are subject to an investment-induced backfire rebound effect, i.e., ∀θ E(s∗θ, q∗θ) >
E0(s0

θ). In this case, a higher ζ decreases participation and average welfare.

A3. Policy solutions

A3.1. Energy-savings contracts and double moral hazard

In our simple framework with no risk-aversion, insurance can be modeled as a contract in
which the contractor bears a share k of energy expenditures:

(21) U(θ, s, q) ≡ [θV (s)− (1− k)pE(s, q)] Γ− T − I + ε

(22) Π(q) ≡ I + T − C(q)− kpE(s, q)Γ
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According to Assumption 3, the payment to the contractor is T+I, where I = k pE(s, q)Γ
is the actuarially-fair insurance premium.

A new, opposite principal-agent relationship superimposes to the previous one: Since the
contractor now provides insurance, he is a principal and the homeowner is an agent. The
implementation of this contract can be solved backward as a three-stage game played by the
parties. In the third stage, each party determines non-cooperatively his or her own effort,
given insurance coverage k and his or her belief about the other party’s action. First-order
conditions for maximization are:

(23) ∀t θV ′

 = (1− k)pEs if siθ(k) > smin
< (1− k)pEs otherwise

(24) C ′

 = −kpEqΓ if qiθ(k) > qmin
> −kpEqΓ otherwise

The optimal homeowner’s response is bounded above by a satiation value smax.5 By the
Implicit Function Theorem, the insurance reaction functions s∗∗θ (q, k) and q∗∗(s, k) are both
increasing in k:

(25) ∀t ds∗∗θ
dk = −pEs

θV ′′ − (1− k)pEss
> 0

(26) dq∗∗
dk = −pEq

C ′′/Γ + kpEqq
> 0

The implementation of such a contract partly solves the moral hazard, as it induces the
contractor to offer some quality (Equation 24). At the same time, however, it gives rise to
a second moral hazard: By lowering the homeowner’s marginal value of energy service, it
induces her to use more energy. The energy service in Equation 23 is used to the socially
optimal level defined by Equation 6 when the homeowner is not insured (k = 0), whereas
the quality in Equation 10 is offered to the socially optimal level defined by Equation 7

5Without satiation, full insurance (k = 1) would bring the marginal value of energy service in Equation
23 to zero, hence inducing infinite energy service. Satiation could be introduced as the argument of the
maximum of a parabolic utility function. Alternatively, in our model, it is introduced as an upper bound
on the value of s. This specification allows for more flexibility in the numerical section, without loss of
generality.
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when the firm offers full insurance (k = 1). Since k cannot be simultaneously equal to 0
and 1, insurance cannot achieve the social optimum. At best, both parties will agree on an
incomplete insurance contract k ∈ (0, 1). For any insurance k, the agreement (siθ(k), qiθ(k))
will be a Nash equilibrium determined by the intersection of each party’s reaction function
s∗∗θ (q, k) and q∗∗(s, k). These inputs will be higher than in the private optimum; however,
their location relative to the perfect-information equilibrium is ambiguous.

Proposition 3. Optimal energy-savings insurance stipulates incomplete coverage: 0 < k̂θ <
1.

Proof. See text above. �

Various insurance contracts are illustrated in Figure A4.

Note that if homeowner’s types are imperfectly observable to the contractor, a screening
issue arises. Homeowners with the highest use of energy service may self-select into the
insurance contract that offers the highest energy savings coverage. Assuming this away, the
optimal value k̂θ that sustains the Nash equilibrium to each type is determined cooperatively
in the second stage of the game, so as to maximize joint surplus:
(27) ∀θ k̂θ = arg max

k∈[0,1]
[U(θ, siθ(k), qiθ(k)) + Π(qiθ(k))]

In the second stage, the first-order condition for finding the optimal insurance contract
from Equation 27 is:

(28) pΓ
(

ds∗∗θ
dk [θV ′ − pEs]−

dq∗∗
dk

[
C ′

Γ + pEq

])
= 0

Plugging in Equations 23 and 24 and further rearranging gives the equation that solves
the optimal coverage k̂:

(29) ∀t pΓ
(
kEs

ds∗∗θ
dk + (1− k)Eq

dq∗∗
dk

)
= 0

Lastly, in the first stage, the homeowner chooses whether or not to invest, depending on
her net present value for the investment and given her beliefs about the contractor’s action
and the optimal insurance coverage.
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A3.2. Minimum quality standard

The optimal minimum standard will be set at a value q̄ that maximizes collective surplus,
net of monitoring cost M(q̄), subject to the participation constraint:

(30)
Maximize

q̄

[∫ θ0

0
U0(θ, s0

θ)dF (θ) +
∫ +∞

θ0
[U(θ, s∗θ(q̄), q̄)−M(q̄)] dF (θ)

]
subject to NPV (θ0, s

∗
θ0(q̄), q̄)−M(q̄) ≥ 0

Assuming that the cutoff type exists and is unique, the constraint in Equation 30 is bind-
ing. The optimization program can be solved by simply maximizing the objective function
and assuming that θ0 is an implicit function θ0(q̄) defined by the constraint. Applying the
Leibniz integral rule and the Envelope Theorem leads to the following first-order condition
for maximization:

(31)
dθ0

dq̄
(
U0(θ0(q̄), s0

θ)− U(θ0(q̄), s∗θ(q̄), q̄) +M(q̄)
)

+
∫ +∞

θ0(q̄)

[
∂U(θ, s∗θ(q̄), q̄)

∂q̄
−M ′

]
dF (θ) = 0

Recognizing that U0(θ0(q̄), s0
θ)−U(θ0(q̄), s∗θ(q̄), q̄) = −NPV (θ0(q̄), s∗θ0(q̄), q̄) and using the

binding constraint leads to:

(32)
∫ +∞

θ0

[
∂U(θ, s∗θ(q̄), q̄)

∂q̄
−M ′

]
dF (θ) = 0

In fact, since marginal participants are indifferent between investing and not investing,
marginal changes in participation can be ignored.

In words, the optimal standard will equalize the sum of marginal disutilities (net of
marginal monitoring costs) of participants for whom the standard is too tight with the sum
of marginal utilities (net of marginal monitoring costs) of participants who would have been
willing to invest beyond the standard.

Note that if participation to investment is nil without the standard, no standard will
be welfare-improving. In contrast, if participation is complete without the standard, the
constraint will not be binding and the optimal standard will be defined by the following
first-order condition:

∫+∞
0 [∂U(θ, s∗θ(q̄), q̄)/∂q̄ −M ′] dF (θ) = 0.
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A3.3. Interaction between moral hazard and energy-use externalities

Public intervention to address moral hazard problems may not be systematically justified if
they interact with energy market failures. Assume that every unit of energy used generates
a linear external cost px, discounted over the relevant time period with a discount factor Γx.
For instance, px is positive for pollution or energy-security externalities, and negative for
average-cost energy pricing. Homeowners’ utilities before and after investment is now:

(33)

U
0
x(θ, s) ≡ U0(θ, s)− pxE0(s)Γx

Ux(θ, s, q) ≡ U(θ, s, q)− pxE(s, q)Γx

These new utility functions allow one to define new net present value NPVx and aggregate
welfare Wx functions as in Equations 5 and 17, respectively. Equilibria are denoted with
superscript PE if externalities are internalized through a Pigouvian price px and UE if they
remain unpriced.

Proposition 4. In an economy subject to both energy market failures and energy efficiency
moral hazard:
(i) When energy market failures are corrected, it is desirable to also undo moral hazard
problems: W PI+PE

x ≥ WAI+PE
x

(ii) If no homeowner is prone to an investment-induced backfire rebound effect, then it is
desirable to correct energy market failures. This holds whether or not moral hazard problems
are addressed: ∀θ E(sPIθ , qPIθ ) ≤ E0(s0

θ)⇒ W PI+PE
x ≥ W PI+UE

x and E(sAIθ , qAIθ ) ≤ E0(s0
θ)⇒

WAI+PE
x ≥ WAI+UE

x

(iii) If homeowners are prone to neither an investment nor a policy-induced backfire rebound
effect, then it is desirable to undo moral hazard problems. This holds even if energy market
failures are not corrected: ∀θ E(sPIθ , qPIθ ) ≤ E(sAIθ , qAIθ ) ≤ E0(s0

θ)⇒ W PI+UE
x ≥ WAI+UE

x

Proof. We illustrate with pollution externalities (px > 0).

(i) For all θ, since (sPI+PEθ , qPI+PEθ ) maximizes Ux in the social setting, Ux(θ, sPI+PEθ , qPI+PEθ ) ≥
Ux(θ, s, q) for all (s, q), and for (sAI+PEθ , qAI+PEθ ) in particular. Likewise, we have U0

x(θ, s0,PE
θ ) ≥

U0
x(θ, s0

θ). By Proposition 3, it follows that W PI+PE
x ≥ WAI+PE

x .

(ii) Again, for all θ, since (sPI+PEθ , qPI+PEθ ) maximizes Ux in the social setting, Ux(θ, sPI+PEθ , qPI+PEθ ) ≥
Ux(θ, sPI+UEθ , qPI+UEθ ). In addition, we have NPVx(θ) = NPV (θ) − pxΓx[E(s, q) − E0(s)].
Assume θPE0 is the cutoff type in an equilibrium where both energy-use externalities and
moral hazard are addressed, while θUE0 is the cutoff type in an equilibrium where only moral
hazard problems are addressed. We have NPVx(θPE0 ) = 0 = NPV (θUE0 ). In the absence of
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an investment-induced backfire rebound effect, we thus have NPVx(θPE0 ) = 0 ≤ NPVx(θUE0 ).
Since NPV is increasing in θ, θPE0 ≤ θUE0 , that is, participation is higher if externalities
are internalized. The difference in aggregate welfare between the two equilibria is ∆W =∫ θPE0

0 ∆U0
xdF (θ)+

∫ θUE0
θPE0

[Ux(θ, sPEθ , qPEθ )−U0
x(θ, s0)]dF (θ)+

∫+∞
θUE0

∆UxdF (θ). The first and third
integrands of the right-hand side are positive (see proof (i) just above). The second integrand
is also positive, since ∀θ ≥ θPE0 Ux(θ, sPEθ , qPEθ ) ≥ U0

x(θ, s0,PE) ≥ U0
x(θ, s0). Therefore, ag-

gregate welfare is larger when externalities are internalized: W PI+PE
x ≥ W PI+UE

x . The exact
same reasoning leads to WAI+PE

x ≥ WAI+UE
x . This is because since (sAI+PEθ , qAI+PEθ ) maxi-

mizes Ux under asymmetric information, Ux(θ, sAI+PEθ , qAI+PEθ ) is greater than Ux(θ, s, q) for
any other actions s and q determined under asymmetric information, e.g., (sAI+UEθ , qAI+UEθ ).

(iii) Externalities are unpriced here but superscript UE is dropped for the sake of par-
simony. Assume θPI0 (resp. θAIc ) is the cutoff type in the social (resp. private) optimum.
From proposition (4i), we have θPI0 ≤ θAI0 . Therefore, the aggregate welfare difference
between the two situations is ∆Wx =

∫ θAI0
θPI0

NPVx(θ, sPIθ , qPIθ )dF (θ) +
∫+∞
θAI0

[Ux(θ, sPIθ , qPIθ ) −
Ux(θ, sAIθ , qAIθ )]dF (θ). In the absence of an investment-induced backfire rebound effect, the
first term of the right-hand side is positive (see proof (ii) just above). In the absence of
a policy-induced backfire rebound effect, the second term of the right-hand side is also
positive. To see this, note that ∀θ E(sPIθ , qPIθ ) ≤ E(sAIθ , qAIθ ) ⇒ −pxΓxE(sPIθ , qPIθ ) ≥
−pxΓxE(sAIθ , qAIθ ). This, added to U(θ, sPIθ , qPIθ ) ≥ U(θ, sAIθ , qAIθ ) (which is given by defini-
tion of the maximum) leads to Ux(θ, sPIθ , qPIθ ) ≥ Ux(θ, sAIθ , qAIθ ). To conclude, the aggregate
welfare difference is positive: W PI

x ≥ WAI
x .

�

As long as energy efficiency does not backfire, correcting energy market failures is desir-
able, regardless of whether or not the contracting parties overcome the moral hazard. Indeed,
social welfare cannot be maximized if the parties do not account for the broader distortions
associated with their actions. However, the reciprocal needs not be true: If energy market
failures are not (or cannot be) corrected, then it might be desirable to maintain, rather than
undo, the moral hazard. This can actually occur if energy efficiency backfires. As a result,
energy market failures would be larger.
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A4. Sufficient statistics

A4.1. Deadweight loss from supply-side moral hazard

We seek to approximate the deadweight loss associated with the quality shortfall caused by
the moral hazard: ∆qW ≡ W PI − WAI . A first step is to examine the marginal welfare
change induced by a marginal change in quality. Since marginal participants are indifferent
between investing and not investing, we can ignore changes in participation (see optimal
standard). Similar envelope conditions allow us to also neglect the benefits from increased
heating comfort. Rewriting Equation 32 with M(q̄) = 0, the marginal benefits from a higher
quality to participating homeowner are thus:

(34) dW
dq̄ = pΓEq − C ′

Integrating between qAI and qPI (with qAI ≤ qPI according to Proposition 2i) gives the
following approximation for ∆qW :

(35) ∆qW = −p∆qE(sAI , q)Γ−∆qC(q)

The error associated with integrating infinitesimal changes is positive and equal to the
private benefits from increased heating comfort and the social benefits from increased par-
ticipation. Indeed, for a participating homeowner, the exact deadweight loss ∆qW is:

(36)

W PI−WAI =
l∑

t=1

[
V (sPI)− V (sAI)− p

(
E(sPI , qPI)− E(sAI , qAI)

)]
δt−

[
C(qPI)− C(qAI)

]

We recognize that:

(37) ∆qW = ∆qW +
[
V (sPI)− V (sAI)− p

(
E(sPI , qPI)− E(sAI , qPI)

)]
︸ ︷︷ ︸

≥0

Γ

The term in brackets is positive because sPI maximizes the function V (·) − E(·, qPI).
Therefore, ∆qW ≤ ∆qW . In words, ∆qW provides a lower bound of the exact average
deadweight loss.
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The formula is quite intuitive. It weighs the cost of quality against its benefits in terms
of gross energy savings. This corresponds to a net present value calculation that only takes
into account technological information. It does not require knowledge of the utility function
for energy service V (·) nor its specific effect on energy use Es. Therefore, the direct rebound
effect can be ignored. Still, the formula contains the key parameters of the market and
behavioral environment p, l and r.

A4.2. Marginal welfare effect of a quality standard

The marginal welfare effect of a quality standard is simply given by Equation 35, enhanced
with −M ′ on the right-hand side. Computation of this formula requires knowing the tech-
nology Eq, the production cost C(·), and the cost of random post-implementation audits
M(·).

A4.3. Marginal welfare effect of energy-savings contracts

The marginal effect of incremental insurance coverage k to the parties willing to engage in
the contract is given by Equation 29 (see optimal standard). It can be rewritten as follows:

(38) dW
dk = pΓ

(
sEsη

s
k − qEqη

q
1−k

)
The η terms are the elasticities of each parties’ input to the insurance coverage. The

elasticy of the rebound effect to insurance completeness, ηsk, is positive. The elasticity of
quality to insurance incompleteness, ηq1−k, is negative. 6 These elasticities are the key effects
an econometrician would need to measure to evaluate the policy.

Again, computation of the formula requires knowing the technology, namely the average
marginal effects of inputs on energy use qEq and sEs. But interestingly, unlike the standard,
the evaluator does not need to have information about cost C(·).

6With isoelastic functions, we have ηq
1−k = −ηq

k.



17

Figure A1. Reaction functions, with and without internalization of
externalities.
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Figure A2. Reaction functions with heterogeneous homeowners,
without externalities.
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Figure A3. Net present value and participation, without external-
ities. The net present value of investment in insulation reads on the right
vertical axis. The intersection of each curve with the zero horizontal axis de-
termines the cutoff type θ0 of the marginal participant in investment. For each
cutoff type on the horizontal axis (from the 0.5th to 95.5th percentile of the θ
distribution), participation across the population is determined by the value
of the complementary cumulative distribution (CCDF) of θ, which reads on
the left vertical axis.
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Figure A4. Reaction functions under different energy-savings insur-
ance contracts, without externalities. The optimal insurance contract
displayed here has a coverage of 20%.


