
HAL Id: hal-01420790
https://hal.science/hal-01420790

Submitted on 21 Dec 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A comparison of cost construction methods onto a
C6678 platform for stereo matching

Judicaël Menant, Guillaume Gautier, Jean-François Nezan, Muriel Pressigout,
Luce Morin

To cite this version:
Judicaël Menant, Guillaume Gautier, Jean-François Nezan, Muriel Pressigout, Luce Morin. A com-
parison of cost construction methods onto a C6678 platform for stereo matching. 2016 Conference
on Design and Architectures for Signal and Image Processing (DASIP), Oct 2016, Rennes, France.
�10.1109/DASIP.2016.7853821�. �hal-01420790�

https://hal.science/hal-01420790
https://hal.archives-ouvertes.fr

A comparison of cost construction methods onto a
C6678 platform for stereo matching.

Judicaël Menant
IETR / INSA Rennes
jmenant@insa-rennes.fr

Guillaume Gautier
IETR / INSA Rennes

gugautie@insa-rennes.fr

Jean-François Nezan
IETR / INSA Rennes
jnezan@insa-rennes.fr

Muriel Pressigout
IETR / INSA Rennes

mpressig@insa-rennes.fr

Luce Morin
IETR / INSA Rennes
lmorin@insa-rennes.fr

Abstract—Stereo matching techniques aim at reconstructing
depth information from a pair of images. The use of stereo
matching algorithms in embedded systems is very challenging
due to the complexity of state-of-the-art algorithms.

Most stereo matching algorithms are made of three different
parts; the cost construction, the cost aggregation and the dis-
parity selection. This paper focuses on comparing the efficiency
of different cost construction methods implemented on a Digital
Signal Processor (DSP) C6678 platform.

Three cost construction algorithms based on census, Sum of
Absolute Differences (SAD) and Mutual Information (MI) have
been compared in terms of output quality and execution time.
Each method has its own specificity discussed in this paper. The
SAD is the simplest one and is used as reference in this paper.
The census has a good output quality, and the MI is faster.

INTRODUCTION

Embedded vision is the merging of two technologies cor-
responding to embedded systems and computer vision. An
embedded system is any microprocessor-based system that is
not a general-purpose computer [1]. The goal of our work is to
implement computer vision algorithms in modern embedded
systems to provide them with stereo perception.

There are two ways to obtain Red Green Blue and Depth
(RGBD) information onto embedded systems: either active
devices such as Kinect or stereo matching algorithms that
compute depth information from two or more images. Active
systems[2] emit an infra-red grid on the observed scene. The
disparity map is then deduced from this sensed-back grid.
Those devices are limited to indoor use with a 5 meter range
and they are sensitive to infrared interferences. This paper
focuses on binocular stereo vision algorithms to bypass these
limitations.

Stereo matching aims to create 3D measurements from two
2D images, generating a disparity map which is inversely
proportional to the depth of any object to the acquisition
system. Disparity maps are used in a wide range of scenarios
where depth must be computed (3D TV, free-view point
video,...). There are two main classes of stereo matching
algorithms, the dense one and the sparse one. Sparse stereo
matching algorithms consider only a set of interest points
whereas dense stereo matching algorithms match all pixels. In
this paper we consider only dense stereo matching algorithms
as they are used in most 3D applications.

Most existing implementations of dense stereo matching
algorithms are carried out on desktop Graphical Processor

Unit (GPU), leading to poor energy efficiency. On top of
that the GPU used for the implementations are different so
that it is very difficult to really compare the complexity
of the algorithms. Embedded systems take up little space
and consume little power, so they are ideal for widespread
integration into everyday objects. Energy-efficient embedded
platforms are now available. The C6678 platform is a recent
8-core Digital Signal Processor (DSP) platform at the state of
the art in the field. The C6678 is clocked at 1 GHz with a
standard 10W power consumption. However, the architecture
of embedded systems is significantly different to the architec-
ture of desktop systems. The challenge is therefore to find and
adapt algorithms and implementations that can fully exploit the
powerful computational capabilities of such an architecture. To
be efficiently implemented on embedded systems, algorithms
must be ported to fixed point implementation. Fixed point
implementations lead to quantification noise and quality loss,
thus a trade-off between precision and quality must be found.

As it will be further exposed, stereo matching algorithms
are divided into three main algorithms. The cost construction,
the cost aggregation, and the disparity selection. The goal
of this paper is to compare the implementation efficiency of
different cost construction algorithms in terms of quality and
computing complexity using the same DSP platform (C6678).
Three different stereo matching cost construction algorithms
are considered. These three algorithms are at the state of the
art in the field of stereo matching algorithms [3].

First, a short overview of stereo matching principle is
introduced followed by the presentation of the C6678 in
section II. Then, each chosen algorithm is explained in section
III. After this non-exhaustive presentation of stereo matching
algorithm, the results are exposed, execution times and quality
output for each algorithm. To finish the perspectives and future
work are exposed.

I. STEREO MATCHING PRINCIPLE

In order to retrieve depth information from two stereoscopic
images, stereo matching algorithms find the correspondences
between those two images. When the stereoscopic system is
rectified, the disparity is the shifting of the two corresponding
pixels in the left and the right images (see figure 1). The bigger
the disparity is, the closest the object is from the two cameras.

Dense stereo matching algorithms are mainly divided into
two classes, local and global methods [3]. The disparity

Fig. 1: Disparity in stereoscopic images

computed with a local method depends only on colorimetric
values of pixels within a finite window. Semi-global stereo
matching algorithms maximize smoothness of the disparity
map all over the image. The memory constraint of embedded
systems does not allow the use of global algorithms so it will
not be studied in this paper.

All dense stereo matching algorithms can be divided into
three main parts :
• The cost construction measures the similarity of two

pixels considering the colorimetric values of those pixel
and a finite neighborhood.

• The cost aggregation refines costs taking into account
the neighbourhood and adds consistency between the
disparity values.

• The disparity selection deduces the disparity level for a
given pixel from the costs produced by the previous steps.

Three state-of-the-art stereo matching cost construction al-
gorithms are studied in this paper:
• The Mutual Information (MI) (part III-A) is a semi-global

method that computes a Look Up Table (LUT) based on
joined probability of the two images to get the cost.

• The Sum of Absolute Differences (SAD) (part III-B) is
a simple and very commonly used local method.

• The census (part III-C) is a more robust method that gives
good results for stereo matching.

II. THE C66X MULTI-CORE DSP PLATFORM

The c6678 platform is composed of 8 c66x DSP cores and it
is designed for image processing. Figure 2 gives an overview
of this platform. The main features and constraints (memory
architecture and DSP core) of this widespread multicore
platform have to be recalled because they explain why the
algorithms have to be modified to be efficiently executed on
any embedded systems.

Fig. 2: C6678 DSP block diagram

A. Memory architecture

Memory is a critical point parameter in embedded systems.
Large memories being slower than smaller ones, modern
systems integrate several memory layers in order to increase
the memory capacity without increasing the access time to
data too much. The memory hierarchy of the c6678 platform
is exposed below :
• 512 MBytes of external DDR3 memory. This memory is

slow, and the bus bandwidth is limited to 10 GBytes/s.
This memory is shared between all 8 cores. It is con-
nected to the 64-bit DDR3 EMIF bus.

• 4 MBytes of internal shared memory (MSMSRAM). It
is a SRAM memory and it is very fast : its memory
bandwidth is 128 GBytes/s .

• 512 KBytes of L2 cache per core. It can be configured
as cache or as memory, and it is very fast. In this paper
this memory is configured as cache.

• 32 KBytes of Data L1 cache and 32 KBytes of Program
L1. They are zero wait state caches (one transfer per
machine cycle).

B. DSP Core

In this section, the main specific architecture points of c66x
cores are introduced.

1) VLIW: The C66x DSP has 8 fully independent Arith-
metic and Logic Unit (ALU) (see figure 3). This implies that
the core is able to execute up to 8 instructions simultaneously
in one cycle with a mechanism named Very Long Instruction
Word (VLIW). The core is composed of two independent data
paths with 4 ALU.

In most digital signal processing applications, a loop kernel
is a succession of interdependent sequential operations. In
order to use efficiently the VLIW architecture, these loops

Fig. 3: C66x DSP core

must be pipelined, that is to say, several iterations of the
core loop are done simultaneously, and thus parallelized. Loop
pipelining is done by the compiler. A speed-up factor of 6
can be easily achieved with a little human work. However a
loop can’t be pipelined when it contains jumps or conditional
statements. These rules must be kept in mind when writing
efficient code and when designing algorithms.

2) SIMD: Single Instructions Multiple Data (SIMD) are
instructions that are executed on multiple data. A SIMD
instruction considers one or two registers (32 or 64 bits
respectively) as a set of smaller words. For instance a 32-bit
register can be seen as a group of 4 8-bit words, and is called a
4-way 8-bit SIMD instruction. This kind of instruction is very
useful in image processing because most of the manipulated
data is 8-bit (pixels). The use of SIMD instructions usually
involve a loss in terms of accuracy compared with floating
point instructions.

3) FPU: The Floating Point Unit (FPU) is a logic unit
which is able to execute operations on floating point numbers.
The c66x has a basic FPU ; Nevertheless, this FPU has low
support of SIMD (two ways maximum), whereas SIMD on
fixed point numbers is up to 8 ways. Moreover a floating point
number is always 4 bytes wide, thus causes a higher memory
usage.

C. Implementation strategies for stereo matching

The development on this platform is done using C language.
When specific instructions need to be used such as SIMD, C
intrinsics are used.

All stereo matching algorithms have the same structure, and
different strategies can be applied to parallelized it. All stereo
matching algorithms can be sliced vertical without increasing
the memory footprint. Nevertheless some algorithms can lead
in synchronization penalties between slices.

Most of local stereo matching algorithms have their cost
computed independently for each disparity level. Those algo-
rithms can be parallelized along their disparity levels. This

parallelization is very effective. However it comes with an
increase in terms of memory footprint.

A specific Digital Signal Processor (DSP) instruction can be
used to increase the implementation efficiency of algorithms
for instance the bit count instruction for census, or the min
instruction for saturation.

Finally, a pixel-level parallelization is possible to compute
several pixels simultaneously thanks to SIMD instructions.
Implementation and performances of this solution depend on
the concerned algorithm.

In the next sections we will describe the three considered
stereo matching algorithms which have been implemented and
compared.

III. ALGORITHMS

As introduced previously, the dense stereo matching algo-
rithms rely on three steps :
• The cost construction.
• The cost aggregation.
• The disparity selection.

This section introduces the three selected cost construction
algorithms, the cost aggregation and the disparity selection
studied in this paper.

A cost construction algorithm provide a cost for each
possible matching pixel pairs. The lower the cost is, the most
likely the math of the corresponding pixel pair is.

A cost construction algorithms has two stereoscopic images
at input : Ib(p) and Im(p). Ib(p) is the base image (the left
image in this paper) image, and Im(p) is the image to be
matched (the right image in this paper).

For all pixels p = (x, y) in the base image, all the possible
matches are pixels p′ = (x−d, y) in the image to be matched,
where d varies among all possible disparities values, 0 to D
(the maximum number of disparity) in this paper.

The output of a cost construction algorithm is a cost matrix
Cost(p, d) of size W×H×D where W and H are respectively
the horizontal and vertical size of an image.

A. Mutual Information (MI)

The first studied cost construction algorithm is the Semi
Global Matching (SGM) one. It has been developed by Heiko
Hirshmüller[4], and uses a matching cost based on a Mutual
Information (MI) to compensate the radiometric differences of
input images. The aim of the algorithm is to create a Look
Up Table (LUT), mi cost matrix.

As explained previously, the MI based cost construction
takes two stereoscopic images as input, but also a disparity
map. The disparity map is the final results of a stereo matching
algorithm, thus, a stereo matching algorithm that uses a MI
based cost becomes recursive.

The principle of MI based cost construction, is to build
from mutual information of pixel a 256 by 256 LUT. The
the intensities of two pixels are used as input of this LUT to
retrieve the corresponding matching cost.

MI based cost construction’s input images I1 and I2 are
defined as I1(p) = Ib(p) and I2(p) = fD(Im(p)) where fD(I)

is the function that moves each pixel intensity according to the
disparity map. PI1,I2(i, k), where (i, k) are the coordinates of
the matrix, is an histogram defined as :

PI1,I2(i, k) =
1

n
×
∑
p

T [(i, k) = (I1(p), I2(p))] (1)

PI1,I2(i, k) represents the probability distribution of the
different couples of intensities (I1, I2) and T [] is an operator
which is ’1’ if (i, k) = I1(p), I2(p), 0 otherwise. The algorithm
counts the number of pixels of possible combinations of
intensities, then, this sum is normalized by the number of
existent couples. n is the number of corresponding pixels.
First, a Gaussian filter is applied to the probability PI1,I2(i, k),
then a logarithm. The aim of this step is to smooth the result
and to decrease the gap between values.

hI1,I2(i, k) = − 1

n
× log (PI1,I2(i, k)⊗ g(i, k))⊗ g(i, k) (2)

hI(i) is the entropy of each image, and is retrieved from
PI1(i) and PI2(k) as shown in equation (3). PI1(i) and PI2(k)

are the sum of the correspondent rows and columns of the
joint probability distribution PI1(i) =

∑
k PI1,I2(i, k).

hI(i) = − 1

n
× log (PI(i)⊗ g(i))⊗ g(i) (3)

The matrix mii1,i2 (equation (4)) is the LUT that is used to
retrieve cost, and contains the probability of having a certain
couple of intensities (I1, I2).

miI1,I2(i, k) = hI1(i) + hI2(k)− hI1,I2(i, k) (4)

This matrix allows to compute the cost. For each pixel p =
(x, y) and disparity d, the cost matrix is defined as :

CMI(p, d) = −mi(Ib(x, y), Im(x− d, y)) (5)

The different costs computed with this formula are stored
in the cost matrix.

Implementation details: The cost construction based on MI
is mainly based on a LUT that is almost optimal. Nevertheless
an efficient implementation of the construction of the LUT is
proposed.

In order to build the histogram, 16 bits words are used,
this allows the use of 4 ways Single Instructions Multiple
Data (SIMD) in the further processing (Gaussian filters). The
construction of histogram is easily parallelized by cutting input
images in slices.

In order to use only integer words, the normalization of
histogram is skipped. Indeed, a multiplying factor does not
change the results because the only operations done with those
costs are comparisons.

The logarithm scale is computed using a 8-bits LUT.

B. Sum of Absolute Differences (SAD)

This second cost computation algorithm is the simplest
one. The Sum of Absolute Differences (SAD) [3] compares
radiometric values of pixels at position (x, y) and at position
(x − d, y). This algorithm performs a fully local calculation
without considering neighbourhood, so it is very sensitive to
noise and image variations.

sim(x, y, d) = |Ib(x, y)− Im(x− d, y)| (6a)

CSAD(p, d) =

{
thres, if sim(x, y, d) ≥ thres

sim(x, y, d), otherwise
(6b)

The thres is a constant linked to the noise level of image,
20 is generally a good value [3].

Implementation details: The SAD cost construction is very
simple, 8-bits SIMD is used, and it is easily parallelized (Very
Long Instruction Word (VLIW) and multi core).

C. Census Cost

The third and last cost computation method is the census
cost [5], [6], [7]. It considers its closed neighbourhood, the
local texture, during its computation and can be computed
efficiently on a VLIW DSP core. This algorithm is applied on
a window N × N where N is odd. As shown in figure 4,
this signature is obtained by comparing each pixel to its
N2 − 1 neighbours. The census is referred as cenm , cenr

in equation (7) for respectively Ib and Im grey level images.

Fig. 4: 8 bits census signature example

In order to retrieve the cost from cenb and cenr, the
differences between the signature of two pixels are counted
as shown in equation (7).

CCEN (p, d) =
1

m

m−1∑
k=0

{
0 if cenr(x, y)[k] = cenm(x− d, y)[k]

1 if cenr(x, y)[k] 6= cenm(x− d, y)[k]
(7)

where m = N ×N − 1
The size N of the census window is parametrizable, in this

paper three different values are tested : 3, 5 and 7.
Implementation details: The census cost construction has

two separate steps. The first one computes the census signature
for all the pixels of the two input images. The second one
computes the cost from those signatures.

The construction of cenm and cenr is complex but must
be done only once for a stereoscopic pair. In order to speed
up this construction the 8 ways SIMD instruction ”dcmpgtu4”

is used. This instruction is able to compare simultaneously 8
bytes and store the results in a 8 bits word were each bit is the
result of the comparison. This is exactly what census does.

The comparison of two signatures is very simple, it is
a eXclusive OR (XOR) followed by a bitcount (”bitc4”)
instruction.

D. Bilateral Filtering Aggregation (BFA)

The second step in the dense Stereo Matching process is
the cost aggregation one. The studied method in this paper is
chosen to have a low computing cost, but it provides noisy
matching cost maps. To reduce this noise, the cost Bilateral
Filtering Aggregation (BFA) step performs smoothing on
areas with similar colour in the original image. It has been
originally proposed by Mei[5], [8]. The cost aggregation step
is performed independently on each disparity level. This is a
key point regarding implementation and its memory footprint.
This algorithms fits very well on a c6678 platform [7]

The cost aggregation algorithm’s structure is similar to a bi-
lateral filter. The cost aggregation step is performed iteratively
with varying parameters. It is defined by equation (8).

Ei+1(p) =
W (p, p+)Ei(p+) + Ei(p) + W (p, p−)Ei(p−)

W (p, p+) + 1 + W (p, p−)
(8)

Ei is the current cost map to be refined, E0 is the output
of cost construction.

Pixels p+ and p− have a position relative to pixel p :
• p+ = p + ∆i

• p− = p−∆i

Equation (8) is computed alternatively for horizontal and
vertical aggregations :
• When i is odd, it is a vertical aggregation and the offset

∆i is vertical.
• When i is even, it is an horizontal aggregation and the

offset ∆i is horizontal.
At each iteration the parameter ∆i grows, thus further pixels

p+ and p− are used for smoothing p. ∆i evolves according
to equation (9), the influence range is limited by the modulo
(here ∆i ∈ [0, 32]).

∆i = floor(i/2)2 mod 33 (9)

Weights W in equation (8) are defined by equation (10) :

W (p1, p2) = eCd.∆i−sim(p1,p2).L−1
2 (10)

where

sim(p1, p2) =

√ ∑
col∈(r,g,b)

(Ircol(p1)− Ircol(p2))2 (11)

In equation (10), Cd is a weight applied to distance[5]
and L2 is the weight applied to similarity [5]. Ir{r, g, b} and
Il{r, g, b} are the RGB (Red, Green, Blue) signals of right
and left images.

E. Disparity selection

The disparity selection step minimizes the matching cost.
The Winner Takes it All (WTA) strategy [3] is used. The
WTA strategy is a simple arithmetic comparison expressed
by equation (12). Because the Bilateral Filtering Aggregation
(BFA) cost aggregation step provides a good quality cost, a
simple disparity selection like WTA can be used.

Disp(p) = argmin
d∈[0,Ndisp]

Ed,Nit(p) (12)

The output of the disparity selection is a dense disparity
map providing an integer disparity value for each pixel in the
right image.

The BFA work on one disparity level at a time, thus, it is
not necessary to store the whole disparity matrix in memory.

IV. RESULTS

The three selected cost construction algorithms and their
implementation particularities are explained in section III. The
Sum of Absolute Differences (SAD) is the most commonly
used cost construction algorithm in literature[3] and is used as
reference. The Census is a more robust cost algorithm, that fits
very well on the C66x architecture. The Mutual Information
(MI) based cost uses a Look Up Table (LUT) that decreases
the number of operation during the cost matrix construction.

This are not a test.
Each cost construction is experimented using the Bilateral

Filtering Aggregation (BFA) and Winner Takes it All (WTA)
disparity selection. Thus, all output quality changes are in-
duced by the cost construction steps.

Experimentations are run on a computer with a CPU Intel
I7-4770 @3.40GHz and on a C6678 Digital Signal Processor
(DSP).

To quantify the output quality, the Middlebury [3] evaluation
tool and dataset are used. This paper exposes the percentage
of bad pixels and separates occulted area from not occulted
area. The execution times are given for the sawtooth image
(380*432) with 19 disparity levels. The output quality is an
average of six images : cones, map, venus, tsukuba, teddy and
sawtooth.

times on Sawtooth
PC time(ms) DSP time(ms)

SAD 24,52 5,0
MI 23,34 6,7
Census 3x3 58,69 8,1
Census 5x5 134,80 17,5
Census 7x7 235,74 35,3

Fig. 5: Observed times on PC(CPU @3.40GHz) and DSP

In figure 5, the execution time provided for the MI based
cost is for one iteration. As explained in section III-A, stereo
matching algorithms that use a MI based cost construction are
iteratives. Experiences show that 5 iterations are required to
have a good disparity map. Nevertheless it is possible to down

sample the input images, and up sample the disparity map at
each iteration, this gives an execution overhead inferior to 1.5
[9]. This is not a problem in a video application because the
input can be the disparity map from the previous frame.

In figure 5, we found, as expected, times that are coherent
with the complexity of the algorithms. All the algorithms are
sensitive to the size of the images but the census execution
time also depends on the size of its window and,like the
SAD, to the number of disparity levels. In all the algorithms
compared in this article only the MI is not really sensitive
to the disparity parameter, because during the construction
of the cost matrix, the algorithm just fetch the value in the
precomputed LUT.

Estimated algorithm complexities:
• SAD: O(H.W.D)
• MI: O(H.W.D)
• Census N ×N : O(H.W.D.N2)

Average scores on Middlebury set
bad pixels(%) non-occulted(%)

SAD 13,23 9,11
MI 10,92 10,77
Census 3x3 19,14 15,23
Census 5x5 8,43 4,48
Census 7x7 7,27 3,39

Fig. 6: Observed scores with Middlebury tool

In order to get better quality results, the size of the census
window is increased at 5x5 and at 7x7 window. The result
obtained are over 2,5% of bad pixels less compared to MI.

The three algorithms have their ins and their outs, but this
observation can be done: the MI is the best when you have
a constraint of time. When you need good quality result, the
7x7 census or even the 5x5 are better. The other algorithms
are less time efficient compared to the MI and the census.

All the result images with the different cost can be found
on the last page in figure 7.

CONCLUSION AND FUTURE WORK

A. Conclusion

This paper compares the efficiency of three different costs
construction onto a C6678 Digital Signal Processor (DSP)
platform. The three cost construction algorithms studied are
based on census, Mutual Information (MI) and Sum of Abso-
lute Differences (SAD).

The three algorithms have there pros and cons even if we
can just retain two of them: MI et census. The speed of
those algorithms is evaluated on a PC platform and a c6678
DSP platform. Their quality is also compared thanks to the
Middlebury evaluation tools [3].

As exposed in the part IV, the MI is faster than the
others, but several iterations are required except on a video
application. The best quality is achieved with a 5x5 or 7x7
census cost. However, the census is quite slow on PC, but fits

well on the DSP architecture. It gives really good scores (over
3% less than the MI based cost).

The actual experiment set up has a major drawback, it
is very bad on occulted area. There are disparity selection
algorithms that takes into account occulted area such as belief
propagation [10] or SGM [6]. Those algorithms work generally
on large cost matrix. Implementing them onto a DSP with
limited high speed memory is challenging.

REFERENCES

[1] E. V. Alliance, “What is embedded vision.” http://www.embedded-
vision.com/what-is-embedded-vision.

[2] K. Khoshelham and S. O. Elberink, “Accuracy and resolution of kinect
depth data for indoor mapping applications,” Sensors, vol. 12, no. 2, pp.
1437–1454, 2012.

[3] R. S. Daniel Scharstein, “A taxonomy and evaluation of dense two-frame
stereo correspondence algorithms,” International Journal of Computer
Vision, no. 47, pp. 7–42, 2002.

[4] H. Hirschmuller, “Accurate and efficient stereo processing by semi-
global matching and mutual informaition,” IEEE Computer Society
Conference on Computer Vision and Pattern Recognition (CVPR), jun.
2005.

[5] X. Mei, X. Sun, and M. Zhou, “On building an accurate stereo matching
system on graphics hardware,” in Computer Vision Workshops (ICCV
Workshops), 2011 IEEE International Conference on, nov. 2011, pp. 467
–474.

[6] I. Ernst and H. Hirschmüller, “Mutual information based semi-global
stereo matching on the gpu,” in Proceedings of the 4th International
Symposium on Advances in Visual Computing, ser. ISVC 08. Berlin,
Heidelberg: Springer-Verlag, 2008, pp. 228–239.

[7] J. Menant, M. Pressigout, L. Morin, and J.-F. Nezan, “Optimized fixed
point implementation of a local stereo matching algorithm onto c66x
dsp,” in Design and Architectures for Signal and Image Processing
(DASIP), 2014 Conference on, Oct 2014, pp. 1–6.

[8] J. Zhang, J.-F. Nezan, M. Pelcat, and J.-G. Cousin, “Real-time gpu-based
local stereo matching method,” in conference on Design and Architecture
for Signal and Image Processing, Cagliary, October 2013.

[9] H. Hirschmuller and D. Scharstein, “Evaluation of stereo matching costs
on images with radiometric differences,” Pattern Analysis and Machine
Intelligence, IEEE Transactions on, vol. 31, no. 9, pp. 1582–1599, Sept
2009.

[10] J.-F. Nezan, A. Mercat, P. Delmas, and G. Gimel’farb, “Optimized belief
propagation algorithm onto embedded multi and many-core systems for
stereo matching.” in Parallel, Distributed, and Network-Based Processing
(PDP), 2016, Conference on, 2016.

Cones Teddy Sawtooth
Tsukuba

Cones with SAD Teddy with SAD Sawtooth with SAD
Tsukuba with SAD

Cones with MI Teddy with MI Sawtooth with MI
Tsukuba with MI

Cones with Census3x3 Teddy with Census3x3 Sawtooth with Census3x3
Tsukuba with Census3x3

Cones with Census5x5 Teddy with Census5x5 Sawtooth with Census5x5
Tsukuba with Census5x5

Cones with Census7x7 Teddy with Census7x7 Sawtooth with Census7x7
Tsukuba with Census7x7

Fig. 7: Input and output images with different cost construction

