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Element Data
Atomic symbol: Sc
Atomic number: 21
Atomic weight: 44.95591
Isotopes and abundances: 45Sc 100 %
1 Atm melting point: 1541 �C
1 Atm boiling point: 2836 �C
Common valences: 3+
Ionic radii: 6-fold, 74.5 pm, 8-fold, 87 pm
Pauling electronegativity: 1.36
First ionization energy: 633.1 kJ/mol
Chondritic (CI) abundance: 5.81 ppm
Silicate Earth abundance: 16.4 ppm
Crustal abundance: 21.9
Seawater abundance: 2–20 pmol/L
Core abundance: �0

Properties

Scandium is the lightest group 3 (IIIB) element and is the
lightest of the transition metals. Its atomic number (proton
number) is 21, has only one long-lived isotope, and has an
atomic mass of 44.95591 u. Scandium’s electronic configura-
tion is [Ar]4s23d1 and only occurs in the trivalent state (Sc3+) in

nature. Thus, unlike most other period 4 transition metals, the
geochemical behavior of scandium is not affected by redox
conditions and shows lithophile behavior. The effective ionic
radii in six- and eightfold coordination are 74.5 and 87 pm,
respectively (Shannon, 1976), and its Pauling electronegativ-
ity is 1.36. Pure scandium metal has a melting point of
1541 �C at 1 atm. The International Union of Pure and
Applied Chemistry considers Sc to be a rare earth element
(REE) (Damhus et al., 2005); however, the ionic radius and
electronic configuration of Sc are sufficiently different from
yttrium and the lanthanides that it is generally excluded from
discussions of the REE.

History and Use

Scandium was “discovered” by Lars Fredrik Nilson in 1879
by separation from rare earth mixtures from euxenite and
gadolinite and is named for Scandinavia.

Global production of Sc is small (�10 tonnes per year) as a
by-product from mining of ores of titanium, rare earths,
apatite, and uranium. Bauxites are another potential source
of Sc, as it gets concentrated, along with other elements, in the
“red mud” residue that results from Al processing (Deady
et al., 2016). The principal uses of Sc are in Sc-Al alloys and
in solid oxide fuel cells. Minor amounts of Sc are also used in
a variety of other applications including electronics, lasers,
and lighting.

Natural Abundances

The abundance of Sc in the solar system, as estimated from
chondritic meteorites, is ca. 5.81 ppm (McDonough and Sun,
1995). The refractory behavior of this element in the solar
nebula as well as its lithophile behavior led to the relative
concentration of this element in the silicate Earth, with an
estimated abundance of about 16 ppm, which is also the
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estimated abundance of the primitive mantle (Palme and
O'Neill, 2014). The abundance of Sc in the Earth’s continental
crust is higher, with average values of 31, 19, and 14 ppm for
the lower, middle, and upper crust, respectively, and an aver-
age continental crust value of 21.9 ppm (Rudnick and Gao,
2014). It occurs in higher concentrations in oceanic crust as
reflected in values in MORB of between 34 and 48 ppm
(Klein, 2003). Thus, as with the rare earth elements, scandium
is not particularly rare, and is found in similar concentrations
in the crust to Pb, and is orders of magnitude more abundant
than most of the precious metals in the Earth’s crust.

The relatively large ionic radius to charge ratio (ionic
potential) of Sc3+ means that it is incompatible in the struc-
tures of many of the common rock-forming minerals, such
that it is generally present in low concentrations, ranging from
a few ppm to a few tens of ppm. The concentration of Sc in
different rock types is shown in Figure 1. Scandium is gener-
ally incompatible in mantle rocks (Davis et al., 2013), which
explains the lower Sc concentration in komatiites compared to
basalts and the low Sc content of peridotites and dunites. The
latter reflects low concentrations and mineral/melt partition
coefficients for olivine and spinel compared to garnet,
clinopyroxene, and amphibole (Davis et al., 2013; Bédard,
2014; Figure 2). The very similar ionic radii (74.5 and 72 pm
in sixfold coordination) and electronegativities (1.36 and
1.31) of Sc and Mg, respectively, explain the substitution of
Sc for Mg in the M1 octahedral site of clinopyroxene and

M octahedral sites of amphibole. Scandium also substitutes
for Mg due to similar ionic radii in the cubic X site of pyrope
garnets (Oberti et al., 2006). Felsic rocks, such as granites, are
depleted in Sc, as quartz and feldspars cannot accommodate
significant amounts of Sc. Because vanadium (V) has com-
parable behavior to Sc, but also variable valence, V/Sc ratios
are sensitive to fO2 and have been used to provide information
on the redox conditions in the mantle (Li and Lee, 2004).

Scandium is residually concentrated in soils and typically
reaches concentrations between about 1 and 10 ppm (e.g.,
Jeske and Gworek, 2013). Coal can contain significant
Sc. Average Sc concentrations in a wide variety of coals
from Asia range from 0.85 to 16.0 ppm, with an overall
average of 4.3 ppm and a maximum value of 230 ppm
(Arbuzov et al., 2014). Consequently, coal fly ash can also
contain significant Sc, generally several tens of ppm (e.g.,
Bettinelli et al, 1987; Franus et al., 2015).

Although Sc generally occurs in low concentrations in
common minerals and rocks, it can achieve higher concentra-
tions in restricted environments, most notably alkaline igne-
ous rocks, including carbonatites, in granitic pegmatites, in
hydrothermal veins, and in some meteorites. It is in these
environments that Sc-rich minerals occur.

Scandium, Figure 1 Box-and-whisker plot of Sc concentrations in
some common lithologies. (Data from the GEOROC database, Sarbas
and Nohl (2008); 11,846 analyses.) “Tholeiite” stands for tholeiitic
basalt, whereas “basalt” includes a wide range of other basalt types.
The boxes represent the first and third quartiles of the data distribution.

The horizontal line represents the median, and the width of the adjacent
notches provides the 95 % confidence interval about the median. The
“whiskers” represent the last value before 1.5 � midrange (arithmetic
mean of maximum and minimum values) beyond the first or third
quartile.
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Scandium Mineralogy

Minerals that contain Sc at concentrations greater than a few
tens of ppm include Sc-rich varieties of minerals such as
columbite, rutile, perrierite, euxenite, ixiolite, and pyrochlore
(e.g., Åmli, 1977; Bergstøl and Juve, 1988;Wise et al., 1998),
as well as minerals in which Sc is an essential element. There
are relatively few minerals known that contain Sc as an
essential element, and only seventeen IMA-approved min-
erals exist, comprising silicates, phosphates, and oxides. Sil-
icates belong to the inosilicate (e.g., cascandite [Ca(Sc,Fe2+)
Si3O8(OH)]), cyclosilicate (e.g., bazzite [Be3(Sc,
Al)2Si6O18]), sorosilicate (e.g., thortveitite [(Sc,Y)2Si2O7]),
and orthosilicate (eringaite [Ca3Sc2(SiO4)3]) subclasses.
Phosphates include anhydrous and hydrous species, such as
pretulite [ScPO4] and kolbeckite [ScPO4 � 2H2O]. A number
of scandium-bearing oxides have been recognized, and most
of these occur in meteorites, such as allendeite [Sc4Zr3O12],
named for its type locality, the Allende meteorite. These
minerals are rare, and, as described above, most scandium
on Earth occurs as a trace component of other minerals.

Aqueous Geochemistry

Scandium concentrations in surface waters are invariably
very low, generally in the parts per trillion (ppt) range. The
limited data available on Sc concentrations in seawater indi-
cate an average concentration of around 13 pmol L�1

(�0.6 ppt) (Horovitz, 1999). This is consistent with a profile
through the Pacific Ocean that shows a gradual increase from
2 pmol L�1 (0.09 ppt) at the surface to 20 pmol L�1 (2 ppt) at

the ocean floor, which is considered to be a nutrient-like
profile (Amakawa et al., 2007). Concentrations in river
water are also very low, in the range of 1–16 ppt (Silker,
1964; Tanizaki et al., 1992; Cerutti et al., 2003); however,
concentrations can be higher (ppb levels) in acid mine drain-
age (e.g., Jerez et al., 2014).

The relatively small radius of Sc3+ and its trivalent nature
make it a “hard” acid in the sense of Pearson (1963) and, in
aqueous solutions, will preferentially bond to hard bases,
including OH� and F�, and certain organic ligands, such as
acetate. This is confirmed by available thermodynamic and
experimental data which indicate that in most
low-temperature environments (pH � 4–10), the aqueous
complexes Sc(OH)2+, Sc(OH)2

+, and Sc(OH)3
0 will predom-

inate. At low pH, Sc3+ will predominate. With increasing
temperature, the hydroxy complexes with higher ligand num-
bers are predicted to become increasingly important. Scan-
dium fluoride complexes are relatively stable and could be
important in fluorine-rich environments, particularly at low
pH. There are few data on the aqueous solubility of the Sc
minerals described above. Calculated solubilities for the
phase ScOOH at 25 �C indicate low solubilities (�9 ppb)
and a solubility minimum between pH � 6 and 10, but that
under acidic conditions, solubilities can reach several hun-
dred ppm (Wood and Samson, 2006). In low-temperature
phosphate-rich environments, the phase ScPO4 is calculated
to have even lower solubilities and would severely limit the
mobility of Sc (Wood and Samson, 2006), for example, in
some soil environments where REE phosphates are known to
occur (Aide and Aide, 2012).

Scandium,
Figure 2 Box-and-
whisker plot of Sc
concentrations in various
mantle-related minerals.
(Data from the GEOROC
database, Sarbas and Nohl
(2008); 21,475 analyses.)
The minerals mostly come
from xenoliths of various
mafic and ultramafic
lithologies.
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Biological Utilization and Toxicity

Scandium does not bioaccumulate readily in plants (Alloway,
2013) and, given the concentrations found in biomaterials, is
generally not considered a toxic element, except at higher
than normal doses, but can have some beneficial effects on
organisms (Bordean et al., 2013). Scandium chloride (ScCl3)
is, however, more toxic (Horovitz, 2000).

Summary

Scandium, a lithophile element, is the lightest of the transition
elements and has crustal abundances that generally range
between 15 and 50 ppm. Scandium can occur in higher
concentrations, generally in alkaline rocks, where it can
form Sc minerals, but is mostly present as a trace component
in a wide range of rock-forming minerals, most easily
substituting for Mg. It occurs in very low concentrations in
natural waters and does not easily bioaccumulate.
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