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Abstract — In the frame of optimization process in industrial framework, where numerical simu-
lation is used at some stage, the same problem, modeled with partial differential equations depend-
ing on a parameter has to be solved many times for different sets of parameters. The reduced basis
method may be successful in this frame and recent progress have permitted to make the compu-
tations reliable thanks ta posterioriestimators and to extend the method to non linear problems
thanks to the “magic points” interpolation. However, it may not always be possible to use the code
(for example of finite element type that allows for evaluating the elements of the reduced basis)
to perform all the “off-line” computations required for an efficient performance of the reduced
basis method. We propose here an alternating approach based on a coarse grid finite element the
convergence of which is accelerated through the reduced basis and an improved post processing.
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1 Introduction

Let X be aclosed subspace of the Sobolev spHééQ) over a bounded domai2 ¢ RY andD a
set of parameter. We consider the following problem: giuen®, find u(p) € X such that

weX, a(u(p),v;w = (f,v), 1)

wherea is a bilinear form, continuous and coercive o¥ethat depends additionally on a param-
eterue Dandf € L?(Q).

In order to approximate the solution to this problem, one can use a standard numerical approach,
as a finite element method, that provides a very accurate approximation of the salytidor

any fixed value of the parametgr This accurate approximation will be called “truth approxima-

tion” in what follows. The computation of the truth approximationugfl) for many values of

K can however become very expensive as it has to be repeated for each parameter. The reduced
basis method is an alternative that takes its roots upon the low “complexity” of the set of all solu-
tions M? = {u(y),u € D} that can e.g. be measured by the Kolmogorov width [3] (see also [5]).
This can for instance be formalized by the fact that for any0, there exist a set of parameters



M1, M2, ,Un, € D, whee N = N(g) is reasonable, such that,

N
MeD W) eRY  ul = 3 aWu(lx <e. 2)
=
Based on the potential approximation property expressed above, the reduced basis method is in a
Galerkin approach to the problem (1) for each new valup, ofithin a spaceXy spanned by
particular truth approximations ef ) corresponding to suitably chosen paramegers

To keep the interest of this method, i) the parametgrsave to be adequately chosen, ii)
the corresponding solution has to be properly calculated or approximated through an accurate
discretization method (as a finite element method, for example) and iii) moreover the construction
of the stiffness matriXA(p) with entriesa(u(p ), u(y;); 1) as to be done for each new valueiof

All the expensive computations involving in the three previous steps are done off-line which
allows to have online computations that scales only like poweld afd do not involve the di-
mension of the finite element space (see e.g. [4]).

Various recent contributions have permitted to extend the range of the reduced basis method,
e.g. thea posteriorierror estimates for validation and determination of the proper paramgters
[6], the “magic points” , for generalization to nonlinear problems [2].

In an industrial framework, for optimization processes for instance these approaches have a
great potential, unfortunately part of the off line computations require to enter in the code that com-
putes the truth approximation which is not possible in case the simulation code has been bought
or relies on a long evolution so that only a black box use of the code is possible. Those computa-
tions require indeed the use of some component involved in the implementation of discretization
method which are not available to the user. As a consequence the reduced basis method cannot be
efficiently implemented, an alternative needs to be proposed.

2 An alternating reduced basis method

Let us assume that the truth approximation is basedbpfanite element code, capable of giving
us a good enough approximation of thgl) in a finite element spacé, such that

VHED,  Ju(l) - un(p)lx < cih < Tol. 3

WhereTol is a a tolerance chosen in accordance to the final goal we have. In the standard reduced
basis method we first compute the truth approximatigfy; ), then form a discrete spaoﬁ*q\' =
Spar{un(W),i = 1,..,N} and build a Garlerkin approximation of (1) ¥}': Findu) () € XN such

that, vwv e XN, a(ul (), v;p) = (f,v). The implantation of this reduced basis method involves

the construction of the stiffness mate (1) with entriesa(un (1 ), Un(1;); 1)-

In an industrial framework, the finite element code is often locked, so we can not decompose
the construction of the stiffness mati(p) into a series of independent part that can be eval-
uated off line. This prevents us from employing the usual technique to compute quickly each
stiffness matrix for a new value @f and take away the benefit of the reduced basis method (i.e.
having a complexity depending only on N, independently of the dimension of the finite element
space). First of all, let us remind that for a stable implementation of the reduced basis technique,
it is required to build a better prepared basis than the one composed witlitheusually a
Gramm-Schmidt method is here advocated. We replace it here by the resolution of an eigenvalue
problem: find§ € XN andA € R such thatvv € X\, [, OE0v =\ [ &v, that provided 2(Q) and
H1(Q) orthogonal eigenvectoi gr (chosen to be normalized Irf). We note, that thé; gr also
constitute a second basis of the spé@b Secondly we remark that, the standard reduced basis
method aims at evaluating the coefficients intervening in the decompositiaﬂ“(p)‘ in the basis
of the & gr, UN (1) = SN, BBRE; gr. Those can appear as a substitute to the optimal coefficients



BM(W) = Jo Un(W)&i sr Of the best approximation of (L) in XN. This substitute is still good enough
since, from Cea’s Lemma we hayje(p) — ul (p)|jx <c ianHu(u) —V||x , then by using (2) and
veX;

(3) we derive:
lu(w) — ul (WIx < e+coh 4)

Our alternative method first presented in [1] and illustrated by numerical results proving the po-
tential interest of this alternative consists in proposing, another surrog#3(jip defined by

B (W) = [ounu(WE gr- Since, the computation afy (), for H >> h and Xy C Xy, is less ex-
pensive than the one of,(l), the use of the industrial code with the parameter H to construct the
B (w)is cheap enough. From this computation we deny&(l) = SN, B ()& srin XN. In what

follow we explain in which case this can still be a very good approximation.

Since, |BM(W) — B ()| < [lun(K) — us (W) |loq a classical Aubin-Nitsche argumehprovides
the following estimate||u(p) — uy (W) |lo.o < cH||u(k) — un (W)||x < cH2. By using thelL.2 andH*
orthogonality of the; gr basis, we get thatu(p) — ull" (W)||x < €+ csh+ c4H? wherec = c4(N)
which is asymptotically similar to (4) when we chodse H?.

In the case of an higher order finite element approximatfanwe can as well use an Aubin-
Nitsche argument to get the improved error estimation. First we défigg, such that/v, € X,
a(Vh, i Bri H) = o Vn&i,sr, henceBl (1) — B (1) = Jo (Un(W) — U ())& h = a(Un(L) — Uk (W), Pi i ).
SinceXy C X, we obtain, from the definition af, (1) anduy (), thatVxy € Xy,
a(Un (M) — un (W), XH; H) = 0, then that/xy € Xu, BM(H) — B (W) = a(un (1) — un (W), Pip — Xni W)
Therefore we haveB]' (1) — B ()| < cf[un(k) — Un (W) [Ix | Pn — Xn; ) [[x < cH* and then
u(p) — Ul (W) |Ix < €+ csh®+ cgH (wherece = cs(N)). Finally, we get to the same conclusion
as previously by choosing ~ H2. Here we want to improve even further the accuracy of the
approach by proposing a simple post processing of the results.

3 Post-processing

Let BH(uj) be thevector (B (1)) 1<i<n and Bh(uj) the ore corresponding to théB (1)) 1<i<n-

We decide to improve the computation of tBE‘(u), by a pst-processing that will insure that
for each parametens = (lj)j—1.. N that are used in the construction of the reduced basis, the
method returns exactlyi,(1;), indeed contrarily tas(u) that we do not want to compute for a
large number of values @f the truth solutionsin(y;), j = 1,--- ,N have been actually computed.

In order to define this post-processing, we consider the linear transformatiddN — RN, that
mapsp" (Mj) on to Bh(uj). The st processing consist in applying it to all the veqith(p).

Let T be he matrix associated to the transformati®n For large values o, the solutions
Un(Mj),J =1,---,N mays become almost linearly dependent which results in a bad conditioning
of the matrixT. This loss of stability may result in an important deterioration of the vectors
B™ (). To awid this problem we propose to map only the first solutions in the previous set and
thus construct an alternative matrix denofgdl < k < N verifying:

t
() (B (oo B o) Yoo W) = (B B (o) Yy g Wy )
wheretheN vectorsy, are castructed by a Gram - Schmidt method such g]at 0 By (Hpy)

B, (Mo )12
H H
Y, € SparB" (Mp, ), B (Mpe) }-
The sé (Up, )1<k<n is identical to the one used in the construction of the reduced basis, but
it has been arranged differently. Indeed for each iterakiowe chooseu, among theN —k

t

, and

1Actudly, the convergence results stated here either require that there is no corner or edge type singularities in the
solutions — of the primal or dual problem for the Aubin-Nitsche argument — or that we relax somehow the definition of
h andH being here a parameter associated with the grid size and the way the global refinement is done for convergence
but not the size of the finer elements that should be defined such that the error bound by a conatarrtitinleslds.



parametersilp, ) k<q<n. suchthat1£n§>N<HTk[3H(uj) —B"(1)]| is the smallest. We notice that, at
<j<

the end, the matri{y andT are similar.
Then we chose the matri with the largesk chosen in such a way that the condition number
of the matrixTy is moderate enough.

4 Numerical results

The problems we consider in this section are in 2 dimensions. From an original coarse triangula-
tion ‘Zyy,, we built successive refined triangulatiof 1<i<4 by recursively splitting each triangle

K'in 7y, into four triangles with equal diametet, such thaH;, = H“’T”K We gd a superspace

Xu, about four times larger thaXyy, _, that satisfies<y, C Xu,. We denote byP(u), theH? pro-

jection ofun(p) on the basis of th& gg, defined byuf” (1) = SN, (W& gr. It is the best we can
expect from the reduced basis, that is one of the ingredient entering in the approximation.

4.1 Example 1

We first consider the nonlinear problem: fingt H1(Q) such that

—Au+u3 = sin(x)sin(y) in Q = [0,1]2\ (3,1[?) (L-shape domain)

au+ G =y(L-y)onTr = {(Ly),y € [0,3]}
u=nxy(l-y)(1—x)onl'p =0Q\TlF
In this example, the set of parameters; (a,n), that we use is varying if1,37) x [1,100. Let
beps =  argmax  {[ju()—uy* (Wllro}tand = argmax  {[lu(w)—u"(Wll1o}-
H=(B.n)€[1,37x[1,100 H=(B.n)€[1,37x[1,100
TheP; approximation results’s are showed in the table 1. We first remark that we need at least
N = 10 elements in the reduced basis to recover the truth error. Second, before post-processing we
note that theHi-error made with the solutiony "™ is close to the one made with, for any value
of pin D, despite the fact thaly, is eight tlmes less accurate thdp,, at least folN > 10. We
also note a small deterioration of the evaluation of the solution, whases, confirming that the
constantc(N) is growing withN. Finally, we note that the post-processing improved even more
the approaximation since it allows to recover the truth error even starting from the computations
of the coarsest SO|utI0[]hH° at least if we use the proper number of reduced elements (10 or
15) , which is a very substantial savings. We note also that the reduction of indices in the post-
processing is used, even it is important since, in the basel5 the errof|u(py, ) — hHl (HHy) 1.0
with the full matrix is 050.

4.2 Exemple 2

The second problem is a convection dominated problem :fiadH(Q) such that

(0.02)Au+v-Ou=0inQ = [0,1]?
u=x%on M= {(1,)/),)/ € [0’ l]}
u=y?onl,={(x1),x<[0,1}
u=0o0nl3=0Q\ (F uly).

wherev is such a = (cosy, siny). HeLe the varying parameter is the angle of the convection
e [0,3). Let bepuy, = argmax]|u(u W — W (Wllia} and p = argmaju(y - W(W]lLa}. The

pe peo
table 3 shows th@; approximations result’s, while the table 2 shows Fheones. We can make
the same conclusion than in the previous example : this combined method (reduced bais + two
grids) is thus even improved by the trivial postprocessing. Note that the mathematical justification

of this last ingredient is still missing.



Table 1: Error for the example 1 witk, = {ve c°(Q), vir € P1(T), T € T, }

[[u(kn) — Un(kh)| |0 = 3.3x 1072
] It — gt )lle | [ute) — U ()lle
Nk with post’-\lprocessing without pogt-proceSSin; [1uCkes) = U (b ) 2.0
[[u(kh) — URR(Hn)[[1.0 = 0.19
5 0 0.15 0.13 0.49
5 1 0.17 0.16 0.28
2 0.19 0.18 0.15
3 0.19 0.19 7.3%x10°°
() — (bl 0 =36 % 10 2
10 0 3.6x10°7 0.35 0.49
10 1 35x10°° 6.8x 107 0.28
2 35x10°7 3.8x10°7 0.15
3 3.6x10°° 35x10°° 7.3%x10°°
() — B0 =34% 10 2
15 1510 35x10°7 0.47 0.49
7 11 3.7x10°7 0.14 0.28
15 2 3.4x10°7 34x10°7 0.15
3 34x10° 3.4x10° 7.3x10°°
() — B0 =33 % 10
20 0 55x 10?2 0.56 0.49
20 1 34x10°° 0.20 0.28
2 3.4x10°7 48x 107 0.15
3 34x10° 3.4x10° 7.3x10°°

[[u(Hn) — Un(kh) |0 = 3.5x 1073

Table 2: Error for the example 2 witk, = {ve C°(Q), vir € Po(T), T € Ty,}

Ju(keg) — U () 2.0

Ju(keg) — Uy ()20

N |k with post-processing | without post-processing [u(be) — U (M) |10
[[u(pn) — U™ (kn)[[1.0 = 1.41x 10°2
5 0 6.4x 107 6.5x 102 0.11
s |1 6.1x10°2 6.1x10? 33x10°7°
2 6.1x10°° 6.1x 107 87x10°3
[Ju(kh) — uRR(un)[[1.0 =35 x 10°3
10 0 35x10°° 41x10°7° 0.16
10 1 35x10°3 56x 103 51x 10?2
2 35x10°3 35%x10°3 1.4x10°7°
[[u(kh) — URR(Hn)[[1.0 =35x 1073
15 0 35x10°3 58x10°° 0.16
15 1 35x10°3 7.8x10°3 51x10?
2 35x10°3 35x10°° 014x 102




Table 3: Error for the example 2 witk, = {ve C°(Q), vir € P1(T), T € T, }

[u(Hn) — Un(kh)[l1.0 = 3.5x 102

[Ju(ke) — Uy ()l | (uue) —ug ™ ()20
Nk with post—Nprocessing without pogt—processinq [1ulk) = Uk (ke ) 2.0
() — up™(kn)ll1.0 =36x 102
. 0 5.7x 10 2 0.17 0.45
g |1 6.2x 10 2 9.0x 10 ? 0.24
2 6.5x 10 2 7.0x 102 0.12
3 6.6 x 10 2 6.7x 10 2 6.1x 10 ?
(k) — up™(kn)ll10 =35x10 2
10 0 35%x102 0.244 0.53
101 35x 10?2 9.1x10 2 0.31
2 35x10 ? 42%x 1072 0.16
3 35x10°7 3.6x10°7 7.9x10°7
(k) — up(kn)ll10 =35x10 2
15 0 35%x102 0.36 0.53
1511 35x 10?2 9.8x 10 2 0.31
2 35x10 ? 42%x 1072 0.16
3 35x10°7? 3.6x10°7 7.9x10°7
(k) — up(kn)ll1.0 =35x10 2
20 0 35%x1072 0.37 0.53
1311 35x 10 2 0.13 0.31
2 35x10 ? 46x 102 0.16
3 35x10°7? 3.6x10°7 7.9x 1077
References

[1] R. Chakir and Y. MadaylUne méthode combinée d'éléments finis a deux grilles/bases ré-
duites pour I'approximation des solutions d’'une E.D.P. paramétriquae aux CRAS, in
press, 2009.

[2] MA. Grepl, Y. Maday, NC. Nguyen and AT. Patergfficient reduced-basis treatment of

nonaffine and nonlinear partial differential equatioid2AN, 41(3):575]'(% 605, 207

[3] A. Kolmogoroff, Uber die beste Anndherung von Funktionen einer gegebenen Funktionen-

klasseAnals of Mathvol. 37 (1963), 107—110.

[4] Y. Maday, Reduced basis method for the rapid and reliable solution of partial differential
equations in International Congress of Mathematicians. Vol. lll, 1255-1270, Eur. Math.

Soc., Zurich (2006).

[5] A. Pinkus,n-Widths in Approximation Theorgpringer-Verlag, Berlin,1985.

[6] C. Prudhomme, DV. Rovas, K. Veroy, L. Machiels, Y. Maday, AT. Patera and G. Turinici,
Reliable real-time solution of parametrized partial differential equations: Reduced-basis

output bound methog Fluids Engineering, 124:7680, 22






