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Abstract — In the frame of optimization process in industrial framework, where numerical simu-
lation is used at some stage, the same problem, modeled with partial differential equations depend-
ing on a parameter has to be solved many times for different sets of parameters. The reduced basis
method may be successful in this frame and recent progress have permitted to make the compu-
tations reliable thanks toa posterioriestimators and to extend the method to non linear problems
thanks to the “magic points” interpolation. However, it may not always be possible to use the code
(for example of finite element type that allows for evaluating the elements of the reduced basis)
to perform all the “off-line” computations required for an efficient performance of the reduced
basis method. We propose here an alternating approach based on a coarse grid finite element the
convergence of which is accelerated through the reduced basis and an improved post processing.
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1 Introduction

Let X be aclosed subspace of the Sobolev spaceH1(Ω) over a bounded domainΩ ⊂ R
d andD a

set of parameter. We consider the following problem: givenµ∈D, find u(µ) ∈ X such that

∀v∈ X, a(u(µ),v;µ) = ( f ,v), (1)

wherea is a bilinear form, continuous and coercive overX that depends additionally on a param-
eterµ∈D and f ∈ L2(Ω).
In order to approximate the solution to this problem, one can use a standard numerical approach,
as a finite element method, that provides a very accurate approximation of the solutionu(µ) for
any fixed value of the parameterµ. This accurate approximation will be called “truth approxima-
tion” in what follows. The computation of the truth approximation ofu(µ) for many values of
µ can however become very expensive as it has to be repeated for each parameter. The reduced
basis method is an alternative that takes its roots upon the low “complexity” of the set of all solu-
tionsM D = {u(µ),µ∈D} that can e.g. be measured by the Kolmogorov width [3] (see also [5]).
This can for instance be formalized by the fact that for anyε > 0, there exist a set of parameters
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µ1,µ2, · · · ,µN,∈D, where N = N(ε) is reasonable, such that,

∀µ∈D ∃(αi(µ)) ∈ R
N
, ‖u(µ)−

N

∑
i=1

αi(µ)u(µi)‖X ≤ ε. (2)

Based on the potential approximation property expressed above, the reduced basis method is in a
Galerkin approach to the problem (1) for each new value ofµ, within a spaceXN spanned byN
particular truth approximations ofu(µ) corresponding to suitably chosen parametersµ.

To keep the interest of this method, i) the parametersµi have to be adequately chosen, ii)
the corresponding solution has to be properly calculated or approximated through an accurate
discretization method (as a finite element method, for example) and iii) moreover the construction
of the stiffness matrixA(µ) with entriesa(u(µi),u(µj );µ) as to be done for each new value ofµ.

All the expensive computations involving in the three previous steps are done off-line which
allows to have online computations that scales only like powers ofN and do not involve the di-
mension of the finite element space (see e.g. [4]).

Various recent contributions have permitted to extend the range of the reduced basis method,
e.g. thea posteriorierror estimates for validation and determination of the proper parametersµi ’s
[6], the “magic points” , for generalization to nonlinear problems [2].

In an industrial framework, for optimization processes for instance these approaches have a
great potential, unfortunately part of the off line computations require to enter in the code that com-
putes the truth approximation which is not possible in case the simulation code has been bought
or relies on a long evolution so that only a black box use of the code is possible. Those computa-
tions require indeed the use of some component involved in the implementation of discretization
method which are not available to the user. As a consequence the reduced basis method cannot be
efficiently implemented, an alternative needs to be proposed.

2 An alternating reduced basis method

Let us assume that the truth approximation is based on aP1-finite element code, capable of giving
us a good enough approximation of theu(µ) in a finite element spaceXh such that

∀µ∈D, ||u(µ)−uh(µ)||X ≤ c1h < Tol. (3)

WhereTol is a a tolerance chosen in accordance to the final goal we have. In the standard reduced
basis method we first compute the truth approximationuh(µi), then form a discrete spaceXN

h =
Span{uh(µi), i = 1, ..,N} and build a Garlerkin approximation of (1) inXN

h : FinduN
h (µ) ∈ XN

h such
that,∀v∈ XN

h , a(uN
h (µ),v;µ) = ( f ,v). The implantation of this reduced basis method involves

the construction of the stiffness matrixAh(µ) with entriesa(uh(µi),uh(µj);µ).
In an industrial framework, the finite element code is often locked, so we can not decompose

the construction of the stiffness matrixAh(µ) into a series of independent part that can be eval-
uated off line. This prevents us from employing the usual technique to compute quickly each
stiffness matrix for a new value ofµ, and take away the benefit of the reduced basis method (i.e.
having a complexity depending only on N, independently of the dimension of the finite element
space). First of all, let us remind that for a stable implementation of the reduced basis technique,
it is required to build a better prepared basis than the one composed with theu(µi), usually a
Gramm-Schmidt method is here advocated. We replace it here by the resolution of an eigenvalue
problem: findξ ∈ XN

h andλ ∈ R such that∀v∈ XN
h ,

R

Ω ∇ξ∇v = λ
R

Ω ξv, that providesL2(Ω) and
H1(Ω) orthogonal eigenvectorsξi,BR (chosen to be normalized inL2). We note, that theξi,BR also
constitute a second basis of the spaceXN

h . Secondly we remark that, the standard reduced basis
method aims at evaluating the coefficients intervening in the decomposition ofuN

h (µ) in the basis
of the ξi,BR, uN

h (µ) = ∑N
i=1 βBR

i ξi,BR. Those can appear as a substitute to the optimal coefficients
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βh
i (µ) =

R

Ω uh(µ)ξi,BR of the best approximation ofuh(µ) in XN
h . This substitute is still good enough

since, from Cea’s Lemma we have‖u(µ)−uN
h (µ)‖X ≤ c inf

v∈XN
h

‖u(µ)− v‖X , then by using (2) and

(3) we derive:
‖u(µ)−uN

h (µ)‖X ≤ ε+c2h. (4)

Our alternative method first presented in [1] and illustrated by numerical results proving the po-
tential interest of this alternative consists in proposing, another surrogate toβh

i (µ) defined by
βH

i (µ) =
R

Ω uH(µ)ξi,BR. Since, the computation ofuH(µ), for H >> h andXH ⊂ Xh, is less ex-
pensive than the one ofuh(µ), the use of the industrial code with the parameter H to construct the
βH

i (µ)is cheap enough. From this computation we deriveuHh
N (µ) = ∑N

i=1 βH
i (µ)ξi,BR in XN

h . In what
follow we explain in which case this can still be a very good approximation.

Since,|βh
i (µ)− βH

i (µ)| ≤ ‖uh(µ)− uH(µ)‖0,Ω a classical Aubin-Nitsche argument1 provides
the following estimate:‖u(µ)−uH (µ)‖0,Ω ≤ cH‖u(µ)−uH (µ)‖X ≤ cH2. By using theL2 andH1

orthogonality of theξi,BR basis, we get that‖u(µ)−uHh
N (µ)‖X ≤ ε+c3h+c4H2 wherec4 = c4(N)

which is asymptotically similar to (4) when we chooseh∼ H2.

In the case of an higher order finite element approximation,Pk, we can as well use an Aubin-
Nitsche argument to get the improved error estimation. First we defineΦi,BR, such that∀vh ∈ Xh,

a(vh,Φi,BR;µ)=
R

Ω vhξi,BR, henceβh
i (µ)−βH

i (µ)=
R

Ω(uh(µ)−uH(µ))ξi,h = a(uh(µ)−uH(µ),Φi,h;µ).
SinceXH ⊂ Xh we obtain, from the definition ofuh(µ) anduH(µ), that∀χH ∈ XH ,
a(uh(µ)−uH(µ),χH ;µ) = 0, then that∀χH ∈ XH , βh

i (µ)−βH
i (µ) = a(uh(µ)−uH(µ),Φi,h−χH ;µ).

Therefore we have|βh
i (µ)−βH

i (µ)| ≤ c‖uh(µ)−uH(µ)‖X‖Φh−χH ;µ)‖X ≤ cH2k and then
‖u(µ)−uHh

N (µ)‖X ≤ ε+c5hk +c6H2k (wherec6 = c6(N)). Finally, we get to the same conclusion
as previously by choosingh ∼ H2. Here we want to improve even further the accuracy of the
approach by proposing a simple post processing of the results.

3 Post-processing

Let βH(µj) be thevector(βH
i (µj))16i6N andβh(µj) the one corresponding to the(βh

i (µj))16i6N.

We decide to improve the computation of theβH(µ), by a post-processing that will insure that
for each parametersµ = (µj) j=1,··· ,N that are used in the construction of the reduced basis, the
method returns exactlyuh(µj), indeed contrarily touh(µ) that we do not want to compute for a
large number of values ofµ, the truth solutionsuh(µj), j = 1, · · · ,N have been actually computed.
In order to define this post-processing, we consider the linear transformationF : R

N → R
N, that

mapsβH(µj) on toβh(µj). The post processing consist in applying it to all the vectorβH(µ).
Let T be the matrix associated to the transformationF . For large values ofN, the solutions

uh(µj), j = 1, · · · ,N mays become almost linearly dependent which results in a bad conditioning
of the matrixT. This loss of stability may result in an important deterioration of the vectors
βH(µ). To avoid this problem we propose to map only the first solutions in the previous set and
thus construct an alternative matrix denotedTk, 1≤ k≤ N verifying:
(

Tk
)

(

βH(µp1), · · · ,β
H(µpk),γk+1

, · · · ,γ
N

)t
=

(

βh(µp1), · · · ,β
h(µpk),γk+1

, · · · ,γ
N

)t

wheretheN vectorsγ
k

are constructed by a Gram - Schmidt method such thatγ
1
=

β
H
(µp1)

‖β
H
(µp1)‖2

, and

γ
k
∈ Span{βH(µp1), · · · ,β

H(µpk)}.
The set (µpk)1≤k≤N is identical to the one used in the construction of the reduced basis, but

it has been arranged differently. Indeed for each iterationk, we chooseµpk among theN− k

1Actually, the convergence results stated here either require that there is no corner or edge type singularities in the
solutions — of the primal or dual problem for the Aubin-Nitsche argument — or that we relax somehow the definition of
h andH being here a parameter associated with the grid size and the way the global refinement is done for convergence
but not the size of the finer elements that should be defined such that the error bound by a conatant timesh or H holds.
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parameters(µpq),k≤q≤N, suchthat max
1≤ j≤N

‖TkβH(µj)−βh(µj)‖∞ is the smallest. We notice that, at

the end, the matrixTN andT are similar.
Then we chose the matrixTk with the largestk chosen in such a way that the condition number

of the matrixTk is moderate enough.

4 Numerical results

The problems we consider in this section are in 2 dimensions. From an original coarse triangula-
tion TH0, we built successive refined triangulationsTHi ,1≤i≤4 by recursively splitting each triangle

K in THi−1 into four triangles with equal diameterHiK such thatHiK =
H(i−1)K

2 . We get a superspace
XHi about four times larger thanXHi−1 that satisfiesXH0 ⊂ XHn. We denote byuhP

N (µ), theH1 pro-
jection ofuh(µ) on the basis of theξi,BR, defined byuhP

N (µ) = ∑N
i=1 βh

i (µ)ξi,BR. It is the best we can
expect from the reduced basis, that is one of the ingredient entering in the approximation.

4.1 Example 1

We first consider the nonlinear problem: findu∈ H1(Ω) such that

−∆u+u3 = sin(x)sin(y) in Ω = [0,1]2 \ (]1
2,1[2) (L-shape domain)

αu+ ∂u
∂n = y(1−y) on ΓF = {(1,y),y∈ [0,

1
2]}

u = η xy(1−y)(1−x) on ΓD = ∂Ω\ΓF

In this example, the set of parameters,µ= (α,η), that we use is varying in[1,37]× [1,100]. Let
beµHi = argmax

µ=(β,η)∈[1,37]×[1,100]
{||u(µ)−uhHi

N (µ)||1,Ω} andµh = argmax
µ=(β,η)∈[1,37]×[1,100]

{||u(µ)−uh(µ)||1,Ω}.

TheP1 approximation results’s are showed in the table 1. We first remark that we need at least
N = 10 elements in the reduced basis to recover the truth error. Second, before post-processing we
note that theH1-error made with the solutionuhH2

N is close to the one made withuh, for any value
of µ in D, despite the fact thatTH2 is eight times less accurate thanTH4, at least forN ≥ 10. We
also note a small deterioration of the evaluation of the solution, whenN rises, confirming that the
constantc4(N) is growing withN. Finally, we note that the post-processing improved even more
the approaximation since it allows to recover the truth error even starting from the computations
of the coarsest solutionuhH0

N , at least if we use the proper number of reduced elements (10 or
15) , which is a very substantial savings. We note also that the reduction of indices in the post-
processing is used, even it is important since, in the caseN = 15 the error||u(µH1)−uhH1

N (µH1)||1,Ω
with the full matrix is 0.50.

4.2 Exemple 2

The second problem is a convection dominated problem : findu∈ H1(Ω) such that

(0.01)∆u+v·∇u = 0 inΩ = [0,1]2

u = x2 on Γ1 = {(1,y),y∈ [0,1]}
u = y2 on Γ2 = {(x,1),x∈ [0,1]}
u = 0 onΓ3 = ∂Ω\ (Γ1∪Γ2).

wherev is such asv = (cosµ, sin µ). Here, the varying parameter is the angle of the convection
µ∈ [0,

π
2 ]. Let be µHi = argmax

µ∈[0,
π
2 ]

{||u(µ)−uhHi
N (µ)||1,Ω} and µh = argmax

µ∈[0,
π
2 ]

{||u(µ)−uh(µ)||1,Ω}. The

table 3 shows theP1 approximations result’s, while the table 2 shows theP2 ones. We can make
the same conclusion than in the previous example : this combined method (reduced bais + two
grids) is thus even improved by the trivial postprocessing. Note that the mathematical justification
of this last ingredient is still missing.

4



Table 1: Error for the example 1 withXh = {v∈ C0(Ω), v|T ∈ P1(T), T ∈ TH4}

||u(µh)−uh(µh)||1,Ω = 3.3×10−2

N k i
||u(µHi )−uhHi

N (µHi )||1,Ω ||u(µHi )−uhHi
N (µHi )||1,Ω ||u(µHi )−uHi (µHi )||1,Ωwith post-processing without post-processing

5

||u(µh)−uBR
h (µh)||1,Ω = 0.19

5

0 0.15 0.13 0.49
1 0.17 0.16 0.28
2 0.19 0.18 0.15
3 0.19 0.19 7.3×10−2

10

||u(µh)−uBR
h (µh)||1,Ω =3.6×10−2

10

0 3.6×10−2 0.35 0.49
1 3.5×10−2 6.8×10−2 0.28
2 3.5×10−2 3.8×10−2 0.15
3 3.6×10−2 3.5×10−2 7.3×10−2

15

||u(µh)−uBR
h (µh)||1,Ω =3.4×10−2

15 0 3.5×10−2 0.47 0.49
7 1 3.7×10−2 0.14 0.28

15
2 3.4×10−2 3.4×10−2 0.15
3 3.4×10−2 3.4×10−2 7.3×10−2

20

||u(µh)−uBR
h (µh)||1,Ω =3.3×10−2

20

0 5.5×10−2 0.56 0.49
1 3.4×10−2 0.20 0.28
2 3.4×10−2 4.8×10−2 0.15
3 3.4×10−2 3.4×10−2 7.3×10−2

Table 2: Error for the example 2 withXh = {v∈ C0(Ω), v|T ∈ P2(T), T ∈ TH3}

‖u(µh)−uh(µh)‖1,Ω = 3.5×10−3

N k i
||u(µHi )−uhHi

N (µHi )||1,Ω ||u(µHi )−uhHi
N (µHi )||1,Ω ||u(µHi )−uHi (µHi )||1,Ω

with post-processing without post-processing

5

||u(µh)−uBR
h (µh)||1,Ω = 1.41×10−2

5

0 6.4×10−2 6.5×10−2 0.11
1 6.1×10−2 6.1×10−2 3.3×10−2

2 6.1×10−2 6.1×10−2 8.7×10−3

10

||u(µh)−uBR
h (µh)||1,Ω = 3.5×10−3

10

0 3.5×10−3 4.1×10−2 0.16
1 3.5×10−3 5.6×10−3 5.1×10−2

2 3.5×10−3 3.5×10−3 1.4×10−2

15

||u(µh)−uBR
h (µh)||1,Ω = 3.5×10−3

15

0 3.5×10−3 5.8×10−2 0.16
1 3.5×10−3 7.8×10−3 5.1×10−2

2 3.5×10−3 3.5×10−3 01.4×10−2
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Table 3: Error for the example 2 withXh = {v∈ C0(Ω), v|T ∈ P1(T), T ∈ TH4}

‖u(µh)−uh(µh)‖1,Ω = 3.5×10−2

N k i
||u(µHi )−uhHi

N (µHi )||1,Ω ||u(µHi )−uhHi
N (µHi )||1,Ω ||u(µHi )−uHi (µHi )||1,Ωwith post-processing without post-processing

5

||u(µh)−uBR
h (µh)||1,Ω = 3.6×10−2

5

0 5.7×10−2 0.17 0.45
1 6.2×10−2 9.0×10−2 0.24
2 6.5×10−2 7.0×10−2 0.12
3 6.6×10−2 6.7×10−2 6.1×10−2

10

||u(µh)−uBR
h (µh)||1,Ω = 3.5×10−2

10

0 3.5×10−2 0.244 0.53
1 3.5×10−2 9.1×10−2 0.31
2 3.5×10−2 4.2×10−2 0.16
3 3.5×10−2 3.6×10−2 7.9×10−2

15

||u(µh)−uBR
h (µh)||1,Ω = 3.5×10−2

15

0 3.5×10−2 0.36 0.53
1 3.5×10−2 9.8×10−2 0.31
2 3.5×10−2 4.2×10−2 0.16
3 3.5×10−2 3.6×10−2 7.9×10−2

20

||u(µh)−uBR
h (µh)||1,Ω = 3.5×10−2

13

0 3.5×10−2 0.37 0.53
1 3.5×10−2 0.13 0.31
2 3.5×10−2 4.6×10−2 0.16
3 3.5×10−2 3.6×10−2 7.9×10−2
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