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1. Introduction
In this work we presented a new fiducial system based on concentric circles. We showed that the proposed system provides

an higher detection accuracy as well as a good recognition rate in many highly challenging conditions, ranging from severe
occlusions to motion blur to illumination changes.

Table 1 summarizes and compares the main features of the principal systems that can be found in the literature with the
proposed one. Our method, like most of the others, does not need the camera to be calibrated for detecting the markers. Only
RuneTag needs the camera to be calibrated (known focal length) in order to detect the markers. On the other hand, another
interesting feature that a fiducial system can supply is the number of reference points that it can provide in order to, e.g.,
calibrate the camera.

The encoding capacity refers to the total number of unique fiducial markers. We remind that the proposed fiducial markers
consists of circular barcodes. In the current implementation, a ring (black or white) hold a 1-bit information, its width being
0.10 or 0.15 (w.r.t. the outer circle of unit radius). In such a way, a library of fiducial markers composed ofN rings has 22N−1

unique markers. Once a fiducial marker has been detected and its 1D signals along the cross sections have been rectified, the
later are read in a robust manner via the distance proposed in [3] then delivering the marker ID associated to a marker profile
(examples of these profiles are illustrated in Figure 1).

The robustness to occlusion and motion blur is a key feature for any fiducial system as it allows the camera to operate in
challenging condition and under unconstrained motions. The proposed method has been proved to be robust to occlusions up
to 60% of the marker, whereas only PRASAD and RuneTag have shown some (limited) ability to deal with large occlusions.
Moreover, thanks to the circular pattern, the proposed marker happens to be robust to severe linear motion blurs due to rapid
translations of the camera.

Last but not least, our system will be soon released as an open source project with both a CPU and a GPU implementation.
To this day, only ARTKPlus provides an open source SDK for marker detection and camera pose estimation. Today, our CPU
implementation is able to deliver a frame rate of 4 fps on one CPU (i5-4590, 3Ghz) core on a 1280× 720 image, which has
been raised to 11 fps using the so far incomplete GPU (NVidia GTX 980 Ti, CUDA 7.0) implementation.

The circular fiducial detection (cf. §3.1 of the submitted paper) is performed on a pyramid of images, which provides a
trade-off between the search for distances between the edge of a ring and the ability to detect markers of various sizes and at a
wide range of distances from the camera. In our experiments, we used pyramids of N = 4 levels, where the image resolution
is halved both in X and Y direction between levels. Once candidate markers are selected over all the pyramid levels, the
circular fiducial validation (described in §3.2 of the submitted paper) including its identification are performed on the original
image to ensure a maximum accuracy.

The GPU version replaces the implementation of the pyramid building phase completely, where the possible parallelization
still allows a speedup from 720p to 1080p videos that is superlinear. In the detection stage, voting is handled on the GPU,
but the incremental formation of convex arc segments remains on the CPU. Although only a few marker candidates remain
after the detection stage, there lies a decent parallelization potential in the validation stage, which is due to a search step in
the localization of the imaged center. Unfortunately, the GPU implementation is still incomplete. The system is currently
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under further development in the context of an industrial innovation project for a real-time augmented reality application.
The code is written in C++ (and CUDA’s C++ dialect for the GPU implementation) relying other open source libraries in
order to provide an highly customizable solution and foster new camera tracking applications.

Proposed PRASAD[6] RuneTag [1] ARTKPlus [5] Mono-spect. [7]
Free of

3 3 3 3camera calibration
Allows camera

3 3calibration
# reference points [1-3] 0 [5-129] 4 0per fiducial [min-max]

Encoding capacity 32 (3 rings) 4 762 (Rune-43) 512 825128 (4 rings) 19152 (Rune-129)
Robust to

3 3 3occlusion
Robust to

3 3 3motion blur
Open source

3 3release CPU
Open source

3release GPU
Table 1. Summary of capabilities of existing fiducial systems. See text for details.

resolution stages of detection CPU GPU
720p loading, pyramid building 48.6 ms 8.5 ms
720p candidate detection 152 ms 27.3 ms
720p candidate validation/identification 58 ms incomplete

1080p loading, pyramid building 105 ms 12.8 ms
1080p candidate detection 209 ms 45.9 ms
1080p candidate validation/identification 61 ms incomplete

Table 2. Comparison of CPU and GPU performance by stage, on a video showing up to 5 markers

To summarize, the capabilities of the proposed system are listed below.

• Free of camera calibration: the system does not require the intrinsic parameters of the camera to be known.

• Allows camera calibration: the geometry of an imaged fiducial provides constraints for the camera’s intrinsics estima-
tion and, under “normal” shooting conditions, it can further provide the image of the circular points to constrain the
camera calibration process (e.g., the well-known plane-based calibration method).

• Robust to occlusion: the fiducial can be detected even if it is occluded in the views (e.g., up to 60%).

• Robust to motion blur: in presence of a linear motion blur (i.e., motion blur due to a fast camera translation), the
proposed fiducial is orthogonal to the blur direction and can be still detected and identified.

• Open source release: the code will be soon released as open source with both a CPU and a fast GPU implementation.

This supplementary material is organized as follows: in Section 2 we provide further experimental evidences that proves
the effectiveness of our method w.r.t. the other state-of-the-art methods. The rest of the Sections provides mathematical
proofs to the different propositions stated in the submitted paper.
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Figure 1. Functions of “profile” associated to the first eight profile models of our fiducial markers composed, in this case, of three rings
(subset of the ones used in our experiments).

2. Further experiments
Comparison with ARTKPlus. The video provided as supplementary material shows the effectiveness of the proposed
method. In the video the detection of the concentric marker is compared w.r.t. the ARTKPlus [8]. We chose ARTKPlus
because among all the available open source solutions it is the one achieving better performances in terms of detection rate
and computational time. In this experiment we used 4 markers for each solution placed on a plane at known positions, so that
the relevant plane-induced homography can be estimated. For the ARTKPlus we first detected and identified all the markers
and then we estimated the homography using all the detected marker corners following a DLT approach [4] (note that the
homography can be then estimated even if only one marker is detected). For the proposed system, we detected the image
of the four centers of the concentric circles and we used them to compute the homography. The image placed in between
the markers can be then rectified in order to visually asses the quality of the estimated homography. Thanks to the accurate
estimation of the image of the four centers of the concentric circles provided by our detection method, the homography can
be robustly estimated and the rectified image is not affected by any significant jittering, whereas the rectified image computed
with the ARTKPlus homography is more unstable. Moreover the video shows that the proposed method allows to detect the
marker even in very challenging conditions, such as severe motion blur and sudden illumination changes.

Other results on real images. Some other results of the proposed system on real images are illustrated in Figure 2 (see the
caption for details).
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Figure 2. (a) View of a scene under very challenging lighting conditions. (b) Result of the detection algorithm. In this case, the hysteresis
thresholds used by the Canny edge detection [2] are not the default values used in all the experiments conducted in this work and have been
set to very low values. We want to emphasize here the fact that, even with very small values enabling to detect edge points with a very low
contrast, thus leading to a large noise on their gradient direction, the construction of the field lines approximations is still reliable enough to
detect the markers. However, as highlighted in the image, only one of them, drawn in green, has a reliable ID whereas the three other ones,
drawn in orange, do not have a reliable identification: in the current implementation, a candidate that has not an univocal identification is
rejected and considered as not detected. (c) An example of a challenging case where the marker is occluded and affected by motion blur.
(d) Nevertheless, the marker is correctly detected and identified.



3. Proof of Proposition 1
As defined in the text, a field line of the gradient map ∇I defined on a domain D ⊂ R2 through a point u0 ∈ D is a

parametric curve φ : U ⊂ R 7→ D, solution of the differential system{
φ′(t) = ∇I(φ(t))
φ(t0) = u0

(1)

where (t0,u0) ∈ U × R2 defines an initial condition.
Remind that Ωr = B1[0] \Br(0) defines the surface of the ring between the two circles. Only for the proof, we consider

that the ring is painted with a continuous gradation of gray hues (black is hue 0 and white is hue 1) as defined by the function
α : [−1, 1]2 → [0, 1] so we have α(x) = 1 − ‖x ‖2 for all x ∈ Ωr (interior of the ring), α(x) = 1 for all x ∈ Br(0)
(interior of the inner circle), and α(x) = 0 for all x 6∈ B1[0]. In the (continuous) image, the gray intensity is given by
I(u) = α

(
H−1(u))

)
.

Item 1. In the continuous image, through any point in H(Ω), except the image of the circle centre, passes one and only one
field line of∇I .

Proof. A field line is an integral curve, solution of the differential equation (1). Under the hypothesis of the Cauchy-Lipschitz
theorem, through a point, it passes one and only one integral curve.

Item 2. Any field line of∇I necessarily converges to one point on the inner ellipse.

Proof. The field line through u ∈ H(Ω) can be seen as a sequence of infinitesimal displacements:{
ui+1 = limdi→0+

(
ui + di

∇I(ui)
‖∇I(ui)‖

)
u0 = u

(2)

Assume r = 0 so the inner circle is restricted to the circle’s centre xC of the (two) circles composing the ring. Hence, the
centre xC is the only point with hue α = 1. Now, let ui ∈ H(Ω0) and let W (ui) ⊂ H(Ω0) denote its neighborhood. For any
uj
i ∈ W (ui), the gray intensity of I decreases the most significantly in the direction of the gradient ∇I(uj

i ). We can claim
that the image uQ of the centre xC is the point where the sequence (2) converges since (i) uQ is the point where I(uQ) is
maximum; (ii) uQ est is the unique singular point of I(H(Ω)), i.e. the unique point such that ∇I(uQ) = 0, which entails
that ∇I(ui+1) > ∇I(ui), ∀ui 6= uQ. In other words, if ` is a field line of ∇I then ` converge to the image uQ of the ring’s
centre.

When 0 < r < 1, the (part of the) field lines on H(Ωr) are identical to those on H(Ω0) so, since the inner ellipse E is an
equipotential of I(H(Ω0)), i.e., I(u) = const for all u ∈ E , any field line of∇I(H(Ωr)) necessarily converges to one point
on the inner ellipse, which ends the proof.

4. Proof of equation (4)
A vector field F is said to be conservative if there exists a scalar field f such that F = ∇f . By definition, the gradient

field∇I defined on H(Ω) i.e., inside the imaged ring, is conservative. A key property is that the circulation of the flux along
every closed loop in H(Ω) is zero. Let T1 and T2 be two field lines of ∇I . Let A1 and A2 be the arcs of the outer and inner
ellipses respectively. Let ∂S be the closed boundary of the surface S delimited byA1, T1, A2 and T2, as shown in figure 5 of
the submitted paper. By the conservative property, we have

0 =

∮
∂S

∇I · dσ =

∫
A1

∇I · dσ +

∫
A2

∇I · dσ +

∫
T1
∇I · dσ +

∫
T2
∇I · dσ

where dσ = nds and n is the unit normal to S oriented towards the exterior of S. At any point of the field lines T1 and T2,
the scalar product∇I · n is zero since∇I is tangent to the field lines. We hence have∫

A1

∇I · dσ = −
∫
A2

∇I · dσ



Since, at any point of the field lines A1 and A2, the scalar product satisfies ∇I · n = ‖∇I‖ since ∇I is parallel to the (unit)
normal, using a arclength-parameterization of A1 and A2, we obtain equation (4)∫

A1

‖∇I‖ ds =

∫
A2

‖∇I‖ ds

5. Proof of Proposition 2
A canonical rectifying homography for Q is any homography G of the image onto itself such that G maps Q to a unit circle

centred at the origin, and the image uQ of the circle’s centre to the origin. Equivalently said, G maps the images of two
concentric circles, one of which being Q, to two concentric circles centred at the origin, the pre-image of Q having radius 1
(the pre-image of uQ can be seen as a circle with zero radius). As a consequence, the original Euclidean geometry of the
plane Π supporting the circle is recovered, up to a 2D translation, homothety and scaling. The proof is set up under the
following hypotheses.

• H1: We assume the quasi-affine invariance of the circle(s), whose sufficient condition is that all of its (their) points lie
in front of the camera.

• H2: We assume a camera with square pixels i.e., that the distance inter-pixels is the Euclidean distance.

Implicitly assuming a non-degenerate Q, neither r or s in equations (6) and (7) of Proposition 2 can be zero. Indeed,

• Q11 6= 0 and Q22 6= 0 since all eigenvalues of Q are non-zero,

• Under hypothesis H1, regarding r, let

k1 = Q11u
2
Q +Q22v

2
C − 1 = (u>Q, 1)Q(u>Q, 1)> (3)

Then k1 6= 0, since uQ is the image of the circle centre which is a point that do not lie on Q.

• Under hypothesis H1-H2, regarding s, let

k2 = Q11u
2
Q − 1 = (uQ, 0, 1)Q(uQ, 0, 1)> (4)

Then k2 6= 0, since (uQ, 0)> is the orthogonal projection of uQ onto the semi-major axis of Q which is a point that do
not lie on Q.

Proof. More generally, an homography A is a rectifying homography if and only if it transforms the images J± of the circular
(complex conjugate) point-pair of Π into the standard form AJ± ∼ (1,±i, 0)>, where ∼ refers to the projective equality and
i =
√
−1, which is an invariant form in all Euclidean representations of Π. An equivalent necessary and sufficient condition

is that the matrix Σ∗ = (J+J>− + J−J>+), representing the image of the conic dual to the images of the circular point-pair [4,
p.53], is transformed by A into the standard form,

AΣ∗A> ∼

1 0 0
0 1 0
0 0 0

 (5)

which is also the same in every Euclidean representation.The difference between the two rectifying homographies G and A is
that G is canonical while A is not i.e., by applying A to the two image ellipses corresponding the projections of two concentric
circles, we obtain two concentric circles that are generally neither centered at the origin nor of unit radius.

It is well-known [4, p.42] that, as any rectifying homography, a canonical rectifying homography G can be decomposed
into a chain product of three homographies

G = GEGAGP (6)

where the matrix

GP =

 1 0 0
0 1 0

v>

 (7)



is the projective component of G that maps v, the vector of the vanishing line of Π, to its canonical form (0, 0, 1)> i.e., to
infinity ; the matrix

GA =

 1/b −a/b 0
0 1 0
0 0 1

 (8)

is the affine component of G that maps GPJ± to the circular point-pair at infinity w.r.t. some affine representation of Π in
which the circular point-pair only depends on the two scalars a and b ; the matrix

GE =

[
sR2 t2
0>2 1

]
(9)

is the Euclidean component of G i.e., the matrix of a 2D similitude of scaling s, rotation R2 and translation t2.
In our case, GP transforms the images of two concentric circles to two concentric ellipses ; GA transforms these two

ellipses to two concentric circles ; GE translates one circle at the origin and scales its radius to 1.
First, in (7), we point out that, as the vector of the vanishing line v of Π is the polar line of the image uQ of the centre of

the circle w.r.t. the ellipse Q, it can be replaced by

v ∼ Q(u>Q, 1)> = (Q11xC , Q22yC , Q33)
>

Second, in (8), we can show that a and b depend on Q and uQ the following way. On the hand, since the circular point-pair
is invariant under 2D similitude on its plane, we can write that

Σ∗ ∼ G−1diag(1, 1, 0)G−>

∼ G−1P G−1A diag(1, 1, 0)G−>A G−>P

On the other hand, the conic dual to the two points at which a conic C meets a line l can be written in the form of [l]∧ C [l]∧
[4, p. 64], where [l]∧ denotes the skew-symmetric matrix of l such that [l]∧m = l ∧m, for any m ∈ R3. This yields, in
particular for the conic dual to images of the circular point-pair

Σ∗ ∼ [Qc]∧ Q [Qc]∧ (10)

since, by definition, the circular point-pair is where the line at infinity of Π meets any circle, which is a property preserved
under perspective projection. Then, we have

GP([Qc]∧ Q [Qc]∧)G>P ∼ G−1A diag(1, 1, 0)G−>A

⇔
[
([Qc]∧ Q [Qc]∧)

1:2,1:2
0

0 0

]
︸ ︷︷ ︸

X

∼

a2 + b2 a 0
a 1 0
0 0 0


that is a projective equation which can exactly solved for a = X12/X22 et and b =

√
X11/X22 − a2 leading to

a = −(Q22uQvQ)/k1 (11)

b =
√
−k2Q22/(Q11k21) (12)

where k1 and k2 are defined in (3) and (4) respectively. From now on, without any loss of generality, we can assume in
(3) and (4) that k1 and k2 are strictly negative, by chosing the convention that any point u inside the ellipse Q is such that
(u>, 1)Q(u>, 1)> < 0. At this step, can easily compute the formal expression using a symbolic software like MAPLE

GAGP ∼ diag(− 1√
−k2Q22/Q11

, 1, 1)

Q11u
2
Q − 1 Q22uQvQ 0

0 1 0
Q11uQ Q11vQ −1


so

(GAGP)
−1 ∼

 −1 −Q22uQvQ 0
0 k1 0

−Q11uQ −Q22vQ −k1

diag(
√
−k1Q22/Q11,−1,−1)



Third, since by applying GAGP to Q we obtain a circle, in order to translate it to the origin and scale its radius to 1, i.e., to
obtain a circle with matrix diag(1, 1,−1) we seek x, y and σ in

GE =

σ 0 σx
0 σ σy
0 0 1

 (13)

such that

(GAGP)
−>

Q (GAGP)
−1 ∼ GE

1 0 0
0 1 0
0 0 −1

 G>E
and get as solutions : 

x = uQ/
√
−k1Q22/Q11

y = vQ/k1

σ =
√
−k2Q22

(14)

After some little algebra, introducing a variable u such that G(uQ) = GEGAGP ,we obtain the matrix G(u) as expressed in the
proposition 2, and thus complete the proof.



References
[1] F. Bergamasco, A. Albarelli, E. Rodolà, and A. Torsello. Rune-tag: A high accuracy fiducial marker with strong occlusion resilience.

In Proceedings of the 2011 IEEE Conference on Computer Vision and Pattern Recognition (CVPR2011), pages 113–120, 2011.
[2] J. Canny. A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell., 8(6):679–698, 1986.
[3] O. Gallo and R. Manduchi. Reading 1d barcodes with mobile phones using deformable templates. IEEE Trans. Pattern Anal. Mach.

Intell., 33(9):1834–1843, 2011.
[4] R. Hartley and A. Zisserman. Multiple View Geometry in Computer Vision. Cambridge University Press, second edition, 2004.
[5] H. Kato and M. Billinghurst. Marker tracking and HMD calibration for a video-based augmented reality conferencing system. In

Proceedings 2nd IEEE and ACM International Workshop on Augmented Reality (IWAR’99), pages 85–94. IEEE Comput. Soc, 1999.
[6] M. G. Prasad, S. Chandran, and M. S. Brown. A motion blur resilient fiducial for quadcopter imaging. In Proceedings of the 2015

IEEE Winter Conference on Applications of Computer Vision (WACV15), WACV ’15, pages 254–261, Washington, DC, USA, 2015.
IEEE Computer Society.

[7] M. Toyoura, H. Aruga, M. Turk, and X. Mao. Mono-spectrum marker: an AR marker robust to image blur and defocus. The Visual
Computer, 30(9):1035–1044, Dec. 2013.

[8] D. Wagner and D. Schmalstieg. ARToolKitPlus for Pose Tracking on Mobile Devices. In Proceedings of 12th Computer Vision Winter
Workshop CVWW07, pages 139–146, 2007.


