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ABSTRACT8

Visualization of high dimensional and possibly complex data onto a low-dimensional9

space is often difficult. Several projection methods have been already proposed to10

display such high-dimensional structures on a lower-dimensional space, but the infor-11

mation lost is not always considered. Here, a new projection paradigm is presented to12

describe a non-linear projection method that takes into account the projection qual-13

ity of each projected point in the reduced space, this quality being directly available14

at the scale of this reduced space. More specifically, this novel method allows for a15

straightforward visualization data in R2 with a simple reading of the approximation16

quality and thus provides a novel variant of dimensionality reduction.17

KEYWORDS18

Data visualization; dimensionality reduction; multidimensional scaling; principal19

component analysis; kernel principal component analysis.20

1. Introduction21

Several domains in science use data with large numbers of variables in their studies22

such as in biology (Cheung (2012), Golub et al. (1999)), chemistry (Svante et al.23

(1984)), geography (Van der Hilst et al. (2007)) and finance (Jagannathan and Ma24

(2003)). These data can be viewed as a large matrix and extracting results from this25
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type of matrix is often difficult and complicated. In such cases, it is desirable to reduce26

the number of dimensions of data by conserving as much information as possible from27

the given initial matrix.28

Different types of multivariate data analysis methods have been developed to study29

these data such as dimensionality reduction, variables selection, cluster analysis and30

other methods. Typically, dimensionality reduction is used to summarize the data31

with variable selection used to choose the pertinent variables from the set of candidate32

variables and cluster analysis used to group the objects or variables. In our study, we33

focus on dimensionality reduction. Dimensionality reduction techniques can be used in34

different ways, to solely lower the dimensionality to prepare data for other treatments35

or for data visualization to provide a simple interpretation of the data in R2

or R3

.36

Due to the difficulties faced by high dimensional data, many methods for data37

dimensionality reduction and data visualization have been proposed (Chan (2006);38

Chinchilli and Sen (1987); Dempster (1971); Keim and Kriegel (1996); Mardia et39

al. (1979)). Some of the most common methods include principal component analysis40

(PCA) (Jackson (1991)), multidimensional scaling (MDS) (Togerson (1958)), scatter41

plot matrix (Cleveland and McGill (1988)), parallel coordinates (Inselberg (1985))42

and Sammon’s mapping (Sammon (1969)). Scatter plot matrix and parallel coordi-43

nates methods are widely used to visualize multidimensional data sets. An issue with44

principal component analysis and multidimensional scaling is that as the number of45

dimensions grow, important multi-dimensional relationships might not be visualized.46

Moreover, the quality of projection assessed by the percentage of variance that is con-47

served or by the stress factor is a global projection quality measure and only takes48

into account what happens globally. Typically, it could be a good projection globally,49

if the percentage of variance obtained using PCA, for example, is large.50

In some projection methods such as PCA, a local measure is defined to indicate51

the projection quality of each projected point taken individually. This local measure is52

evaluated by the squared cosine of the angle between the principal space and the vector53

of the point. A good representation in the projected space is hinted by high squared54

cosine values. This measure is useful in cases of linear projection, which happens55

in PCA, but cannot be applied in the case of nonlinear projection. Moreover, linear56
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dimensionality reduction misses important nonlinear structures in the data which does57

not allow to give powerful results in case of nonlinear configurations. Therefore, many58

methods have been developed to perform nonlinear projections by nonlinearizing a59

linear dimensionality reduction or by using manifold learning methods.60

The nonlineariziation of linear dimensionality reduction is applied to extract nonlinear61

principal components. Kernel PCA is one of the most exciting methods in this domain,62

which integrates a kernel function to determine principal components in different high-63

dimensional space (Schölkopf (1998)). Manifold learning methods are an approach to64

construct a matrix using the neighborhood information and take a spectral decom-65

position to find a nonlinear embedding (like Locally Linear Embedding LLE, Isomap66

algorithm etc). (Lee and Verleysen (2007), Tenenbaum et al. (2000), Roweis and Saul67

(2000)).68

In this paper, we propose a new nonlinear projection method that projects the69

points in a reduced space by using the pairwise distance between pairs of points and70

by taking into account the projection quality of each point taken individually. Nonlin-71

ear projection methods cited in the previous paragraph project the points in a feature72

space which makes the interpretation of distances between the projected points mean-73

ingless. In our method, the distances between projected points are related to the initial74

distances between points, offering a way to easily interpret the distances observed in75

the projection plane. This projection leads to a representation of the points as circles76

with a different radius associated to each point. Henceforth, this method will be re-77

ferred to as ”Projection under pairwise distance control”. Furthermore, visualization78

of data in a reduced space is not the only objective of this method. It can serve as a79

dimensionality reduction method to reduce the number of variables by minimizing the80

sum of the radii and to then determine the number of variables that can be kept.81

The main contribution of this study is to provide a simple data visualization in R2
82

with a straightforward interpretation and to provide a new variant of dimensionality83

reduction. Firstly, the new projection method is presented in Section 2. In Section 3,84

the algorithms used in solving the optimization problems related to this method are85

then illustrated. In Section 4 the application of this method to various real data sets86

is shown. Finally, the conlusions are drawn in Section 5.87
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2. Projection under pairwise distance control88

Let us consider n points given by their pairwise distances denoted by dij for i, j ∈89

{1, . . . , n}. The objective is to project these points using distances into a reduced90

space Rq

by introducing additional variables, called hereafter radii, that indicate the91

extent to which the projection of each point is accurate. The local quality is then given92

by the values of the radii. A good projection quality of point i is indicated by a small93

radius value denoted by ri. It is important to note that both units of dij ’s and ri’s are94

identical, thus allowing for a direct comparison.95

Before presenting our method, an overview of principal component analysis, Kernel96

PCA and multidimensional scaling is given to highlight the significance of our method.97

2.1. Overview of certain existing methods: PCA, KPCA and MDS98

Principal Component Analysis (PCA)99

The PCA method is the most used method for data visualization and dimensional-100

ity reduction. This method is a linear projection technique applied when the data101

is linearly separable. PCA can be stated as an optimization problem involving the102

squared Euclidean distances (Mardia et al. (1979)). This optimization problem is the103

following:104

PPCA :


min

A∈Mp×q

∑
1≤i<j≤n

|d2
ij − ‖Ayi −Ayj‖2|

s.t. rank(A) = m

AAT = Ip,

where yi ∈ Rp is the original coordinates vector of point i, d2
ij is the squared distance105

for couple (i, j) given by ‖yi − yj‖2 and A is the projection matrix of dimension p× q106

with q being the reduced space dimension. By its nature, PCA cannot take into account107

nonlinear structures, as it describes the data in terms of a linear subspace. To deal108

with nonlinearity, Kernel PCA, the reproducing kernel Hilbert space variant of PCA,109

can be used.110
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Kernel PCA (KPCA)111

The idea behind KPCA is to perform PCA in a feature space denoted by F , obtained112

by a nonlinear mapping of data from its original space into the feature space F , where113

the low-dimensional latent structure is hopefully easier to discover (Schölkopf (1998)).114

The mapping function noted Φ is considered as:115

Φ : Rp → F

Y → Φ(Y ) ·
116

The original data yi is represented in the feature space as a function Φ(yi) = k(yi, .),117

where k(., .) is a positive kernel. Similar to PCA, KPCA is based on finding the first118

q eigenvectors corresponding to the q largest eigenvalues λi of the Gram matrix K =119

(kij)ij∈1,...,n where kij = k(yi, yj) = 〈Φ(yi),Φ(yj)〉 is a chosen positive kernel. Letting120

Vv, for v = 1, . . . , q, are the eigenvectors in the feature space and PΦ(yi) is the projection121

of Φ(yi) onto the subspace V1, . . . , Vq. The KPCA problem can be represented as a122

minimization problem with the following error:123

EKPCA : ‖Φ(y)− PΦ(y)‖22 ,

where PΦ(y) =

q∑
v=1

〈Φ(y), Vv〉Vv·124

Furthermore, the only measure used to evaluate the projection quality of points125

for PCA and KPCA is the squared cosine value. Squared cosine values cannot be126

interpreted at the same time as the distances in the projection because the cosine127

values do not have a specific unit. More precisely, the visualization of the projection128

in the reduced space using PCA and KPCA cannot simply be interpreted in terms129

of original distances between the points. Indeed, in PCA, the cosine values do not130

provide a quantitative assessment of the error made when considering the distances131

between the projected points, all the more in KPCA where the projected points are132

in the feature space so the term ”distances” is not related to the distances between133

the points in the original space.134
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Multidimensional Scaling (MDS)135

As with PCA, Multidimensional scaling (MDS) consists of finding a new data configu-136

ration in a reduced space. The main difference between these two methods is that the137

input data in MDS is in the form of a similarity or dissimilarity matrix, called ”prox-138

imity”, representing the proximity between pairs of objects. The key idea of MDS is to139

perform dimensionality reduction in a way to approximate high-dimensional distances140

denoted by δij the low-dimensional distances dij , where dij is equal to the distance141

between xi and xj , the coordinates of i and j in the reduced space. In the classic and142

simplest case of MDS, the least-squares loss function denoted by ”Stress” is given as143

follows:144

Stress =

√ ∑
1≤i<j≤n

(dij − ‖xi − xj‖)2·

By minimizing the Stress function, we find the best configuration of (x1, . . . , xn) ∈ Rq

145

such that the distances fit to the initial distances.146

If we consider n variables as r1, . . . , rn ∈ R+, the sum of which bounds the stress147

function, the optimization problem PMDS can be equivalently rewritten as:148

PMDS :


min

r1,...,rn∈R+

n∑
i=1

ri

s.t.

n∑
i=1

ri ≥
1

n− 1

√ ∑
1≤i<j≤n

(|dij − ‖xi − xj‖)2·

A criterion to determine the local projection quality has been proposed by Born149

and Groenen in Borg and Groenen (2005) called Stress-per-point (SPP ). The SPP150

of point i is given by:151

SPPi =

∑n
j=1,j 6=i(dij − ‖xi − xj‖)2∑n

j=1,j 6=i d
2
ij

Stress
,
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with Stress =

n∑
1≤i<j≤n

(dij − ‖xi − xj‖)2

n∑
1≤i<j≤n

d2
ij

·152

Again, this is difficult to interpret directly on the projection as a distance error because153

the projected points are not in the same metric of initial data.154

However, we can observe that the constraint on
∑n

i=1 ri can be modified to have a155

stronger control on each dij in the following way: |dij − ‖xi − xj‖| ≤ ri + rj where xi156

and xj are the projected coordinates of points i and j.157

Therefore, our objective is to propose a new nonlinear projection method that indi-158

vidually controls the projection of points and provides a graphical representation in159

the same metric as the original space with an error associated to each point.160

2.2. Our proposal: Projection under pairwise distance control method161

Letting x1, . . . , xn be the coordinates of the projected points in Rp

and ‖xi − xj‖ is162

the distance between two projected points (i, j). Radii are introduced in this paper to163

assess how far ‖xi − xj‖ is from the given distance dij . Indeed, for the couple (i, j), we164

are aiming for a ‖xi − xj‖ value close to dij , which should imply a small radii (ri, rj).165

Figure 1 depicts this idea: for each point i ∈ {1, . . . , n}, the projection of i belongs to166

a sphere with center xi and radius ri such that for each couple (i, j) ∈ {1, . . . , n} we167

have ‖xi − xj‖ − (ri + rj) ≤ dij ≤ ‖xi − xj‖+ ri + rj .168

xi xj

ri rj

dij

• •

Figure 1.: Example of radii for bounding of the original distance dij

Radii for uncertainty metric: The idea presented above can be expressed by169

finding the value of radii that satisfy these two constraints:170
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•
n∑

i=1

ri is minimal.171

• dij ∈ [‖xi − xj‖ − ri − rj ; ‖xi − xj‖+ ri + rj ], for 1 ≤ i < j ≤ n·172

The projection under pairwise distance control problem can be written as the following173

optimization problem:174

Pr,x :


min

r1,...,rn∈R+,x1,...,xn∈Rq

n∑
i=1

ri

s.t |dij − ‖xi − xj‖| ≤ ri + rj , for 1 ≤ i < j ≤ n

Linear optimization program using fixed coordinates (x1, x2, . . . , xn): Of175

course, by fixing the coordinates vectors xi for all i ∈ {1, . . . , n} using principal com-176

ponent analysis or any other projection method, the optimization problem can easily177

be solved in (r1, . . . , rn) using linear programming. This problem can be written as178

follows:179

Pr :


min

r1,...,rn∈R+

n∑
i=1

ri

s.t |dij − ‖xi − xj‖| ≤ ri + rj , for 1 ≤ i < j ≤ n

It should be noted that a solution for problem Pr always exists. Indeed, to satisfy the180

constraints it is sufficient to increase all ri. Thus, for any method producing points in181

a reduced space as PCA for instance, we can compute the radii as a post-processing182

to assess the local quality of the projected points.183

Pr,x is a non-convex optimization problem: For any dimension p, even with184

p = 1, note that the optimization problem Pr,x is not convex. Indeed, to easily illustrate185

this fact, we take 4 points with an arbitrary order indexed by i1, i2, i3 and i4 in R186

with respective coordinates xi1 = 0, xi2 = 2, xi3 = 3 and xi4 = 1. Note that distances187

di1i2 and di3i4 are both equal to 2.188

Let us consider the function g(xi, xj) = |dij − ‖xi − xj‖|. Thus, we have g(xi1 , xi2) = 0189

and g(xi3 , xi4) = 0 but g(
xi1 + xi3

2
,
xi2 + xi4

2
) = |0− 2| = 2 which is larger than190

g(xi1 , xi2) + g(xi3 , xi4)

2
= 0 proving non convexity associated to this sample design.191
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In fact, problem Pr,x is convex in one dimension only if xi1 , xi2 , . . . , xin are ordered.

Indeed, let us consider xi4 ≤ xi3 ≤ xi2 ≤ xi1 so that g(xi1 , xi2) = |xi1 − xi2 − di1i2 | and

g(xi3 , xi4) = |xi3 − xi4 − di3i4 | so that for any λ, µ ≥ 0:

g

(
λxi1 + µxi3
λ+ µ

,
λxi2 + µxi4
λ+ µ

)
=

∣∣∣∣ λ

λ+ µ
(xi1 − xi2 − di1i2) +

µ

λ+ µ
(xi3 − xi4 − di3i4)

∣∣∣∣
≤ λ

λ+ µ
g(xi1 , xi2) +

µ

λ+ µ
g(xi3 , xi4),

which proves convexity. Therefore given an ordering, we have a convex optimization192

each time that can be solved exactly and the global optimum can be found by taking193

the minimum obtained for all permutations of x1, . . . , xn. However, this only works in194

one dimension at a time; an approximate non-convex optimization is needed since we195

have multidimensional data.196

Many methods available in the literature propose different ways to solve such op-197

timization problems. Examples include: trust-region-reflective (Conn et al. (2000)),198

which chooses and computes an approximation of the objective function, and then199

chooses and modifies the trust region and finally solves the trust-region subproblem;200

sequential quadratic programming (SQP) which solves the optimization problem by201

addressing a sequence of quadratic programming problems where the Lagrangian func-202

tion is approximated by a quadratic function and the constraints are approximated by203

a linear hyper-space (Boggs and Tolle (1995)); the active-set method, which is com-204

posed of two phases, wherein for the first phase (the feasibility phase) the objective205

function is ignored while a feasible point is found for the constraints, and in the sec-206

ond phase (the optimality phase) the objective function is minimized while feasibility207

is maintained (Wong (2011), Cristofari et al. (2007)). The choice of optimization208

method to use to achieve optimality of the optimization problem is essential and de-209

pends on many factors such as the type of problem, desired quality of solution, time210

limit and availability of the algorithm implementation etc. In fact, all of the methods211

cited above can be used in optimizing problem Pr,x which is a constrained optimiza-212

tion problem having inequalities constraints and they are all available in MATLAB213

using the function ”fmicon” for constrained nonlinear optimization problems (since214
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the proposed method is implemented in MATLAB). Having small radii is the main215

constraint in our optimization problem thus, the objective is to obtain good solution216

within a reasonable and practical timeframe. Therefore, a method that balances time217

and quality of the solution is required.218

Another strategy of use: Dimensionality reduction One of the main objectives219

of high-dimensional data studies is to choose, from a large number of variables, those220

that are important for understanding the underlying studied phenomena. In addition221

to visualization, our aim can thus be to reduce the dimension rather than to visualize222

data in R2. Therefore, the proposed method can serve to reduce the number of variables223

by taking into account the minimal value of
∑n

i=1 ri. Indeed, by solving the problem224

Pr,x using different dimension values, we can choose the dimension with respect to the225

local projection quality promoted in this study.226

2.3. A toy example for illustrating our method227

Let us apply the proposed projection method to a simple example by taking a tetrahe-228

dron with all pairwise distances equal to 1. For problem Pr, the coordinates of points229

xi for i = 1, . . . , 4 are obtained using multidimensional scaling. The optimization was230

carried out using the MATLAB software with the optimization toolbox for linear and231

nonlinear optimization problem used for problems Pr and Pr,x, respectively. The value232

of
∑4

i=1 ri is equal to 0.7935 for problem Pr and 0.4226 for Pr,x. It is clear that prob-233

lem Pr,x gives better solutions than problem Pr with smaller radii, which indicates234

better projection quality of points.235

This result can be shown in Figure 2, which depicts the solution obtained using Pr236

and Pr,x. In Figures 2a and 2b, the circles with different radii indicate the quality of237

projection for each point. The circle color is related to the radius value, the shades of238

gray lie between white and black in the descending direction of the radius values; the239

smaller the radius, the darker circle. The points that have circles with small radii are240

also considered as projected points. Note that the points represented as points and241

not as circles are very well projected, having radii almost equal to zero.242

In Figure 2b, just one circle appears indicating that the projection quality using prob-243
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(a) (b)

Figure 2.: Projected points after solving problem Pr and problem Pr,x. The x-axis and
y-axis are dimension 1 and dimension 2, respectively. (a) and (b) show the projection
obtained from the solution of problem Pr using MDS and of problem Pr,x respectively.

lem Pr,x is better than when using problem Pr. In Figure 2a, half of the points are244

well projected whereas the other half have large radii, indicating that they are not well245

projected. Moreover, it is worth noting that the three outer points all have radii equal246

to 0, which indicates that they are all perfectly placed with respect to one another.247

In Figure 2b, the distances between the three points that are very well projected248

are equal to the distances between these points in their original space (dkl = ‖xk −249

xl‖ where k and l are two very well projected points) whereas the distances from250

the badly projected points to the perfectly projected points are not yet conserved.251

Therefore, using the proposed method, we have succeeded in conserving half of the252

original distances in the new projection plane and the other half have been changed253

to fit the new configuration. If we now apply the proposed method to the distances254

obtained by MDS to find the radius of each projected point (Figure 2a), it can be noted255

that one distance is conserved as the original distance and the other five distances256

are changed which indicates that the proposed method projects the points well by257

conserving the distances between the points as much as possible.258

It is also important to note that, in general, our method is not only a nonlinear259

projection method with local quality measure, but it can act as a new tool to give260

the local quality of projection for the classical projection methods using the radii by261

solving problem Pr. It can be used outside our method as post-processing of classical262

methods.263
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2.4. Connexion with existing methods264

Multidimensional fitting (MDF) (Berge et al. (2010)) is a method that modifies the265

coordinates of a set of points in order to make the distances calculated on the modified266

coordinates similar to a given set of distances on the same set of points. The so-called267

”target matrix”, the matrix that contains the point coordinates and ”reference matrix”268

is the matrix that contains the given distances.269

Let us take X = {x1| · · · |xn}, the target matrix of coordinates and D = {dij}, the270

reference matrix of distances. The objective function of MDF problem is given by:271

∑
1≤i<j≤n

|dij − ‖xi − xj‖|.

Proposition 2.1. Problem Pr,x is bounded from below by
1

n− 1

∑
1≤i<j≤n

|dij−‖xi−xj‖|272

where x1, . . . , xn is the optimum for the associated MDF problem.273

Proof. By summing all the constraints of problem Pr,x, we obtain:274

∑
1≤i<j≤n

|dij − ‖xi − xj‖| ≤
∑

1≤i<j≤n
(ri + rj) = (n− 1)

n∑
i=1

ri·

So,

n∑
i=1

ri ≥
1

n− 1

∑
1≤<i<j≤n

|dij − ‖xi − xj‖|, which concludes the proof.275

3. Optimization tools for performing the proposed method276

Problem Pr,x can be solved using different initialization points for the coordinate277

matrix X. In this section, we first discuss the different initialization points of the278

proposed optimization problem and then propose two algorithms to be used in our279

optimization.280
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3.1. Initialization point for problem Pr,x281

Different solutions of problem Pr,x can be obtained using different initial values of282

matrix X. We have considered three possibilities:283

1- Initial point using a known projection method The first possibility is to284

use the matrix obtained by PCA or another projection method. The choice of method285

must be based on the type of data. In this application, we use PCA for quantitative286

data and MDS for categorical and functional data.287

2- Initial point using squared distances The optimization problem Pr,x can be288

changed by taking the squared distances between points instead of the distances.289

Rewriting r2
i as Ri, the problem is changed into290

PR,x :


min

R1,...,Rn∈R+,x1,...,xn∈Rk

n∑
i=1

Ri

s.t. |d2
ij − ‖xi − xj‖2| ≤ Ri +Rj , for 1 ≤ i < j ≤ n.

This transformation is interesting because if the constraints of problem PR,x are sat-291

isfied, the constraints of problem Pr,x will also be satisfied. Indeed,292

|d2
ij − ‖xi − xj‖2| ≤ Ri +Rj = r2

i + r2
j ·

If without loss of generality, dij ≥ ‖xi − xj‖, we obtain:

(dij − ‖xi − xj‖) (dij + ‖xi − xj‖) ≤ r2
i + r2

j ≤ (ri + rj)
2 ⇒

|dij − ‖xi − xj‖|2 ≤ (ri + rj)
2 ⇒ |dij − ‖xi − xj‖| ≤ (ri + rj)·

In this way problem PR,x can serve as an initial step in solving problem Pr,x.293

3- Initial point using an improved solution of problem Pr This strategy is294

more involved. First, we need two properties that provide a way to improve the opti-295

mization results of problem Pr,x.296
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Proposition 3.1. Let us consider a point xi such that for an index j, the following

inequality is saturated:

|dij − ‖xi − xj‖| ≤ ri + rj ,

and the other inequalities involving i are not saturated. The corresponding solution297

can then be improved by moving xi along the line xj − xi in order to decrease ri and298

|dij − ‖xi − xj‖|.299

Another manner to improve the resolution of problem Pr,x is to perform a scale300

change by multiplying the coordinates xi, for i = 1, . . . , n, by a constant a ∈ R. Thus,301

the new optimization problem is given by:302

Pr,a :


min

r1,...,rn,a∈R+

n∑
i=1

ri

s.t. |dij − a‖xi − xj‖| ≤ ri + rj ·

Proposition 3.2. Let r1, . . . , rn;x1, . . . , xn be a feasible solution of Pr,x, if ∃a such303

that η(a) <

n∑
i=1

ri with η(a) =
∑

1≤i<j≤n
|dij − a‖xi − xj‖|, then ∃ r̃1, . . . , r̃n a solution304

of Pr,a such that

n∑
i=1

r̃i <

n∑
i=1

ri.305

The new initial point called Ximp, is the improved solution given by using these two306

properties as follows:307

• Firstly, improving the solution of problem Pr by solving problem Pr,a and using308

proposition 3.2.309

• Secondly, improving the solution of problem Pr,a using proposition 3.1.310

3.2. A deterministic strategy: Algorithm 1311

As discussed, three possibilities of coordinate matrix X can be used as the initial point:312

1- Coordinates given by PCA or MDS: XPPCA/MDS
is the coordinate matrix obtained313

by applying PCA or MDS and rPr
is a vector that contains the radius of each314
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point obtained by solving Pr.315

2- Coordinates given by squared distances: XPR,x
is the coordinate matrix obtained316

by solving problem PR,x and RPR,x
= r2

PR,x
is a vector that contains the squared317

radius for each point obtained by solving the subsequent PR,x problem.318

3- Coordinates given by improving the solution of problem Pr: Ximp is the coordi-319

nate matrix obtained by improving the previous solution using Proposition 3.1320

and rimp is a vector that contains the radius of each point obtained after each321

iteration of solving problem Pr,a322

Finding these matrices requires solving the following optimization problems: Pr,323

PR,x and Pr,a. Problems Pr and Pr,a are both constrained linear optimization problems324

that can be solved using interior-point or simplex algorithms, which are the most325

widely used algorithms for linear programming. The interior-point algorithm uses a326

primal-dual predictor-corrector algorithm and the simplex algorithm uses a systematic327

procedure for generating and testing candidate vertex solutions to a linear program328

(Murty (1983)). On the contrary, problem PR,x is a nonlinear optimization problem329

that can be solved using one of the nonlinear optimization algorithms cited in Section330

2.2. All these algorithms are available in MATLAB using the optimization toolbox331

and can be used for the corresponding problem.332

To find the best solution of problem Pr,x, we solve it with the three different initial-333

ization matrices described above. For this task, we define Algorithm 1 that gives the334

best solution using the different coordinate matrices. This algorithm consists of two335

steps, an initialization step and an optimization step. The initialization step offers336

three different coordinate matrices to be used in the optimization step as an initial337

point to quickly reach the best solution. During the optimization step, problem Pr,x338

is solved using one of the nonlinear optimization algorithms mentioned in Section 2.2,339

starting each time with one matrix of the three initial matrices already found.340

Thus, for Algorithm 1, described below, the three different initialization matrices are341

tried and then the best one is chosen that gives the minimum value of
∑n

i=1 ri.342
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Algorithm 1

Input: D: distance matrix, N : number of iterations.
Initialization step
Project the points using PCA or MDS.
Solve Pr using a linear optimization method. Obtained solution: (XPPCA/MDS

, rPr
).

Solve PR,x using a nonlinear optimization method and starting from the solution of
Pr obtained at the previous step. Obtained solution: (XPR,x

, RPR,x
).

Ximp ← XPR,X
.

for t = 1 to N do
Solve Pr,a starting from Ximp using a linear optimization method.
Improve the solution of Pr,a. Obtained solution: (Ximp,rimp).

end for
Optimization step
Optimize Pr,x using a nonlinear optimization method and starting from XPPCA/MDS

,
XPR,x

and Ximp.
Choose the minimal solution obtained by these three different starting points.

3.3. A stochastic strategy: Algorithm 2343

Problem Pr,x is a hard problem, thus it is natural to resort to stochastic optimization344

methods. In the present case, we resort to the Metropolis-Hastings algorithm (Jo-345

hansen and Evers (2007)) which allows us to build a Markov chain with the desired346

stationary distribution. The challenging parts are the choice of the proposal distri-347

bution and the necessity to solve the problem Pr at each iteration. Specifically, the348

Metropolis-Hastings algorithm requires:349

1- A target distribution:350

The target distribution is related to the objective function of problem Pr,x351

and is given by:352

π(x) ∝ exp

(
−E(x)

T

)
,353

where E is an application given by:354

E : Rn 7−→ R

x = (x1, . . . , xn) 7−→ E(x) = Solution of problem Pr with fixed x.
355

356

The variable T is the temperature parameter, to be fixed according to the value357

range of E.358

2- A proposal distribution:359

The choice of the proposal distribution is very important to obtain mean-360

ingful results. It should be chosen in such a way that the proposal distribution361
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approaches the target distribution. The proposal distribution q(X → .) is con-362

structed as follows, giving priority to the selection of points involved in saturated363

constraints:364

◦ For each point i, choose a point j(i) with probability equal to:365

Pj(i) =
λ exp

(
−λ(ri + rj(i) − |dij(i) − ‖xi − xj(i)‖|)

)
n∑

k=1,k 6=i

λ exp (−λ(ri + rk − |dik − ‖xi − xk‖|))
·

◦ Choose a constant cij(i) using Gaussian distribution Nk(0, σ).366

◦ Generate a matrix X∗ by moving each vector xi of matrix Xt−1 as follows:367

368

– If dij(i) − ‖xi − xj(i)‖ > 0 then x∗i = xi + |cij(i) |Lij(i) .369

– else x∗i = xi − |cij(i) |Lij(i)
,370

where Lij(i) =
xi − xj(i)
‖xi − xj(i)‖

·371

3- A linear optimization problem:372

For the matrix X generated at each iteration, we solve the linear optimization373

problem Pr.374

Algorithm 1 and Algorithm 2 are both implemented in MATLAB and a code for375

each algorithm can be provided by the authors upon request.376

4. Numerical applications377

The projection method presented has been applied to different types of real data sets378

and also to a simulated data set to illustrate its practical interest.379

4.1. Experimental setup380

In practice, we have tested the proposed method on the different simulated and real381

data sets by solving the optimization problem Pr,x using Algorithm 1 in addition382

to the proposed Metropolis-Hastings algorithm (Algorithm 2). A distance matrix is383

required each time. For the quantitative data, the Euclidean distance between points384
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yi ∈ Rp

, for i = 1, . . . , n, is computed by the known formula dij =

√√√√ p∑
k=1

(yik − yjk)2.385

For categorical data, the distance between two soybean diseases (i, j) is given through386

Eskin dissimilarity (or proximity) measure (Boriah et al. (2008)) computed by the387

formula pij =

Q∑
t=1

wtp
t
ij where ptij =


1

n2
t

n2
t + 2

if it = jt

else

, ptij is the per-attribute388

Eskin dissimilarity between two values for the categorical attribute indexed by t, wt is389

the weight associated to the attribute t called wt which is defined by: wt =
1

Q
, Q is the390

number of attributes and nt is the number of values taken by each attribute. Then,391

using the following formula that transforms dissimilarities into similarities: sij = 1−pij ,392

the distances can be obtained by the standard transformation formula converting393

similarities to distances: dij =
√
sii − 2sij + sjj .394

In addition, to compute the distances between the curves of functional data, we have395

chosen a measure of proximity similar to that studied by Ieva et al. (2012). In their396

paper, the authors develop a proper classification designed to distinguish the group-397

ing structures by using a functional k-means clustering procedure with three sorts398

of distances. For our work we chose one of these three proximity measures as their399

results are similar. The proximity measure chosen between two curves Fi and Fj is400

the following: d0(Fi, Fj) =

√∫
T

(F 0
i (t)− F 0

j (t))2dt. This measure is calculated using401

the function metric.lp() of the fda.usc package for the R software (Febrero-Bande and402

Oviedo de la Fuente (2011)).403

To solve the different optimization problems presented in Algorithm 1, we used404

the optimization toolbox available in MATLAB. For problems Pr and Pr,a, we first405

applied PCA for quantitative data and MDS for categorical and functional data; a lin-406

ear programming package was then used to solve the optimization problems with an407

interior-point algorithm. Problems Pr,x and PR,x are nonlinear optimization problems;408

therefore, we used a nonlinear programming package to solve them. The algorithms409

cited in Section 2.2 can be used here but we recommend to use the active-set algo-410

rithm. Indeed, to choose the best algorithm in our optimization problems, we tried the411

different algorithms and chose the algorithm that gives the smallest value of

n∑
i=1

ri in412

the shortest time compared to the other algorithms.413
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Algorithm 2 can provide a good solution if the parameters λ, σ and T are chosen414

adequately. For instance, λ should be such that the points belonging to unsaturated415

constraints are chosen with small probabilities. Therefore, we took it equal to 100. For416

the other parameters σ and T , we took their values in the range from 0.01 to 100.417

Moreover, the visualization of the projection of each point i in R2 is represented418

as a circle having xi as the center and ri as the radius in a two-dimensional space,419

where the horizontal and vertical axes correspond to the first and the second dimension420

associated to the projection in R2, respectively. The projected point belongs to this421

circle and this is the specificity of our method. For each data set, the circles obtained422

for each point after solving the optimization problem Pr,x are shown. To compare the423

projection quality of our representation with that obtained by PCA and KPCA, we424

used the squared cosine values as projection quality, and for MDS, the Stress-per-point425

(SPP ). Indeed, for PCA and KPCA, we plotted the projected points indexed by their426

squared cosine values and for MDS, we used the smacof package in R to compute the427

stress-per-point and to plot the bubble plot represented the stress-per-point.428

4.2. A simulation study429

To evaluate the performance of projection under pairwise distance control method,430

we conducted a simulation study. We generated 100 random samples of yi from a 5-431

dimensional multivariate normal distribution with mean 0 and covariance matrix I,432

the identity matrix, and we calculated the Euclidean distances between pairs (yi,yj)433

for 1 ≤ i < j ≤ n. The projection result was compared with those obtained by KPCA.434

435

Figure 3 shows the results of the projection of the simulated data using the proposed436

method and KPCA. By comparing Figure 3a and Figure 3b, it can be shown that437

the projection quality of points using KPCA is somehow dependent on the position438

of the points in the reduced space. Indeed, the projection is likely to give better439

local projection quality if the projected point is located near to the center (0, 0). On440

the contrary, the proposed method gives local projection quality without giving any441

importance to the position of the points in the reduced space. This result can also be442

shown in the real data sets.443
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(a) Projection under pairwise distance control (b) Kernel PCA

Figure 3.: Projection of the simulated data using the proposed method (a) and Kernel
PCA (b).

This simulated data illustrates the originality and the efficiency of the proposed444

method in giving a good local projection quality.445

4.3. Introducing the real data sets446

Four real data sets were used and divided into three categories:447

• Quantitative data: Iris and car data sets.448

• Categorical data: Soybean data set.449

• Functional data: Coffee data set.450

The Iris data set (Anderson (1935)) is a famous data set and is presented to show451

that the projection works as expected. This data set contains 3 classes of 50 instances452

each, where each class refers to a species of Irises. The four variables studied in this453

data set are: sepal length, sepal width, petal length and petal width (in cm). The car454

data set (Saporta (2006)) is a data set studied in the book by Saporta (Table 17.1,455

page 428). This data set describes 18 cars according to various variables (cylinders,456

power, length, width, weight and speed).457

The soybean data set (Stepp (1984)) from UCI Machine Learning Repository char-458

acterizes 47 soybean disease case histories defined over 35 attributes. Each observation459

is identified by one of the 4 diseases: Diaporthe Stem Canker (D1), Charcoal Rot (D2),460
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Rhizoctonia Root Rot (D3) and Phytophthora Rot (D4).461

The coffee data set is a time series data set used in chemometrics to classify food462

types. It is a functional data set where 56 samples of coffee are available with 286463

timestamps for each sample (as a result of spectroscopic analysis). This kind of time464

series is common in many applications in food safety and quality assurance and was465

taken from the UCR time Series Classification and Clustering website (Chen et al.466

(2015)). Coffea Arabica and Coffea Canephora variant Robusta are the two species of467

coffee bean that have acquired a worldwide economic importance, and many methods468

have been developed to discriminate between these two species by chemical analysis469

(Briandet et al. (1996)).470

4.4. Results from the real data sets471

4.4.1. Data visualization in R2
472

The optimization results for these four data sets are given in Table 1. For each data,473

the sum of radii

n∑
i=1

ri obtained using Algorithm 1 and Algorithm 2 is provided.474

Table 1.: Solution of problem Pr,x for data sets using Algorithm 1 and Algorithm 2.

n∑
i=1

ri

Algorithm 1 Algorithm 2
Iris 16.19 17.2

Cars 3.27 3.35
Soybean 3.98 3.93
Coffee 21.68 21.97

Based on Table 1, the solutions of Algorithm 2 for the different data sets are shown475

to be very close to those obtained using Algorithm 1. Thus, the radii obtained are476

estimated to be close to the optimum. Moreover, it is interesting to note here that the477

number of iterations N in Algorithm 1 has an important role in finding the minimal478

value of
∑n

i=1 ri for problem Pr,a and then for problem Pr,x and also to reduce the479

computer speed time. In fact, the important decrease in the value of
∑n

i=1 ri occurred480

in the first 500 iterations through the loop of 1000 iterations, and then a small decrease481
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occurred after 500 iterations. This small decrease in value of
∑n

i=1 ri after 500 iterations482

shows that a size of 500 iterations can be a good choice for the Algorithm 1 since all483

the studied data sets are concerned. Indeed, this result can be observed for all data484

sets presented in our application with approximately 500 iterations.485

Iris data set: Figure 4 depicts the result of projection under pairwise distance control486

for the Iris data set. In the projection of the Iris data set shown in Figure 4, it is487

interesting to note that the two areas are well separated. This corresponds to the well-488

known fact that Iris versicolor and virginica are close whereas the species Iris setosa489

are more distant.490

Figure 4.: Projection of the Iris data set using projection under pairwise distance
control method. Two well separated groups can be observed.

Referring to the original data, the Iris data set contains three classes corresponding491

to the three types of Iris plants and one class is linearly separable from the other two492

classes. This result clearly appears in our projection.493

Moreover, we have compared the local projection quality of PCA, KPCA and MDS494

with the local projection quality obtained using projection under pairwise distance495

control. By comparing the projection of PCA with the projection of our method for496

the Iris data set given respectively in Figures 5 and 4, we can say that our method497

projected the points without giving any importance to any group. Indeed, Figure 5498

depicts a group with small values of quality measure and another group with high499
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values of quality measure, whereas the radii obtained by projection under pairwise500

distance control method are distributed in an equivalent way.501

Figure 5.: Projection of the Iris data set using PCA.

For KPCA, we plotted the squared cosine values as circles to make the representation502

clearer, especially for the Iris data set as the Iris setosa species are projected next to503

each other. From Figure 6a, we can conclude that in each category, the points that504

have close quality values are located side by side.505

Furthermore, by comparing the proposed projection method with the one obtained by506

MDS, it can be concluded that, as is the case when using PCA, the points in Figure507

6b are projected by giving more importance to the Iris setosa group. Indeed, almost508

all the red circles (indicating a very good projection) are assigned to the Iris setosa509

species. Moreover, the comparison of the position of points in the reduced space in510

terms of distance between points cannot be viewed in this classical method as the511

points in the reduced space is not in the same metric of the initial distances, whereas512

in our method we have conserved the metric of the initial distances.513
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(a)

(b)

Figure 6.: Projection of the Iris data set using KPCA (a) and MDS (b). The color
convention is as follows: the darker the red color of a particular disk, the better the
projection. Inversely, the darker the blue color of a particular disk, the worse the
projection.

Cars data set: The projection of points using projection under pairwise distance514

control for the car data set is shown in Figure 7. The expensive cars, the ”Audi 100”,515

”Alfetta-1.66”, ”Datsun-200L” and ”Renault 30” are well-separated from the low-516

standard cars, the ”Lada-1300”, ”Toyota Corolla”, ”Citroen GS Club” and ”Simca517

1300”. Moreover, we can assert that the projected points obtained using projection518
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under pairwise distance control method are well separated as there are no circle inter-519

sections.520

Figure 7.: Projection of the car data set using projection under pairwise distance
control.

By comparing our projection with the projection obtained using PCA presented in521

Figure 8, it can be shown that in the projection of PCA, there is a group with small522

values of quality measure located at the center, which corresponds to the cars: Lanca-523

Beta, Mazda, Fiat, Simcs and Rancho, and a group with high values of quality measure524

located far from the center. Thus, as shown for the Iris data set, projection under525

pairwise distance control method projects the points without giving any importance526

to the position of the points in the reduced space.527

Regarding KPCA, we can see in Figure 9a that the points with navy circles are almost528

all located almost around the same y-axis coordinates and the same applies for the529

red circles. So the local quality for KPCA is dependent on the position of the points.530

It can also be noticed that the cars Princess, Mazda, Fiat and Peugeot located in531

the same area with small circles. Therefore, the only conclusion that we arrive at532

is in relation to the size of the circles and to the quality of the projected points.533

However, it is not possible to conclude anything about the closeness of these 4 points534

as the distances here are in the feature space and are not related to the original space.535

In Figure 7, we can however conclude that the two cars, the Mazda and Fiat, are536
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Figure 8.: Projection of the cars data set using PCA.

well projected in the reduced space, and they have similar characteristics as these537

two cars are close. The same conclusion can be made for the Peugeot and Princess538

cars. From this, it is possible to conclude that there is a large difference between the539

two cars, the ”Toyota” and ”Renault 3” as the distance between these two cars is540

significant. Conversely, the distance between the ”Lada1300” and ”Citroen” is small,541

thus indicating the closeness of these two cars. Note that these two cars are very well542

projected, resulting in a very good interpretation of the distance between them.543

Therefore, the pairwise distances are meaningful in our method and give an interpre-544

tation about the distances between points whereas the distances between the projected545

points using PCA, KPCA and MDS are not interpretable as the cosine values and the546

Stress-per-point cannot be interpreted as distances. This is a particular strength of our547

method. Projection under pairwise distance control suggests an absolute interpretation548

whereas the other methods provide a relative one.549

For the qualitative and functional data sets and using MDS, recall the definition of550

the Gram matrix called B which is equal to X ′X where X is the coordinate matrix in551
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(a)

(b)

Figure 9.: Projection of the car data set using KPCA (a) and MDS (b).

the reduced space. Thus, it is necessary to verify that the matrix B obtained by the552

MDS method is semi-definite positive to use the squared cosine as the quality measure553

because the starting point of optimization is obtained from MDS. After this, in case554

of positiveness of matrix B, the quality measure can be calculated.555

Soybean data set: In the projection of the soybean data set, four classes are shown556

in Figure 10 and each class contains the disease number of the class. The whole set of557

points can however be divided in two large classes. Indeed, it is clear that Class 2 is558
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well separated from the other classes as there is no intersection between the circles of559

Class 2 and the circles of other classes. Moreover, Class 1 can be considered as well560

separated class from Classes 3 and 4 if the largest circle D3 is not taken into account.

Figure 10.: Projection under pairwise distance control for the soybean data set. Four
groups are presented, indexed by D1, D2, D3 and D4.

561

Figure 11.: MDS for the soybean data set. Four groups are presented, indexed by D1,
D2, D3 and D4.
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Classes 3 and 4 are not well separated at all, as there are different intersections between562

the circles of these two classes. This result is shown in Stepp (1984) which labels the563

first two classes as ”normal” and the latter two classes as ”irrelevant”. A comparison564

of results from projection under pairwise distance control with PCA and KPCA is not565

possible for this data set because the matrix B is not semi-definite positive. Regarding566

Figure 11, it is clear that Class 4 exhibits the worst projection quality, whereas Classes567

1 and 2 show better projection quality. Therefore, it is possible to draw the same568

conclusion for the Iris and car data sets when using MDS as a projection method, the569

projection quality of points is dependent on the class of the points.570

Coffee data set: The coffee data set has been studied in several articles (Briandet571

et al. (1996), Bagnall el al. (2012)) and different classification methods have shown572

the different groups contained in this data set. The grouping structure obtained can573

be clearly seen in Figures 12 and 13574

Figure 12.: Projection of the coffee data set using projection under pairwise distance
control. Two clusters, indexed 1 and 2, indicate the Arabica and Robusta classes
respectively.

In Figure 12, we show that we have succeeded in differentiating the Arabica from575

Robusta coffee. These two classes are clearly presented, the first class indexed by576

number 1, corresponding to Arabica coffee, and the second one indexed by number 2,577

corresponding to Robusta coffee. These classes are not well separated in comparison578

with the results of quantitative data, since there are many intersections. Therefore,579
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the representation of the points as circles and not as simple points provides more580

information about the real point classes and shows the points that are at risk of being581

misplaced in a particular class.582

(a)

(b)

Figure 13.: Projection of coffee data set using PCA and MDS.

Figures 13a and 13b show the projection quality using PCA and MDS respectively.583

As all the eigenvalues of matrix B are positive, we can compute the quality measure584

given by PCA. Comparing the projection quality of PCA and projection under pairwise585

distance control provided by Figures 13a and 12, respectively, it can be seen that the586
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quality of projection of the set of points is quite steady.587

Additionally, Algorithm 2 was applied to these data sets. The trace plots of the588

optimization problem Pr,x are shown in Figure 14 after 5000 iterations. It is important589

to note that the value of the sum of radii
∑n

i=1 ri decreases rapidly in the first iterations590

and stays roughly constant after 1000 iterations for the different data sets, with the591

exception of the car data sets. Thus, we can decrease the number of iterations from592

5000 to almost 2000, or even 1000, in order to reduce the speed time.593
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(d) Soybean data set

Figure 14.: Trace plots of Metropolis Hastings for different data sets. The x-axis cor-
responds to the iteration number and the y-axis to the value of

∑n
i=1 ri.

Finally, the computer speed time of the proposed method is compared with that594

using the classical methods. Table 2 shows the computer speed time for the four data595

sets using PCA, KPCA, MDS, Algorithm 1 and Algorithm 2. It is clear that our596

method takes more time than the existing methods. However, Algorithms 1 and 2 are597

expected to significantly increased by using the C++ programming language (instead598

of MATLAB currently) to produce more efficient code. In addition, by comparing the599
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computer speed time of the two algorithms and by referring to Table 1, the solu-600

tions obtained using Algorithm 1 and Algorithm 2 are very close, which indicates that601

Algorithm 2 can be used instead of Algorithm 1 to obtain a better solution faster (be-602

tween two and four times faster). Thus, Algorithm 2 (Metropolis Hastings algorithm)603

is recommended for use as it takes less time.

Table 2.: Computer speed time (in seconds) using different methods for the four data
sets

Computer speed time (sec.)
PCA KPCA MDS Algo 1 Algo 2

Iris 3.61 5.21 5.54 1124 600
Cars 2.70 4.17 4.62 671 300

Soybean – – 2.65 2036 698
Coffee 3.68 – 3.18 1968 589

604

4.4.2. Dimensionality reduction results605

Our method can also be directly used to reduce the dimensionality of data (possibly606

using it beyond visualization in R2). This only requires solving problem Pr,x using607

different dimension values. In Figure 15, the values of
∑n

i=1 ri were plotted as a guide608

for choosing the reduced number of variables. This figure shows the values of
∑n

i=1 ri609

for the different data sets using different dimensions. It is clear that the value of610 ∑n
i=1 ri decreases when the dimension increases.611

The main problem, which is widely posed in dimensionality reduction methods, is612

the determination of the number of components that need to be kept. Many methods613

have been discussed in the literature (Besse (1992); Jollife (1986)) to determine614

the dimension of the reduced space, relying on different strategies related to a good615

explanation or a good prediction. Thus, with our method the choice of the reduced616

space dimension is related to the local projection quality of points and how much the617

user is interested in the projection quality of points.618

Regarding the quantitative data sets (Iris and car), if the main objective of the619

user is to obtain a very good projection quality, then a choice of three components620

against four, for Iris data set and six for the car data set can be a good choice, as the621
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Figure 15.: Scree plots of
∑n

i=1 ri for different dimensions for the four data sets.

value of
∑n

i=1 ri is small and there is not a large difference between this value and622

the values for higher dimensions. For the coffee data set, a dimensionality reduction623

from 56 sample time series down to 6 simple extracted features is considered as a good624

choice. As for the soybean data set, a reduced space dimension equal to 4 dimensions625

can be considered as an appropriate reduced space.626

A comparison of our results with the existing results shows a coherence between627

them. For the Iris data set, Chiu (1996) and Liu and Setiono (1995) concluded628

that the number of variables could be reduced to 2 as the petal length and petal629

width variables are the most important variables from all the variables. For the car630

data set, Saporta (2006) (Table 7.4.1 page 178) noticed that the conservation of two631

dimensions led to the explanation of 88% of inertia, where the inertia term reflects632

the importance of a component. Theredore, these results seem very similar to our633

results, with the important decrease located between dimensions 1 and 2. The other634

reductions are negligible for these two data sets. A selection of variables was studied on635

time series coffee data set by Andrews and McNicholas (2014). Using several analysis636

methods, the number of selected variables ranged between 2 and 13. This result is also637

seen using our method, a number of reduced variables taken between 2 and 9 gives a638
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good projection. Regarding the soybean data set, Dela Cruz shows in his paper Dela639

Cruz (2015) that the 35 attributes can be reduced to 15. With our method, we have640

succeeded in reducing the attributes to 6 by having a very good projection of points.641

Hence, the results presented confirm that the dimension nonlinearly can be reduced642

while assessing a reasonable number of dimensions at the same time.643

5. Conclusion644

The purpose of this paper was to outline a new nonlinear projection method based645

on a new local measure of projection quality. Of course, in some projection methods,646

a local measure is given but this measure cannot be applied unless in cases of linear647

projections, and even then it is not suitable for graphical representation.648

The quality of projection is given here by additional variables called radii, which enable649

bound on the original distances to be obtained. We have also shown that the idea can650

be written as an optimization problem in order to minimize the sum of the radii651

under some constraints. As the solution of this problem cannot be obtained exactly,652

we developed a stochastic optimization method.653

This method has several advantages. Firstly, it is a nonlinear projection method that654

takes into account the projection quality of each point individually. Secondly, the655

distances between projected points are related to the initial distances between points656

offering a way to easily interpret the distances observed in the projection plane. The657

projection quality of each point can even then be used outside our method, as a post-658

processing of PCA or MDS for example. Finally, it appears to be efficient in terms of659

dimensionality reduction for the selection of the dimension of the reduced space based660

on the local quality of projection.661

As perspectives, a lower bound for the optimization problem is needed and this radii662

approach could also be applied to other methods.663
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Appendix753

Proof of proposition 3.1754

Let us consider a point xi such that for an index j, the following inequality is saturated:

|dij − ‖xi − xj‖| ≤ ri + rj ,

and the other inequalities involving i are not saturated. Then, the corresponding solu-755

tion can be improved by moving xi along the line xj − xi in order to decrease ri and756

|dij − ‖xi − xj‖|.757

Proof. The above condition means that xi is rewritten as xi + a(xj − xi) with a ∈ R758

and we look for a such that |dij −‖xi + a(xj −xi)−xj‖| < ri + rj . In particular a ≤ 0759

if dij − ‖xi − xj‖ ≥ 0 and is otherwise > 0. Let us now consider the other inequalities760

corresponding to index pairs (i, k) with k 6= j. For each of them, ∃a ∈ [a
′

k, a
′′

k ] with761

a
′

k < 0 and a
′′

k > 0 such that762

|dij − ‖xi + a(xj − xi)− xj‖| ≤ ri + rj ,

as these constraints are unsaturated. Finally, taking a different from 0 in [a
′
, a
′′
] with763

a
′

= maxk a
′

k and a
′′

= mink a
′′

k , all constraints involving i get unsaturated so that ri764

can be decreased, thereby decreasing the objective function. Depending on whether a765

must be negative or positive, we take a = a
′

or a = a
′′

respectively.766

767

38



Proof of proposition 3.2768

Let r1, . . . , rn;x1, . . . , xn be a feasible solution of Pr,x, if ∃a such that η(a) <

n∑
i=1

ri769

with η(a) =
∑

1≤i<j≤n
|dij − a‖xi − xj‖|, then ∃ r̃1, . . . , r̃n a solution of Pr,a such that770

n∑
i=1

r̃i <

n∑
i=1

ri.771

Proof. Let us consider r1, . . . , rn;x1, . . . , xn a feasible solution of problem Pr,x and772

a, r̃1, r̃2, . . . , r̃n a solution of Pr,a where a is kept constant. For the solution of Pr,a, for773

each point i, we have a certain saturated constraint associated to point k denoted by774

Cik(i), otherwise we can easily saturate it using proposition 3.1. Thus, we have:775

|di1 − a‖xi − x1‖| ≤ r̃i + r̃1

...

|dik(i) − a‖xi − xk(i)‖| = r̃i + r̃k(i)

...

|dij − a‖xi − xj‖| ≤ r̃i + r̃j
...

|din − a‖xi − xn‖| ≤ r̃i + r̃n.

Then, |dik(i) − a‖xi − xk(i)‖| = r̃i + r̃k(i) ≥ r̃i. By summing for all points i, for i =776

1, . . . , n, we obtain:777

n∑
i=1

|dik(i) − a‖xi − xk(i)‖| ≥
n∑

i=1

r̃i.

Thus,
∑

1≤i<j≤n
|dij − a‖xi − xj‖| ≥

n∑
i=1

|dik(i) − a‖xi − xk(i)‖| ≥
n∑

i=1

r̃i.778

Note η(a) =
∑

1≤i<j≤n
|dij − a‖xi − xj‖|, then if η(a) <

n∑
i=1

ri there is a solution of Pr,a779

such that

n∑
i=1

r̃i <

n∑
i=1

ri.780
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