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Abstract Visualization of high-dimensional and possibly complex data onto a
low-dimensional space may be di�cult. Several projection methods have been
already proposed for displaying such high-dimensional structures on a lower-
dimensional space, but the information lost is not always considered. Here,
a new projection paradigm is presented to describe a non-linear projection
method that takes into account the projection quality of each projected point
in the reduced space, this quality being directly available at the scale of this
reduced space. More speci�cally, this novel method allows a straightforward
visualization data in R2 with a simple reading of the approximation quality,
and provides then a novel variant of dimensionality reduction.

Keywords Data visualization · dimension reduction · multidimensional
scaling · principal component analysis.

1 Introduction

Several domains in science use data with large number of variables in their
studies such as in biological [11,17], chemical [30], geographical [32], �nancial
[21] studies and many others studies. These data can be viewed as a large
matrix and extracting results from this type of matrix is often hard and com-
plicate. In such cases, it is desirable to reduce the number of dimensions of data
by conserving as much information as possible from the given initial matrix.

Di�erent types of multivariate data analysis methods were developed to
study these data as dimensionality reduction, variable selection, cluster analy-
sis and others. Typically, dimension reduction is used to summarize the data,
variable selection to choose the pertinent variables from the set of candidate
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variables and cluster analysis to group the objects or variables. In our study,
we focus on dimension reduction. Dimension reduction techniques can be used
in di�erent ways like data dimensionality reduction that projects the data from
a high-dimensional space to a low-dimensional space or data visualization that
provides a simple interpretation of the data in R2

or R3

.
Many data dimensionality reduction and data visualization methods have

been proposed to drop the di�culties associated to the high dimensional data
[26,16,12,24,9]. To quote a few, principal component analysis (PCA) [20],
multidimensional scaling (MDS) [31], scatter plot matrix [13] and parallel co-
ordinates [19] are some of the known used methods. Scatter plot matrix, par-
allel coordinates and Sammon's mapping methods are widely used to visualize
multidimensional data sets. The �rst two methods have as inconvenience that
when the number of dimensions grows, important dimensional relationships
might not be visualized. Indeed, the quality of projection assessed by the per-
centage of variance that is conserved or by the stress factor is a global quality
measure and takes only into account what happens globally. In some projec-
tion methods like PCA, a local measure is de�ned to indicate the projection
quality of each projected point taken individually. This local measure is eval-
uated by the squared cosine of the angle between the principal space and the
vector of the point. A good representation in the projected space is hinted by
high squared cosine values. This measure is useful in cases of linear projection
as happens in PCA but cannot be applied to the case of nonlinear projection.
Moreover, PCA will fail to give a "good" representation in case of nonlinear
con�gurations therefore, Kernel PCA has been developed to extract nonlinear
principal components.

In this paper, we propose a new nonlinear projection method that projects
the points in a reduced space by using the pairwise distance between pairs of
points and by taking into account the projection quality of each point taken
individually. This projection leads to a representation of the points as circles
with a di�erent radius associated to each point. Henceforth, this method will be
called "Projection under pairwise distance control". The main contributions of
this study are to give a simple data visualization in R2 with a straightforward
interpretation and provide a new variant of dimensionality reduction. First,
the new projection method is presented in Section 2. Then, in Section 3, the
algorithms used in the resolution of optimization problems related to this
method are illustrated. Next, Section 4 shows the application of this method
to various real data sets. Finally, Section 5 concludes this work.

2 Projection under pairwise distance control

Let us consider n points given by their pairwise distance noted dij for i, j ∈
{1, . . . , n}. The task here is to project these points using distances into a
reduced space Rm by introducing additional variables, called hereafter radii,
that indicate to which extent the projection of each point is accurate. The
local quality is then given by the values of the radii. A good quality projection
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of point i is indicated by a small radius value noted ri. It will be important to
note that both units of dij 's and ri's are identical, allowing direct comparison.

Before developing our method, an overview of principal component analysis
(PCA), Kernel PCA and multidimensional scaling is given to highlight the
interest of our method.

2.1 Principal Component Analysis (PCA)

The PCA method is the most used one in the data visualization and dimen-
sionality reduction. This method is a linear projection technique applied when
the data is linearly separable. PCA can be stated as an optimization problem
involving the squared Euclidean distances [26]. This optimization problem is
the following:

PPCA :


min

A∈Mp×q

∑
1≤i<j≤n

|d2ij − ‖Ayi −Ayj‖2|

s.t. rank(A) = m
AAT = Ip

where yi ∈ Rp is the original coordinates vector of point i, d2ij is the squared
distance for couple (i, j) given by ‖yi− yj‖2 and A is the projection matrix of
dimension p× q with q being the reduced space dimension. By construction,
PCA cannot take into account nonlinear structures, since it describes the data
in terms of a linear subspace. To deal with nonlinearity, it is possible to use
kernel PCA, the reproducing kernel Hilbert space variant of PCA.

2.2 Kernel PCA (KPCA)

KPCA idea is to perform PCA in a feature space noted F obtained by a
nonlinear mapping of data from its space into the feature space F , where the
low-dimensional latent structure is hopefully easier to discover. The mapping
function noted Φ is considered as:

Φ : Rp → F
X → Φ(X)

The original data yi is then represented in the feature space as a function
Φ(yi) = k(yi, .), where k(., .) is a positive kernel. Similarly to PCA, KPCA is
based on �nding the �rst m eigenvectors corresponding to the largest eigen-
values λi of the Gram matrix K = (kij)ij∈1,...,n. Let Vv for v = 1, . . . ,m are
the eigenvectors in the feature space and PΦ(yi) is the projection of Φ(yi) onto
the subspace V1, . . . , Vm. KPCA problem can be represented as a minimization
problem of the following error:

EKPCA : ‖Φ(y)− PΦ(y)‖22
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with PΦ(y) =

m∑
v=1

〈Φ(y), Vv〉Vv

Furthermore, the only measures used to evaluate the projection quality
of points are the squared cosine values as in PCA and theses values cannot
be interpreted at the same time as the positions because the cosine values
have not a speci�c unit. More precisely, the visualization of the projection
in the reduced space using PCA and KPCA is not simple to be interpreted
in term of original distances between the points. Indeed, in PCA, the cosine
values do not give a quantitative assessment of the error made in considering
the distances between the projected points, all the more in KPCA where the
projected points are in the feature space so the term "distances" is not related
to the distances between points in the original space.

2.3 Multidimensional Scaling (MDS)

Likewise PCA, Multidimensional scaling (MDS) consists in �nding a new data
con�guration in a reduced space. The main di�erence between these two meth-
ods is that the input data in MDS are typically comprehensive measures of
similarity or dissimilarity between objects, they are called "proximity". The
key idea of MDS is to perform dimensionality reduction in a way to approx-
imate high-dimensional distances noted δij by the low-dimensional distances
dij where dij is equal to the distance between xi and xj the coordinates of
i and j in the reduced space. In the classical and simplest case of MDS, the
least-squares loss function noted Stress is given as follows:

Stress =

√ ∑
1≤i<j≤n

(dij − ‖xi − xj‖)2·

By minimizing the stress function, we �nd the best con�guration of (x1, . . . , xn) ∈
Rp

such that the distances �t to the initial distances. Now if we consider n
variables r1, . . . , rn ∈ R+, the sum of which bounds the stress function, the
optimization problem PMDS can be equivalently rewritten as:

PMDS :


min

r1,...,rn∈R+

n∑
i=1

ri

s.t.

n∑
i=1

ri ≥
1

n− 1

√ ∑
1≤i<j≤n

(|dij − ‖xi − xj‖)2

A criterium to determine the local projection quality is proposed by Born
and Groenen in [6] called Stress-per-point (SPP ). The SPP of the point i is
given by:

SPPi =

∑n
j=1,j 6=i(dij − ‖xi − xj‖)2∑n

j=1,j 6=i d
2
ij

Stress
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with Stress =

∑n
1≤i<j≤n(dij − ‖xi − xj‖)2∑n

1≤i<j≤n d
2
ij

· Again, this is di�cult to interpret

directly on the projection as a distance error.

However, we can observe that the constraint on
∑n
i=1 ri can be modi�ed

to have a stronger control on each dij in the following way: |dij −‖xi−xj‖| ≤
ri + rj where xi and xj are projection coordinates of points i and j. It is
important to note here that we could use instead the following inequality
|dij − ‖xi − xj‖|2 ≤ r2i + r2j but in that case interpreting the results would be
awkward compared to what will be done in section 2.4.1.

So, our objective is to propose a new nonlinear projection method that
controls individually the projection of points and gives a graphical represen-
tation in the same metric as the original space one with an error associated to
each point.

2.4 Method description

Let consider x1, . . . , xn be the coordinates of the projected points in Rm and
‖xi − xj‖ is the distance between two projected points (i, j). Radii are in-
troduced in this paper to assess how much ‖xi − xj‖ is far from the given
distance dij . Indeed for couple (i, j), what we aim at is that ‖xi − xj‖ close
to dij should imply small radii (ri, rj). Figure 1 depicts this idea: for each
point Pi ∈ {1, . . . , n}, the projection of Pi belongs to a sphere with cen-
ter xi and radius ri such that for each couple (i, j) ∈ {1, . . . , n} we have
‖xi − xj‖ − (ri + rj) ≤ dij ≤ ‖xi − xj‖+ ri + rj .

xi xj

ri rj

dij

• •

Fig. 1: Examples of radii for bounding the original distance dij

Radii for incertitude metric: The idea presented above can be expressed by
�nding the value of radii that satisfy these two constraints:

•
n∑
i=1

ri is minimum.

• dij ∈ [‖xi − xj‖ − ri − rj ; ‖xi − xj‖+ ri + rj ], for 1 ≤ i < j ≤ n.
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The projection under pairwise distance control problem can be written as the
following optimization problem:

Pr,x :

 min
r1,...,rn∈R+,x1,...,xn∈Rk

n∑
i=1

ri

s.t |dij − ‖xi − xj‖| ≤ ri + rj , for 1 ≤ i < j ≤ n

Linear optimization program using �xed xi: Of course, by �xing the coordi-
nates vectors xi for all i ∈ {1, . . . , n}, using principal component analysis or
any other projection method, the problem can easily be solved in (r1, . . . , rn)
using linear programming. This problem can be written as follows:

Pr :

 min
r1,...,rn∈R+

n∑
i=1

ri

s.t |dij − ‖xi − xj‖| ≤ ri + rj , for 1 ≤ i < j ≤ n

We can remark that a solution of Pr always exists. Indeed, to satisfy the
constraints it is enough to increase all ri. So, for any method producing points
in a reduced space as PCA for instance, we can compute the radii as a post-
processing to assess the local quality of the projected points.

Prx is a non-convex optimization problem: For any p, even p = 1, the opti-
mization problem Prx is not a convex problem. Indeed, if we take 4 aligned
points with xi = 0, xj = 2, yi = 3 and yj = 1 and the distance between i and
j equal to dij = 2. Let consider the function g(w) = |‖wi − wj‖ − dij | then we

have g(x) = 0 and g(y) = 0 but g(
x+ y

2
) = |0− 2| = 2 >

g(x) + g(y)

2
= 0.

The problem Prx is only a convex problem in dimension 1 if x1, . . . , xn are
ordered. Indeed, let consider xj ≤ xi so we have g(x) = |xi − xj − dij | and
g(y) = |yi − yj − dij | so that λ, µ ≥ 0 we have :

g(
λ

λ+ µ
x+

µ

λ+ µ
y) =

∣∣∣∣ λ

λ+ µ
(xi − xj − dij) +

µ

λ+ µ
(yi − yj − dij)

∣∣∣∣
≤ λ

λ+ µ
g(x) +

µ

λ+ µ
g(y)

Therefore given an ordering we have each time a convex optimization that
can be solved exactly so that the global optimum can be found by taking
the minimum obtained for all permutations of x1, . . . , xn. However, this is
only working in dimension 1, in other dimensions, an approximate non-convex
optimization is of course needed.
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2.5 Visualization example

Let us apply our projection method to a simple example by taking a tetrahe-
dron with all pairwise distances equal to 1. For problem Pr, the coordinates
xi for i = 1, . . . , 4 are obtained using multidimensional scaling. Using linear
and nonlinear optimization packages in Matlab respectively for problems Pr
and Pr,x gives a value of

∑n
i=1 ri equal to 0.7935 for problem Pr and 0.4226

for Pr,x. Figure 2a corresponds to the �rst solution and Figure 2b corresponds
to the second one. In Figures 2a and 2b, we depict circles with di�erent radii.
The circle color is related to the radius values, the shades of gray lie between
white and black in the descending direction of the radius values; the smaller
the radius, the darker circle. The points that have circles with small radii are
considered as well projected points. Note that the points that are represented
as points and not circles are very well projected, having radii almost equal to
zero. In Figure 2a, half of the points are well projected whereas the other half
have large radii indicating that they are not well projected. In Figure 2b just
one circle appears indicating that the projection quality using problem Pr,x
is better than Pr. Moreover it is worth noting that as the three outer points
have radii all equal to 0, this indicates that they are all perfectly placed with
respect to one another.
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Fig. 2: Projected points after solving Pr and Pr,x. (a) shows the projection
obtained from the solution of Pr using MDS and (b) shows the one obtained
from the solution of Pr,x.
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2.6 Link with other methods

Multidimensional �tting (MDF) [4] is a method that modi�es the coordinates
of a set of points in order to make the distances calculated on the modi�ed
coordinates similar to a given set of distances on the same set of points. We call
�target matrix� the matrix that contains the points coordinates and �reference
matrix� the matrix that contains the given distances.

Let us noteX = {x1| · · · |xn} the target matrix andD = {dij} the reference
matrix. The objective function of MDF problem is given by:∑

1≤i<j≤n

|dij − ‖xi − xj‖|.

Property 1 Problem Pr,x is bounded below by
1

n− 1

∑
1≤i<j≤n

|dij − ‖xi − xj‖|

where x1, . . . , xn is the optimum of the associated MDF problem.

Proof By summing all the constraints of problem Pr,x we obtain:

∑
1≤i<j≤n

|dij − ‖xi − xj‖| ≤
∑

1≤i<j≤n

ri + rj = (n− 1)

n∑
i=1

ri

So,

n∑
i=1

ri ≥
1

n− 1

∑
1≤<i<j≤n

|dij − ‖xi − xj‖|, which concludes the proof.

3 Optimization tools

3.1 Initialization point of problem Pr,x

Di�erent resolutions of problem Pr,x can be obtained using di�erent initial
values of matrix X. We have essentially considered three possibilities. The
�rst of them is the matrix obtained by PCA or another projection method. In
what follows, we present the two other ones.

Initial point using squared distances The optimization problem Pr,x can be
changed by taking the squared distances between points instead of the dis-
tances. Rewriting r2i as Ri, the problem is changed into

PR,x :

 min
R1,...,Rn∈R+,x1,...,xn∈Rk

n∑
i=1

Ri

s.t. |d2ij − ‖xi − xj‖2| ≤ Ri +Rj , for 1 ≤ i < j ≤ n.
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The transformation is interesting because if the constraints of problem PR,x
are satis�ed, the constraints of problem Pr,x will also be satis�ed. Indeed:

|d2ij − ‖xi − xj‖2| ≤ Ri +Rj = r2i + r2j

⇒ (dij − ‖xi − xj‖) (dij + ‖xi − xj‖) ≤ r2i + r2j ≤ (ri + rj)
2

⇒|dij − ‖xi − xj‖|2 ≤ (ri + rj)
2

⇒|dij − ‖xi − xj‖| ≤ (ri + rj)·

That way problem PR,x can serve as an initial step for solving problem Pr,x.

Initial point using improved solution of problem Pr This strategy is more in-
volved. We need �rst two properties which provide a way to improve the op-
timization results of problem Pr,x.

Property 2 Let us consider a point xi such that for an index j, the following
inequality is saturated:

|dij − ‖xi − xj‖| ≤ ri + rj ,

and the other inequalities involving i are not satis�ed. Then, the corresponding
solution can be improved by moving xi along the line xj − xi in order to
decrease ri and |dij − ‖xi − xj‖|.

Proof The above condition means that xi is rewritten xi + a(xj − xi) with
a ∈ R and we look for a such that |dij − ‖xi + a(xj − xi) − xj‖| < ri + rj .
In particular a ≤ 0 if dij − ‖xi − xj‖ ≥ 0 and a > 0 otherwise. Let us now
consider the other inequalities corresponding to index pairs (i, k) with k 6= j.
For each of them, ∃a ∈ [a

′

k, a
′′

k ] with a
′

k < 0 and a
′′

k > 0 such that

|dij − ‖xi + a(xj − xi)− xj‖| ≤ ri + rj ,

as these constraints are unsaturated. Finally, if we take a di�erent from 0 in
[a
′
, a
′′
] with a

′
= maxk a

′

k and a
′′
= mink a

′′

k , all constraints involving i get
unsaturated so that ri can be decreased, decreasing so the objective function.
Depending on whether amust be negative or positive, we take a = a

′
or a = a

′′

respectively.

Another manner to improve the resolution of problem Pr,x is to perform a
scale change by multiplying the coordinates xi, for i = 1, . . . , n, by a constant
a ∈ R. Thus, the new optimization problem is given by:

Pr,a :

 min
r1,...,rn,a∈R+

n∑
i=1

ri

s.t. |dij − a‖xi − xj‖| ≤ ri + rj
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Property 3 Let r1, . . . , rn;x1, . . . , xn be a feasible solution of Pr,x, if ∃a such

that η(a) <

n∑
i=1

ri with η(a) =
∑

1≤i<j≤n

|dij − a‖xi − xj‖|, then ∃ r̃1, . . . , r̃n a

solution of Pr,a such that

n∑
i=1

r̃i <

n∑
i=1

ri.

Proof Let us consider r1, . . . , rn;x1, . . . , xn a feasible solution of problem Pr,x
and a, r̃1, r̃2, . . . , r̃n a solution of Pr,a where a is kept constant. For the solution
of Pr,a, for each point i, we have a certain saturated constraint associated to
point k noted Cik(i), otherwise we can easily saturate it using property 2. So,
we have:

|di1 − a‖xi − x1‖| ≤ r̃i + r̃1
...

|dik(i) − a‖xi − xk(i)‖| = r̃i + r̃k(i)
...

|dij − a‖xi − xj‖| ≤ r̃i + r̃j
...

|din − a‖xi − xn‖| ≤ r̃i + r̃n.

Then, |dik(i)− a‖xi−xk(i)‖| = r̃i+ r̃k(i) ≥ r̃i. By summing all points i, for
i = 1, . . . , n, we obtain:

n∑
i=1

|dik(i) − a‖xi − xk(i)‖| ≥
n∑
i=1

r̃i.

Thus

∑
1≤i<j≤n

|dij − a‖xi − xj‖| ≥
n∑
i=1

|dik(i) − a‖xi − xk(i)‖| ≥
n∑
i=1

r̃i.

Note η(a) =
∑

1≤i<j≤n

|dij − a‖xi − xj‖|, then if η(a) <

n∑
i=1

ri there is a

solution of Pr,a such that

n∑
i=1

r̃i <

n∑
i=1

ri.

The new initial point is then given by using these two properties as follows:

� �rstly, improve the solution of Pr by solving Pr,a and using property 3
� secondly, improve the solution of Pr,a using property 2.
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3.2 Algorithm 1

Using the di�erent initial values of matrix X presented above, we solve now
problem Pr,x. For this task, we use algorithm 1 which gives the best solu-
tion that can be obtained using the di�erent initial values cited above. This
algorithm consists in two steps an initialization step and an interior-point
optimization step.

Algorithm 1

Input: D: distance matrix, N : number of iterations.
Initialization step

Project the points using PCA or MDS.
Solve Pr using an interior-point method. Obtained solution: (XPr

, rPr
).

Solve PR,x using an active-set method and starting from the solution of Pr obtained at
the previous step. Obtained solution: (XPR,x

, RPR,x
).

X0 ← XPR,X
.

for t = 1 to N do

Solve Pr,a starting from X0 using an interior-point method.
Improve the solution of Pr,a. Obtained solution: (XI

Pr,a
,rIPr,a

).

X0 ← XI
Pr,a

.

end for

Optimization step

Optimize Pr,x using an active-set method and starting from X0, XPr
and XPR,x

.

Choose the minimal solution obtained by these three di�erent starting points.

3.3 Algorithm 2

Problem Pr,x is a hard problem, so it is natural to resort to stochastic op-
timization methods. In the present case, Metropolis-Hastings algorithm [22]
allows us to build a Markov chain with the desired stationary distribution. The
only delicate part is the choice of the proposal distribution and the necessity
to solve a Pr problem at each iteration. In details, this Metropolis-Hastings
algorithm requires:

1- A target distribution:
The target distribution is related with the objective function of problem
Pr,x and it is given by:

π(x) ∝ exp

(
−E(x)

T

)
,

with E an application given by:

E : Rn 7−→ R
x = (x1, . . . , xn) 7−→ E(x) = Solution of problem Pr with �xed x.

The variable T is the temperature parameter, to be �xed according to the
value range of E.
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2- A proposal distribution:
The choice of the proposal distribution is very important to obtain interest-
ing results. It should be chosen in such a way that the proposal distribution
gets close to the target distribution. The proposal distribution q(X → .)
has been constructed as follows, giving priority to the selection of points
involved in saturated constraints:
� For each point i, choose a point j(i) with probability equal to:

Pj(i) =
λ exp

(
−λ(ri + rj(i) − |dij(i) − ‖xi − xj(i)‖|)

)
n∑

k=1,k 6=i

λ exp (−λ(ri + rk − |dik − ‖xi − xk‖|))
·

� Choose a constant cij(i) using Gaussian distribution Nk(0, σ).
� Generate a matrix X∗ by moving each vector xi of matrix Xt−1 as
follows:
• If dij(i) − ‖xi − xj(i)‖ > 0 then x∗i = xi + |cij(i) |Lij(i) .
• else x∗i = xi − |cij(i) |Lij(i) .

with Lij(i) =
xi − xj
‖xi − xj‖

.

3- A linear optimization problem:
For the matrix X generated in each iteration, we solve the linear optimiza-
tion problem Pr.

4 Numerical application

The presented projection method has been applied to di�erent types of real
data sets so as to illustrate its generality.

4.1 The data

Four real data sets are used and divided into three categories:

� Quantitative data: Iris and car data sets.
� Categorical data: Soybean data set.
� Functional data: Co�ee data set.

The Iris data set [1] is a famous data set and is presented to show that the
projection works as expected. This data set contains 3 classes of 50 instances
each, where each class refers to a type of iris plant. The four variables studied
in this data set are: sepal length, sepal width, petal length and petal width
(in cm). Car data set [28] is a data set studied in the book of Saporta (Table
17.1, page 428). This data set describes 18 cars according to various variables
(cylinders, power, length, width, weight, speed).
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The soybean data set [29] from UCI Machine Learning Repository charac-
terizes 47 soybean disease case histories de�ned over 35 attributes. Each ob-
servation is identi�ed by one of the 4 diseases: Diaporthe Stem Canker (D1),
charcoal Rot (D2), Rhizoctonia Root Rot (D3) and Phytophthora Rot (D4).

The co�ee data set is a time series data set used in chemometrics to classify
food types. This kind of time series is seen in many applications in food safety
and quality insurance. This data set is taken from UCR time Series Classi�ca-
tion and Clustering website [10]. Co�ea Arabica and Co�ea Canephora variant
Robusta are the two species of co�ee bean which have acquired a worldwide
economic importance and many methods have been developed to discriminate
between these two species by chemical analysis [8].

4.2 Experimental setup

In practice, we have tested our method on the di�erent data sets by solving the
optimization problem Pr,x using algorithm 1 and also the proposed Metropolis-
Hastings algorithm (algorithm 2). Each time, a distance matrix is required.
For the quantitative data, we compute the Euclidean distance between points

yi, for i = 1, . . . , n, by the known formula dij =

√√√√ p∑
k=1

(yik − yjk)2. For cate-

gorical data, the distance between two soybean diseases (i, j) is given through
Eskin dissimilarity (or proximity) measure [7] computed by the formula pij =

Q∑
t=1

wtp
t
ij where p

t
ij =

 1
n2k

n2k + 2

if it = jt

else
, ptij is the per-attribute Eskin dis-

similarity between two values for the categorical attribute indexed by t, wt is
the weight assigned to the attribute t, Q is the number of attributes and nt is
the number of values taken by each attribute. Then, using the formula which
transforms dissimilarities into similarities: sij = 1 − pij , the distances can
be obtained by the standard transformation formula converting similarities to
distances: dij =

√
sii − 2sij + sjj .

On top of that, to compute the distances between the curves of func-
tional data, we have chosen a measure of proximity similar to that studied
in [18]. In that article, the authors develop a proper classi�cation designed
to distinguish the grouping structure by using a functional k-means cluster-
ing procedure with three sorts of distances. So, in our work we choose one of
these three proximity measures forasmuch as their results are similar. Thus,
the proximity measure chosen between two curves Fi and Fj is the following:

d0(Fi, Fj) =

√∫
T
(F 0
i (t)− F 0

j (t))
2dt. This measure is calculated using the

function metric.lp() of the fda.usc package for the R software.

To solve the di�erent optimization problems, we have used the optimiza-
tion toolbox in MATLAB. For problems Pr and Pr,a, we apply �rstly PCA
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Table 1: Optimization solution of problem Pr,x for di�erent data sets.

∑
r Algo 1
i

∑
rMHi

Iris 16.19 17.2
Cars 3.27 3.35

Soybean 3.98 3.93
Co�ee 21.68 21.97

for quantitative data and MDS for categorical and functional data, then a
linear programming package is used to solve the optimization problems using
an interior-point algorithm. Problems Pr,x and PR,x are nonlinear optimiza-
tion problems, therefore we use a nonlinear programming package to solve it
selecting the active-set algorithm to obtain the best values of (x1, . . . , xn) and
(r1, . . . , rn). This iterative algorithm is composed of two phases. In the �rst
phase (the feasibility phase), the objective function is ignored while a feasible
point is found for the constraints, in the second phase (the optimality phase),
the objective function is minimized while feasibility is maintained [33].

Our proposed Metropolis-Hastings algorithm can provide a good solution if
parameters λ, σ and T are chosen adequately. For instance, λ should be such
that the points belonging to unsaturated constraints are chosen with small
probabilities. Therefore, we take it equal to 100. For the other parameters σ
and T , we take their values respectively in a range from 0.01 to 100.

As we have mentioned in the section of visualization, the visualization of
the projection of each point i in R2 is presented as a circle having xi as center
and ri as radius so as the projected point belongs to this circle and this is the
speci�city of our method. For each data set, we show the circles obtained for
each point after resolution of optimization problem Pr,x. To compare the pro-
jection quality of our representation with that obtained by PCA and KPCA,
we use the squared cosine values as projection quality and for MDS the Stress-
per-point (SPP ).

4.3 Results

4.3.1 Visualization data in R2

The optimization results for these four data sets are given in Table 1. For each
data, we give the algorithm 1 and Metropolis-Hastings results.

Figures 4 and 6 depict the results of projection under pairwise distance
control for quantitative data. This projection is compared with the projection
given by PCA, KPCA and MDS. For PCA and KPCA, we have plotted the
projection of the points indexed by their squared cosine values. For MDS, we
have used the smacof package in R to compute the stress-per-point and to plot
the bubble plot represented the stress-per-point.
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Fig. 3: Projection of Iris data set using PCA (a), KPCA (b) and MDS (c)
respectively. The color convention stands as follows: the more red a disk is,
the better the projection. Inversely, the more blue a disk is the worse the
projection.
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Fig. 4: Projection of Iris data set using projection under pairwise distance
control method. Two well separated groups can be observed.

In the projection of Iris data set showed in Figure 4, it is interesting to
remark that appealingly two areas are well separated. This corresponds to the
well-known fact that Iris versicolor and virginica are close whereas the species
Iris setosa are more distant. Refering to original data, the Iris data set contains
three classes corresponding to the three types of iris plants and one class is
linearly separable from the other two classes. This result clearly appears in our
projection. Concerning the car data set, the projection of points using projec-
tion under pairwise distance control is given in Figure 6. The expensive cars as
"Audi 100", "Alfetta-1.66", "Datsun-200L", "Renault 30" are well-separated
from the low-standard cars as "Lada-1300", "Toyota Corolla", "Citroen GS
Club", "Simca 1300".

For these two data sets, we want to compare the projection quality for each
method presented in Figures 3 and 5 with the projection quality obtained using
projection under pairwise distance control in Figures 4 and 6. Compared to
PCA, we can say that our method projected the points without giving any
importance to any group. Indeed, Figure 3a depicts a group with small values
of quality measure and a group with high values of quality measure whereas
the radii obtained by projection under pairwise distance control method are
distributed in an equivalent way. Additionally, from Figure 6, we can assert
that the projected points obtained using projection under pairwise distance
control method are well separated as there is no circle intersection.

For KPCA, we have plotted the squared cosine as a circle to make the
representation clearer especially for Iris data set as the Iris setosa species are
projected next to each other. From Figure 3b we can conclude that in each
category, the points which have close quality values are located side by side.
The same conclusion can be drawn for cars data set in Figure 5b, we can
see that the points with navy circle are located almost around the same Y
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Fig. 5: Projection of car data set using PCA (a), KPCA (b) and MDS (c).
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Fig. 6: Projection of car data set using projection under pairwise distance
control.

axis coordinates and the sames goes for the red circles. So the local quality in
KPCA is dependent on the points position.

Furthermore, by comparing our method projection for the Iris data set
with the one obtained by MDS, we can draw the conclusions as when using
PCA, the points are projected by giving more importance to Iris setosa group.
Indeed, almost all the red circles (indicating a very good projection) are given
to the Iris setosa species. Besides, the comparison of the position of the points
in the reduced space in term of distance between points cannot be viewed in
the classical method as the points in the reduced space is not in the same
metric of the initial distances whereas in our method we have conserved the
metric of the initial distances.

As for the car data set, in Figure 5b we notice that the cars Princess,
Mazda, Fiat and Peugeot are in the same zone with small circles. So from
this, the only conclusion that we can make is related to the size of circles
and then to the quality of the projected points but we cannot say anything
about the closeness of these 4 points as the distances here are in the feature
space and are not related to the original space. Whereas, in Figure 6 we can
conclude that the two cars Mazda and Fiat are well projected in the reduced
space and they have similar characteristic as these two cars are close. The
same conclusion can be made for Peugeot and Princess cars.

So, the pairwise distances are meaningful in our method and give an inter-
pretation about the distances between points whereas the distances between
the projected points using PCA, KPCA and MDS are not interpretable as the
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cosine values and the Stress-per-point cannot be interpreted as distances in
PCA and KPCA and MDS. This is the particular strength of our method.
Hence, projection under pairwise distance control suggests an absolute inter-
pretation whereas the other methods give a relative one. From this, we can
conclude from Figure 6 that there is a big di�erence between the two cars
"Toyota" and "Renault 3" as the distance between this two cars is very im-
portant. Conversely, the distance between "Lada1300" and "Citroen" cars is
small indicating then the closeness of these two cars. Note here that these
two cars are very well projected leading to a very good interpretation of the
distance between them.

For the qualitative and functional data sets, it is necessary to verify that
the matrix B obtained by MDS method is semi-de�nite positive to use the
squared cosine as quality measure because the starting point of optimization
is obtained from MDS. After that, in case of positiveness of matrix B, we
can calculate the quality measure. In the projection of the soybean data set,
four classes have been shown in Figure 7 and each class contains the disease
number of the class. But basically, the whole set of points can be divided in
two large classes. Indeed, it is clear that class 2 is well separated from the
other classes as there is no intersection between the circles of class 2 and the
circles of other classes. Moreover, class 1 can be considered as well separated
class from classes 3 and 4 if we do not take into account the largest D3 circle.
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Fig. 7: Projection under pairwise distance control for soybean dat set. Four
groups are presented, indexed by D1, D2, D3 and D4.
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Classes 3 and 4 are not at all well separated as we can exhibit that there
are di�erent intersections between the circles of these two classes. This result
is �gured in [29] which labels as "normal" the �rst two classes and "irrelevant"
the latter two classes. The comparison of projection under pairwise distance
control result with PCA and KPCA is not possible for this data set because
the matrix B is not semi-de�nite positive.
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Fig. 8: MDS for soybean dat set. Four groups are presented, indexed by D1,
D2, D3 and D4.

The co�ee data set has been studied in several articles ([8,3]) and di�erent
classi�cation methods have shown the di�erent groups contained in this data
set. We can see clearly in Figures 9 and 10 the grouping structure that is
obtained.

In Figure 10, we show that we have succeeded in di�erentiating the Arabica
from Robusta co�ee. These two classes are clearly presented, the �rst class in-
dexed by 1 corresponding to Arabica co�ee and the second one indexed by 2
corresponding to Robusta co�ee. These classes are not well separated by com-
paring with the results of quantitative data, since there are many intersections.
Therefore, the representation of the points as circles and not as simple points
gives more information about the real class of points and shows the points
who are at the risk of being misplaced in a class.

Figure 9a and 9b show the projection quality using PCA and MDS re-
spectively. As all the eigenvalues of matrix B are positive, we can compute
the quality measure given by PCA. Comparing the projection quality of PCA
and projection under pairwise distance control given respectively by Figures
9a and 10, we can observe that the quality of projection of the set of points is
pretty steady.
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Fig. 9: Projection of co�ee data set using PCA and MDS.

Additionally, Metropolis-Hastings has been applied to these data sets. The
trace plots of the optimization problem Pr,x are shown in Figure 11 after
5000 iterations. Returning to Table 1, we can exhibit that Metropolis-Hastings
algorithm solutions are very close to those obtained using the optimization
package of Matlab. Thus, the obtained radii are guessed to be close to the
optimum.
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Fig. 10: Projection of co�ee data set using projection under pairwise distance
control. Two clusters indexed 1 and 2 indicate respectively Arabica and Ro-
busta classes.

4.3.2 Dimensionality reduction results

One of high-dimensional data studies objectives is to choose from a large num-
ber of variables those which are important for understanding the underlying
studied phenomena. So, our aim can be to reduce the dimension rather than
to visualize data in R2. In this section, our method will serve to reduce the
number of variables by taking into account the minimal value of

∑n
i=1 ri.

Here, we have solved the problem Pr,x using the di�erent possible dimen-
sion values. We have plotted in Figure 12 the values of

∑n
i=1 ri as a guide

for choosing the reduced number of variables. This �gure shows the values of∑n
i=1 ri for the di�erent data sets using di�erent dimensions. It is clear to see

that the value of
∑n
i=1 ri decreases when the dimension increases.

The main problem which is widely posed in dimension reduction methods
is the determination of the number of components that are needed to be kept.
Many methods have been discussed in the literature [23,5] to determine the
dimension of the reduced space relying on di�erent strategies related to the
good explanation or the good prediction. So, with our method the choice of the
reduced space dimension is related to the locally projection quality of points
and how much the user is interested by the projection quality of points.

Concerning the quantitative data sets (Iris and car), if the main objective
of the user is to obtain a very good projection quality then a choice of three
components against 4 for iris and 6 for cars can be a good choice as the value
of
∑n
i=1 ri is small and there is not a big di�erence between this value and the

values for higher dimensions. For the co�ee data set, a dimensionality reduction
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Fig. 11: Trace plots of Metropolis Hastings for di�erent data sets. The x-axis
corresponds to the iteration number and y-axis to the value of

∑n
i=1 ri.

from 56 sample time series down to 6 simple extracted features is considered
as a good choice. As for soybean data set, a reduced space dimension equal to
4 dimensions can be considered as an appropriate reduced space.

A comparison of our results with the existent results shows a coherence
between them. For the Iris data set, articles [14] and [25] conclude that the
number of variables can be reduced to 2 as the petal length and petal width
variables are the most important variables among all variables. For the car
data set, Saporta in his book [28] (Table 7.4.1 page 178) notices that the
conservation of two dimensions leads to the explanation of 88% of inertia where
the inertia term re�ects the importance of a component. So, these results
seem very similar to our results, the important decrease is located between
dimensions 1 and 2. The other decrements are negligible for these two data
sets. Selection variables is studied on time series co�ee data set in [2]. Using
several analysis methods, the number of selected variables ranges between
2 and 13. This result is also seen using our method, a number of reduced
variables taken between 2 and 9 gives a good quality projection of the points.
Concerning soybean data set, Dela Cruz shows in his paper [15] that the 35
attributes can be reduced to 15 and here with our method, we have succeeded
to reduce the attributes to 6 by having a very good projection. Hence, the
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Fig. 12: The scree plot of
∑n
i=1 ri for di�erent dimensions for the four data

sets.

presented results con�rm that we can reduce the dimension nonlinearly and
at the same time assess a reasonable number of dimensions.

4.4 Advantages of projection under pairwise distance control method

As we have seen, our presented method has several advantages. To summa-
rize: �rst, it is a nonlinear projection method which takes into account the
projection quality of each point individually. Next, the distances between pro-
jected points are related to the initial distances between points o�ering a way
to interpret easily the distances observed in the projection plane. Then, the
quality projection of each point can even be used outside our method, that is
as a post-processing of PCA or MDS. Finally, it also looks e�cient for selecting
the number of dimensions in dimension reduction.

5 Conclusion

The purpose of this article was to outline a new nonlinear projection method
based on a new local measure of projection quality. Of course, in some pro-
jection methods a local measure is given but this measure cannot be applied
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unless in cases of linear projections, and even then it is not suitable for graph-
ical representation.

The quality of projection is given here by additional variables called radii,
which enable to give a bound on the original distances. We have shown that
the idea can be written as an optimization problem in order to minimize the
sum of the radii under some constraints. As the solution of this problem cannot
be obtained exactly, we have developed a stochastic optimization method. As
perspectives, a lower bound for the optimisation problem is needed and this
radii approach could also be applied to other methods as kernel PCA for
example.
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