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Abstract

Visualization of high-dimensional and possibly complex (non continuous for in-
stance) data onto a low-dimensional space may be difficult. Several projection meth-
ods have been already proposed for displaying such high-dimensional structures on
a lower-dimensional space, but the information lost is not always easy to use. Here,
a new projection paradigm is presented to describe a non-linear projection method
that takes into account the projection quality of each projected point in the reduced
space, this quality being directly available in the same scale as this reduced space.
More specifically, this novel method allows a straightforward visualization data in R2

with a simple reading of the approximation quality, and provides then a novel variant
of dimensionality reduction.

Keywords: Data visualization, dimension reduction, multidimensional scaling, principal
component analysis.

∗Corresponding author

1



1 Introduction

Several domains in science use data with large number of variables. This data can be

viewed as a large matrix and extracting results from this type of matrix is often hard and

complicate. In such cases, it is desirable to reduce the number of dimensions of data by

conserving as much information as possible from the given initial matrix. Many methods

for performing dimension reduction exist. To quote a few, principal component analysis

(PCA), multidimensional scaling (MDS) and self-organizing map (Mardia et al., 1979) are

perhaps the most known. Usually, a quality of projection is assessed by the percentage of

variance which is conserved or by a stress factor but this quality takes only into account

what happens globally. In some projection methods, like PCA, a local measure is defined

to indicate the projection quality of each projected point taken individually. This local

measure is evaluated by the squared cosine of angle between the principal space and the

vector of the point. A good representation in the projected space is hinted by high squared

cosine values. This measure is useful in cases of linear projection as happens in PCA but

cannot be applied to the case of non-linear projection.

In this paper, we propose a new non-linear projection method that projects the points

in a reduced space by using the pairwise distance between pairs of points and by tak-

ing into account the projection quality of each point taken individually. This projection

leads to a representation of the points as circles with a different radius associated to each

point. Henceforth, this method will be called "Projection under pairwise distance control".

The main contributions of this study are to give a simple data visualization in R2 with

a straightforward interpretation and provide a new variant of dimensionality reduction.

First, the new projection method is presented in the section 2. Then, in section 3, the

algorithms used in the resolution of optimization problems related to this method are il-

lustrated. Next, section 4 shows the application of this method to various real data sets.

Finally, section 5 concludes this work.
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2 Projection under pairwise distance control

Let us consider n points given by their pairwise distance noted dij for i, j ∈ {1, . . . , n}. The

task here is to project these points using distances into a reduced space Rk by introducing

additional variables, called hereafter radii, that indicate to which extent the projection

of each point is accurate. The local quality is then given by the values of the radii. A

good quality projection of point i is indicated by a small radius value noted ri. It will be

important to note that both units of dij’s and ri’s are identical, allowing direct comparison.

Before developing our method, an overview of principal component analysis (PCA) is pre-

sented to highlight the interest of our method.

2.1 Principal Component Analysis (PCA)

PCA method is the most used method in the data visualization and dimensionality re-

duction. This method is a linear projection technique applied when the data is linearly

separable. PCA problem can be stated as an optimization problem involving the squared

Euclidean distances (Mardia et al., 1979). This optimization problem is the following:

PPCA :


min
A

∑
1≤i<j≤n

|d2ij − ‖Ayi − Ayj‖2|

s.t. rank(A) = k

AAT = Ip

where yi ∈ Rp is the original coordinates vector of point i, d2ij is the squared distance for

couple (i, j) given by ‖yi − yj‖2 and A is the projection matrix of dimension p× q. Let us

consider now n variables R1, . . . , Rn ∈ R, the sum of which bounds the objective function.

So, the PCA optimization problem PPCA can be rewritten as:

PPCA :



min
R1,...,Rn,A

n∑
i=1

Ri

s.t.

n∑
i=1

Ri ≥
1

n− 1

∑
1≤i<j≤n

|d2ij − ‖Ayi − Ayj‖2|

rank(A) = k

AAT = Ip
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Moreover, a new optimization problem, denoted as PR,A, is defined bellow. The constraints

number of this latest problem is equal to
n(n− 1)

2
+ 2. So, by summing all the constraint

of type |d2ij − ‖Ayi −Ayj‖2| ≤ Ri +Rj for all 1 ≤ i < j ≤ n, we obtain the PCA problem.

thus, it is clear that PPCA is a relaxed problem of problem PR,A.

PR,A :



min
R1,...,Rn,A

n∑
i=1

Ri

s.t. |d2ij − ‖Ayi − Ayj‖2| ≤ Ri +Rj, for1 ≤ i < j ≤ n

rank(A) = k

AAT = Ip

Problem PR,A is hard to be solved as it is needed to deal simultaneously with the orthog-

onality constraint and with the constraints on the variables Ri.

Besides, PCA cannot take into account non-linear structures, since it describes the data in

terms of a linear subspace. Furthermore, the only measures used to evaluate the projection

quality of points are the squared cosines values which can only be used in the case of

linear projection. Thus, the individual control of projection is not more guaranteed using

non-linear projection method.

So, there is the requirement of a non-linear projection method that controls individually

the projection of points, hence the interest of our proposed method.

2.2 Our proposed method

Let x1, . . . , xn be the coordinates of the projected points in Rk. Radii are an important

element of the paper introduced to assess how much the distance between two projected

points (i, j) given by ‖xi − xj‖ is far from given distance dij. Indeed, radii (ri, rj) for

couple (i, j) are small when ‖xi − xj‖ is close to dij. Figure 1 depicts this idea: for all

points i ∈ {1, . . . , n} the projected point of each point i belongs to a sphere with center xi

and radius ri such that ‖xi − xj‖+ ri + rj ≤ dij ≤ ‖xi − xj‖+ ri + rj.

This idea can be expressed by finding the value of radii that satisfy these two constraints:

•
n∑
i=1

ri is minimum.

• dij ∈ {‖xi − xj‖ − ri − rj, ‖xi − xj‖+ ri + rj} ,∀1 ≤ i < j ≤ n.
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Figure 1: Examples of radii for bounding the original distance dij

The projection under pairwise distance control problem can be written as the following

optimization problem:

Pr,x :


min

r1,...,rn∈R,x1,...,xn∈Rk

n∑
i=1

ri

s.t |dij − ‖xi − xj‖| ≤ ri + rj, for 1 ≤ i < j ≤ n

Of course, by fixing the coordinates vectors xi for all i ∈ 1, . . . , n, using principal component

analysis or any other projection method, the problem can easily be solved in (r1, . . . , rn)

using linear programming. This problem can be written as follows:

Pr :


min

r1,...,rn∈R

n∑
i=1

ri

s.t |dij − ‖xi − xj‖| ≤ ri + rj, for 1 ≤ i < j ≤ n

xi ∈ Rk, for i = 1, . . . , n

We can remark that a solution of Pr always exists. Indeed, to satisfy the constraints it is

enough to increase all ri. Besides, solving Pr with fixed coordinates (x1, . . . , xn) does not

lead in general to the optimum of problem Pr,x.

2.3 Visualization example

Let us apply our projection method to a simple example by taking a tetrahedron with

all pairwise distance is equal to 1. For problem Pr, the coordinates xi for i = 1, . . . , 4 are

obtained using multidimensional scaling. Using linear and non-linear optimization packages

in Matlab respectively for problems Pr and Pr,x give a value of
∑n

i=1 ri equal to 0.7935 for

problem Pr and 0.4226 for Pr,x. Figure 2 corresponds to the first solution and Figure 3

corresponds to the second one. In Figures 2 and 3, we depict circles with different radii.
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The circle color is related to the radius values, the shades of gray lie between white and

black in the descending direction of the radius values; the smaller the radius, the darker

circle. The points that have circles with small radii are considered as well projected points.

Note that the points that are represented as points and not circles are very well projected,

having radii almost equal to zero. In Figure 2, half of the points is well projected whereas

the other half have large radii indicating that they are not well projected. In Figure 3 one

circle appears marking that the projection quality using problem Pr,x is better than Pr.
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Figure 2: Solution of Pr using MDS. The

objective value is equal to 0.7935.
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Figure 3: Solution of Pr,x. The objective

value is equal to 0.4226.

2.4 Link with other methods

Multidimensional fitting (MDF) (Berge et al., 2010) is a method that modifies the coordi-

nates of a set of points in order to make the distances calculated on the modified coordinates

similar to given distances on the same set of points. We call “target matrix” the matrix

that contains the points coordinates and “reference matrix” the matrix that contains the

given distances.

Let us note X = {x1| · · · |xn} the target matrix and D = {dij} the reference matrix. The

objective function of MDF problem is given by:∑
1≤i<j≤n

|dij − ‖xi − xj‖|.
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Property 1. Problem Pr,x is bounded below by
1

n− 1

∑
1≤i<j≤n

|dij−‖xi−xj‖| where x1, . . . , xn

is the optimum of the associated MDF problem.

Proof. By summing all the constraints of problem Pr,x we obtain:

∑
1≤i<j≤n

|dij − ‖xi − xj‖| ≤
∑

1≤i<j≤n

ri + rj = (n− 1)
n∑
i=1

ri

⇒
n∑
i=1

ri ≥
1

n− 1

∑
1≤<i<j≤n

|dij − ‖xi − xj‖|, which concludes the proof.

3 Optimization tools

3.1 Lower Bound of problem Pr,x

Minimization problem Pr,x is too hard to be solved exactly. A way to assess how good a

solution, is to provide a lower bound on the objective function. Then, if the bound is close

to the best solution found, we can conclude that this solution is fix. Thus, in this section

we want to present a lower bound of problem Pr,x given by property 2.

Property 2. The lower bound of problem Pr,x is given by:

n∑
i=1

ropti ≥ min
M

max{f(M); g(M);h(M)}·

with f , g, h three functions defined in the following proof.

Proof. Let x1, · · · , xn; r1, · · · , rn a feasible solution of Pr,x then

for all 1 ≤ i < j ≤ n,∃Msuch that ‖ xi − xj ‖≤M.

We consider three functions noted f , g, h depending on M as follows:

• f(M) =

√(
1− n

3

)
M2 +

1

n− 1

∑
i<j

d2ij −M .

• g(M) = |D − dmax|.

• h(M) = min
i<j

max
k<l;k,l 6=i,j

min
{
L1
ijkl;L

2
ijkl

}
·
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where:

• dmax = max
1≤i<j≤n

{dij},

• L1
ijkl = max

{
djk − dkl

2
;
djl − dkl

2
; |dij −M |

}
,

• L2
ijkl = max

{
dik − dkl

2
;
dil − dkl

2
; |dij −M |

}
.

Using results presented in appendix B, we can write:

n∑
i=1

ri ≥ f(M∗)

n∑
i=1

ri ≥ g(M∗)

n∑
i=1

ri ≥ h(M∗)·

Consequently,

n∑
i=1

ri ≥ max{f(M); g(M);h(M)}· (1)

The inequality (1) is true for all solutions of Pr,x particularly for the optimal solution.

Thus:
n∑
i=1

ropti ≥ max{f(M opt); g(M opt);h(M opt)}· (2)

Hence, the lower bound is given by:

n∑
i=1

ropti ≥ min
M

max{f(M); g(M);h(M)} for all feasible solutions·

GivenM , a lower bound of problem Pr,x is derived. Afterwards, a bound free ofM is given

by minimizing the bounds depending on M .

By applying this bound to the tetrahedron example, the three functions are plotted. The

result is shown in Figure 4. The lower bound is equal to 0.1276 for M = 1.1276 and as we

have seen the minimum obtained by solving Pr,x is equal to 0.42.
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Figure 4: The curves of the three functions f, g and h. Functions g and h are equal due to

the fact that all distances are equal to 1 . The minimal intersection is given by the black

circle for M = 1.1276 and
∑n

i=1 ri > 0.1276

3.2 Initialization point of problem Pr,x

Different resolutions of problem Pr,x can be obtained using different initial values of matrix

X. Three possible initial values can be used. The first of them is the matrix obtained by

PCA or another projection method. In what follows, we present two other possibilities.

Initial point using squared distances The optimization problem Pr,x can be changed

by taking the squared distances between points instead of the distances. Rewriting r2i as

Ri, the problem is changed into

PR,x :


min

R1,...,Rn∈R,x1,...,xn∈Rk

n∑
i=1

Ri

s.t. |d2ij − ‖xi − xj‖2| ≤ Ri +Rj, for 1 ≤ i < j ≤ n.

The transformation is interesting as if the constraints of problem PR,x are satisfied, the

constraints of problem Pr,x will also be satisfied. Indeed:

|d2ij − ‖xi − xj‖2| ≤ Ri +Rj = r2i + r2j

⇒ (dij − ‖xi − xj‖) (dij + ‖xi − xj‖) ≤ r2i + r2j ≤ (ri + rj)
2

⇒ |dij − ‖xi − xj‖|2 ≤ (ri + rj)
2

⇒ |dij − ‖xi − xj‖| ≤ (ri + rj)·

That way problem PR,x can serve as an initial step for solving problem Pr,x.
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Initial point using improved solution of problem Pr First, we give two properties

which provide a way to improve the optimization results of problem Pr,x.

Property 3. Let us consider a point xi such that for an index j, the following inequality

is saturated :

|dij − ‖xi − xj‖| ≤ ri + rj,

and the other inequalities involving i are not saturated. Then, the corresponding solution

can be improved by moving xi along the direction xj−xi to decrease ri and |dij−‖xi−xj‖|.

Proof. The above condition means that xi is rewritten xi + a(xj − xi) with a ∈ R and

we look for a such that |dij − ‖xi + a(xj − xi) − xj‖| < ri + rj. In particular a ≤ 0 if

dij − ‖xi − xj‖ ≥ 0 and a > 0 otherwise. Let us now consider the other inequalities

corresponding to index pairs (i, k) with k 6= j. For each of them, either ∃a ∈ [a
′

k, a
′′

k] with

a
′

k < 0 and a′′k > 0 such that

|dij − ‖xi + a(xj − xi)− xj‖| ≤ ri + rj,

as these constraints are unsaturated. Finally, if we take a different from 0 in [a
′
, a
′′
] with

a
′
= maxk a

′

k and a
′′

= mink a
′′

k, all constraints involving i get unsaturated so that ri can be

decreased, decreasing so the objective function. Depending on whether a must be negative

or positive, we take a = a
′ or a = a

′′ respectively.

Another manner to improve the resolution of problem Pr,x is to effectuate a scale change

by multiplying the coordinates xi, for i = 1, . . . , n, by a constant a ∈ R. Thus, the new

optimization problem is given by:

Pr,a :


min

r1,...,rn,a∈R

n∑
i=1

ri

s.t. |dij − a‖xi − xj‖| ≤ ri + rj

Property 4. Let r1, . . . , rn;x1, . . . , xn be a feasible solution of Pr,x, if ∃a such that η(a) <
n∑
i=1

ri with η(a) =
∑

1≤i<j≤n

|dij − a‖xi − xj‖|, then ∃ r̃1, . . . , r̃n a solution of Pr,a such that

n∑
i=1

r̃i <

n∑
i=1

ri.
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Proof. Let us consider r1, . . . , rn;x1, . . . , xn a feasible solution of problem Pr,x and a, r̃1, r̃2, . . . , r̃n
the optimal solution of Pr,a. For the solution of Pr,a, for each point i, we have a certain sat-

urated constraint associated to point k noted Cik(i), otherwise it would not be an optimum.

So, we have:
|di1 − a‖xi − x1‖| ≤ r̃i + r̃1

...

|dik(i) − a‖xi − xk(i)‖| = r̃i + r̃k(i)
...

|dij − a‖xi − xj‖| ≤ r̃i + r̃j
...

|din − a‖xi − xn‖| ≤ r̃i + r̃n.

Then, |dik(i) − a‖xi − xk(i)‖| = r̃i + r̃k(i) ≥ r̃i. By summing all points i, for i = 1, . . . , n, we

obtain:
n∑
i=1

|dik(i) − a‖xi − xk(i)‖| ≥
n∑
i=1

r̃i.

Thus ∑
1≤i<j≤n

|dij − a‖xi − xj‖| ≥
n∑
i=1

|dik(i) − a‖xi − xk(i)‖| ≥
n∑
i=1

r̃i.

Note η(a) =
∑

1≤i<j≤n

|dij − a‖xi − xj‖|, then if η(a) <
n∑
i=1

ri there is a solution of Pr,a such

that
n∑
i=1

r̃i <
n∑
i=1

ri.

The new initial point is then given by using these two properties as follows:

• firstly, improve the solution of Pr using property 2 by solving Pr,a.

• secondly, improve the solution of Pr,a using property 1.

3.3 Algorithm 1

Using the different initial values of matrix X presented above, we solve now problem Pr,x.

For this task, we introduce a new algorithm denoted algorithm 1 which gives the best

solution that can be obtained using the different initial values cited above. This algorithm
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is consisted of two steps: initialization step and optimization step and it is presented as

follows:

Algorithm 1
Input: D: distance matrix, N : number of iteration.

Initialization step

Project the points using PCA or MDS.

Solve Pr using an interior-point method. Obtained solution: (XPr , rPr ) .

Solve PR,x using an active-set method and starting from the solution of Pr obtained at

the previous step. Obtained solution: (XPR,x
, RPR,x

) .

X0 ← XPR,X
.

for t = 1 to N do

Solve Pr,a starting from X0 using an interior-point method. .

Improve the solution of Pr,a using property 1. Obtained solution: (XI
Pr,a

,rIPr,a
).

X0 ← XI
Pr,a

.

end for

Optimization step

Optimize Pr,x using an active-set method and starting from X0, XPr and XPR,x
.

Choose the minimal solution obtained by these three different starting points.

3.4 Algorithm 2

Problem Pr,x is a hard problem, so it is natural to resort to stochastic optimization methods.

In the present case, Metropolis-Hastings algorithm (Johansen, 2007) allows us to build a

Markov chain with a desired stationary distribution. The only delicate part is the choice

of the proposal distribution and the necessity to solve a Pr problem at each iteration. In

details, this Metropolis-Hastings algorithm requires:

1- A target distribution:

The target distribution is related with the objective function of problem Pr,x and it

is given by:

π(s) ∝ exp

(
−E(x)

T

)
,

12



with E an application given by:

E : Rn 7−→ R

x = (x1, . . . , xn) 7−→ E(x) = Solution of problem Pr with x fix.

The variable T is the temperature parameter, to be fixed according to the value range

of E.

2- A proposal distribution:

The choice of the proposal distribution is very important to obtain interesting results.

It should be chosen in such a way that the proposal distribution gets close to the target

distribution. The proposal distribution q(X → .) has been constructed as follows,

giving priority to the selection of points involved in saturated constraints:

– For each point i, choose a point j(i) with probability equal to:

Pj(i) =
λ exp

(
−λ(ri + rj(i) − |dij(i) − ‖xi − xj(i)‖|)

)
n∑

k=1,k 6=i

λ exp (−λ(ri + rk − |dik − ‖xi − xk‖|))
·

– Choose a constant cij(i) using Gaussian distribution Nk(0, σ).

– Generate a matrix X∗ by moving each vector xi of matrix X t−1 as follows:

∗ If dij(i) − ‖xi − xj(i)‖ > 0 then x∗i = xi + |cij(i) |Li.

∗ else x∗i = xi − |cij(i) |Li.

with Li =
xi − xj
‖xi − xj‖

.

3- A linear optimization problem:

For the matrixX generated in each iteration, we solve the linear optimization problem

Pr.

4 Numerical application

The presented projection method has been applied to different types of real data sets so as

to illustrate its generality.

13



4.1 The data

Four real data sets are used and divided into three categories:

• Quantitative data: Iris and cars data sets.

• Categorical data: Soybean data set.

• Functional data: Coffee data set.

The Iris data set (Anderson, 1935) is a famous data set and is presented to show that the

projection is as expected. This data set contains 3 classes of 50 instances each, where each

class refers to a type of iris plant. The four variables studied in this data set are: sepal

length, sepal width, petal length and petal width (in cm). Cars data set (Saporta, 2006) is

a data set studied in the book of Saporta (Table 17.1, page 428). This data set describes

18 cars according to various variables (cylinders, power, length, width, weight, speed).

The soybean data set (Stepp, 1984) from UCI Machine Learning Repository characterizes

47 soybean disease case histories defined over 35 attributes. Each observation is identified

by one of the 4 diseases: Diaporthe Stem Canker (D1), charcoal Rot (D2), Rhizoctonia

Root Rot (D3) and Phytophthora Rot (D3).

The coffee data set is a time series data set used in chemometrics to classify food types.

This kind of time series is seen in many applications in food safety and quality insurance.

This data set is taken from UCR time Series Classification and Clustering website (Chen

et al., 2015). Coffea Arabica and Coffea Canephora variant Robusta are the two species of

coffee bean which have acquired a worldwide economic importance and many methods have

been developed to discriminate between these two species by chemical analysis (Briandet

et al., 2000).

4.2 Experimental setup

In practice, we have tested our method on the different data sets by solving the optimiza-

tion problem Pr,x using algorithm 1 and also the proposed Metropolis-Hastings algorithm

(algorithm 2). Each time, a distance matrix is required. For the quantitative data, we

compute the Euclidean distance between points yi, for i = 1, . . . , n, by the known formula

14



dij =

√√√√ p∑
k=1

(yik − yjk)2. For categorical data, the distance between two soybean diseases

(i, j) is given through Eskin dissimilarity (or proximity) measure (Boriah et al. , 2008)

computed by the formula pij =

Q∑
t=1

wtp
t
ij where ptij =


1

n2
k

n2
k + 2

if it = jt

else
, ptij is the

per-attribute Eskin dissimilarity between two values for the categorical attribute indexed

by t, wt is the weight assigned to the attribute t, Q is the number of attributes and nt is the

number of values taken by each attribute. Then, using the formula which transforms the

dissimilarity into similarity: pij = 1−sij, the distances can be given by the standard trans-

formation formula from similarity to distance: dij =
√
sii − 2sij + sjj. On top of that, to

compute the distances between the curves of functional data, we have chosen a measure of

proximity similar to that studied in Ieva (2012). In this article, the authors develop a proper

classification designed to distinguish the grouping structure by using a functional k-means

clustering procedure with three sorts of distances. So, in our work we choose one of these

three proximity measures forasmuch their results are similar. Thus, the proximity measure

chosen between two curves Fi and Fj is the following: d0(Fi, Fj) =

√∫
T

(F 0
i (t)− F 0

j (t))2dt.

This measure is calculated using the function metric.lp() of the fda.usc package for the R

software.

To solve the different optimization problems, we have used the optimization toolbox in

MATLAB. For problem Pr and Pr,a, we apply firstly PCA – for quantitative data – or MDS

– for categorical and functional data – and then a linear programming package is used to

solve the optimization problems using an interior-point algorithm. Problems Pr,x and PR,x
are non-linear optimization problems, therefore we use a non-linear programming package

to solve it selecting the active-set algorithm to obtain the best values of (x1, . . . , xn) and

(r1, . . . , rn). This iterative algorithm is composed of two phases. In the first phase (the

feasibility phase), the objective function is ignored while a feasible point is found for the

constraints, in the second phase (the optimality phase), the objective function is minimized

while feasibility is maintained (Wong , 2011).

Our proposed Metropolis-Hastings algorithm can provide a good solution if parameters

λ, σ and T are chosen adequately. For instance, λ should be such that the points belonging
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Table 1: Optimization solution of problem Pr,x for different data sets.

∑
r Algo 1
i

∑
rMH
i Lower Bound

Iris 16.19 17.2 1.07

Cars 3.27 3.35 1.21

Soybean 3.98 3.93 0.29

Coffee 21.68 21.97 0.89

to unsaturated constraints are chosen with small probabilities. Therefore, we take it equal

to 100. For the other parameters σ and T , we take their values respectively in a range from

0.01 and 100.

As we have mentioned in the section of visualization, the visualization of the projection

of each point i in R2 is presented as a circle having xi as center and ri as radius so as

the projected point belongs to this circle and this is the specificity of our method. For

each data set, we show the circles obtained for each point after resolution of optimization

problem Pr,x. To compare the projection quality of our representation with that obtained

by PCA, we use the squared cosine values as PCA projection quality.

Furthermore, the lower bound defined in section 3.1 is each time computed.

4.3 Results

4.3.1 Visualization data in R2

The optimization results for these four data sets are given in Table 1. For each data, we

give the algorithm 1 and Metropolis-Hastings results with which initial starting point is

used in algorithm 1. The lower bound value for each data set is also given in this table.

Figures 5 and 6 depict the results of projection under pairwise distance control for quan-

titative data. This projection is compared with the projection given by PCA by plotting

the projection of the points indexed by their squared cosine values.

In the projection of Iris data set showed in Figure 5b, it is interesting to remark that

appealingly two areas are well separated. This corresponds to the well-known fact that Iris
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Figure 5: Projection of Iris data set. (a) and (b) show the projection quality using PCA

and projection under pairwise distance control methods respectively. Two well separated

groups can be observed.
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Figure 6: Projection of cars data set. (a) and (b) show the projection quality using PCA

and projection under pairwise distance control methods respectively. For PCA, the values

of the quality are given between parentheses near each cars.
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versicolor and virginica are close whereas the species Iris setosa are more distant.

Concerning cars data set, the projection of points using projection under pairwise distance

control is given in Figure 6b. The expensive cars as "Audi 100", "Alfetta-1.66", "Dastun-

200L", "Renault 30" are well-separated from the low-standard cars as "Lada-1300", "Toy-

ota Corolla", "Citroen GS Club", "Simca 1300". We remark that the expensive cars are

located on the right and low-standard one are located on the left.

By comparing the projection quality for each method presented in Figures 5 and 6 for these

two data sets, we can say that our method projected the points without giving any impor-

tance to any group. Indeed, Figure 5a depicts a group with small values of quality measure

and a group with high values of quality measure whereas the radii obtained by projection

under pairwise distance control method are distributed in an equivalent way. Additionally,

from Figure 6b, we can assert that the projected points obtained using projection under

pairwise distance control method are well separated as there is any intersection between the

circle. Moreover, the pairwise distances are significant in our method and give an interpre-

tation on the position between points whereas the distances between the projected points

using PCA are not interpretable as the cosine values can not be interpreted as distances.

This is the particular strength of our method. Hence, projection under pairwise distance

control suggests an absolute interpretation whereas PCA gives a relative one. From this,

we can conclude from Figure 6b that there is a big difference between the two cars "Toyota"

and "Renault 3" as the distances between this two cars is very important. Conversely, the

distance between "Lada1300" and "Citroen" cars are small indicating then the closeness

of these two cars. Note here that these two cars are very well projected leading to a very

good interpretation.

For the qualitative and functional data sets, it is necessary to verify that the matrix B

obtained by MDS method is semi-definite positive to use the quality measure cos2 because

the starting point of optimization is obtained from MDS. After that, in case of positiveness

of matrix B, we can calculate the quality measure. In the projection of the soybean data

set, four classes have been shown in Figure 7 and each class contains the diseases number of

the class. But basically, the whole set of points can be divided in two large classes. Indeed,

It is clear that class 2 is well separated from the others classes as there is no intersection
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between the circles of class 2 and the circles of others classes. Moreover, class 1 can be

considered as well separated class from classes 3 and 4 if we do not take into account the

point D∗3. Classes 3 and 4 are not at all well separated as we can exhibit that there are

different intersections between the circles of these two classes. This result is figured in Stepp
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Figure 7: Projection under pairwise distance control for soybean dat set. Four groups are

presented, indexed by D1, D2, D3 and D4.

(1984) which lists the value "normal" for the first two classes and "irrelevant" for the later

two classes. The comparison of projection under pairwise distance control result with PCA

is not possible for this data set because the matrix B is not semi-definite positive.

The coffee data set has been studied in several articles (Briandet et al. (2000); Bagnall et

al. (2012)) and different classification methods have shown the different groups contained

in this data set using our method and PCA. We can see clearly in Figure 8 the grouping

structure that is obtained. In Figure 8b, we show that we have succeeded in differentiating

the Arabica from Robusta coffee. These two classes are clearly presented, the first class

indexed by 1 corresponding to Arabica coffee and the second one indexed by 2 corresponding

to Robusta coffee. These classes are not well separated by comparing with the results of
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Figure 8: Projection of coffee data set. (a) et (b) show the projection quality using PCA

and projection under pairwise distance control respectively. Two clusters indexed 1 and 2

indicate respectively Arabica and Robusta classes.
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quantitative data, since there are many intersections. Therefore, the representation of the

points as circles and not as coordinates points gives more information about the real class

of points and shows the points who have the possibility to be misplaced in a class.

Figure 8a shows the projection quality using PCA. As all the eigenvalues of matrix B are

positive, so we can compute the quality measure given by PCA. Comparing the projection

quality of PCA and projection under pairwise distance control given respectively by Figures

8a and 8b, we can observe that the quality of projection of the set of points is pretty steady.

Additionally, Metropolis-Hastings has been applied to these data sets. The trace plots of

the optimization problem Pr,x are shown in Figure 9 after 5000 iterations. Returning to

Table 1, we can exhibit that Metropolis-Hastings algorithm solutions are very close to those

obtained using the optimization package of Matlab and reciprocally. Thus, the obtained

radii should be close to the optimum.

Finally, we present the lower bound computed from the three functions described in Section

3. The lower bound is taken by the minimal intersection of these functions. Returning

to Table 1, we observe that in on case (cars), this lower bound indicates that the found

solution is not far from the optimum. In the other cases, it seems that the lower bound while

providing a good starting point can be improved. Note that this bound for tetrahedron

example gives also good results forasmuch as algorithm 1 provides a solution three time

smaller than the bound.

4.3.2 Dimensionality reduction results

One of high-dimensional data studies objectives is to choose from a large number of variables

those which are important for understanding the underlying phenomena of study. So, the

aim will be to reduce the dimension rather than to visualize data in R2. So, our method

can also serve to reduce the number of variables by taking into account the minimal value

of
∑n

i=1 ri.

Here, we have solved the problem Pr,x using the different possible dimension values. We

have plotted in Figure 10 the values of
∑n

i=1 ri as a guide for choosing the reduced number of

variables. This figure shows the values of
∑n

i=1 ri for the different data sets using different

dimensions. It is clear to see that the value of
∑n

i=1 ri decreases when the dimension
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Figure 9: Trace plots of Metropolis Hastings for different data sets. The x-axis corresponds

to the iteration number and y-axis to the value of
∑n

i=1 ri.

increases.

The main problem which is widely posed in dimension reduction methods is the determina-

tion of the number of components that are needed to be retained. Many methods have been

discussed in the literature (Jolliffe (1986); Besse (1992),. . . ) to determine the dimension of

reduced space relying on different strategies related to the good explanation or the good

prediction. So, with our method the choice of the reduced space dimension is related to the

locally projection quality of points and how much the user is interested by the projection

quality of points.

Concerning the quantitative data sets (Iris and cars), if the main objective of the user is to

obtain a very good projection quality then a choice of three components against 4 for iris

and 6 for cars can be a good choice as the value of
∑n

i=1 ri is small and there is not a big

difference between this value for this dimension and the values of the higher dimensions.

For coffee data set, a dimensionality reduction from 56 sample time series down to 6 simple
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Figure 10: The scree plot of
∑n

i=1 ri for different dimensions for the four data sets.

extracted features is considered as a good choice. The same idea can be seen for soybean

data set, a reduced space dimension equal to 4 can be considered as efficient reduced space.

Moreover, a comparison of our results with the existent results shows a coherence between

them. For Iris data set, Chiu (1996) and Liu and Setino (1995) conclude that the number

of variables can be reduced to 2 as the petal length and petal width variables are the most

important variables among all variables. Similarly, this result can be seen for cars data

set, Saporta (2006) in his book (Table 7.4.1 page 178) notices that the conservation of

two dimensions leads to the explanation of 88% of inertia. So, these results seem very

similar to our results, the important decrease is located between dimensions 1 and 2. The

other decreases are negligible for these two data sets. Selection variables is studied on time

series coffee data set in Andrews and McNicholas (2014). Using several analysis methods,

the number of selected variables ranges between 2 and 13. This result is also seen using

our method, a number of reduced variables taken between 2 and 9 gives a good quality

projection of the points. Concerning soybean data set, Dela Cruz shows in his paper Dela

Cruz (2015) that the 35 attributes can be reduced to 15 and here with our method, we
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have succeeded to reduce the attributes to 6 by having a very good projection.

Hence, the presented results confirm that we can reduce the dimension non-linearly and

still keep a way of assessing as reasonable number of dimensions. and that is efficient as a

dimensionality reduction method.

4.4 Advantages of projection under pairwise distance control method

As we have seen, our presented method has several advantages. To summarize:

firstly, it is a non-linear projection method which takes into account the projection quality

of each point individually. Secondly, the distances between projected points are related to

the initial distances between points offering a way to interpret easily the distances observed

in the projection plane. Thirdly, the quality distribution between the points seems to be

evenly distributed.

5 Conclusion

The purpose of this article was to outline a new non-linear projection method based on

a new local measure of projection quality. Of course, in some projection methods a local

measure is given but this measure cannot be applied unless in cases of linear projections,

and even then it is not suitable for graphical representation.

The quality of projection is given here by additional variables called radii, which enable

to give a bound on the original distances. We have shown that the idea can be written as

an optimization problem in order to minimize the sum of the radii under some constraints.

As the solution of this problem cannot be obtained exactly, we have developed different

algorithms and proposed a lower bound for the objective function. As such, the method

described here needs further research to improve the lower bound in order to assess how

close the algorithms are from the minimum.
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Appendix A: Three lemmas

Let (S) be a sphere with centerO and radius r, x1, · · · , xn be n points such that ‖xi−O‖ ≤ r

and g the center of gravity of points x1, . . . , xn. Using this hypothesis, we have developed

three lemmas.

Appendix A.1:

Lemma A.1. For all points x1, . . . , xn, we have:

‖xi −O‖ = r when
n∑
i=1

‖xi − g‖2 is maximum .

Proof. Let x a point inside the sphere (S) and y a point belonging (S). The point x and

y have as coordinates (x1, x2) and (r, 0) respectively. We want to show that by moving y

by small movements along the sphere, we can approach the point x to the sphere border

increasing thus
∑n

i=1 ‖xi − g‖2.

We note y′, x′ the new positions after movements of y and x respectively. Let θ be the

angle between (Oy) and (Oy′) and −→uθ the displacement of y.

Approaching x to the sphere border requires the opposite movements of x and y with equal

length. This constraint is necessary to keep the center in the same position.

We distinguish two cases:

1- x having x2 < 0.

2- x having x2 > 0.

The two cases are illustrated in Figure 11.

For case 1, x in the lower half of the sphere requires that y moves positively with angle

θ ∈ [0; π
2
]. In this case, the vector uθ is given by: u+θ =

 cos θ − 1

sin θ

 and the inner

product 〈u+θ , xx′〉 is given by:

〈u+θ , xx
′〉 = (x′1 − x1)(cos θ − 1) + (x′2 − x2) sin θ (3)

Here, we have x′1 ≥ x1 and x′2 ≤ x2 that imply (x′1 − x1) ≥ 0 and x′2 − x2 ≤ 0. Moreover,

we have 0 ≤ cos θ ≤ 1 and sin θ ≥ 0 that give 〈u+θ , xx′〉 < 0.
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Figure 11: Representation of movements of points x and y in cases 1 and 2.

For case 2, x in the upper half of the sphere requires that y moves negatively with angle

θ ∈ [3π
2
, 2π]. In this case, the vector uθ is given by: u−θ =

 cos θ − 1

− sin θ

 and the inner

product is:

〈u−θ , xx
′〉 = (x′1 − x1)(cos θ − 1)− (x′2 − x2) sin θ (4)

Here, we have x′1 ≥ x1 and x′2 ≤ x2 that imply (x′1 − x1) ≥ 0 and x′2 − x2 ≤ 0. Moreover,

we have 0 ≤ cos θ ≤ 1 and sin θ ≤ 0 that give 〈u−θ , xx′〉 < 0.

Appendix A.2:

Lemma A.2. The center of gravity g of x1, . . . , xn is the center of sphere (S) i.e. O = g.

Proof. We have:
n∑
i=1

‖xi − g‖2 =
n∑
i=1

‖xi −O +O − g‖2

=
n∑
i=1

‖xi −O‖2 +
n∑
i=1

‖O − g‖2 + 2
n∑
i=1

(xi −O)′(O − g)

=
n∑
i=1

‖xi −O‖2 +
n∑
i=1

‖O − g‖2 + 2n(g −O)′(O − g)

=
n∑
i=1

‖xi −O‖2 + n‖O − g‖2 − 2n‖O − g‖2

=
n∑
i=1

‖xi −O‖2 − n‖O − g‖2
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All the points belongs the sphere (S) as a result of lemma A.1. So, ‖xi − O‖2 is fixed

and equal to r2. Thus, maximizing inertia
n∑
i=1

‖xi − g‖2 amounts to minimizing ‖O − g‖2.

Then, the minimum of ‖O − g‖2 is zero so that O = g.

Appendix A.3:

Lemma A.3. If
∑n

i=1 ‖ xi − g ‖2 is maximum for points x1, . . . , xn under constraint

‖xi−xj‖ ≤M with M = max
(i,j)
{‖xi−xj‖} then an upper bound of

∑n
i=1 ‖ xi− g ‖2 is given

by:
nM2

3

Proof. Let x1, . . . , xn be the points maximizing
∑n

i=1 ‖ xi − g ‖2. So, Using lemma A.1

and A.2, we can conclude that ‖xi − g‖ = r for all i = 1, . . . , n.

Let now consider three points noted x, y and z among the n points. This three points

belong to the sphere (S). We suppose that the distance between y and z is equal to M i.e.

‖y − z‖ = M and by hypothesis, we have ‖x− y‖ ≤M .

We note θ the angle between (zy) and (xy), η1 the angle between (zy) and (yg) and η2 the

angle between (yg) and (yx). Figure 12 illustrates the situation.

g

y
z

x B

α

θ
r

M
2

M
2 ••

•

•

•

η1
η2

Figure 12: Representation of the points on the circle.

Furthermore, we have:

• θ = η1 + η2
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• cos η1 =
M

2r

• cos η2 =
‖x− y‖

2r

Consequently:

‖x− y‖ = 2r cos η2 = 2r cos(η1 − θ)

= 2r (cos η1 cos θ + sin η1 sin θ)

= 2r

(
M

2r
cos θ + sin θ

√
1− M2

4r2

)
= M cos θ + sin θ

√
4r2 −M2

We have ‖x− y‖ ≤M , then:

M ≥M cos θ + sin θ
√

4r2 −M2

M(1− cos θ) ≥ sin θ
√

4r2 −M2

M2(1− cos θ)2 ≥ sin2 θ(4r2 −M2)

M2(1− cos θ) ≥ 2r2(1− cos2 θ)

M2 ≥ 2r2(1 + cos θ)

r2 ≤ M2

2(1 + cos θ)
as θ 6= π

Let B a point having coordinates (0,−r) and α the angle between (zy) and (yB). Without

loss of generality, we suppose that x is in the third quadrant. By hypothesis, we have

‖x − y‖ ≤ M , ‖x − z‖ ≤ M and ‖y − B‖ ≤ M and additionally, ‖y − B‖ =
M

2 cosα
thus

α ≤ π
3
that gives θ ≤ π

3
as x is in the third quadrant. So, we obtain:

r2 ≤ M2

2(1 + cos θ)
≤ M2

3
·

Hence,

‖ xi − g ‖2≤
M2

3
,

and then,
n∑
i=1

‖ xi − g ‖2≤
nM2

3

which concludes the proof.
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Appendix B: Three functions used to compute the lower

bound

Recall optimization problem Pr,x:

min
r1,...,rn,x1,...,xn

n∑
i=1

ri

s.t dij− ‖ xi − xj ‖≤ ri + rj

‖ xi − xj ‖ −dij ≤ ri + rj

Appendix B.1: Function f(M)

Using the first constraint, we have:

dij ≤ ‖ xi − xj ‖ +ri + rj

d2ij ≤ (‖ xi − xj ‖ +ri + rj)
2∑

i<j

d2ij ≤
∑
i<j

‖ xi − xj ‖2 +
∑
i<j

(ri + rj)
2 + 2

∑
i<j

(‖ xi − xj ‖)(ri + rj)∑
i<j

d2ij ≤
∑
i<j

‖ xi − xj ‖2 +
∑
i<j

(ri + rj)
2 + 2M

∑
i<j

(ri + rj) as ‖ xi − xj ‖≤M (5)

Let g be the center of gravity of the projected points, so:

‖ xi − xj ‖ = ‖ xi − g − xj + g ‖

‖ xi − xj ‖2 = ‖ xi − g ‖2 + ‖ xj − g ‖2 +2(xi − g)′(xj − g)∑
i<j

‖ xi − xj ‖2 =
∑
i<j

(
‖ xi − g ‖2 + ‖ xj − g ‖2

)
+ 2

∑
i<j

(xi − g)′(xj − g)

As
∑
i<j

(xi − g)′(xj − g) = 0 then:

∑
i<j

‖ xi − xj ‖2 = (n− 1)
n∑
i=1

‖ xi − g ‖2 (6)

Replacing equation (6) in (5) gives :

(n− 1)
n∑
i=1

‖ xi − g ‖2 +
∑
i<j

(ri + rj)
2 + 2M

∑
i<j

(ri + rj)−
∑
i<j

d2ij ≥ 0 (7)
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The quantity
∑n

i=1 ‖ xi − g ‖2 is the inertia of projected points xi. As long as we want to

conserve the initial information, the inertia must be maximal under the constraint ‖xi −

xj‖ ≤M .

Recalling equation (7) and by using Lemma A.3, we obtain:

n(n− 1)

3
M2 +

∑
i<j

(ri + rj)
2 + 2M

∑
i<j

(ri + rj)−
∑
i<j

d2ij ≥ 0

n(n− 1)

3
M2 + (n− 1)

(
n∑
i=1

ri

)2

+ 2(n− 1)M
n∑
i=1

ri −
∑
i<j

d2ij ≥ 0

(
n∑
i=1

ri

)2

+ 2M

(
n∑
i=1

ri

)
+
n

3
M2 − 1

n− 1

∑
i<j

d2ij ≥ 0 . (8)

The discriminant of equation (8) is given by: ∆ = 4
(

1− n

3

)
M2 +

4

n− 1

∑
i<j

d2ij and as

ri ≥ 0, ∀i = 1, . . . , n we get:

n∑
i=1

ri ≥
√(

1− n

3

)
M2 +

1

n− 1

∑
i<j

d2ij −M.

We note f(M) =

√(
1− n

3

)
M2 +

1

n− 1

∑
i<j

d2ij −M .

Appendix B.2: Function g(M)

Two situations are possible:

1. ∃(i′, j′) such that ‖ xi′ − xj′ ‖= M , that gives:

ri′ + rj′ ≥‖ xi′ − xj′ ‖ −di′j′ ≥M − di′j′ ≥M − dmax·

As
n∑
i=1

ri ≥ ri′ + rj′ , we obtain:

n∑
i=1

ri ≥M − dmax

2. ∃(i∗, j∗) such that di∗j∗ = dmax, that gives:

ri∗ + rj∗ ≥ di∗j∗− ‖ xi∗ − xj∗ ‖≥ dmax −M ·
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Then, we obtain:
n∑
i=1

ri ≥ dmax −M ·

Hence:
n∑
i=1

ri ≥ |D − dmax|· (9)

We note g(M) = |D − dmax|.

Appendix B.3: Function h(M)

Let us consider four distinct points i, j, k and l. We suppose that there is a couple (i, j)

such that ‖xi − xj‖ = M and one of their coordinates is equal to zero (xi = 0 or xj = 0).

We distinguish two cases:

1. xi = 0.

2. xj = 0.

Case 1: For xi = 0, we take xj = αxk + βxl with α, β ∈ [0, 1]. The constraints related to

these four points are the following:

|‖xj‖ − dij| ≤ ri + rj (C1)

|‖xk‖ − dik| ≤ ri + rk (C2)

|‖xl‖ − dil| ≤ ri + rl (C3)

|‖xj − xk‖ − djk| ≤ rj + rk (C4)

|‖xj − xl‖ − djl| ≤ rj + rl (C5)

|‖xk − xl‖ − dkl| ≤ rk + rl (C6)
Firstly, using constraints (C4) and (C6) we obtain:

2
n∑
t=1

rt ≥ djk − dkl + ‖xk − xl‖ − ‖xj − xk‖·

Additionally, as xj = αxk + βxl with α, β ∈ [0, 1], then

‖xk − xj‖ = ‖xk − αxk − βxl‖ = ‖(1− α)xk − βxl‖ ≤ ‖xk − xl‖,

34



which gives

n∑
t=1

rt ≥
djk − dkl

2
· (10)

Secondly, using constraints (C5) and (C6) we obtain:

2
n∑
t=1

rt ≥ djl − dkl + ‖xk − xl‖ − ‖xj − xl‖·

As ‖xl − xj‖ ≤ ‖xk − xl‖ we obtain:

n∑
t=1

rt ≥
djl − dkl

2
(11)

Thirdly, constraints (C1) and initial hypothesis ‖xi − xj‖ = M lead to:

n∑
t=1

rt ≥ |dij −M |· (12)

Consequently, equations (10), (11) and (12) involve:

n∑
t=1

rt ≥ max

{
djk − dkl

2
;
djl − dkl

2
; |dij −M |

}
denoted L1

ijkl

Case 2: For xj = 0, we take xi = αxk + βxl with α, β ∈ [0, 1]. By analogy with case 1,

we obtain:
n∑
t=1

rt ≥ max

{
dik − dkl

2
;
dil − dkl

2
; |dij −M |

}
denoted L2

ijkl·

Due to the choice of one case among cases 1 and 2, we take the minimum of L1
ijkl and L2

ijkl.

Thus:
n∑
t=1

rt ≥ min
{
L1
ijkl;L

2
ijkl

}
·

Moreover, for a given i, j, this inequality is verified. So that:

n∑
t=1

rt ≥ min
i<j

max
k<l;k,l 6=i,j

min
{
L1
ijkl;L

2
ijkl

}
·

We note h(M) = min
i<j

max
k<l;k,l 6=i,j

min
{
L1
ijkl;L

2
ijkl

}
·
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