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ABSTRACT8

Visualization of high dimensional and possibly complex data onto a low-dimensional9

space is often difficult. Several projection methods have been already proposed to10

display such high-dimensional structures on a lower-dimensional space, but the infor-11

mation lost is not always considered. Here, a new projection paradigm is presented12

to describe a non-linear projection method that takes into account the projection13

quality of each projected point in the reduced space, this quality being directly avail-14

able at the scale of this reduced space. More specifically, this novel method allows15

for a straightforward visualization of data in R2 with a simple reading of the ap-16

proximation quality, and thus provides a novel variant of dimensionality reduction.17

KEYWORDS18

Data visualization; dimensionality reduction; multidimensional scaling; principal19

component analysis; kernel principal component analysis.20

1. Introduction21

Several domains in science use data with large numbers of variables in their studies22

such as in biology (Cheung 2012, Golub et al. 1999), chemistry (Svante et al. 1984),23

geography (Van der Hilst et al. 2007) and finance (Jagannathan and Ma 2003). These24

data can be viewed as a large matrix and extracting results from this type of matrix25
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is often difficult and complicated. In such cases, it is desirable to reduce the number26

of dimensions of data by conserving as much information as possible from the given27

initial matrix.28

Different types of multivariate data analysis methods have been developed to study29

these data such as dimensionality reduction, variable selection, cluster analysis and30

other methods. Typically, dimensionality reduction is used to summarize the data31

with variable selection used to choose the pertinent variables from the set of candidate32

variables and cluster analysis used to group the objects or variables. In our study, we33

focus on dimensionality reduction. Dimensionality reduction techniques can be used in34

different ways, to solely lower the dimensionality to prepare data for other treatments35

or for data visualization to provide a simple interpretation of the data in R2

or R3

.36

Due to the difficulties faced by high dimensional data, many methods for data37

dimensionality reduction and data visualization have been proposed (Chan 2006;38

Chinchilli and Sen 1987; Dempster 1971; Keim and Kriegel 1996; Mardia et al.39

1979). Some of the most common methods include principal component analysis (PCA)40

(Jackson 1991), multidimensional scaling (MDS) (Togerson 1958), scatter plot matrix41

(Cleveland and McGill 1988), parallel coordinates (Inselberg 1985) and Sammon’s42

mapping (Sammon 1969). Scatter plot matrix and parallel coordinates methods are43

widely used to visualize multidimensional data sets. An issue with PCA and MDS is44

that as the number of dimensions grows, important multi-dimensional relationships45

might not be visualized. Moreover, the quality of projection usually assessed by the46

percentage of variance (PCA case) that is conserved or by the stress factor (MDS47

case) is a global projection quality measure and does not give information about local48

quality.49

In some projection methods such as PCA, a local measure is defined to indicate50

the projection quality of each projected point taken individually. This local measure is51

evaluated by the squared cosine of the angle between the principal space and the vector52

of the point (Jollife 1986). A good representation in the projected space is hinted by53

high squared cosine values. This measure is useful in cases of linear projection, which54

happens in PCA, but cannot be applied in the case of nonlinear projection. Moreover,55

linear dimensionality reduction misses important nonlinear structure in the data which56
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does not allow to give powerful results in case of nonlinear configurations. Therefore,57

many methods have been developed to perform nonlinear projections by nonlinearizing58

a linear dimensionality reduction or by using manifold learning methods.59

The nonlinearization of linear dimensionality reduction is applied to extract nonlinear60

principal components. Kernel PCA is one of the most popular methods in this domain,61

which integrates a kernel function to determine principal components in different high-62

dimensional space (Schölkopf 1998). Manifold learning methods are an approach to63

construct a matrix using the neighborhood information and take a spectral decom-64

position to find a nonlinear embedding (like Locally Linear Embedding LLE, Isomap65

algorithm etc) (Lee and Verleysen 2007, Tenenbaum et al. 2000, Roweis and Saul66

2000).67

In this paper, we propose a new nonlinear projection method that projects the68

points into a reduced space by using the pairwise distance between pairs of points and69

by taking into account the projection quality of each point taken individually. Nonlin-70

ear projection methods cited in the previous paragraph project the points in a feature71

space which makes the distances between the projected points hard to be interpreted.72

In our method, the distances between projected points are related to the initial dis-73

tances between points, offering a way to easily interpret the distances observed in the74

projection plane. This projection leads to a representation of the points as circles with75

a different radius associated to each point. Henceforth, this method will be referred to76

as “Projection under pairwise distance control”. Furthermore, visualization of data in77

a reduced space is not the only objective of this method. It can serve as a dimension-78

ality reduction method to reduce the number of variables by minimizing the sum of79

the radii and to then determine the number of variables that can be kept.80

The main contribution of this study is to provide a simple data visualization in R2
81

with a straightforward interpretation and to provide a new variant of dimensionality82

reduction. Firstly, the new projection method is presented in Section 2. In Section 3,83

the algorithms used in solving the optimization problems related to this method are84

then illustrated. In Section 4 the application of this method to various real data sets85

is shown. Finally, the conlusions are drawn in Section 5.86
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2. Projection under pairwise distance control87

Let us consider n points given by their pairwise distances denoted by dij for i, j ∈88

{1, . . . , n}. The objective is to project these points using distances into a reduced89

space Rq

by introducing additional variables, called hereafter radii, that indicate the90

extent to which the projection of each point is accurate. The local quality is then given91

by the values of the radii. A good projection quality of point i is indicated by a small92

radius value denoted by ri. It is important to note that both units of dij ’s and ri’s are93

identical, thus allowing for a direct comparison.94

Before presenting our method, an overview of principal component analysis, Kernel95

PCA and multidimensional scaling is given to highlight the significance of our method.96

2.1. Overview of certain existing methods: PCA, KPCA and MDS97

Principal Component Analysis (PCA)98

The PCA method is the most used linear projection technique for data visualization99

and dimensionality reduction. PCA can be stated as an optimization problem involving100

the squared Euclidean distances (Mardia et al. 1979). This optimization problem is101

the following:102

PPCA :


min

A∈Mp×q

∑
1≤i<j≤n

|d2
ij − ‖Ayi −Ayj‖2|

s.t. rank(A) = m

AAT = Ip,

where yi ∈ Rp is the original coordinates vector of point i, d2
ij is the squared distance103

for couple (i, j) given by ‖yi − yj‖2 and A is the projection matrix of dimension p× q104

with q being the reduced space dimension. By its nature, PCA cannot take into account105

nonlinear structures, as it describes the data in terms of a linear subspace. To deal106

with nonlinearity, Kernel PCA, the reproducing kernel Hilbert space variant of PCA,107

can be used.108
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Kernel PCA (KPCA)109

The idea behind KPCA is to perform PCA in a feature space denoted by F , obtained110

by a nonlinear mapping of data from its original space into the feature space F , where111

the low-dimensional latent structure is hopefully easier to discover (Schölkopf 1998).112

The mapping function noted Φ is considered as:113

Φ : Rp → F

Y → Φ(Y ) ·
114

The original data yi is represented in the feature space as a function Φ(yi) = k(yi, .),115

where k(., .) is a positive kernel. Similar to PCA, KPCA is based on finding the first116

q eigenvectors corresponding to the q largest eigenvalues λi of the Gram matrix K =117

(kij)ij∈1,...,n, where kij = k(yi, yj) = 〈Φ(yi),Φ(yj)〉 is a chosen positive kernel. Letting118

Vv, for v = 1, . . . , q, the eigenvectors in the feature space and PΦ(yi) the projection119

of Φ(yi) onto the subspace V1, . . . , Vq. The KPCA problem can be represented as a120

minimization problem with the following error:121

EKPCA : ‖Φ(y)− PΦ(y)‖22 ,

where PΦ(y) =

q∑
v=1

〈Φ(y), Vv〉Vv·122

Furthermore, the most well-known and used measure applied to evaluate the pro-123

jection quality of points for PCA and KPCA is the squared cosine value. Squared124

cosine values cannot be interpreted at the same time as the distances in the projection125

because the cosine values do not have a specific unit. More precisely, the visualization126

of the projection in the reduced space using PCA and KPCA cannot simply be inter-127

preted in terms of original distances between the points. Indeed, in PCA, the cosine128

values do not provide a quantitative assessment of the error made when considering129

the distances between the projected points, even less in KPCA where the projected130

points are in the feature space so the term “distances” is not related to the distances131

between the points in the original space.132
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Multidimensional Scaling (MDS)133

As with PCA, Multidimensional scaling (MDS) consists of finding a new data config-134

uration in a reduced space. The main difference between these two methods is that135

the input data in MDS is in the form of a similarity or dissimilarity matrix, called136

“proximity”, representing the proximity between pairs of objects. MDS are developed137

where the proximities behave like distances or not respectively (Borg and Groenen138

2005, Shepard 1962). The key idea of MDS is to perform dimensionality reduction in139

a way to approximate high-dimensional distances denoted by δij the low-dimensional140

distances dij , where dij is equal to the distance between xi and xj , the coordinates of141

i and j in the reduced space. In his original paper on MDS (Kruskal 1964), Kruskal142

proposed the least-squares loss function denoted by “Stress” as follows143

Stress =

√√√√√√√√
∑

1≤i<j≤n
(dij − ‖xi − xj‖)2

∑
1≤i<j≤n

d2
ij

·

By minimizing the Stress function, we find the best configuration of (x1, . . . , xn) ∈ Rq

144

such that the distances fit to the initial distances.145

If we consider n variables as r1, . . . , rn ∈ R+, the sum of which bounds the stress146

function, the optimization problem PMDS can be equivalently rewritten as:147

PMDS :



min
x1,...,xn∈Rq ,r1,...,rn∈R+

n∑
i=1

ri

s.t.

n∑
i=1

ri ≥
1

n− 1

√√√√√√√√
∑

1≤i<j≤n
(dij − ‖xi − xj‖)2

∑
1≤i<j≤n

d2
ij

·

Note that the optimal solution of the MDS problem may not be unique (Kruskal and148

Wish 1978).149

A criterion to determine the local projection quality has been proposed by Born150

and Groenen called Stress-per-point (SPP ) (Borg and Groenen 2005). The SPP of151
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point i is given by:152

SPPi =

∑n
j=1,j 6=i(dij − ‖xi − xj‖)2∑n

j=1,j 6=i d
2
ij

Stress
,

with Stress =

n∑
1≤i<j≤n

(dij − ‖xi − xj‖)2

n∑
1≤i<j≤n

d2
ij

·153

Again, this is difficult to interpret directly on the projection as a distance error because154

the projected points are not in the same metric as the initial data.155

However, we can observe that the constraint on
∑n

i=1 ri can be modified to have a156

stronger control on each dij in the following way: |dij − ‖xi − xj‖| ≤ ri + rj where xi157

and xj are the projected coordinates of points i and j.158

Therefore, our objective is to propose a new nonlinear projection method that indi-159

vidually controls the projection of points and provides a graphical representation in160

the same metric as the original space with an error associated to each point.161

2.2. Our proposal: Projection under pairwise distance control method162

Let x1, . . . , xn be the coordinates of the projected points in Rp

and ‖xi − xj‖ the163

distance between two projected points (i, j). Radii are introduced in this paper to164

assess how far ‖xi − xj‖ is from the given distance dij . Indeed, for the couple (i, j), we165

are aiming for a ‖xi − xj‖ value close to dij , which should imply a small radius (ri, rj).166

Figure 1 depicts this idea: for each point i ∈ {1, . . . , n}, the projection of i belongs to167

a sphere with center xi and radius ri such that for each couple (i, j) ∈ {1, . . . , n} we168

have ‖xi − xj‖ − (ri + rj) ≤ dij ≤ ‖xi − xj‖+ ri + rj .169

Radii for uncertainty metric: The idea presented above can be expressed by170

finding the value of radii that satisfy these two constraints:171

•
n∑

i=1

ri is minimal.172

• dij ∈ [‖xi − xj‖ − ri − rj ; ‖xi − xj‖+ ri + rj ], for 1 ≤ i < j ≤ n·173
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xi xj

ri rj

dij

• •

Figure 1.. Example of radii for bounding of the original distance dij

The projection under pairwise distance control problem can be written as the following174

optimization problem:175

Pr,x :


min

r1,...,rn∈R+,x1,...,xn∈Rq

n∑
i=1

ri

s.t |dij − ‖xi − xj‖| ≤ ri + rj , for 1 ≤ i < j ≤ n

Linear optimization program using fixed coordinates (x1, x2, . . . , xn): Of176

course, by fixing the coordinates vectors xi for all i ∈ {1, . . . , n} using principal com-177

ponent analysis or any other projection method, the optimization problem can easily178

be solved in (r1, . . . , rn) using linear programming. This problem can be written as179

follows:180

Pr :


min

r1,...,rn∈R+

n∑
i=1

ri

s.t |dij − ‖xi − xj‖| ≤ ri + rj , for 1 ≤ i < j ≤ n

It should be noted that a solution for problem Pr always exists. Indeed, to satisfy the181

constraints it is sufficient to increase all ri. Thus, for any method producing points in182

a reduced space as PCA for instance, we can compute the radii as a post-processing183

to assess the local quality of the projected points.184

Pr,x is a non-convex optimization problem: For any dimension p, even with185

p = 1, note that the optimization problem Pr,x is not convex. Indeed, to easily illus-186

trate this fact, we take the function g(x, y) = |d− ‖x− y‖| considering two solutions187

(x1, y1) = (0, 2) and (x2, y2) = (3, 1) with d equal to 2. Thus, we have g(x1, y1) = 0 and188
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g(x2, y2) = 0 but g

(
x1 + x2

2
,
y2 + y2

2

)
=

∣∣∣∣d− ∥∥∥∥x1 + x2

2
− y1 + y2

2

∥∥∥∥∣∣∣∣ = |2− 0| = 2189

which is larger than
g(x1, x2) + g(y1, y2)

2
= 0 proving non convexity associated to this190

sample design.191

Many methods available in the literature propose different ways to solve such opti-192

mization problems. Examples include: trust-region-reflective (Conn et al. 2000), which193

chooses and computes an approximation of the objective function, and then chooses194

and modifies the trust region and finally solves the trust-region subproblem; sequential195

quadratic programming (SQP) which solves the optimization problem by addressing196

a sequence of quadratic programming problems where the Lagrangian function is ap-197

proximated by a quadratic function and the constraints are approximated by a linear198

hyper-space (Boggs and Tolle 1995); the active-set method, which is composed of199

two phases, wherein for the first phase (the feasibility phase) the objective function is200

ignored while a feasible point is found for the constraints, and in the second phase (the201

optimality phase) the objective function is minimized while feasibility is maintained202

(Wong 2011, Cristofari et al. 2007). The choice of optimization method to use to203

achieve optimality of the optimization problem is essential and depends on many fac-204

tors such as the type of problem, desired quality of solution, time limit and availability205

of the algorithm implementation etc. In fact, all of the methods cited above can be206

used in optimizing problem Pr,x which is a constrained optimization problem having207

inequality constraints and they are all available in MATLAB using the function “fmi-208

con” for constrained nonlinear optimization problems. Having small radii is the main209

constraint in our optimization problem, thus the objective is to obtain good solution210

within a reasonable and practical timeframe. Therefore, a method that balances time211

and quality of the solution is required.212

Another strategy of use: Dimensionality reduction One of the main objectives213

of high-dimensional data studies is to choose, from a large number of variables, those214

that are important for understanding the underlying studied phenomena. In addition215

to visualization, our aim can thus be to reduce the dimension rather than to visualize216

data in R2. Therefore, the proposed method can serve to reduce the number of variables217

by taking into account the value of
∑n

i=1 ri. Indeed, by solving the problem Pr,x using218
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different dimension values, we can choose the dimension with respect to the local219

projection quality promoted in this study.220

2.3. A toy example for illustrating our method221

Let us apply the proposed projection method to a simple example by taking a tetrahe-222

dron with all pairwise distances equal to 1. For problem Pr, the coordinates of points223

xi for i = 1, . . . , 4 are obtained using multidimensional scaling. The optimization was224

carried out using the MATLAB software with the optimization toolbox for linear and225

nonlinear optimization problem used for problems Pr and Pr,x, respectively. The value226

of
∑4

i=1 ri is equal to 0.7935 for problem Pr and 0.4226 for Pr,x. It is clear that prob-227

lem Pr,x gives better solutions than problem Pr with smaller radii, which indicates228

better projection quality of points.

(a) (b)

Figure 2.. Projected points after solving problem Pr and problem Pr,x. The x-axis and
y-axis are dimension 1 and dimension 2, respectively. (a) and (b) show the projection
obtained from the solution of problem Pr using MDS and of problem Pr,x, respectively.

229

This result is shown in Figure 2, which depicts the solution obtained using Pr and Pr,x.230

In Figures 2a and 2b, the circles with different radii indicate the quality of projection231

for each point. The circle color is related to the radius value, the shades of gray lie232

between white and black, the smaller the radius, the darker the circle. The points that233

have circles with small radii are also considered as projected points. Note that the234

points represented as points and not as circles are very well projected, having radii235

almost equal to zero.236

In Figure 2b, just one circle appears indicating that the projection quality using prob-237

lem Pr,x is better than when using problem Pr. In Figure 2a, half of the points are238
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well projected whereas the other half have large radii, indicating that they are not well239

projected. Moreover, it is worth noting that the three outer points all have radii equal240

to 0, which indicates that they are all perfectly placed with respect to one another.241

In Figure 2b, the distances between the three points that are very well projected242

are equal to the distances between these points in their original space (dkl = ‖xk −243

xl‖ where k and l are two very well projected points) whereas the distances from244

the badly projected points to the perfectly projected points are not yet conserved.245

Therefore, using the proposed method, we have succeeded in conserving half of the246

original distances in the new projection plane and the other half have been changed247

to fit the new configuration. If we now apply the proposed method to the distances248

obtained by MDS to find the radius of each projected point (Figure 2a), it can be noted249

that one distance is conserved as the original distance and the other five distances250

are changed which indicates that the proposed method projects the points well by251

conserving the distances between the points as much as possible.252

It is also important to note that, in general, our method is not only a nonlinear253

projection method with local quality measure, but it can act as a new tool to give254

the local quality of projection for the classical projection methods using the radii by255

solving problem Pr. It can be used outside our method as post-processing of classical256

methods.257

2.4. Connection with existing methods258

Multidimensional fitting (MDF) (Berge et al. 2010) is a method that modifies the259

coordinates of a set of points in order to make the distances calculated on the modified260

coordinates similar to a given set of distances on the same set of points. The so-called261

“target matrix”, the matrix that contains the point coordinates and “reference matrix”262

is the matrix that contains the given distances.263

Let us take X = {x1| · · · |xn}, the target matrix of coordinates and D = {dij}, the264

reference matrix of distances. The objective function of the MDF problem is given by:265

∑
1≤i<j≤n

|dij − ‖xi − xj‖|.
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Proposition 2.1. Problem Pr,x is bounded from below by
1

n− 1

∑
1≤i<j≤n

|dij−‖xi−xj‖|266

where x1, . . . , xn is the optimum for the associated MDF problem.267

Proof. By summing all the constraints of problem Pr,x, we obtain:268

∑
1≤i<j≤n

|dij − ‖xi − xj‖| ≤
∑

1≤i<j≤n
(ri + rj) = (n− 1)

n∑
i=1

ri·

So,

n∑
i=1

ri ≥
1

n− 1

∑
1≤<i<j≤n

|dij − ‖xi − xj‖|, which concludes the proof.269

3. Optimization tools for performing the proposed method270

Problem Pr,x can be solved using different initialization points for the coordinate271

matrix X. In this section, we first discuss the different initialization points of the272

proposed optimization problem and then propose two algorithms to be used in our273

optimization.274

3.1. Initialization point for problem Pr,x275

Different solutions of problem Pr,x can be obtained using different initial values of276

matrix X. We have considered three possibilities:277

1- Initial point using a known projection method The first possibility is to278

use the matrix obtained by PCA or another projection method. The choice of method279

must be based on the type of data. In this application, we use PCA for quantitative280

data and MDS for categorical and functional data.281

2- Initial point using squared distances The optimization problem Pr,x can be282

changed by taking the squared distances between points instead of the distances.283
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Rewriting r2
i as Ri, the problem is changed into284

PR,x :


min

R1,...,Rn∈R+,x1,...,xn∈Rk

n∑
i=1

Ri

s.t. |d2
ij − ‖xi − xj‖2| ≤ Ri +Rj , for 1 ≤ i < j ≤ n.

This transformation is interesting because if the constraints of problem PR,x are sat-285

isfied, the constraints of problem Pr,x will also be satisfied. Indeed,286

|d2
ij − ‖xi − xj‖2| ≤ Ri +Rj = r2

i + r2
j ·

If without loss of generality, dij ≥ ‖xi − xj‖, we obtain:

(dij − ‖xi − xj‖) (dij + ‖xi − xj‖) ≤ r2
i + r2

j ≤ (ri + rj)
2 ⇒

|dij − ‖xi − xj‖|2 ≤ (ri + rj)
2 ⇒ |dij − ‖xi − xj‖| ≤ (ri + rj)·

In this way problem PR,x can serve as an initial step in solving problem Pr,x.287

3- Initial point using an improved solution of problem Pr This strategy is288

more involved. First, we need two properties that provide a way to improve the opti-289

mization results of problem Pr,x.290

Proposition 3.1. Let us consider a point xi such that for an index j, the following

inequality is saturated:

|dij − ‖xi − xj‖| ≤ ri + rj ,

and the other inequalities involving i are not saturated. The corresponding solution291

can then be improved by moving xi along the line xj − xi in order to decrease ri and292

|dij − ‖xi − xj‖|.293

Another manner to improve the resolution of problem Pr,x is to perform a scale294

change by multiplying the coordinates xi, for i = 1, . . . , n, by a constant a ∈ R. Thus,295
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the new optimization problem is given by:296

Pr,a :


min

r1,...,rn,a∈R+

n∑
i=1

ri

s.t. |dij − a‖xi − xj‖| ≤ ri + rj ·

Proposition 3.2. Let r1, . . . , rn;x1, . . . , xn be a feasible solution of Pr,x, if ∃a such297

that η(a) <

n∑
i=1

ri with η(a) =
∑

1≤i<j≤n
|dij − a‖xi − xj‖|, then ∃ r̃1, . . . , r̃n a solution298

of Pr,a such that

n∑
i=1

r̃i <

n∑
i=1

ri.299

The new initial point called Ximp, is the improved solution given by using these two300

properties as follows:301

• Firstly, improving the solution of problem Pr by solving problem Pr,a and using302

proposition 3.2.303

• Secondly, improving the solution of problem Pr,a using proposition 3.1.304

3.2. A deterministic strategy: Algorithm 1305

As discussed, three possibilities of coordinate matrix X can be used as the initial point:306

1- Coordinates given by PCA or MDS: XPPCA/MDS
is the coordinate matrix obtained307

by applying PCA or MDS and rPr
is a vector that contains the radius of each308

point obtained by solving Pr.309

2- Coordinates given by squared distances: XPR,x
is the coordinate matrix obtained310

by solving problem PR,x and RPR,x
= r2

PR,x
is a vector that contains the squared311

radius for each point obtained by solving the subsequent PR,x problem.312

3- Coordinates given by improving the solution of problem Pr: Ximp is the coordi-313

nate matrix obtained by improving the previous solution using Proposition 3.1314

and rimp is a vector that contains the radius of each point obtained after each315

iteration of solving problem Pr,a316

Finding these matrices requires solving the following optimization problems: Pr,317

PR,x and Pr,a. Problems Pr and Pr,a are both constrained linear optimization problems318
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that can be solved using interior-point or simplex algorithms, which are the most319

widely used algorithms for linear programming. The interior-point algorithm uses a320

primal-dual predictor-corrector algorithm and the simplex algorithm uses a systematic321

procedure for generating and testing candidate vertex solutions to a linear program322

(Murty 1983). On the contrary, problem PR,x is a nonlinear optimization problem323

that can be solved using one of the nonlinear optimization algorithms cited in Section324

2.2. All these algorithms are available in MATLAB using the optimization toolbox325

and can be used for the corresponding problem.326

To find the best solution of problem Pr,x, we solve it with the three different initial-327

ization matrices described above. For this task, we define Algorithm 1 that gives the328

best solution using the different coordinate matrices. This algorithm consists of two329

steps, an initialization step and an optimization step. The initialization step offers330

three different coordinate matrices to be used in the optimization step as an initial331

point to quickly reach the best solution. During the optimization step, problem Pr,x332

is solved using one of the nonlinear optimization algorithms mentioned in Section 2.2,333

starting each time with one matrix of the three initial matrices already found.334

Thus, for Algorithm 1, described below, the three different initialization matrices are335

tried and then the best one is chosen that gives the minimum value of
∑n

i=1 ri.336

Algorithm 1

Input: D: distance matrix, N : number of iterations.
Initialization step
Project the points using PCA or MDS.
Solve Pr using a linear optimization method. Obtained solution: (XPPCA/MDS

, rPr
).

Solve PR,x using a nonlinear optimization method and starting from the solution of
Pr obtained at the previous step. Obtained solution: (XPR,x

, RPR,x
).

Ximp ← XPR,X
.

for t = 1 to N do
Solve Pr,a starting from Ximp using a linear optimization method.
Improve the solution of Pr,a. Obtained solution: (Ximp,rimp).

end for
Optimization step
Optimize Pr,x using a nonlinear optimization method and starting from XPPCA/MDS

,
XPR,x

and Ximp.
Choose the minimal solution obtained by these three different starting points.
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3.3. A stochastic strategy: Algorithm 2337

Problem Pr,x is a hard problem, thus it is natural to resort to stochastic optimization338

methods. In the present case, we resort to the Metropolis-Hastings algorithm (Jo-339

hansen and Evers 2007) which allows us to build a Markov chain with the desired340

stationary distribution. The challenging parts are the choice of the proposal distri-341

bution and the necessity to solve the problem Pr at each iteration. Specifically, the342

Metropolis-Hastings algorithm requires:343

1- A target distribution:344

The target distribution is related to the objective function of problem Pr,x345

and is given by:346

π(x) ∝ exp

(
−E(x)

T

)
,347

where E is a function in R given by:

E(x) =

n∑
i=1

ri, where {r1, . . . , rn} is the solution of problem Pr with fixed x.

The variable T is the temperature parameter, to be fixed according to the value348

range of E.349

2- A proposal distribution:350

The choice of the proposal distribution is very important to obtain mean-351

ingful results. It should be chosen in such a way that the proposal distribution352

approaches the target distribution. The proposal distribution q(X → .) is con-353

structed as follows, giving priority to the selection of points involved in saturated354

constraints:355

◦ For each point i, choose a point j(i) with probability equal to:356

Pj(i) =
λ exp

(
−λ(ri + rj(i) − |dij(i) − ‖xi − xj(i)‖|)

)
n∑

k=1,k 6=i

λ exp (−λ(ri + rk − |dik − ‖xi − xk‖|))
·

◦ Choose a constant cij(i) using Gaussian distribution Nk(0, σ).357

◦ Generate a matrix X∗ by moving each vector xi of matrix Xt−1 as follows:358
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359

– If dij(i) − ‖xi − xj(i)‖ > 0 then x∗i = xi + |cij(i) |Lij(i) .360

– else x∗i = xi − |cij(i) |Lij(i)
,361

where Lij(i) =
xi − xj(i)
‖xi − xj(i)‖

·362

3- A linear optimization problem:363

For the matrix X generated at each iteration, we solve the linear optimization364

problem Pr and we choose finally the matrix X and the vector of radii which365

give the smallest value of

n∑
i=1

ri.366

Algorithm 1 and Algorithm 2 are both implemented in MATLAB and a code for367

each algorithm can be provided by the authors upon request.368

4. Numerical applications369

The projection method presented has been applied to different types of real data sets370

and also to a simulated data set to illustrate its practical interest.371

4.1. Experimental setup372

In practice, we have tested the proposed method on different simulated and real data373

sets by solving the optimization problem Pr,x using Algorithm 1 in addition to the374

proposed Metropolis-Hastings algorithm (Algorithm 2). A distance matrix is required375

each time. For quantitative data, the Euclidean distance between points yi ∈ Rp

,376

for i = 1, . . . , n, is computed by the known formula dij =

√√√√ p∑
k=1

(yik − yjk)2. For377

categorical data, the distance between two points (i, j) is given through the Eskin378

similarity measure (Boriah et al. 2008) computed by the formula pij =

Q∑
t=1

wtp
t
ij379

where ptij =


1

n2
t

n2
t + 2

if it = jt

else

, ptij is the per-attribute Eskin similarity between380

two values for the categorical attribute indexed by t, wt is the weight associated to381

the attribute t called wt which is defined by: wt =
1

Q
, Q is the number of attributes382

and nt is the number of values taken by each attribute. Then, the distances can be383
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obtained by the standard transformation formula (Du Toit et al. 1986) converting384

similarities to distances: dij =
√
sii − 2sij + sjj .385

In addition, to compute the distances between curves of functional data, we have cho-386

sen a measure of proximity similar to that studied by Ieva et al. (2012). In their387

paper, the authors develop a proper classification designed to distinguish the grouping388

structures by using a functional k-means clustering procedure with three sorts of dis-389

tances. For our work we chose one of these three proximity measures as their results390

are similar. The proximity measure chosen between two curves Fi and Fj is the follow-391

ing: d0(Fi, Fj) =

√∫
T

(Fi(t)− Fj(t))2dt. This measure is calculated using the function392

metric.lp() of the fda.usc package for the R software (Febrero-Bande and Oviedo de393

la Fuente 2011).394

For problems Pr and Pr,a, we first applied PCA for quantitative data and MDS for395

categorical and functional data; a linear programming package, called “linprog” which396

solves linear programming problems, was then used to solve the optimization problems397

with an interior-point algorithm. Problems Pr,x and PR,x are nonlinear optimization398

problems; therefore, we used a nonlinear programming package, called “fmincon” which399

finds minimum of constrained nonlinear multi-variable function, to solve them. The400

algorithms cited in Section 2.2 can be used here, but we recommend to use the active-401

set algorithm. Algorithm 2 can provide a good solution if the parameters λ, σ and402

T are chosen adequately. For instance, λ should be such that the points belonging403

to unsaturated constraints are chosen with small probabilities. Therefore, we took it404

equal to 100. For the other parameters σ and T , we took their values in the range405

from 0.01 to 100. The choice of these numbers is taken after trying different values of406

σ and T in order to have the best solution that gives a minimal value of

n∑
i=1

ri.407

Moreover, the visualization of the projection of each point i in R2 is represented408

as a circle having xi as the center and ri as the radius in a two-dimensional space,409

where the horizontal and vertical axes correspond to the first and the second dimension410

associated to the projection in R2, respectively. The projected point belongs to this411

circle and this is the specificity of our method. For each data set, the circles obtained412

for each point after solving the optimization problem Pr,x are shown. To compare the413
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projection quality of our representation with that obtained by PCA and KPCA, we414

used the squared cosine values as projection quality, and for MDS, the Stress-per-415

point (SPP ) (Borg and Groenen 2005). Indeed, for PCA and KPCA, we plotted416

the projected points indexed by their squared cosine values and for MDS, we used417

the smacof package in R to compute the stress-per-point and to plot the bubble plot418

represented the stress-per-point.419

4.2. A simulation study420

To evaluate the performance of projection under pairwise distance control method,421

we conducted a simulation study. We generated 100 random samples of yi from a 5-422

dimensional multivariate normal distribution with mean 0 and covariance matrix I,423

the identity matrix, and we calculated the Euclidean distances between pairs (yi,yj)424

for 1 ≤ i < j ≤ n. The projection result was compared with those obtained by KPCA.425

(a) Projection under pairwise distance control (b) Kernel PCA

Figure 3.. Projection of the simulated data using the proposed method (a) and Kernel
PCA (b). The points that have circles with small radii are considered as well projected
points.

426

Figure 3 shows the results of the projection of the simulated data using the proposed427

method and KPCA. By comparing Figure 3a and Figure 3b, it can be shown that428

the projection quality of points using KPCA is somehow dependent on the position429

of the points in the reduced space. Indeed, the projection is likely to give better local430
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projection quality if the projected point is located near to the center (0, 0). On the431

contrary, this is less visible for the proposed method.432

This simulated data illustrates the originality and the efficiency of the proposed433

method in giving a good local projection quality.434

4.3. Introducing the real data sets435

Four real data sets were used and divided into three categories:436

• Quantitative data: Iris and car data sets.437

• Categorical data: Soybean data set.438

• Functional data: Coffee data set.439

The Iris data set (Anderson 1935) is a famous data set and is presented to show that440

the projection works as expected. This data set contains 3 classes of 50 instances each,441

where each class refers to a species of Irises. The four variables studied in this data442

set are: sepal length, sepal width, petal length and petal width (in cm). The car data443

set (Saporta 2006) is a data set studied in the book by Saporta (Table 17.1, page444

428). This data set describes 18 cars according to various variables (cylinders, power,445

length, width, weight and speed).446

The soybean data set (Stepp 1984) from UCI Machine Learning Repository charac-447

terizes 47 soybean disease case histories defined over 35 attributes. Each observation is448

identified by one of the 4 diseases: Diaporthe Stem Canker (D1), Charcoal Rot (D2),449

Rhizoctonia Root Rot (D3) and Phytophthora Rot (D4).450

The coffee data set is a time series data set used in chemometrics to classify food451

types. It is a functional data set where 56 samples of coffee are available with 286452

timestamps for each sample (as a result of spectroscopic analysis). This kind of time453

series is common in many applications in food safety and quality assurance and was454

taken from the UCR time Series Classification and Clustering website (Chen et al.455

2015). Coffea Arabica and Coffea Canephora variant Robusta are the two species of456

coffee bean that have acquired a worldwide economic importance, and many methods457

have been developed to discriminate between these two species by chemical analysis458

(Briandet et al. 1996).459
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4.4. Results from the real data sets460

4.4.1. Data visualization in R2
461

The optimization results for these four data sets are given in Table 1. For each data,462

the sum of radii

n∑
i=1

ri obtained using Algorithm 1 and Algorithm 2 is provided.463

Table 1.. Solution of problem Pr,x for data sets using Algorithm 1 and Algorithm 2.

n∑
i=1

ri

Algorithm 1 Algorithm 2
Iris 16.19 17.2

Cars 3.27 3.35
Soybean 3.98 3.93
Coffee 21.68 21.97

Based on Table 1, the solutions of Algorithm 2 for the different data sets are shown464

to be very close to those obtained using Algorithm 1. Thus, the radii obtained are465

estimated to be close to the solution of Algorithm 1. Moreover, it is interesting to466

note here that the number of iterations N in Algorithm 1 has an important role467

in finding the minimal value of
∑n

i=1 ri for problem Pr,a and then for problem Pr,x468

and also to reduce the computing time. In fact, the important decrease in the value of469 ∑n
i=1 ri occurred in the first 500 iterations through of 1000 iterations, and then a small470

decrease occurred after 500 iterations. This small decrease in value of
∑n

i=1 ri after 500471

iterations shows that a size of 500 iterations can be a good choice for the Algorithm472

1 since all the studied data sets are concerned. Indeed, this result can be observed for473

all data sets presented in our application with approximately 500 iterations.474

Iris data set: Figure 4 depicts the result of projection under pairwise distance control475

for the Iris data set. In the projection of the Iris data set shown in Figure 4, it is476

interesting to note that two areas are well separated. This corresponds to the well-477

known fact that Iris versicolor and virginica are close whereas the species Iris setosa478

are more distant.479

Referring to the original data, the Iris data set contains three classes corresponding480
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Figure 4.. Projection of the Iris data set using projection under pairwise distance
control method. Two well separated groups can be observed. The points that have
circles with small radii are considered as well projected points.

to the three types of Iris plants and one class is linearly separable from the other two481

classes. This result clearly appears in our projection.482

Moreover, we have compared the local projection quality of PCA, KPCA and MDS483

with the local projection quality obtained using projection under pairwise distance484

control. By comparing the projection of PCA with the projection of our method for485

the Iris data set given respectively in Figures 5 and 4, we can say that our method486

projected the points without giving any importance to any group. Figure 5 depicts a487

group with small values of the quality measure and another group with high values488

of quality measure, whereas the radii obtained by projection under pairwise distance489

control method are distributed in an equivalent way.490

For KPCA, we plotted the squared cosine values as circles to make the representation491

clearer, especially for the Iris data set as the Iris setosa species are projected next to492

each other. From Figure 6a, we can conclude that in each category, the points that493

have close quality values are located side by side.494

Furthermore, by comparing the proposed projection method with the one obtained by495

MDS, it can be concluded that, as is the case when using PCA, the points in Figure496

6b are projected by giving more importance to the Iris setosa group. Indeed, almost497

all the red circles (indicating a very good projection) are assigned to the Iris setosa498
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Figure 5.. Projection of the Iris data set using PCA. The values of local projection
quality are given for each instance. The values of projection quality for Iris setosa
species (Se) vary between 0.97 and 1 indicating then a very good projection quality
whereas for Iris versicolor (VeCo) and Iris virginica (ViCa) species, the values of pro-
jection quality vary between 0.2 and 0.99 indicating a very large variability in the
projection quality.

species. Moreover, the comparison of the position of points in the reduced space in499

terms of distance between points cannot be viewed in this classical method as the500

points in the reduced space are not in a metric compatible to the initial distances,501

whereas in our method we have conserved the metric of the initial distances.502

Cars data set: The projection of points using projection under pairwise distance503

control for the car data set is shown in Figure 7. The expensive cars, the “Audi 100”,504

“Alfetta-1.66”, “Datsun-200L” and “Renault 30” are well-separated from the low-505

standard cars, the “Lada-1300”, “Toyota Corolla”, “Citroen GS Club” and “Simca506

1300”. Moreover, we can assert that the projected points obtained using projection507

under pairwise distance control are well separated as there are no circle intersections.508

By comparing our projection with the projection obtained using PCA presented in509

Figure 8, it can be shown that in the projection of PCA, there is a group with small510
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(a)

(b)

Figure 6.. Projection of the Iris data set using KPCA (a) and MDS (b). The color
convention is as follows: the darker the red color of a particular disk, the better the
projection. Inversely, the darker the blue color of a particular disk, the worse the
projection.

values of the quality measure located at the center, which corresponds to the cars:511

Lanca-Beta, Mazda, Fiat, Simcs and Rancho, and a group with high values of quality512

measure located far from the center.513

Regarding KPCA, we can see in Figure 9a that the points with navy circles are almost514

all located almost around the same y-axis coordinates and the same applies for the515
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Figure 7.. Projection of the car data set using projection under pairwise distance
control.

Figure 8.. Projection of the cars data set using PCA. The values of local projection
quality are given for each car.

red circles. So the local quality for KPCA is dependent on the position of the points.516

It can also be noticed that the cars Princess, Mazda, Fiat and Peugeot located in517

the same area with small circles. Therefore, the only conclusion that we arrive at518
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(a)

(b)

Figure 9.. Projection of the car data set using KPCA (a) and MDS (b).

is in relation to the size of the circles and to the quality of the projected points.519

However, it is not possible to conclude anything about the closeness of these 4 points520

as the distances here are in the feature space and are not related to the original space.521

In Figure 7, we can however conclude that the two cars, the Mazda and Fiat, are522

well projected in the reduced space, and they have similar characteristics as these523

two cars are close. The same conclusion can be made for the Peugeot and Princess524

cars. From this, it is possible to conclude that there is a large difference between the525

two cars, the “Toyota” and “Renault 3” as the distance between these two cars is526
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significant. Conversely, the distance between the “Lada1300” and “Citroen” is small,527

thus indicating the closeness of these two cars. Note that these two cars are very well528

projected, resulting in a very good interpretation of the distance between them.529

Therefore, radii are meaningful in our method and give an interpretation about the530

distances between points whereas the distances between the projected points using531

PCA, KPCA and MDS are not interpretable. This is a particular strength of our532

method. Projection under pairwise distance control suggests an absolute interpretation533

whereas the other methods provide a relative one.534

For the qualitative and functional data sets and using MDS, recall the definition of535

the Gram matrix called B which is equal to X ′X where X is the coordinate matrix in536

the reduced space. Thus, it is necessary to verify that the matrix B obtained by the537

MDS method is semi-definite positive to use the squared cosine as the quality measure538

because the starting point of optimization is obtained from MDS. After this, in case539

of positiveness of matrix B, the quality measure can be calculated.540

Soybean data set: In the projection of the soybean data set, four classes are shown541

in Figure 10 and each class contains the disease number of the class. The whole set of542

points can however be divided in two large classes. Indeed, it is clear that Class 2 is543

well separated from the other classes as there is no intersection between the circles of544

Class 2 and the circles of other classes. Moreover, Class 1 can be considered as well545

separated class from Classes 3 and 4 if the largest circle D3 is not taken into account.546

Classes 3 and 4 are not well separated at all, as there are different intersections between547

the circles of these two classes. This result is shown in Stepp (1984) which labels the548

first two classes as “normal” and the latter two classes as “irrelevant”. A comparison549

of results from projection under pairwise distance control with PCA and KPCA is not550

possible for this data set because the matrix B is not semi-definite positive. Regarding551

Figure 11, it is clear that Class 4 exhibits the worst projection quality, whereas Classes552

1 and 2 show better projection quality. Therefore, it is possible to draw the same553

conclusion for the Iris and car data sets when using MDS as a projection method, the554

projection quality of points is dependent on the class of the points.555
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Figure 10.. Projection under pairwise distance control for the soybean data set. Four
groups are presented, indexed by D1, D2, D3 and D4.

Figure 11.. MDS for the soybean data set. Four groups are presented, indexed by D1,
D2, D3 and D4.

Coffee data set: The coffee data set has been studied in several articles (Briandet556

et al. 1996, Bagnall el al. 2012) and different classification methods have shown the557

different groups contained in this data set. The grouping structure obtained can be558
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clearly seen in Figures 12 and 13559

Figure 12.. Projection of the coffee data set using projection under pairwise distance
control. Two clusters, indexed 1 and 2, indicate the Arabica and Robusta classes
respectively.

In Figure 12, we show that we have succeeded in differentiating the Arabica from560

Robusta coffee. These two classes are clearly presented, the first class indexed by561

number 1, corresponding to Arabica coffee, and the second one indexed by number 2,562

corresponding to Robusta coffee. These classes are not well separated in comparison563

with the results of quantitative data, since there are many intersections. Therefore,564

the representation of the points as circles and not as simple points provides more565

information about the real point classes and shows the points that are at risk of being566

misplaced in a particular class.567

Figures 13a and 13b show the projection quality using PCA and MDS respectively.568

As all the eigenvalues of matrix B are positive, we can compute the quality measure569

given by PCA. Comparing the projection quality of PCA and projection under pairwise570

distance control provided by Figures 13a and 12, respectively, it can be seen that the571

quality of projection of the set of points is quite steady.572

Additionally, Algorithm 2 was applied to these data sets. The trace plots of the573

optimization problem Pr,x are shown in Figure 14 after 5000 iterations. It is important574

to note that the value of the sum of radii
∑n

i=1 ri decreases rapidly in the first iterations575

and stays roughly constant after 1000 iterations for the different data sets, with the576
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(a)

(b)

Figure 13.. Projection of coffee data set using PCA and MDS.

exception of the car data sets. Thus, we can decrease the number of iterations from577

5000 to almost 2000, or even 1000, in order to reduce the speed time.578

Finally, the computer speed time of the proposed method is compared with that579

using the classical methods. Table 2 shows the computer speed time for the four data580

sets using PCA, KPCA, MDS, Algorithm 1 and Algorithm 2. It is clear that our581

method takes more time than the existing methods. However, Algorithms 1 and 2 are582

expected to significantly increased by using the C++ programming language (instead583
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(d) Soybean data set

Figure 14.. Trace plots of Metropolis Hastings for different data sets. The x-axis cor-
responds to the iteration number and the y-axis to the value of

∑n
i=1 ri.

of MATLAB currently) to produce more efficient code. In addition, by comparing the584

computer speed time of the two algorithms and by referring to Table 1, the solu-585

tions obtained using Algorithm 1 and Algorithm 2 are very close, which indicates that586

Algorithm 2 can be used instead of Algorithm 1 to obtain a better solution faster (be-587

tween two and four times faster). Thus, Algorithm 2 (Metropolis Hastings algorithm)588

is recommended for use as it takes less time.

Table 2.. Computer speed time (in seconds) using different methods for the four data
sets

Computer speed time (sec.)
PCA KPCA MDS Algo 1 Algo 2

Iris 3.61 5.21 5.54 1124 600
Cars 2.70 4.17 4.62 671 300

Soybean – – 2.65 2036 698
Coffee 3.68 – 3.18 1968 589

589
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4.4.2. Dimensionality reduction results590

Our method can also be directly used to reduce the dimensionality of data (possibly591

using it beyond visualization in R2). This only requires solving problem Pr,x using592

different dimension values. In Figure 15, the values of
∑n

i=1 ri were plotted as a guide593

for choosing the reduced number of variables. This figure shows the values of
∑n

i=1 ri594

for the different data sets using different dimensions. It is clear that the value of
∑n

i=1 ri595

decreases when the dimension increases. Indeed, the sum of radii
∑n

i=1 ri decreased596

rapidly in low dimensions and then decreased slowly when the dimension increases.597

The main problem, which is widely posed in dimensionality reduction methods, is598

the determination of the number of components that need to be kept. Many meth-599

ods have been discussed in the literature (Besse 1992; Jollife 1986) to determine600

the dimension of the reduced space, relying on different strategies related to a good601

explanation or a good prediction. Thus, with our method the choice of the reduced602

space dimension is related to the local projection quality of points and how much the603

user is interested in the projection quality of points.604
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Figure 15.. Scree plots of
∑n

i=1 ri for different dimensions for the four data sets.

Regarding the quantitative data sets (Iris and car), if the main objective of the605

user is to obtain a very good projection quality, then a choice of three components606
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against four for Iris data set, and six for the car data set can be a good choice, as the607

value of
∑n

i=1 ri is small and there is not a large difference between this value and608

the values for higher dimensions. For the coffee data set, a dimensionality reduction609

from 56 sample time series down to 6 simple extracted features is considered as a good610

choice. As for the soybean data set, a reduced space dimension equal to 4 dimensions611

can be considered as an appropriate reduced space.612

A comparison of our results with the existing results shows a coherence between613

them. For the Iris data set, Chiu (1996) and Liu and Setiono (1995) concluded614

that the number of variables could be reduced to 2 as the petal length and petal615

width variables are the most important variables from all the variables. For the car616

data set, Saporta (2006) (Table 7.4.1 page 178) noticed that the conservation of two617

dimensions led to the explanation of 88% of inertia, where the inertia term reflects618

the importance of a component. Theredore, these results seem very similar to our619

results, with the important decrease located between dimensions 1 and 2. The other620

reductions are negligible for these two data sets. A selection of variables was studied on621

time series coffee data set by Andrews and McNicholas (2014). Using several analysis622

methods, the number of selected variables ranged between 2 and 13. This result is also623

seen using our method, a number of reduced variables taken between 2 and 9 gives a624

good projection. Regarding the soybean data set, Dela Cruz shows in his paper Dela625

Cruz (2015) that the 35 attributes can be reduced to 15. With our method, we have626

succeeded in reducing the attributes to 6 by having a very good projection of points.627

Hence, the results presented confirm that the dimension nonlinearly can be reduced628

while assessing a reasonable number of dimensions at the same time.629

5. Conclusion630

The purpose of this paper was to outline a new nonlinear projection method based631

on a new local measure of projection quality. Of course, in some projection methods,632

a local measure is given but this measure cannot be applied unless in cases of linear633

projections, and even then it is not efficiency for graphical representation.634

The quality of projection is given here by additional variables called radii, which enable635
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bound on the original distances to be obtained. We have also shown that the idea can636

be written as an optimization problem in order to minimize the sum of the radii637

under some constraints. As the solution of this problem cannot be obtained exactly,638

we developed a stochastic optimization method.639

This method has several advantages. Firstly, it is a nonlinear projection method that640

takes into account the projection quality of each point individually. Secondly, the641

distances between projected points are related to the initial distances between points642

offering a way to easily interpret the distances observed in the projection plane. The643

projection quality of each point can even then be used outside our method, as a post-644

processing of PCA or MDS for example. Finally, it appears to be efficient in terms of645

dimensionality reduction for the selection of the dimension of the reduced space based646

on the local quality of projection.647

As perspectives, a lower bound for the optimization problem is needed and this radii648

approach could also be applied to other methods.649
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Appendix747

Proof of proposition 3.1748

Let us consider a point xi such that for an index j, the following inequality is saturated:

|dij − ‖xi − xj‖| ≤ ri + rj ,

and the other inequalities involving i are not saturated. Then, the corresponding solu-749

tion can be improved by moving xi along the line xj − xi in order to decrease ri and750

|dij − ‖xi − xj‖|.751

Proof. The above condition means that xi is rewritten as xi + a(xj − xi) with a ∈ R752

and we look for a such that |dij −‖xi + a(xj −xi)−xj‖| < ri + rj . In particular a ≤ 0753

if dij − ‖xi − xj‖ ≥ 0 and is otherwise > 0. Let us now consider the other inequalities754

corresponding to index pairs (i, k) with k 6= j. For each of them, ∃a ∈ [a
′

k, a
′′

k ] with755

a
′

k < 0 and a
′′

k > 0 such that756

|dij − ‖xi + a(xj − xi)− xj‖| ≤ ri + rj ,

as these constraints are unsaturated. Finally, taking a different from 0 in [a
′
, a
′′
] with757

a
′

= maxk a
′

k and a
′′

= mink a
′′

k , all constraints involving i get unsaturated so that ri758

can be decreased, thereby decreasing the objective function. Depending on whether a759

must be negative or positive, we take a = a
′

or a = a
′′

respectively.760

761

38



Proof of proposition 3.2762

Let r1, . . . , rn;x1, . . . , xn be a feasible solution of Pr,x, if ∃a such that η(a) <

n∑
i=1

ri763

with η(a) =
∑

1≤i<j≤n
|dij − a‖xi − xj‖|, then ∃ r̃1, . . . , r̃n a solution of Pr,a such that764

n∑
i=1

r̃i <

n∑
i=1

ri.765

Proof. Let us consider r1, . . . , rn;x1, . . . , xn a feasible solution of problem Pr,x and766

a, r̃1, r̃2, . . . , r̃n a solution of Pr,a where a is kept constant. For the solution of Pr,a, for767

each point i, we have a certain saturated constraint associated to point k denoted by768

Cik(i), otherwise we can easily saturate it using proposition 3.1. Thus, we have:769

|di1 − a‖xi − x1‖| ≤ r̃i + r̃1

...

|dik(i) − a‖xi − xk(i)‖| = r̃i + r̃k(i)

...

|dij − a‖xi − xj‖| ≤ r̃i + r̃j
...

|din − a‖xi − xn‖| ≤ r̃i + r̃n.

Then, |dik(i) − a‖xi − xk(i)‖| = r̃i + r̃k(i) ≥ r̃i. By summing for all points i, for i =770

1, . . . , n, we obtain:771

n∑
i=1

|dik(i) − a‖xi − xk(i)‖| ≥
n∑

i=1

r̃i.

Thus,
∑

1≤i<j≤n
|dij − a‖xi − xj‖| ≥

n∑
i=1

|dik(i) − a‖xi − xk(i)‖| ≥
n∑

i=1

r̃i.772

Note η(a) =
∑

1≤i<j≤n
|dij − a‖xi − xj‖|, then if η(a) <

n∑
i=1

ri there is a solution of Pr,a773

such that

n∑
i=1

r̃i <

n∑
i=1

ri.774
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