Computation time/accuracy trade-off and linear regression

Christophe BIERNACKI \& Maxime BRUNIN \& Alain CELISSE

Laboratoire Paul Painlevé, Université de Lille, Science et Technologie INRIA Lille-Nord Europe, MODAL team

9 december 2016
(1) Introduction
(2) Stopping time
(3) Computation time
(4) Simulations

三 \quad Q৯

Linear regression

Linear regression model

$$
Y=X \theta^{*}+\epsilon,
$$

with $X \in \mathcal{M}_{n, d}(\mathbb{R})$ with $\operatorname{rg}(X)=d ; \theta^{*} \in \mathbb{R}^{d}$ is unknown $; \epsilon \sim \mathcal{N}\left(0, \sigma^{2} I_{n}\right)$.
We are in the case $n>d$. We usually use the Ordinary Least Squares (OLS) $\hat{\theta}$ to estimate θ^{*}.

Goal

Find an estimator that performs better in terms of MSE or/and in terms of computation time than $\hat{\theta}$.

Gradient descent algorithm

Using the approach (Raskutti, Wainwright, and Yu 2014), we use a gradient descent algorithm with fixed step α to minimize the convex and differentiable function $g(\theta)=\frac{1}{2 n}\|Y-X \theta\|_{2}^{2}$ for $\theta \in \mathbb{R}^{d}$. We get closed formulas of $\hat{\theta}^{(k)}$, the estimator of θ^{*} at the iteration k, and $\hat{Y}^{(k)}=X \hat{\theta}^{(k)}$.
$\forall k \geq 0$,

$$
\begin{aligned}
\hat{\theta}^{(k)} & =\sum_{i=0}^{k-1}\left(I_{d}-\frac{\alpha}{n} X^{T} X\right)^{i}\left(\hat{\theta}^{(1)}-\theta_{0}\right)+\theta_{0} \\
& =\left(I_{d}-\left(I_{d}-\frac{\alpha}{n} X^{T} X\right)^{k}\right) \hat{\theta}+\left(I_{d}-\frac{\alpha}{n} X^{T} X\right)^{k} \theta_{0}
\end{aligned}
$$

$\forall k \geq 0$,

$$
\hat{Y}^{(k)}=\left(I_{n}-\left(I_{n}-\frac{\alpha}{n} X X^{T}\right)^{k}\right) \hat{Y}+\left(I_{n}-\frac{\alpha}{n} X X^{T}\right)^{k} Y^{(0)}
$$

Accuracy of our estimator

We assess the accuracy of $\hat{\theta}^{(k)}$ by $\left\{\begin{array}{l}\Delta\left(\hat{Y}^{(k)}\right)=\frac{1}{n}\left\|\hat{Y}^{(k)}-Y^{*}\right\|_{2}^{2} . \\ \operatorname{or} \\ \operatorname{MSE}\left(\hat{Y}^{(k)}\right)=E\left[\Delta\left(\hat{Y}^{(k)}\right)\right] .\end{array}\right.$ with $Y^{*}=X \theta^{*}$.

Property

$\operatorname{MSE}\left(\hat{Y}^{\left(k_{\mathrm{MSE}}^{*}\right)}\right)<\operatorname{MSE}(\hat{Y})$ with $k_{\mathrm{MSE}}^{*}=\underset{k \in \mathbb{N}}{\operatorname{argmin}}\left\{\operatorname{MSE}\left(\hat{Y}^{(k)}\right)\right\}$ and $\hat{Y}=X \hat{\theta}$.

Trade-off bias variance (1/2)

$k_{\text {MSE }}^{*}$ occurs when squared bias of $\hat{Y}^{(k)} \neq$ variance of $\hat{Y}^{(k)} \Rightarrow$ we have to control the ratio between the variance of $\hat{Y}^{(k)}$ and the squared bias of $\hat{Y}^{(k)}$ to estimate k_{MSE}^{*}.

$$
\operatorname{MSE}\left(\hat{Y}^{(k)}\right)=\frac{1}{n}\left\|S^{k} P^{T}\left(Y^{(0)}-Y^{*}\right)\right\|_{2}^{2}+\frac{\sigma^{2}}{n} \operatorname{Tr}\left(\left(I_{n}-S^{k}\right)^{2}\right)
$$

with $K=\frac{1}{n} X X^{T}=P \wedge P^{T} ; S=I_{n}-\alpha \Lambda ; 0<\alpha<\min \left\{1, \frac{1}{\hat{\lambda}_{1}}\right\} ; \hat{\lambda}_{1}=\|K\|_{2}$.

Trade-off bias variance (2/2)

with $\alpha=I / 10 \times \min \left\{1, \frac{1}{\lambda_{1}}\right\} ; k^{*}=\underset{k \in \mathbb{N}}{\operatorname{argmin}}\left\{\frac{1}{n}\left\|\hat{Y}^{(k)}-Y^{*}\right\|_{2}^{2}\right\}$.

Stopping time to estimate $k^{*}=\underset{k \in \mathbb{N}}{\operatorname{argmin}}\left\{\frac{1}{n}\left\|\hat{Y}^{(k)}-Y^{*}\right\|_{2}^{2}\right\}$
We study the random variable $\frac{1}{n}\left\|\hat{Y}^{(k)}-Y^{*}\right\|_{2}^{2}\left(Y^{*}=X \theta^{*}\right)$.
$\forall k \geq 0$,

$$
\frac{1}{n}\left\|\hat{Y}^{(k)}-Y^{*}\right\|_{2}^{2} \leq \underbrace{\frac{2}{n}\left\|E\left[\hat{Y}^{(k)}\right]-Y^{*}\right\|_{2}^{2}}_{B_{k}^{2}}+\underbrace{\frac{2}{n}\left\|\hat{Y}^{(k)}-E\left[\hat{Y}^{(k)}\right]\right\|_{2}^{2}}_{V_{k}}
$$

Lemma (Raskutti, Wainwright, and Yu)

$$
\text { If }\left\|\theta^{*}\right\|_{2} \leq 1 \text { and } \theta_{0}=0, \forall k \geq 1,
$$

$$
B_{k}^{2} \leq \frac{1}{\mathrm{ek} \mathrm{\alpha}}=B_{k}^{2, \text { sup } .}
$$

Lemma

On an event \mathcal{A}_{q} with high probability, $\forall k \in \llbracket 1, k_{\hat{\sigma}} \rrbracket$,

$$
V_{k} \leq 5 \sigma^{2} k \alpha\left[R_{K}\left(\frac{1}{\sqrt{k \alpha}}\right)\right]^{2}=V_{k}^{\text {sup. }}
$$

Stopping time to estimate $k^{*}=\underset{k \in \mathbb{N}}{\operatorname{argmin}}\left\{\frac{1}{n}\left\|\hat{Y}^{(k)}-Y^{*}\right\|_{2}^{2}\right\}$
To control the ratio between $V_{k}^{\text {sup }}$ and $B_{k}^{2, \text { sup }}$, we define the stopping time $k_{\hat{\sigma}}$

$$
\begin{aligned}
k_{\hat{\sigma}} & =\min \left\{k \in \mathbb{N}: R_{k}\left(\frac{1}{\sqrt{k \alpha}}\right)>\sqrt{\frac{c}{5 \mathrm{e}}} \frac{1}{\hat{\sigma} k \alpha}\right\}-1 \\
& =\min \left\{k \in \mathbb{N}: V_{k}^{\text {sup }}>c\left(\frac{\sigma}{\hat{\sigma}}\right)^{2} B_{k}^{2, \text { sup }}\right\}-1 .
\end{aligned}
$$

We define ε_{σ}

$$
\varepsilon_{\sigma}=\inf \left\{\varepsilon>0: R_{K}(\varepsilon) \leq \sqrt{\frac{c}{5 \mathrm{e}}} \frac{\varepsilon^{2}}{\sigma}\right\} .
$$

with:

$$
\text { - } \hat{\sigma}^{2}=\frac{1}{n-d}\|Y-X \hat{\theta}\|_{2}^{2} .
$$

- $R_{K}(\varepsilon)=\sqrt{\frac{1}{n} \sum_{i=1}^{n} \min \left\{\hat{\lambda}_{i}, \varepsilon^{2}\right\}} ; \hat{\lambda}_{1} \geq \hat{\lambda}_{2} \geq \ldots \hat{\lambda}_{n} \geq 0$ are the eigenvalues of $\frac{1}{n} X X^{\top}$.
- $\Omega_{q}=\{|\hat{\sigma}-\sigma| \leq q \sigma\}=\left\{\sigma_{\text {inf }} \leq \hat{\sigma} \leq \sigma_{\text {sup }}\right\} ; \sigma_{\text {inf }}=(1-q) \sigma$ and $\sigma_{\text {sup }}=(1+q) \sigma$.

Theorem

Theorem (transposition of theorem 1 (Raskutti, Wainwright, and Yu 2014))

Given the stopping time $k_{\hat{\sigma}}, \exists c_{1}, c_{2} \in \mathbb{R}_{+}^{*}$ such on an event \mathcal{A}_{q} : $P\left(\mathcal{A}_{q}\right) \geq P\left(\Omega_{q}\right)-c_{1} \exp \left(-c_{2} n \varepsilon_{\sigma_{\text {inf }}}^{4}\right)\left(\Omega_{q}=\{|\hat{\sigma}-\sigma| \leq q \sigma\}\right)$.
(a) $\forall k \in \llbracket 1, k_{\hat{\sigma}} \rrbracket$,

$$
\begin{aligned}
\frac{1}{n}\left\|\hat{Y}^{(k)}-Y^{*}\right\|_{2}^{2} & \leq B_{k}^{2, \text { sup }}+V_{k}^{\text {sup }} \\
& \leq \frac{1}{\mathrm{e} k \alpha}\left(1+c\left(\frac{\sigma}{\hat{\sigma}}\right)^{2}\right) .
\end{aligned}
$$

(b) $\forall k \geq 0$ (interesting when $k>k_{\hat{\sigma}}$),

$$
E\left[\frac{1}{n}\left\|\hat{Y}-Y^{*}\right\|_{2}^{2}\right] \geq E\left[\frac{1}{n}\left\|\hat{Y}^{(k)}-Y^{*}\right\|_{2}^{2}\right] \geq \frac{\sigma^{2}}{4} \underbrace{(k \alpha)^{2}\left(R_{K}\left(\frac{1}{\sqrt{k \alpha}}\right)\right)^{4}}_{f(k)},
$$

with f is a non-decreasing function and $f(k) \underset{k \rightarrow+\infty}{\longrightarrow} 1$.

Comparison of the complexity in time of $\hat{\theta}^{\left(k_{\hat{\sigma}}\right)}$ and $\hat{\theta}$

The complexity in time of $\hat{\theta}^{\left(k_{\boldsymbol{\sigma}}\right)}$ is

$$
\begin{aligned}
& \underbrace{n d^{2}+2 n d+O\left(d^{3}\right)+3 d^{2}+(k+1) d}_{\hat{\theta}^{(k)}}+\underbrace{n d+3 d^{2}+n+d}_{\hat{\sigma}^{2}}+\underbrace{\left[1+\frac{\log (\bar{k})}{\log (2)}\right] d}_{k_{\hat{\sigma}}} \\
& =n d^{2}+3 n d+O\left(d^{3}\right)+6 d^{2}+n+\left[k+\frac{\log (\bar{k})}{\log (2)}+3\right] d,
\end{aligned}
$$

with $k_{\hat{\sigma}} \leq \bar{k}$ and $\hat{\sigma}^{2}=\frac{1}{n-d}\|Y-X \hat{\theta}\|_{2}^{2}$.
The complexity in time of $\left(\hat{\theta}, \hat{\sigma}^{2}\right)$ is $\underbrace{n d^{2}+2 n d+O\left(d^{3}\right)+d^{2}}_{\hat{\theta}}+\underbrace{n d+n}_{\hat{\sigma}^{2}}$.
The complexity in time of $\left(\hat{\theta}^{\left(k_{\hat{\sigma}}\right)}, \hat{\sigma}^{2}\right)$ is bigger than the complexity in time of $\left(\hat{\theta}, \hat{\sigma}^{2}\right)$.

Comparison of the complexity in space of $\hat{\theta}^{\left(k_{\hat{\sigma}}\right)}$ and $\hat{\theta}$

The complexity in space of $\hat{\theta}^{\left(k_{\hat{\theta}}\right)}$ is

$$
\begin{aligned}
& \underbrace{n d+3 d^{2}+6 d}_{\hat{\theta}^{(k)}}+\underbrace{d^{2}+3 d+n+1}_{\hat{\sigma}^{2}}+\underbrace{2 d}_{k_{\hat{\sigma}}} \\
& =n d+4 d^{2}+n+11 d+1
\end{aligned}
$$

The complexity in space of $\left(\hat{\theta}, \hat{\sigma}^{2}\right)$ is $\underbrace{n d+2 d^{2}+2 d}_{\hat{\theta}}+\underbrace{n+1}_{\hat{\sigma}^{2}}$.
The complexity in space of $\left(\hat{\theta}^{\left(k_{\hat{\sigma}}\right)}, \hat{\sigma}^{2}\right)$ is bigger than the complexity in space of $\left(\hat{\theta}, \hat{\sigma}^{2}\right)$.

MSE as a function of n for $d=20$

with $\alpha=1 / 10 \times \min \left\{1, \frac{1}{\lambda_{1}}\right\}$.

MSE as a function of n for $d=100$

Raskutti, Wainwright, and Yu chooses $c=0.46$ but it is not optimal.

For $\mathrm{d}=100$ and $\mathrm{I}=9$

MSE ratio as a function of d for $n=1500$

MSE ratio as a function of d for $n=2000$

General use of stopping time

Stopping time enables to reduce computation time (without loosing in accuracy) in problems when $\hat{\theta}$ has no closed formula and needs a lot of iterations to be computed.

For instance, in the problem of two Gaussian univariate mixture where only the proportion p^{*} is unknown, we use a EM whose estimate at the $s^{\text {th }}$ iteration is $\hat{p}^{(s)}$ and $\hat{p}^{(s)} \underset{s \rightarrow+\infty}{\longrightarrow} \hat{p}$.

Conclusion

Results:

- We prove that $\frac{1}{n}\left\|\hat{Y}^{(k)}-Y^{*}\right\|_{2}^{2}$ decreases at least until $k_{\hat{\sigma}}$.
- We should choose $c>1$ to ensure $\operatorname{MSE}\left(\hat{Y}^{\left(k_{\hat{\sigma}}\right)}\right)<\operatorname{MSE}(\hat{Y})$.

Drawback:

The complexity in time and in space of $\hat{\theta}^{\left(k_{\hat{\sigma}}\right)}$ is bigger than the complexity in time and in space of $\hat{\theta}$ (specific to linear regression).

Perspectives:

- Find how to choose parameter c to ensure $\operatorname{MSE}\left(\hat{Y}^{\left(k_{\hat{\sigma}}\right)}\right)<\operatorname{MSE}(\hat{Y})$.
- Prove the theorem in other problems (e.g. logistic regression).

Complexity of $\hat{\theta}\left(k_{\hat{\sigma}}\right)$

We compute $\hat{\theta}^{(k)}$ using the formula

$$
\begin{aligned}
\hat{\theta}^{(k)} & =\sum_{i=0}^{k-1}\left(I_{d}-\frac{\alpha}{n} X^{\top} X\right)^{i}\left(\hat{\theta}^{(1)}-\theta_{0}\right)+\theta_{0} \\
& =U Q U^{\top}\left(-\frac{\alpha}{n} X^{\top} X \theta_{0}+\frac{\alpha}{n} X^{\top} Y\right)+\theta_{0},
\end{aligned}
$$

with $X^{T} X=U D_{3} U^{T} ; Q=\operatorname{Diag}\left(\frac{1-\mu_{d}^{k}}{1-\mu_{d}}, \ldots, \frac{1-\mu_{1}^{k}}{1-\mu_{1}}\right)$;
$1>\mu_{1} \geq \mu_{2} \geq \cdots \geq \mu_{d}>0$ are the eigenvalues of $V=I_{d}-\frac{\alpha}{n} X^{\top} X$.

Complexity of $\hat{\theta}\left(k_{\hat{\sigma}}\right)$

The complexity of $\hat{\theta}^{(k)}$ is

Terms/Complexity	Time	Space
X^{\top}	$n d$	$n d$
$X^{\top} X$	$n d^{2}$	d^{2}
SVD of $X^{\top} X$	$O\left(d^{3}\right)$	$d^{2}+d$
$X^{\top} Y$	$n d$	d
$-\frac{\alpha}{n} X^{\top} X \theta_{0}+\frac{\alpha}{n} X^{\top} Y$	d	d
$Q \times U^{T}$	d^{2}	d^{2}
$Q U^{\top} \times\left(-\frac{\alpha}{n} X^{\top} X \theta_{0}+\frac{\alpha}{n} X^{\top} Y\right)$	d^{2}	d
Q	$k d$	d
$U \times Q U^{\top}\left(-\frac{\alpha}{n} X^{\top} X \theta_{0}+\frac{\alpha}{n} X^{\top} Y\right)$	d^{2}	d

The complexity of $\hat{\theta}^{(k)}$ is

- in time: $n d^{2}+2 n d+O\left(d^{3}\right)+3 d^{2}+(k+1) d$.
- in space: $n d+3 d^{2}+6 d$.

Complexity of $\hat{\theta}^{\left(k_{\hat{\sigma}}\right)}$

The complexity of k_{σ} is $\left[1+\frac{\log (\bar{k})}{\log (2)}\right] d$ in time and $2 d$ in space.
After the computation of $\hat{\theta}^{(k)}$, the complexity of $\hat{\theta}$ is

Terms/Complexity	Time	Space
D_{3}^{-1}	d	d
$D_{3}^{-1} \times U^{T}$	d^{2}	d^{2}
$D_{3}^{-1} U^{\top} \times X^{\top} Y$	d^{2}	d
$U \times D_{3}^{-1} U^{\top} X^{T} Y$	d^{2}	d

with $X^{\top} X=U D_{3} U^{\top} ; k_{\sigma} \leq \bar{k}$.
After the computation of $\hat{\theta}^{(k)}$, the complexity of $\hat{\theta}$ is

- in time: $3 d^{2}+d$.
- in space: $d^{2}+3 d$.

Complexity of $\hat{\theta}^{\left(k_{\hat{\sigma}}\right)}$

The complexity of $\hat{\sigma}^{2}\left(\hat{\sigma}^{2}=\frac{1}{n-d}\|Y-X \hat{\theta}\|_{2}^{2}\right)$ is

Terms/Complexity	Time	Space		
$X \hat{\theta}$	$n d$	n		
$\\|Y-X \hat{\theta}\\|_{2}^{2}$	n	1		

The complexity of $\hat{\sigma}^{2}$ is $n d+n$ in time and $n+1$ in space.

Complexity of $\hat{\theta}$

The complexity of $\hat{\theta}$ is

Terms/Complexity	Time	Space
X^{T}	$n d$	$n d$
$X^{\top} X$	$n d^{2}$	d^{2}
$\left(X^{\top} X\right)^{-1}$	$O\left(d^{3}\right)$	d^{2}
$X^{\top} Y$	$n d$	d
$\left(X^{\top} X\right)^{-1} \times X^{\top} Y$	d^{2}	d

The complexity of $\hat{\theta}$ is

- in time: $n d^{2}+2 n d+O\left(d^{3}\right)+d^{2}$.
- in space: $n d+2 d^{2}+2 d$.

Bibliography

Raskutti, Garvesh, Martin J. Wainwright, and Bin Yu (2014). "Early Stopping and Non-Parametric Regression: An Optimal Data-Dependent Stopping Rule". In: J. Mach. Learn. Res. 15.1, pp. 335-366. ISSN: 1532-4435.

