Computation time/accuracy trade-off and linear regression

Christophe BIERNACKI & Maxime BRUNIN & Alain CELISSE

Laboratoire Paul Painlevé, Université de Lille, Science et Technologie INRIA Lille-Nord Europe, MODAL team

9 december 2016

BRUNIN Maxime 1/24

Outline

Introduction

- 2 Stopping time
- Computation time

Simulations

Linear regression

Linear regression model

$$Y = X\theta^* + \epsilon$$
,

with $X \in \mathcal{M}_{n,d}(\mathbb{R})$ with $\operatorname{rg}(X) = d$; $\theta^* \in \mathbb{R}^d$ is unknown; $\epsilon \sim \mathcal{N}\left(0, \sigma^2 I_n\right)$.

We are in the case n>d. We usually use the Ordinary Least Squares (OLS) $\hat{\theta}$ to estimate θ^*

Goal

Find an estimator that performs better in terms of MSE or/and in terms of computation time than $\hat{\theta}$.

BRUNIN Maxime

Gradient descent algorithm

Using the approach (Raskutti, Wainwright, and Yu 2014), we use a gradient descent algorithm with fixed step α to minimize the convex and differentiable function $g(\theta) = \frac{1}{2n} \|Y - X\theta\|_2^2$ for $\theta \in \mathbb{R}^d$. We get closed formulas of $\hat{\theta}^{(k)}$, the estimator of θ^* at the iteration k, and $\hat{Y}^{(k)} = X\hat{\theta}^{(k)}$.

 $\forall k \geq 0$,

$$\hat{\theta}^{(k)} = \sum_{i=0}^{k-1} \left(I_d - \frac{\alpha}{n} X^T X \right)^i \left(\hat{\theta}^{(1)} - \theta_0 \right) + \theta_0$$
$$= \left(I_d - \left(I_d - \frac{\alpha}{n} X^T X \right)^k \right) \hat{\theta} + \left(I_d - \frac{\alpha}{n} X^T X \right)^k \theta_0.$$

 $\forall k > 0$.

$$\hat{Y}^{(k)} = \left(I_n - \left(I_n - \frac{\alpha}{n}XX^T\right)^k\right)\hat{Y} + \left(I_n - \frac{\alpha}{n}XX^T\right)^kY^{(0)}.$$

Accuracy of our estimator

We assess the accuracy of $\hat{\theta}^{(k)}$ by $\begin{cases} \Delta\left(\hat{Y}^{(k)}\right) = \frac{1}{n} \left\|\hat{Y}^{(k)} - Y^*\right\|_2^2. \\ \text{or} \\ \mathrm{MSE}\left(\hat{Y}^{(k)}\right) = E\left[\Delta\left(\hat{Y}^{(k)}\right)\right]. \end{cases}$ with $Y^* = X\theta^*$.

Property

$$\begin{split} \operatorname{MSE}\left(\hat{Y}^{(k_{\mathrm{MSE}}^*)}\right) &< \operatorname{MSE}\left(\hat{Y}\right) \text{ with } k_{\mathrm{MSE}}^* = \underset{k \in \mathbb{N}}{\operatorname{argmin}} \left\{ \operatorname{MSE}\left(\hat{Y}^{(k)}\right) \right\} \text{ and } \\ \hat{Y} &= X\hat{\theta}. \end{split}$$

BRUNIN Maxime

Trade-off bias variance (1/2)

 k_{MSE}^* occurs when squared bias of $\hat{Y}^{(k)} \neq \text{variance of } \hat{Y}^{(k)} \Rightarrow \text{we have to}$ control the ratio between the variance of $\hat{Y}^{(k)}$ and the squared bias of $\hat{Y}^{(k)}$ to estimate k_{MSE}^* .

$$\mathrm{MSE}\left(\hat{Y}^{(k)}\right) = \frac{1}{n} \left\| S^k P^T \left(Y^{(0)} - Y^* \right) \right\|_2^2 + \frac{\sigma^2}{n} \mathrm{Tr}\left(\left(I_n - S^k \right)^2 \right),$$

with
$$K = \frac{1}{n}XX^T = P\Lambda P^T$$
; $S = I_n - \alpha\Lambda$; $0 < \alpha < \min_{\square} \left\{1, \frac{1}{\lambda_1}\right\}$; $\hat{\lambda}_1 = \left\|K\right\|_2$

BRUNIN Maxime 6 / 24

Trade-off bias variance (2/2)

$$\text{with } \alpha = I/10 \times \min \left\{1, \tfrac{1}{\hat{\lambda}_1}\right\} \text{ ; } k^* = \operatorname*{argmin}_{k \in \mathbb{N}} \left\{\tfrac{1}{n} \left\| \hat{Y}^{(k)} - Y^* \right\|_2^2 \right\}.$$

BRUNIN Maxime

Stopping time to estimate $k^* = \operatorname*{argmin}_{k \in \mathbb{N}} \left\{ \frac{1}{n} \left\| \hat{Y}^{(k)} - Y^* \right\|_2^2 \right\}$

We study the random variable $\frac{1}{n} \left\| \hat{Y}^{(k)} - Y^* \right\|_2^2 (Y^* = X\theta^*).$ $\forall k \geq 0$,

$$\frac{1}{n} \left\| \hat{Y}^{(k)} - Y^* \right\|_2^2 \leq \underbrace{\frac{2}{n} \left\| E \left[\hat{Y}^{(k)} \right] - Y^* \right\|_2^2}_{B_k^2} + \underbrace{\frac{2}{n} \left\| \hat{Y}^{(k)} - E \left[\hat{Y}^{(k)} \right] \right\|_2^2}_{V_k}.$$

Lemma (Raskutti, Wainwright, and Yu)

If $\|\theta^*\|_2 \le 1$ and $\theta_0 = 0$, $\forall k \ge 1$,

$$B_k^2 \leq \frac{1}{ek\alpha} = B_k^{2,sup}.$$

Lemma

On an event A_q with high probability, $\forall k \in [1, k_{\hat{\sigma}}]$,

$$V_k \leq 5\sigma^2 k\alpha \left[R_K \left(\frac{1}{\sqrt{k\alpha}} \right) \right]^2 = V_k^{sup}.$$

Stopping time to estimate
$$k^* = \operatorname*{argmin}_{k \in \mathbb{N}} \left\{ \frac{1}{n} \left\| \hat{Y}^{(k)} - Y^* \right\|_2^2 \right\}$$

To control the ratio between V_k^{sup} and $B_k^{2,\text{sup}}$, we define the stopping time $k_{\hat{\sigma}}$

$$egin{aligned} k_{\hat{\sigma}} &= \min \left\{ k \in \mathbb{N} : R_{\mathcal{K}} \left(rac{1}{\sqrt{k lpha}}
ight) > \sqrt{rac{c}{5 \mathrm{e}}} rac{1}{\hat{\sigma} k lpha}
ight\} - 1 \ &= \min \left\{ k \in \mathbb{N} : V_k^{\mathsf{sup}} > c \left(rac{\sigma}{\hat{\sigma}}
ight)^2 B_k^{2, \mathsf{sup}}
ight\} - 1. \end{aligned}$$

We define ε_{σ}

$$\varepsilon_{\sigma} = \inf \left\{ \varepsilon > 0 : R_{K} \left(\varepsilon \right) \leq \sqrt{\frac{c}{5e}} \frac{\varepsilon^{2}}{\sigma} \right\}.$$

with:

$$\hat{\sigma}^2 = \frac{1}{n-d} \left\| Y - X \hat{\theta} \right\|_2^2.$$

•
$$R_K(\varepsilon) = \sqrt{\frac{1}{n} \sum_{i=1}^n \min \left\{ \hat{\lambda}_i, \varepsilon^2 \right\}}$$
; $\hat{\lambda}_1 \ge \hat{\lambda}_2 \ge \dots \hat{\lambda}_n \ge 0$ are the eigenvalues of $\frac{1}{\pi} X X^T$.

•
$$\Omega_q = \{ |\hat{\sigma} - \sigma| \leq q\sigma \} = \{ \sigma_{\mathsf{inf}} \leq \hat{\sigma} \leq \sigma_{\mathsf{sup}} \} \; ; \; \sigma_{\mathsf{inf}} = (1 - q)\sigma \; \mathsf{and} \; \sigma_{\mathsf{sup}} = (1 + q)\sigma.$$

Theorem

Theorem (transposition of theorem 1 (Raskutti, Wainwright, and Yu 2014))

Given the stopping time $k_{\hat{\sigma}}, \; \exists c_1, c_2 \in \mathbb{R}_+^*$ such on an event \mathcal{A}_q :

$$P\left(\mathcal{A}_{q}\right) \geq P\left(\Omega_{q}\right) - c_{1} \exp\left(-c_{2}n\varepsilon_{\sigma_{inf}}^{4}\right) \left(\Omega_{q} = \{|\hat{\sigma} - \sigma| \leq q\sigma\}\right).$$

(a) $\forall k \in \llbracket 1, k_{\hat{\sigma}}
rbracket$,

$$\begin{split} \frac{1}{n} \left\| \hat{Y}^{(k)} - Y^* \right\|_2^2 &\leq B_k^{2, sup} + V_k^{sup} \\ &\leq \frac{1}{ek\alpha} \left(1 + c \left(\frac{\sigma}{\hat{\sigma}} \right)^2 \right). \end{split}$$

(b) $\forall k \geq 0$ (interesting when $k > k_{\hat{\sigma}}$),

$$E\left[\frac{1}{n}\left\|\hat{Y}-Y^*\right\|_2^2\right] \geq E\left[\frac{1}{n}\left\|\hat{Y}^{(k)}-Y^*\right\|_2^2\right] \geq \frac{\sigma^2}{4}\underbrace{(k\alpha)^2\left(R_K\left(\frac{1}{\sqrt{k\alpha}}\right)\right)^4}_{f(k)},$$

with f is a non-decreasing function and $f(k) \underset{k \to +\infty}{\longrightarrow} 1$.

Comparison of the complexity in time of $\hat{\theta}^{(k_{\hat{\sigma}})}$ and $\hat{\theta}$

The complexity in time of $\hat{\theta}^{(k_{\hat{\sigma}})}$ is

$$\underbrace{nd^{2} + 2nd + O(d^{3}) + 3d^{2} + (k+1)d}_{\hat{\theta}^{(k)}} + \underbrace{nd + 3d^{2} + n + d}_{\hat{\sigma}^{2}} + \underbrace{\left[1 + \frac{\log(k)}{\log(2)}\right]d}_{k_{\hat{\sigma}}}$$

$$= nd^{2} + 3nd + O(d^{3}) + 6d^{2} + n + \left[k + \frac{\log(\overline{k})}{\log(2)} + 3\right]d,$$

with
$$k_{\hat{\sigma}} \leq \overline{k}$$
 and $\hat{\sigma}^2 = \frac{1}{n-d} \left\| Y - X \hat{\theta} \right\|_2^2$.

The complexity in time of
$$(\hat{\theta}, \hat{\sigma}^2)$$
 is $\underbrace{nd^2 + 2nd + O(d^3) + d^2}_{\hat{\theta}} + \underbrace{nd + n}_{\hat{\sigma}^2}$.

The complexity in time of $(\hat{\theta}^{(k_{\hat{\sigma}})}, \hat{\sigma}^2)$ is bigger than the complexity in time of $(\hat{\theta}, \hat{\sigma}^2)$.

4□ > 4□ > 4□ > 4□ > 4□ > 900

Comparison of the complexity in space of $\hat{ heta}^{(k_{\hat{\sigma}})}$ and $\hat{ heta}$

The complexity in space of $\hat{\theta}^{(k_{\hat{\sigma}})}$ is

$$\underbrace{nd + 3d^{2} + 6d}_{\hat{\theta}^{(k)}} + \underbrace{d^{2} + 3d + n + 1}_{\hat{\sigma}^{2}} + \underbrace{2d}_{k_{\hat{\sigma}}}$$

$$= nd + 4d^{2} + n + 11d + 1.$$

The complexity in space of $(\hat{\theta}, \hat{\sigma}^2)$ is $\underbrace{nd + 2d^2 + 2d}_{\hat{\alpha}} + \underbrace{n+1}_{\hat{\sigma}^2}$.

The complexity in space of $\left(\hat{\theta}^{(k_{\hat{\sigma}})}, \hat{\sigma}^2\right)$ is bigger than the complexity in space of $\left(\hat{\theta}, \hat{\sigma}^2\right)$.

◆ロ > ◆回 > ◆ 注 > ◆注 > 注 のQで

MSE as a function of n for d = 20

with $\alpha = I/10 \times \min \left\{1, \frac{\mathbf{1}}{\hat{\lambda}_{\mathbf{1}}}\right\}$.

MSE as a function of n for d = 100

Raskutti, Wainwright, and Yu chooses c = 0.46 but it is not optimal.

MSE ratio as a function of d for n = 1500

MSE ratio as a function of d for n = 2000

General use of stopping time

Stopping time enables to reduce computation time (without loosing in accuracy) in problems when $\hat{\theta}$ has no closed formula and needs a lot of iterations to be computed.

For instance, in the problem of two Gaussian univariate mixture where only the proportion p^* is unknown, we use a EM whose estimate at the s^{th} iteration is $\hat{\rho}^{(s)}$ and $\hat{\rho}^{(s)} \underset{s \to +\infty}{\longrightarrow} \hat{\rho}$.

Conclusion

Results:

- We prove that $\frac{1}{n} \| \hat{Y}^{(k)} Y^* \|_2^2$ decreases at least until $k_{\hat{\sigma}}$.
- ullet We should choose c>1 to ensure $\mathrm{MSE}\left(\hat{Y}^{(k_{\hat{\sigma}})}
 ight)<\mathrm{MSE}\left(\hat{Y}
 ight).$

Drawback:

The complexity in time and in space of $\hat{\theta}^{(k_{\hat{\sigma}})}$ is bigger than the complexity in time and in space of $\hat{\theta}$ (specific to linear regression).

Perspectives:

- ullet Find how to choose parameter c to ensure $\mathrm{MSE}\left(\hat{Y}^{(k_{\hat{\sigma}})}
 ight) < \mathrm{MSE}\left(\hat{Y}
 ight).$
- Prove the theorem in other problems (e.g. logistic regression).

Complexity of $\hat{ heta}^{(k_{\hat{\sigma}})}$

We compute $\hat{\theta}^{(k)}$ using the formula

$$\hat{\theta}^{(k)} = \sum_{i=0}^{k-1} \left(I_d - \frac{\alpha}{n} X^T X \right)^i \left(\hat{\theta}^{(1)} - \theta_0 \right) + \theta_0$$
$$= UQU^T \left(-\frac{\alpha}{n} X^T X \theta_0 + \frac{\alpha}{n} X^T Y \right) + \theta_0,$$

with
$$X^TX = UD_3U^T$$
; $Q = \operatorname{Diag}\left(\frac{1-\mu_d^1}{1-\mu_d}, \dots, \frac{1-\mu_1^k}{1-\mu_1}\right)$; $1 > \mu_1 \geq \mu_2 \geq \dots \geq \mu_d > 0$ are the eigenvalues of $V = I_d - \frac{\alpha}{n}X^TX$.

Complexity of $\hat{\theta}^{(k_{\hat{\sigma}})}$

The complexity of $\hat{\theta}^{(k)}$ is

Terms/Complexity	Time	Space
X^{T}	nd	nd
X^TX	nd ²	d^2
SVD of X^TX	$O(d^3)$	$d^2 + d$
X^TY	nd	d
$-\frac{\alpha}{n}X^TX\theta_0+\frac{\alpha}{n}X^TY$	d	d
$Q imes U^T$	d^2	d^2
$QU^T \times \left(-\frac{\alpha}{n}X^TX\theta_0 + \frac{\alpha}{n}X^TY\right)$	d^2	d
Q	kd	d
$U \times QU^{T}\left(-\frac{\alpha}{n}X^{T}X\theta_{0}+\frac{\alpha}{n}X^{T}Y\right)$	d^2	d

The complexity of $\hat{\theta}^{(k)}$ is

• in time: $nd^2 + 2nd + O(d^3) + 3d^2 + (k+1)d$.

• in space: $nd + 3d^2 + 6d$.

↓□▶ ↓□▶ ↓□▶ ↓□▶ □ ♥Q♥

Complexity of $\hat{\theta}^{(k_{\hat{\sigma}})}$

The complexity of k_{σ} is $\left[1+\frac{\log(\overline{k})}{\log(2)}\right]d$ in time and 2d in space.

After the computation of $\hat{\theta}^{(k)}$, the complexity of $\hat{\theta}$ is

Terms/Complexity	Time	Space
D_3^{-1}	d	d
$D_3^{-1} imes U^{ op}$	d^2	d^2
$D_3^{-1}U^T \times X^TY$	d^2	d
$U \times D_3^{-1} U^T X^T Y$	d^2	d

with $X^TX = UD_3U^T$; $k_{\sigma} \leq \overline{k}$.

After the computation of $\hat{\theta}^{(k)}$, the complexity of $\hat{\theta}$ is

• in time: $3d^2 + d$.

• in space: $d^2 + 3d$.

Complexity of $\hat{\theta}^{(k_{\hat{\sigma}})}$

The complexity of
$$\hat{\sigma}^2$$
 $\left(\hat{\sigma}^2 = \frac{1}{n-d} \left\| Y - X \hat{\theta} \right\|_2^2 \right)$ is

Terms/Complexity	Time	Space
$X\hat{ heta}$	nd	n
$\left\ Y - X \hat{ heta} \right\ _2^2$	n	1

The complexity of $\hat{\sigma}^2$ is nd + n in time and n + 1 in space.

Complexity of $\hat{\theta}$

The complexity of $\hat{\theta}$ is

complexity of a la			
Terms/Complexity	Time	Space	
X^T	nd	nd	
X^TX	nd ²	d^2	
$\begin{pmatrix} X^T X \end{pmatrix}^{-1} \\ X^T Y$	$O(d^3)$	d^2	
X^TY	nd	d	
$(X^TX)^{-1} \times X^TY$	d^2	d	

The complexity of $\hat{\theta}$ is

• in time: $nd^2 + 2nd + O(d^3) + d^2$.

• in space: $nd + 2d^2 + 2d$.

Bibliography

Raskutti, Garvesh, Martin J. Wainwright, and Bin Yu (2014). "Early Stopping and Non-Parametric Regression: An Optimal Data-Dependent Stopping Rule". In: *J. Mach. Learn. Res.* 15.1, pp. 335–366. ISSN: 1532-4435.