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Introduction

Linear regression

Linear regression model

Y = X0 +¢,
with X € M, 4(R) with rg(X) =d ; 0" € R is unknown ; € NN(O,UZI,,).

We are in the case n > d. We usually use the Ordinary Least Squares (OLS) 0
to estimate 6*.

Find an estimator that performs better in terms of MSE or/and in terms of
computation time than 6.
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Stopping time

Gradient descent algorithm

Using the approach (Raskutti, Wainwright, and Yu 2014), we use a gradient
descent algorithm with fixed step « to minimize the convex and differentiable
function g(6) = = ||Y — X093 for 6 € RY. We get closed formulas of 0, the

estimator of #* at the iteration k, and Y¥) = X4k,

vk >0,

g% — ki (/d - %xTx)i (9”(” - 90) 1 6o

[

— (- (/d - %xTx)k> 0+ (/d - %XTx)kao.

vk >0,

y® — (/n - (/n - %XXT)k> Y+ (/,, - %XXT)k YO,
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Stopping time

Accuracy of our estimator

We assess the accuracy of gk by < or

with Y* = X6*.

Property

MSE ( MSE)) < MSE (\A/) with kyisg = argmm {MSE (Y(k )} and
Y = X4.
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Stopping time

Trade-off bias variance (1/2)

Ford= 20 n= 30 and =9
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kiisk occurs when squared bias of Y £ variance of Y} = we have to
control the ratio between the variance of Y¥) and the squared bias of Y¥) to
estimate kyigg-

MSE (W)) - % HskPT (Y(O) . Y*) H2 + J—:Tr ((/ - Sk)2> :

2

with K = 2XXT = PAPT ; S=1l,—ah;0<a< min{l,:\il};j\l = |IK],.



Stopping time

Trade-off bias variance (2/2)

Ford=20 n= 30 and1=9
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R 2
with v = 1/10 x min{l,%} kT = argmin{% Yy _ y }
1 kEN 2
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Stopping time

n p)
Stopping time to estimate k* = argmin {rl, H y(k) — y* 2}

keN
N 2
We study the random variable 2 || Y — y*|| (Y* = X07).
2
vk >0,
~ 2 A 2 ~ ~ 2
1 y k) _ oy SEHE[y(k)]_y* +2Hy(k)_E[y(k)}H )
n 2= n 2 n 2

2
B2 Vi

Lemma (Raskutti, Wainwright, and Yu)

If)|6"||, <1 and 6o =0, Yk > 1,

On an event Aq with high probability, Vk € [1, ks],

2
Vi < 50%ka {RK (\/%” = VP,

el
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Stopping time

Stopping time to estimate k* = argmin
keN

To control the ratio between V" and B*"P, we define the stopping time ks

1 c 1
ks = mi ke N: R e —— ——— 5 —1
”"”{e “(m)WsU }

:min{keN Ve > ¢ 7 B“"P

fr
ntfeoma 2

We define e,

with:

@ 6% =

~

) RK(E) = \/% 27:1 min {5\,‘752} ; :\1 > 5\2 > ... >0 are the

eigenvalues of 2XX 7.
° Qq :{|a-70-| < qa}: {Uinfg&éasup} ' Uinf:(].*q)a' and
osup = (1 + g)o.
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Stopping time

Theorem

Theorem (transposition of theorem 1 (Raskutti, Wainwright, and Yu 2014))

Given the stopping time ks, Jc1, c2 € RY such on an event Aq :
P(Ay) > P(Q) — crexp (—c2ns§, f) (Q=1{6—-0c|<qo}).
(a) Vk € [1, ks],

ini

110~ 2
E HY(k) _y* . < Bf,sup_'_ VEUP

§£(1+c(%)2)_

(b) Vk > 0 (interesting when k > ks ),
1 2 o? . 1 4
E|- > — (k Rk | —
[ |z e (7 (7))
f(k)

with f is a non-decreasing function and f (k) o 1.
—+o0

Yy —Yv*

2 A
} 25[1"\/(“—\/*
2 n
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Computation time

Comparison of the complexity in time of #(k#) and

The complexity in time of §(¢) is

nd® +2nd + O(d®) +3d* + (k+1)d + nd +3d° + n+d + {1+ log(k)} d
—_—

log(2)
4(k) 62 \—;,—/
= nd®+3nd + O(d®) + 64> + n+ | k + log(k) | 5 d.
log(2)

with ks <k and 6 = .1 ||v - X8

2
2

The complexity in time of (A, 62) is nd® + 2nd + O(d3) +d*+nd + n.
~——

0 &2

The complexity in time of (é(k3)7 &2) is bigger than the complexity in time of
(é, &2).
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Computation time

Comparison of the complexity in space of §(+) and

The complexity in space of ftks) is
nd +3d*> 4+ 6d +d* +3d + n+ 1+ 2d
~—~
é(k) 652 k&

= nd + 4d® + n+ 11d + 1.

The complexity in space of (é, &2) isnd+2d*+2d+n+1.
———————

0 &2

The complexity in space of (9(“3'), 62) is bigger than the complexity in space

of (é, &2).
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Simulations

MSE as a function of n for d = 20
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with a = 1/10 x min{l,;\—ll}.
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Simulations

MSE as a function of n for d = 100

Raskutti, Wainwright, and Yu chooses ¢ = 0.46 but it is not optimal.

Ford= 100 and|= 9
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Simulations

MSE ratio as a function of d for n = 1500
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Simulations

MSE ratio as a function of d for n = 2000

BRUNIN Maxime

log10(MSE ratio)

-0.15

log10(MSE ratio)

0.15

0.00 0.10

-0.15

0.00

Forn=2000,c=0.46,1=9

——
—4—
'_

16 / 24



Simulations

General use of stopping time

Stopping time enables to reduce computation time (without loosing in
accuracy) in problems when 6 has no closed formula and needs a lot of
iterations to be computed.

For instance, in the problem of two Gaussian univariate mixture where only the
proportion p* is unknown, we use a EM whose estimate at the s™ iteration is
p*®) and p — p.
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Simulations

Conclusion

Results:

. 2
@ We prove that % H y® — Y*H decreases at least until k5.
2

@ We should choose ¢ > 1 to ensure MSE (\A/("&)) < MSE (\A’)

Drawback:

The complexity in time and in space of 8) is bigger than the complexity in
time and in space of 6 (specific to linear regression).

Perspectives:
@ Find how to choose parameter ¢ to ensure MSE (\A/(k")) < MSE (\A’)

@ Prove the theorem in other problems (e.g. logistic regression).
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Simulations

Complexity of (k&)

We compute 6 using the formula

k—1

0% =" (1 - %xTx)i (6%~ 60) + 0o

i=

— uQU” (f%xTxeo T %XTY) + 6o,

k
with XTX = UDsUT : @ = Diag (““d 1*“5) ;

1—pg’ ?1—pa
1> py > po >+ > pg > 0 are the eigenvalues of V = Iy — %XTX.
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Simulations

Complexity of (k&)

The complexity of 8% is

Terms/Complexity Time Space
X7 nd nd
XX nd? d?
SVD of XX 0(d?) d*+d
X7y nd d
—2XT X0+ 2XTY d d
QxUT d? d?
QU™ x (—2X"X0o + 2XTY) d? d
Q kd d
Ux QU™ (—2XT"X0o + 2XTY) d? d

The complexity of 8% is
e in time: nd® +2nd + O(d?) + 3d” + (k + 1)d.
e in space: nd + 3d? + 6d.

BRUNIN Maxime 20/24



Simulations

Complexity of (k&)

The complexity of k. is [1 + :Zi ] d in time and 2d in space.

After the computation of 8, the complexity of 8 is

Terms/Complexity Time Space
Dyt d d
St xuT d? d?
Dy UT x XTY d? d
Ux D PUTXTY d? d

with XX = UDsUT; k, < k.

After the computation of 89, the complexity of 0 is
e in time: 3d? + d.
@ in space: d? + 3d.
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Simulations

Complexity of (k&)

The complexity of 52 (&2 =L H Y — X0

2 .
is
2

Terms/Complexity Time Space
X0 nd n
12
H Y — X9 n 1
2

The complexity of 2 is nd + n in time and n+ 1 in space.
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Simulations

Complexity of 8

The complexity of  is

Terms/Complexity Time Space
X7 nd nd
XTX nd? d?
(XTx)™ o(d?) d?
Xy nd d
(XTX) T x X7y d? d

The complexity of  is
e in time: nd® +2nd + O(d*) + d*.
e in space: nd + 2d? + 2d.
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Simulations
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