
HAL Id: hal-01420655
https://hal.science/hal-01420655v1

Submitted on 20 Dec 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

PARCOACH Extension for Hybrid Applications with
Interprocedural Analysis

Emmanuelle Saillard, Hugo Brunie, Patrick Carribault, Denis Barthou

To cite this version:
Emmanuelle Saillard, Hugo Brunie, Patrick Carribault, Denis Barthou. PARCOACH Extension for
Hybrid Applications with Interprocedural Analysis. 9th International Workshop on Parallel Tools for
High Performance Computing, Sep 2015, Dresden, Germany. pp.135 - 146, �10.1007/978-3-319-39589-
0_11�. �hal-01420655�

https://hal.science/hal-01420655v1
https://hal.archives-ouvertes.fr

PARCOACH Extension for Hybrid Applications

with Interprocedural Analysis

Emmanuelle Saillard, Hugo Brunie, Patrick Carribault and Denis Barthou

Abstract Supercomputers are rapidly evolving with now millions of processing

units, posing the questions of their programmability. Despite the emergence of more

widespread and functional programming models, developing correct and effective

parallel applications still remains a complex task. Although debugging solutions

have emerged to address this issue, they often come with restrictions. Further-

more, programming model evolutions stress the requirement for a validation tool

able to handle hybrid applications. Indeed, as current scientific applications mainly

rely on MPI (Message-Passing Interface), new hardwares designed with a larger

node-level parallelism advocate for an MPI+X solution with X a shared-memory

model like OpenMP. But integrating two different approaches inside the same ap-

plication can be error-prone leading to complex bugs. In an MPI+X program, not

only the correctness of MPI should be ensured but also its interactions with the

multi-threaded model. For example, identical MPI collective operations cannot be

performed by multiple non-synchronized threads. In this paper, we present an ex-

tension of the PARallel COntrol flow Anomaly CHecker (PARCOACH) to enable

verification of hybrid HPC applications. Relying on a GCC plugin that combines

static and dynamic analysis, the first pass statically verifies the thread level required

by an MPI+OpenMP application and outlines execution paths leading to potential

deadlocks. Based on this analysis, the code is selectively instrumented, displaying

an error and interrupting all processes if the actual scheduling leads to a deadlock

situation.

Emmanuelle Saillard

CEA, DAM, DIF, F-91297 Arpajon, France e-mail: emmanuelle.saillard.ocre@cea.fr

Hugo Brunie

CEA, DAM, DIF, F-91297 Arpajon, France e-mail: hugo.brunie.ocre@cea.fr

Patrick Carribault

CEA, DAM, DIF, F-91297 Arpajon, France e-mail: patrick.carribault@cea.fr

Denis Barthou

Bordeaux Institute of Technology, LaBRI / INRIA, Bordeaux, France e-mail: de-

nis.barthou@labri.fr

1

2 Emmanuelle Saillard, Hugo Brunie, Patrick Carribault and Denis Barthou

1 Introduction

The evolution of supercomputers to Exascale systems raises the issue of choosing

the right parallel programming models for applications. Currently, most HPC appli-

cations are based on MPI. But the hardware evolution of increasing core counts per

node leads to a mix of MPI with shared-memory approaches like OpenMP. However

merging two parallel programming models within the same application requires full

interoperability between these models and makes the debugging task more challeng-

ing. Therefore, there is a need for tools able to identify functional bugs as early as

possible during the development cycle. To tackle this issue, we designed the PAR-

allel COntrol flow Anomaly CHecker (PARCOACH) that combines static and dy-

namic analyses to enable an early detection of bugs in parallel applications. With

the help of a compiler pass, PARCOACH can extract potential parallel deadlocks

related to control-flow divergence and issue warnings during the compilation. Not

only the parallel contructs involved in the deadlock are identified and printed dur-

ing the compilation, but the statements responsible for the control-flow divergence

are also outputed. In this paper, we propose an extension of PARCOACH to hybrid

MPI+OpenMP applications and an interprocedural analysis to improve the bug de-

tection through a whole program. This work is based on [9] and extends [10] with

more details and an interprocedural analysis. To the best of our knowledge, only

Marmot [3] is able to detect errors in MPI+OpenMP programs. But as a dynamic

tool, Marmot detects errors during the execution and is limited to the dynamic par-

allel schedule and only detects errors occuring for a given inputset whereas our

approach allows for static bug detection with runtime support and detects bugs for

all possible values of inputs.

In the following we assume that all programs are SPMD MPI programs and all

MPI collective operations are called with compatible arguments (only the MPI COMM

WORLD communicator is supported). Therefore, each MPI task can have a different

control flow within functions, but it goes through the same functions for communi-

cations. Issues related to MPI arguments can be tested through other tools.

1.1 Motivating Examples

The MPI specification requires that all MPI processes call the same collective oper-

ations (blocking and non-blocking since MPI-3) in the same order [11]. These calls

do not have to occur at the same line of source code, but the dynamic sequence of

collectives should be the same otherwise a deadlock can occur. In addition, MPI

calls should be cautiously located in multi-threaded regions. Focusing only on MPI,

in Listing 1, because of the conditional in line 2 (if statement), some processes may

call the MPI Reduce function while others may not. Similarly, in Listing 2, some

MPI ranks may perform a blocking barrier (MPI Barrier) while others will call a

non-blocking one (MPI Ibarrier). The sequence is the same (call to one barrier),

but this blocking/non-blocking matching is forbidden by the MPI specification.

PARCOACH Extension for Hybrid Applications 3

Listing 1

1 vo id f () {
2 i f (. . .)

3 {
4 # pragma omp p a r a l l e l

5 {
6 # pragma omp s i n g l e

7 {
8 MPI Reduce (. .)

9 }
10 }
11 }
12 }

Listing 2

1 vo id f () {
2 i f (. . .)

3 M P I B a r r i e r (. .)

4 e l s e

5 M P I I b a r r i e r (. . .)

6 # pragma omp p a r a l l e l

7 {
8 / ∗ ∗ ∗ /

9 }
10 }

Listing 3

1 vo id f () {
2 # pragma omp p a r a l l e l

3 {
4 / ∗ ∗ ∗ /

5 # pragma omp m a s t e r

6 {
7 MPI Send (. .)

8 / ∗ ∗ ∗ /

9 }
10 }
11 }

Listing 4

1 vo id f () {
2 # pragma omp p a r a l l e l

3 {
4 # pragma omp s i n g l e now a i t

5 {
6 MPI Reduce (. .)

7 }
8 # pragma omp s i n g l e

9 {
10 MPI Reduce (. .)

11 }
12 }
13 }

Fig. 1 MPI+OpenMP Examples with different uses of MPI calls.

Regarding hybrid MPI+OpenMP applications, the MPI API defines four levels

of thread support to indicate how threads should interact with MPI: MPI THREAD

SINGLE, MPI THREAD FUNNELED, MPI THREAD SERIALIZED and MPI THREAD MULT

IPLE. MPI processes can be multithreaded but the MPI standard specifies that ”it

is the user responsibility to prevent races when threads within the same application

post conflicting communication calls” [11]. In Listing 2, MPI calls are executed

outside the multithreaded region. This piece of code is therefore compliant with the

MPI THREAD SINGLE level. But MPI communications may appear inside OpenMP

blocks. For example, the MPI point-to-point function at line 7 in Listing 3 is inside

a master block. The minimum thread level required for this code is therefore MPI

THREAD FUNNELED. However, calls located inside a single or master block may lead

to different thread support. Indeed, in Listing 4, two MPI Reduce are in different

single regions. Because of the nowait clause on the first single region, these

calls are performed simultaneously by different threads. This example requires the

maximum thread support level i.e., MPI THREAD MULTIPLE.

4 Emmanuelle Saillard, Hugo Brunie, Patrick Carribault and Denis Barthou

These simple examples illustrate the difficulty for a developer to ensure that MPI

calls are correctly used inside an hybrid MPI+OpenMP application. A tool able to

check, for each MPI call, in which thread context it can be performed would help the

application developer to know which thread-level an application requires. Further-

more, beyond this support, checking deadlock of MPI collective communications

in presence of OpenMP constructs can be very tricky. In this paper, we propose an

extension of PARCOACH to tackle these issues, with the help of an interprocedural

analysis to improve the compile-time detection.

Section 2 gives an overview of the PARCOACH platform with a description of its

static and dynamic analyses for hybrid MPI+OpenMP applications. Then, Section 3

describes an interprocedural extension of the PARCOACH static pass. Section 4

presents experimental results and finally Section 5 concludes the paper.

2 PARCOACH Static and Dynamic Analyses for Hybrid

Applications

PARCOACH uses a two-step method to verify MPI+OpenMP applications as shown

in Figure 2. The first analysis is located in the middle of the compilation chain,

where the code is represented as an intermediate form. Each function of a program is

depicted by a graph representation called Control Flow Graph (CFG). PARCOACH

analyses the CFG of each function to detect potential errors or deadlocks in a pro-

gram. When a potential deadlock is detected, PARCOACH reports a warning with

precise information about the possible deadlock (line and name of the guilty MPI

communications, and line of conditionals responsible for the deadlock). Then the

warnings are confirmed by a static instrumentation of the code. Note that whenever

the compile-time analysis is able to statically prove the correctness of a function, no

code is inserted in the program, reducing the impact of our transformation on the

execution time. If deadlocks are about to occur at runtime, the program is stopped

and PARCOACH returns error messages with compilation information.

This section describes the following new features of PARCOACH: (i) detection

of the minimal MPI thread-level support required by an MPI+OpenMP application

(see [9] for more details) and (ii) checking misuse of MPI blocking and nonblocking

collectives in a multi-threaded context (extension of [10]).

2.1 MPI Thread-Level Checking

This analysis finds the right MPI thread-level support to be used and identifies code

fragments that may prevent conformance to a given level. Verifying the compli-

ance of an MPI thread level in MPI+OpenMP code resorts to check the placement

of MPI calls. To determine the thread context in which MPI calls are performed,

we augment the CFGs by marking the nodes containing MPI calls (point-to-point

PARCOACH Extension for Hybrid Applications 5

EXECUTION

PROGRAM

WRITTEN IN C,

C++ or FORTRAN

FRONT

END

MIDDLE-END

BACK

END

PARCOACH

DYNAMIC

LIBRARY

WARNINGS

ERROR MESSAGES

Fig. 2 PARCOACH two-step analysis overview

and collective). Then, with a depth-first search traversal, we associate a parallelism

word to each node. As defined in [9], a parallelism word is the sequence of OpenMP

parallel constructs (P:parallel, S:single, M:master and B:barrier for implicit

and explicit barriers) surrounding a node from the beginning of the function to the

node. The analysis detects CFG nodes containing MPI calls associated to paral-

lelism words defining a multithreaded context and forbidden concurrent calls. Based

on this analysis, the following section describes how collectives operations can be

verified in a multithreaded context.

2.2 MPI Collective Communication Verification

This analysis proposes a solution to check the sequence of collective communica-

tions inside MPI+OpenMP programs. PARCOACH verifies that there is a total order

between the MPI collective calls within each process and it ensures that this order

is the same for all MPI ranks. Our analysis relies on checking 3 rules:

1. Within an MPI process, all collectives are executed in a monothreaded context;

2. Within an MPI process, two collective executions are sequentially ordered, ei-

ther because they belong to the same monothreaded region or because they are

separated by a thread synchronization (no concurrent monothreaded regions);

3. The sequence of collectives are the same for all MPI processes (i.e., sequences

do not depend on the control flow).

A function is then said to be potentially statically incorrect if at least one of the

three categories presented in Figure 3 is verified. This section describes how these

error categories can be detected.

Category 1 Detection: This phase of the static analysis corresponds to the de-

tection of MPI collectives that are not executed in a monothreaded region. To this

end, we use the parallelism words defined in [10]. A parallelism word defines a

6 Emmanuelle Saillard, Hugo Brunie, Patrick Carribault and Denis Barthou

MPI Processes

MPI collective operations

called simultaneously by

different threads?

...

no yes
no

yes

PN

Thread 0 Thread 1

P0

Thread 0 Thread 1

P0

Thread 0 Thread 1

MPI collective operations in a

monothreaded context?

P0, ... and PN have the same

sequence of collective operations?

Category 1

Category 2

Category 3

Fig. 3 Categories of possible errors in a hybrid program with N MPI processes and two threads

per process.

monothreaded context if it ends with an S or an M (ignoring Bs). If the parallelism

word has a sequence of two or more P with no S or M in-between, it implies the

parallelism is nested. Even if the word ends with an S or M, one thread for each

thread team can execute the MPI collectives.

0 1

2

3

of the application
starting point

P

S,M

P
S,M,B

B

P
P,B,S,M

P: Parallel

M: Master

S: Single

B: Barrier

Fig. 4 Automata of possible parallelism words. Nodes 0 and 2 correspond to code executed by the

master thread or a single thread. Node 1 corresponds to code executed in a parallel region, and 3

to code executed in nested parallel region.

For this part, it is not necessary to seperate single from master regions. So the

finite-state automaton in [9] is simplified into the automaton presented Figure 4.

It recognizes the language of parallelism words corresponding to monothreaded

regions. States 0 and 2 are the accepting states and the language L defined by

L = (S|M|B|PB∗S|PB∗M)∗ contains the accepted words (parallelism words ending

PARCOACH Extension for Hybrid Applications 7

by S or M without a repeated sequence of P).

Category 2 Detection: For this analysis, MPI collective operations are assumed to

be called in monothreaded regions, as defined in the previous section. However, dif-

ferent MPI collectives can still be executed simultaneously if monothreaded regions

are executed in parallel. This phase corresponds to the detection of MPI collective

calls in concurrent monothreaded regions.

Two nodes n1 and n2 are said to be in concurrent monothreaded regions if they

are in monothreaded regions and if their parallelism words pw[n1] and pw[n2] are

respectively equal to wS ju and wSkv where w is a common prefix (possibly empty)

with j 6= k, u and v words in (P|S|B)∗.

Category 3 Detection: Once the sequence of MPI collective calls are verified in

each MPI process, we must check that all sequences are the same for all processes.

To verify that we rely on Algorithm 1 proposed in [7] with the extension of non-

blocking collectives detailed in [4]. It detects MPI blocking and non-blocking col-

lective mismatches by identifying conditionals potentially leading to a deadlock sit-

uation (set S). A warning is also issued for collective calls located in a loop as they

can be called different times if the number of iterations is not the same for all MPI

processes.

Algorithm 1 Step 1: Static Pass of hybrid programs

1: function HYBRID STATIC PASS(G = (V,E),L)

2: ⊲ G: CFG, L: language of correct parallelism words

3: DFS(G,entry(G)) ⊲ parallelism words construction

4: MULTITHREADED REGIONS(G,L) ⊲ creates set Sipw

5: CONCURRENT CALLS(G) ⊲ creates set Scc

6: STATIC PASS(G) ⊲ creates set S

7: end function

Static Pass Algorithm: To wrap-up all static algorithms, Algorithm 1 shows

how analyses are combined. First the DFS function creates parallelism words.

Then MULTITHREADED REGIONS and CONCURRENT CALLS procedures re-

spectively detect categories 1 and 2 of errors. Finally the STATIC PASS procedure

detects category 3 of errors.

2.2.1 Static Instrumentation

The compile-time verification outputs warnings for MPI collective operations that

may lead to an error or deadlock. Nevertheless the static analysis could lead to false

positives if the actual control-flow divergence is not happening during the execution.

To deal with this issue, we present a dynamic instrumentation that verifies warnings

emitted at compile-time.

8 Emmanuelle Saillard, Hugo Brunie, Patrick Carribault and Denis Barthou

Algorithm 2 Library Functions To Check MPI collectives

1: function CCipw ⊲ Detect collectives in multithreaded regions

2: if pwe 6∈ Le then

3: MPI ABORT(com,0)

4: end if

5: end function

6:

7: function CCcc ⊲ Detect concurrent collective calls

8: CCipw

9: if collective lock = 1 then

10: MPI ABORT(com,0)

11: else

12: #pragma omp atomic write

13: collective lock = 1

14: end if

15: end function

16:

17: function CC(comc, ic) ⊲ Detect collective calls mismatches

To dynamically verify the total order of MPI collective sequences in each MPI

process, validation functions (CCipw and CCcc) are inserted in nodes in the sets

Sipw and Scc generated by the static pass (see Algorithm 1). These functions are

depicted in Algorithm 2. Function CCipw detects incorrect execution parallelism

words and Function CCcc detects concurrent collective calls. To dynamically verify

the total order of MPI collective sequences between processes, a check collective

function CC is inserted before each MPI collective operation and before return

statements. CC is depicted in Algorithm 2 in [6]. It takes as input the communicator

comc related to the collective call c and a color ic specific to the type of collective.

As multiple threads may call CC before return statements, this function is wrapped

into a single pragma. Each function of a program is instrumented by Algorithm 3.

If an error is about to occur, the program is stopped and an error message is returned

with error type information.

3 Interprocedural Analysis

Because PARCOACH relies on an intraprocedural analysis, it miss errors across

function boundaries and therefore it may produce false positive as well as false

negative results. To extend PARCOACH with an interprocedural mechanism, we

extended the intraprocedural approach through the application Call Graph (CG):

nodes represent functions and edges model possible calls.

The main idea is to compute and reuse the summaries of each CFG through a CG

traversal in reverse invocation order. For this purpose, the intraprocedural analysis

is modified to return the valid sequence of collective operations for each function

(ValidSeq). Based on this sequence of collective operations that all MPI processes

PARCOACH Extension for Hybrid Applications 9

Algorithm 3 Step 2: Selective Static Instrumentation

1: function INSTRUMENTATION(communicator,G,S,Sipw,Scc)

2: ⊲ G: CFG, S,Sipw,Scc: sets created at compile-time

3: if S∪Sipw∪Scc 6= /0 then

4: ** STEP 1: Control flow errors detection **

5: for n in nodes containing a call to collective c do

6: Insert call to CC(comc, ic) before the call to c

7: end for

8: Before return statements insert

9: # pragma omp single

10: CC(communicator,0)}
11: ** STEP 2: Collectives in multithreaded regions **

12: for n ∈ Sipw do

13: Insert call to CCipw() as the first statement of n

14: end for

15: ** STEP 3: Concurrent MPI calls detection **

16: for n ∈ Scc do

17: Insert call to CCcc() as the first statement of n

18: Insert collective lock = 0 after the barrier(s) successors of the region created by n

19: end for

20: end if

21: end function

Algorithm 4 Interprocedural Analysis

1: function INTERPROCEDURAL ANALYSIS(
⋃

f CFG f ,CG) ⊲ CG: Callgraph

2: Seq←{}, O← /0

3: for each n ∈CG in reverse topological order do

4: n.ValidSeq←{} , On← /0

5: for each f ∈ SUCCCG(n) do

6: Replace f in n by f .ValidSeq

7: end for

8: (On,ValidSeq)← INTRAPROCEDURAL ANALYSIS(CFGn)

9: n.ValidSeq←ValidSeq, O← O∪On

10: end for

11: return O

12: end function

will encounter, Algorithm 4 presents the interprocedural analysis. It takes as input

the CG of a program and all the CFGs and returns the set O of conditionals that can

lead to a deadlock.

Figure 5(a) shows the main CFG calling function g (whose CFG is depicted

in Figure 5(b)). Performing our intraprocedural analysis would lead to a deadlock

warning on main (for the MPI Barrier operations) and on g (for the MPI Allreduce

collective). The resulting CFG after applying Algorithm 4 is illustrated in Fig-

ure 5(c): the call to g is replaced by the sequence of collective executed in g. Then,

simply invoking the intraprocedural analysis on this new CFG results in no warn-

ing because there is one call to MPI Barrier on each path of the program. There-

fore, the only warning issued by our combined analysis is related to the call to

MPI Allreduce in function g (related to the if statement in node 2).

10 Emmanuelle Saillard, Hugo Brunie, Patrick Carribault and Denis Barthou

0

2: Call MPI_Barrier 3: Call g

1

(a) CFG of main

0

2: Call MPI_Barrier

3 4: Call MPI_Allreduce

1

(b) CFG of g

0

2: Call MPI_Barrier

3: g summary entry node

1

4: Call MPI_Barrier

5: g summary exit node

(c) Program CFG

Fig. 5 Example of interprocedural analysis

4 Experimental Results

We extended the PARCOACH implementation (GCC 4.7 plugin) to add analysis of

hybrid applications. Thus, it is associated to GCC but simple to deploy in existing

environments as it does not modify the compilation chain. To show the impact of

PARCOACH analysis on the compilation and execution time, we tested the NAS-

MZ [12], AMG benchmark [1], the EPCC suite [2] and HERA [5]. All results were

conducted on Tera100, a petaflopic supercomputer at the CEA.

 0

 1

 2

 3

 4

 5

 6

 7

BT−MZ SP−MZ LU−MZ EPCCsuite HERA AMG

O
ve

rh
ea

d
in

 %

Warnings
Warnings + verification code generation

Fig. 6 Overhead of average compilation time with and without verification code generation

Figure 6 displays the overhead of compiling the applications with PARCOACH

(only with our static analysis, or with the analysis and the static instrumentation).

It shows that PARCOACH introduces a low compilation overhead (under 6%). The

execution time overheads obtained for the NAS benchmarks and HERA are pre-

PARCOACH Extension for Hybrid Applications 11

sented in Figure 7 running on MPICH with GCC OpenMP. The overheads obtained

are under 25% which is reasonable for debugging purpose.

0

5

10

15

20

25

1 2 4 8 16 32 64 128 256

O
v
e
rh

e
a
d
 i
n
 %

MPI processes

Hera

(a) Execution-Time Overhead for HERA

0

1

2

3

4

5

6

1 2 4 8 16 32 64

O
v
e
rh

e
a
d
 i
n
 %

MPI processes

BT−MZ
SP−MZ
LU−MZ

(b) Execution-Time Overhead for NASPB-MZ

Fig. 7 Execution-Time Overhead for MZ (NAS class B) and HERA with 8 threads per MPI process

(Strong scaling)

i n t RestartIO GLEAN : : C lose (v o id) {
i n t s t a t u s = −1;

i f (m mode == WRITE CHECKPOINT)

{
s w i t c h (m i n t e r f a c e)

{
c a s e USE POSIX :

s t a t u s = t h i s−> P O S I X C l o s e C h e c k p o i n t () ; b r e a k ;

c a s e USE MPIIO :

s t a t u s = t h i s−> M P I I O C l o s e C h e c k p o i n t () ; b r e a k ;

}
}
e l s e i f (m mode == READ RESTART)

(a)

i n t RestartIO GLEAN : : M P I I O C l o s e C h e c k p o i n t (v o id)

{
[. . .]

M P I B a r r i e r (m par t i t ionComm) ;

}

(b)

i n t RestartIO GLEAN : : P O S I X C l o s e C h e c k p o i n t (v o id)

{
[. . .]

M P I B a r r i e r (m par t i t ionComm) ;

[. . .]

M P I B a r r i e r (m par t i t ionComm) ;

[. . .]

}

(c)

Fig. 8 Pieces of HACC/IO module code

The interprocedural analysis has also been implemented and integrated in PAR-

COACH (as a GCC plugin combined with a Python script). Figure 8 shows pieces

of code from the IO module of the CORAL benchmark HACC. The calls in Fig-

ures 8(b) and 8(c) contain one and two calls to an MPI collective, respectively.

Hence when the function in Figure 8(a) calls the others in different paths because of

the switch, the execution could deadlock if the processes follow different paths. Of

course the conditional statement does not depend on the rank number of each pro-

cess, and therefore this is just a false positive. This interprocedural must be extended

to a data flow analysis with the aim to study the dependence of these condition vari-

ables in order to know if they depend on the process rank or not.

12 Emmanuelle Saillard, Hugo Brunie, Patrick Carribault and Denis Barthou

5 Conclusion

The MPI+OpenMP approach is one solution to tackle the increasing node-level par-

allelism and the decreasing amount of memory per compute unit. Some production

codes are already hybrid and other applications are in the development process. It

is driven by available tools that could help debugging. That is why we developed

the platform PARCOACH that helps application developers to check which inter-

action support is required for a specific hybrid code and checks the correct usage

of blocking and non-blocking MPI collective communications in an MPI+OpenMP

application. The main advantage of PARCOACH is that it highlights the statements

responsible for the execution path potentially leading to future deadlocks or unspec-

ified behaviors. We propose an adaptation of PARCOACH analyses to an interpro-

cedural analysis. This enables us to reduce the number of false positives returned by

the initial static analysis. However, this interprocedural analysis could be improved

to propagate collective issue information and can be coupled to a data-flow analysis

to avoid false positive results.

References

1. CORAL Benchmarks. https://asc.llnl.gov/CORAL-benchmarks/
2. Bull, J.M., Enright, J.P., Guo, X., Maynard, C., Reid, F.: Performance Evaluation of Mixed-

Mode OpenMP/MPI Implementations. Intl. J. of Parallel Programming 38(5-6), 396–417

(2010)
3. Hilbrich, T., Müller, M.S., Krammer, B.: Detection of Violations to the MPI Standard in Hy-

brid OpenMP/MPI Applications. In: Intl. Conf. on OpenMP in a New Era of Parallelism, pp.

26–35. Springer-Verlag (2008)
4. Jaeger, J., Saillard, E., Carribault, P., Barthou, D.: Correctness Analysis of MPI-3 Non-

Blocking Communications in PARCOACH. In: Proceedings of the 22Nd European MPI

Users’ Group Meeting, EuroMPI ’15, pp. 16:1–16:2. ACM (2015)
5. Jourdren, H.: HERA: A hydrodynamic AMR Platform for Multi-Physics Simulations. In:

T. Plewa, T. Linde, V.G. Weirs (eds.) Adaptive Mesh Refinement - Theory and Applications,

pp. 283–294. Springer (2003)
6. Saillard, E., Carribault, P., Barthou, D.: Combining Static and Dynamic Validation of MPI

Collective Communications. In: Proceedings of the European MPI Users’ Group Meeting,

EuroMPI’13, pp. 117–122. ACM (2013)
7. Saillard, E., Carribault, P., Barthou, D.: PARCOACH: Combining static and dynamic valida-

tion of MPI collective communications. International Journal of High Performance Computing

Applications (2014)
8. Saillard, E., Carribault, P., Barthou, D.: Static Validation of Barriers and Worksharing Con-

structs in OpenMP Applications. In: International Workshop on OpenMP, pp. 73 – 86 (2014)
9. Saillard, E., Carribault, P., Barthou, D.: MPI Thread-Level Checking for MPI+OpenMP Ap-

plications. In: EuroPar (2015)
10. Saillard, E., Carribault, P., Barthou, D.: Static/Dynamic Validation of MPI Collective Commu-

nications in Multi-threaded Context. In: Proceedings of the 20th ACM SIGPLAN Symposium

on Principles and Practice of Parallel Programming, PPoPP 2015, pp. 279–280. ACM (2015)
11. Message Passing Interface Forum. MPI: A Message-Passing Interface Standard Version 3.1,

June 2015. http://www.mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf
12. NASPB site: http://www.nas.nasa.gov/software/NPB

