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I

Stokes and Navier-Stokes problems are often studied in a framework where Dirichlet type boundary conditions on the velocity eld are imposed. However, in hydraulic network-like systems, for instance oil ducts, water supply, micro uidic channels or the blood circulatory system, di erent formulations with boundary conditions involving components of the velocity eld, stresses or pressure, are of interest. A recent review of some of the formulations proposed in the literature, and their associated boundary conditions, with a focus on applications to air and blood ows can be found in [START_REF] Fouchet-Incaux | Arti cial boundaries and formulations for the incompressible Navier-Stokes equations: applications to air and blood ows[END_REF].

In this work, we are motivated by the computational modeling of some biological ows driven by physiological pressure gradients and more precisely we are interested in the case when the velocity eld is imposed on one part of the boundary and pressure values are prescribed, together with the condition of no tangential ow, on the remaining part. A variational formulation taking into account this type of boundary conditions was rst introduced in the seminal works [START_REF] Pironneau | Conditions aux limites sur la pression pour les équations de Stokes et de Navier-Stokes[END_REF][START_REF] Bègue | A nouveau sur les équations de Stokes et de Navier-Stokes avec des conditions aux limites sur la pression[END_REF][START_REF] Conca | The Stokes and Navier-Stokes equations with boundary conditions involving the pressure[END_REF]. A lot of subsequent literature was devoted to this topic. At a continuous level, the well-posedness of the variational formulation both for Stokes and Navier-Stokes systems was investigated in a steady Hilbertian case [START_REF] Conca | The Stokes and Navier-Stokes equations with boundary conditions involving the pressure[END_REF][START_REF] Girault | Curl-conforming nite element methods for navier-stokes equations with non-standard boundary conditions in âĎIJ3[END_REF], unsteady nonlinear two-dimensional case [START_REF] Marušić | On the Navier-Stokes system with pressure boundary condition[END_REF] and recently extended to L ptheory for 1 < p < ∞ in [START_REF] Amrouche | L p -theory for the Navier-Stokes equations with pressure boundary conditions[END_REF]. Several discretization approaches were proposed, including nite di erences [START_REF] Johnston | Finite di erence schemes for incompressible ow based on local pressure boundary conditions[END_REF], SPH method [START_REF] Hosseini | Pressure boundary conditions for computing incompressible ows with SPH[END_REF] or nite elements [START_REF] Conca | Navier-Stokes equations with imposed pressure and velocity uxes[END_REF][START_REF] Girault | Curl-conforming nite element methods for navier-stokes equations with non-standard boundary conditions in âĎIJ3[END_REF][START_REF] Barth | On a boundary condition for pressure-driven laminar ow of incompressible uids[END_REF][START_REF] Bernardi | Finite element discretization of the Stokes and Navier-Stokes equations with boundary conditions on the pressure[END_REF]. Numerical experiments in the nite element framework enforce this type of boundary conditions through a penalty method, for Newtonian [START_REF] Conca | Navier-Stokes equations with imposed pressure and velocity uxes[END_REF][START_REF] Barth | On a boundary condition for pressure-driven laminar ow of incompressible uids[END_REF] and generalized Newtonian uids [START_REF] Barth | On a boundary condition for pressure-driven laminar ow of incompressible uids[END_REF]. Recent developments concern the Navier-Stokes problem in the context of a simpli ed uid-structure model for blood ows [START_REF] Gostaf | Pressure boundary conditions for blood ows[END_REF]. This so-called Surface Pressure Model is analyzed in [START_REF] Chacón Rebollo | Analysis of a coupled uid-structure model with applications to hemodynamics[END_REF].

Whereas most of the previous contributions expressed the conservation of the momentum in terms of the Laplacian of the velocity, we focus hereafter on the equivalent formulation in terms of the divergence of the symmetric gradient, useful in some applications such as uid-structure interaction problems. To take into account the non-standard boundary conditions, we introduce a new Lagrange multipliers-based formulation, which we discretize in a nite-element framework. Although we have to deal with supplementary unknowns -which increases the complexity of the problem -this novel formulation allows for several advantages. At a continuous level, the well-posedness of the problem is proved in the same functional spaces as for standard boundary conditions, and includes the case of L 2 pressure boundary data, that was not covered in [START_REF] Bernardi | Finite element discretization of the Stokes and Navier-Stokes equations with boundary conditions on the pressure[END_REF]. The coupling between the velocity and the Lagrange multiplier occurs only on the boundary, and no parameters need to be chosen, as when enforcing the constraint through a penalty method [START_REF] Conca | Navier-Stokes equations with imposed pressure and velocity uxes[END_REF][START_REF] Barth | On a boundary condition for pressure-driven laminar ow of incompressible uids[END_REF]. Moreover, the discrete analysis allows us to obtain optimal convergence rates for standard inf-sup stable nite element spaces, without requiring curl conforming nite elements [START_REF] Girault | Curl-conforming nite element methods for navier-stokes equations with non-standard boundary conditions in âĎIJ3[END_REF] or stabilized formulations [START_REF] Bernardi | Finite element discretization of the Stokes and Navier-Stokes equations with boundary conditions on the pressure[END_REF].

Another interesting feature of the proposed formulation comes from its ability to properly handle the prescription of inlet/outlet boundary conditions at arti cial boundaries. This situation may occur for instance when modeling ow through a network of pipes truncated to a region of interest. The challenging issue of prescribing suitable boundary conditions at the arti cial sections is reviewed in [START_REF] Formaggia | Prescription of general defective boundary conditions in uid-dynamics[END_REF] and di erent strategies to cope with this di culty are proposed for instance in [START_REF] Vergara | Nitsche's method for defective boundary value problems in incompressibile uid-dynamics[END_REF] by means of the Nitsche method or in [START_REF] Vergara | Numerical treatment of boundary conditions to replace lateral branches in hemodynamics[END_REF] in the context of blood ow modeling. Moreover, as noted in [START_REF] Leone | Finite element simulations of steady, two-dimensional, viscous incompressible ow over a step[END_REF][START_REF] Rannacher | Arti cial boundaries and ux and pressure conditions for the incompressible navier-stokes equations[END_REF], using the symmetric gradient 1 2 (∇u + ∇u T ) and prescribing the normal stress at the outlet lead to a non-physical representation of the ow: the velocity vectors "spread" like at the end of a pipe, instead of mimicking the fact that the network continues after this arti cial section. Alternatively, the non symmetric tensor ∇u can be used to recover the Poiseuille exact solution in a cylinder, but the physical meaning of such a boundary condition is not clear. In the present work, the mathematical and computational models share both advantages: the uid model is described in terms of the mechanical stress tensor, which is more appropriate from the modeling viewpoint, and it is able to properly take into account the fact that the ow continues beyond the boundaries, thanks to the speci c form of the boundary conditions.

The remainder of the article is organized as follows. Section 2 is devoted to the description of the Lagrange multiplier-based variational formulation of the problem and its analysis at a continuous level and Section 3 to the discrete counterpart of the analysis. Section 4 describes the numerical and computational procedure and results are presented in Section 5. Concluding remarks and some perspectives are gathered in the nal section.

T

2.1. General framework. Let Ω ⊂ R d , d = 2, 3 be a bounded domain and denote by ∂Ω its boundary. We consider hereafter the steady state of a viscous incompressible uid at low Reynolds number, described by the velocity and pressure elds u and p that satisfy the following Stokes equations:

-2µ∇ • (D(u)) + ∇p = ρf, in Ω, (2.1) ∇ • u = 0, in Ω, (2.2) u = 0, on Γ 1 , (2.3) u × n = 0, on Γ 2 , and (2.4) p = p 0 , on Γ 2 , (2.5)
where ∂Ω = Γ1 ∪ Γ2 , with Γ 1 ∩ Γ 2 = ∅ and such that each connected component of Γ 2 is at, represents a partition without overlap of the boundary of Ω and n indicates the outward normal to ∂Ω. The notation D(u) = 1 2 (∇u + ∇u T ) designates the strain rate tensor, µ and ρ are the dynamic viscosity and the density of the uid, respectively, the function f is a given external force and the function p 0 a given pressure.

As an example of a real-world problem for which one of the main mechanisms driving the ow is the pressure drop, we consider the hemodynamics modeling of the cerebral venous network presented in Fig. 1. The complex realistic three-dimensional description was constructed in the framework of the AngioTkProject [START_REF]Angiotk project[END_REF] from 3D angiographic images obtained by magnetic resonance angiography. Blood from the microcirculation enters the network through input veins, like the superior cerebral veins (1), internal cerebral vein (4), basal vein (5) etc.; it ows through the superior sagittal sinus (2) and the straight sinus (3), down to the con uence of sinuses [START_REF] Bègue | A nouveau sur les équations de Stokes et de Navier-Stokes avec des conditions aux limites sur la pression[END_REF]. Next, it passes into the left, respectively right, transverse sinus [START_REF] Bernardi | Finite element discretization of the Stokes and Navier-Stokes equations with boundary conditions on the pressure[END_REF] and sigmoid sinus [START_REF] Brezzi | Mixed and hybrid nite element methods[END_REF], to nally reach the extracranial region through the draining vessels (9), [START_REF] Schaller | Physiology of cerebral venous blood ow: from experimental data in animals to normal function in humans[END_REF].

A computational model based on the assumptions that at this scale blood can be considered as an incompressible, homogeneous, Newtonian uid, leads to the description of the ow by means of the Navier-Stokes equations [START_REF] Miraucourt | Blood ow in the cerebral venous system: modeling and simulation[END_REF] in a xed domain. Body forces contribution (for instance gravity), can be incorporated in the model through the right-hand side term and walls are assumed to be rigid. In practice, velocity information in the cerebral veins is not collected from routine clinical examinations, hence an alternative is to impose a pressure gradient by means of speci ed pressures at the in ow and out ow boundaries. Consequently, in a rst approximation for low Reynolds numbers, the problem takes the form (2.1 -2.5), with Γ 1 corresponding to the lateral boundary (the vessel wall) and Γ 2 to the union of the 29 in ow and 2 out ow sections, where pressure values can be prescribed, together with the condition of no tangential ow. F 1. Cerebral venous network.

Remark 2.1. Previous works [START_REF] Pironneau | Conditions aux limites sur la pression pour les équations de Stokes et de Navier-Stokes[END_REF][START_REF] Bègue | A nouveau sur les équations de Stokes et de Navier-Stokes avec des conditions aux limites sur la pression[END_REF][START_REF] Conca | The Stokes and Navier-Stokes equations with boundary conditions involving the pressure[END_REF][START_REF] Conca | Navier-Stokes equations with imposed pressure and velocity uxes[END_REF][START_REF] Bernardi | Finite element discretization of the Stokes and Navier-Stokes equations with boundary conditions on the pressure[END_REF] classically take into account non standard boundary conditions of type (2.3 -2.5) by expressing the conservation of the momentum in terms of the Laplacian of the velocity and then using as a key ingredient the rotational formulation for the equation, based on:

-∆u = ∇ × (∇ × u) -∇(∇ • u).
Although at a continuous level the two formulations are equivalent, since

∇ • u = 0 ⇒ ∇ • (∇u + ∇u T ) = ∆u,
from a modeling standpoint it may be useful to work with the symmetric tensor. For instance, in uid-structure problems, formulation (2.1 -2.5) gives directly the natural boundary condition for the structure problem in terms of the force exerted by the uid on its boundary.

2.2.

The Lagrange multiplier formulation. Let us rst introduce some notations. In the following we will write A B (resp. A B) to indicate that there exists a constant c > 0 which might depend on Ω, Γ and Γ 2 , as well as on µ, but independent of the meshsize parameter h that will be introduced in Section 3, such that A ≤ cB, (resp. A ≥ cB). We will write A B for A B A.

In the following we will deal with both scalar and vector functions in di erent Sobolev spaces de ned on di erent domains. For a scalar function ϕ de ned in a domain Ω ( Ω being either one of Ω, Γ or Γ 2 ), we denote by ϕ s, Ω the H s ( Ω) norm. For a vector function φ ∈ [H s ( Ω)] n (n either equals to d or d -1) we denote by φ s,

Ω the [H s ( Ω)] n norm. Let f ∈ [L 2 (Ω)] d and p 0 ∈ L 2 (Ω).
With the aim of taking into account the boundary conditions (2.3 -2.5), we rst introduce the standard spaces V = {v ∈ [H 1 (Ω)] d : v = 0 on Γ 1 } and M = L 2 (Ω). After multiplying equation (2.1) by v ∈ V , we obtain, using integration by parts, the following identity:

2µ Ω D(u) : D(v) dx - Γ 2 σ (u, p)n • v ds - Ω p ∇ • v dx = ρ Ω f • v dx, ∀ v ∈ V , (2.6) with σ (u, p) = -pI + 2µD(u),
where I denotes the d-dimensional identity matrix, and where we used the identity

d i, j=1 D i j (u) ∂ i ∂x j = d i, j=1 D i j (u)D i j (v),
which is a consequence of the symmetry of D(u).

By using a standard integration by parts argument, we can prove the following lemma.

Lemma 2.2. Let u ∈ [H 1 (Ω)] d (d = 2, 3), with ∇ • D(u) ∈ [L 2 (Ω)] d and with ∇ • u = 0. Then D(u)n ∈ [H -1/2 (Γ 2 )] d .
We now recall the following theorem.

Theorem 2.3. ([5, Theorem1]) For any velocity normal surface Γ ⊂ ∂Ω, the normal component of the normal traction is given by

(σ (u, p)n) • n = -(p + 2µ |u|κ),
where κ is the mean curvature of Γ. Furthermore, in the case where Γ is a planar surface, this reduces to the pressure condition (σ (u, p)n)

• n = -p.
This leads us to split the contribution of σ (u, p)n as the sum of a normal component and of a tangential component

(2.7) σ (u, p)n = ν (u, p) + τ (u, p) with ν (u, p) = ((σ (u, p)n) • n) n, τ (u, p) = σ (u, p)n -ν (u, p) = ((σ (u, p)n) • t) t,
where t is a suitably chosen unit vector, orthogonal to n. Remark that in three dimensions we have

τ (u, p) = n × (σ (u, p)n) × n.
We now observe that (2.4) implies that the planar surface Γ 2 is indeed normal to the velocity. Then, on Γ 2 σ (u, p)n takes the form

(2.8) σ (u, p)n = -pn + τ (u, p).
Using (2.5), and introducing a Lagrange multiplier θ = τ (u, p), the identity (2.6) becomes 2µ

Ω D(u) : D(v) dx - Ω p ∇ • v dx (2.9) + Γ 2 p 0 n • v ds - Γ 2 θ • v ds = ρ Ω f • v dx, ∀ v ∈ V .
As usual, multiplying equation (2.2) by q and integrating over Ω, we obtain (2.10)

Ω q ∇ • u dx = 0, ∀ q ∈ M.
In order to impose u × n = 0 on Γ 2 we start by observing that, letting u = u -(u • n)n denote the tangential component of u we have

u × n = 0 ⇔ u = 0 ⇔ u • t = 0, for all unitary vectors t with t • n = 0. We observe that u → u| Γ 2 is bijective from V → [H 1/2 00 (Γ 2 )] d , whose dual is [H -1/2 (Γ 2 )] d .
We therefore introduce the space T de ned as

T = ζ ∈ [H -1/2 (Γ 2 )] d : ζ • n = 0 .
The tangential component of u vanishes if and only if for all ζ ∈ T, we have Γ 2 u • ζ dx = 0. Consequently, we can write the problem in the following double saddle point form:

nd u ∈ V , p ∈ M, θ ∈ T such that for all v ∈ V , q ∈ M, ζ ∈ T 2µ Ω D(u) : D(v) dx - Ω p∇ • v dx - Γ 2 v • θ dx = ρ Ω f • v dx - Γ 2 p 0 n • v ds (2.11) Ω q∇ • u dx = 0 (2.12) Γ 2 u • ζ dx = 0, (2.13)
where, by abuse of notation, we indicate with the integral sign the duality relation between [H 1/2 00 (Γ 2 )] d and [H -1/2 (Γ 2 )] d (remark that such a duality reduces to the L 2 (Γ 2 ) scalar product whenever the H -1/2 function is in L 2 (Γ 2 ), which holds true in particular for functions in the spaces used in the discretization method presented later on).

We next observe that there exists an isomorphism i : [H -1/2 (Γ 2 )] d -1 → T, whose form will be speci ed for d = 2, 3 in the sequel. Letting then Λ = [H -1/2 (Γ 2 )] d -1 and introducing the bilinear form c : V × Λ → R de ned as

c (u, λ) = Γ 2 u • i(λ) dx
we can nally write our problem as follows:

Problem 2.4. Find u ∈ V , p ∈ M, λ ∈ Λ such that for all v ∈ V , q ∈ M, η ∈ Λ 2µ Ω D(u) : D(v) dx - Ω p∇ • v dx -c (v, λ) = ρ Ω f • v dx - Γ 2 p 0 n • v ds (2.14) Ω q∇ • u dx = 0 (2.15) c (u, η) = 0. (2.16)
We have the following theorem: Theorem 2.5. Problem 2.4 admits a unique solution (u, p, λ) which veri es

u 1, Ω + p 0, Ω + λ -1/2, Γ 2 f V + inf v∈V Γ 2 p 0 n • v ds v 1, Ω f 0, Ω + p 0 0, Γ 2 . Moreover, if u ∈ [C 2 (Ω)] d , p ∈ C 1 (Ω), then (u, p)
is the solution of (2.1-2.5) and λ veri es

i(λ) = τ (u, p).
Before proceeding to prove that Theorem 2.5 holds true let us give some more detail on how the bilinear form c is built in practice in two and three dimensions, by making explicit the isomorphism between T and Λ.

The two dimensional case. Let n = (n 1 , n 2 ) denote the unitary normal to Γ 2 and let t = (n 2 , -n 1 ). Any vector eld v can be written as

v = (v • n)n + (v • t)t.
Any function in T then has the form λt, with λ ∈ H -1/2 (Γ 2 ). The isomorphism i can be written as:

i(λ) = λt,
and we have

c (v, λ) = Γ 2 λt • v ds.
The three dimensional case. Letting this time n = (n 1 , n 2 , n 3 ), and assuming, to x the ideas, that n 3 1, we set

t 1 = α n 2 -n 1 0 , t 2 = α n 1 n 3 n 2 n 3 n 2 3 -1 , with α = (1 -n 2 3 ) -1/2 .
The two orthogonal unit vectors t 1 and t 2 span the tangential space to Γ 2 . The isomorphism i :

Λ → T now takes the form i(λ) = λ 1 t 1 + λ 2 t 2 .

The tangential component u vanishes if and only if for all

λ ∈ Λ c (u, λ) = Γ 2 (u • t 1 )λ 1 ds + Γ 2 (u • t 2 )λ 2 ds = 0.
Observe that, for u = (u 1 , u 2 , u 3 ) we have

u • t 1 = α (u 1 n 2 -u 2 n 1 ), u • t 2 = α[(u 1 n 3 -u 3 n 1 )n 1 + (u 2 n 3 -u 3 n 2 )n 2 ].
Then the bilinear form c : V × Λ → R can also be written as

c (u, λ) = Γ 2 (u × n) • Cλ ds, with C = α 0 n 2 0 -n 1 1 0 . 2.3.
Proof of Theorem 2.5. Following Theorem 1.1, Section II.1 of [START_REF] Brezzi | Mixed and hybrid nite element methods[END_REF], in order to prove the well posedness of our problem it is su cient to prove (1) that an inf-sup condition of the form

(2.17) inf λ∈Λ sup u∈V c (u, λ) u 1, Ω λ -1/2, Γ 2 1 holds; (2) that the problem of nding (u, p) ∈ V 0 × M such that for all (v, q) ∈ V 0 × M (2.18) a(u, p; v, q) = 2µ Ω D(u) : D(v) dx - Ω p∇ • v dx + Ω q∇ • u dx = F (v, q)
is well posed, where V 0 denotes the kernel of the bilinear form c that is

V 0 = {u ∈ V : u = 0, on Γ 2 }.
Remark that (2.18) is itself a saddle point problem, so, since by Korn inequality the bilinear form

2µ Ω D(u) : D(v) dx
is coercive on V , proving its well posedness also reduces to proving an inf-sup condition, this time of the form inf

p ∈M sup u∈V 0 Ω p∇ • u dx u 1, Ω p 0, Ω 1.
Lemma 2.6. The inf-sup condition (2.17) holds true.

Proof. In 2D this is easy. It is enough to observe that

V × n = {ηt, η ∈ H 1/2 00 (Γ 2 )} and that H 1/2 00 (Γ 2 ) is the dual of H -1/2 (Γ 2 )
. In 3D it is basically the same. We have

u • t 1 u • t 2 u • n = B u 1 u 2 u 3 with B = αn 2 -αn 1 0 αn 3 n 1 αn 2 n 3 α (n 2 3 -1) n 1 n 2 n 3
.

Remark that B is a unitary matrix, and then B -1 = B T . This immediately gives the inversion formula

u 1 u 2 u 3 = αn 2 αn 3 n 1 n 1 -αn 1 αn 2 n 3 n 2 0 α (n 2 3 -1) n 3 u • t 1 u • t 2 u • n .
We observe that the operators u → Bu and u

→ B T u are bounded from [H 1/2 00 (Ω)] 3 to [H 1/2 00 (Ω)] 3 .
Let then λ ∈ Λ. The duality between H 1/2 00 (Γ 2 ) and H -1/2 (Γ 2 ) implies the validity of the inf-sup condition

(2.19) inf λ∈Λ sup η ∈[H 1/2 00 (Γ 2 )] 2 Γ 2 λ • η ds λ -1/2, Γ 2 η [H 1/2 00 (Γ 2 )] 2 1,
We then know that there exists

η ∈ [H 1/2 00 (Γ 2 )] 2 such that Γ 2 η • λ ds η [H 1/2 00 (Γ 2 )] 2 λ -1/2, Γ 2 . Let u ∈ [H 1 (Ω)] 3 be the solution of -∆u = 0, u = 0 on Γ 1 , u = B T η 1 η 2 0 on Γ 2 .
We have

u 1, Ω u 1/2, Γ u [H 1/2 00 (Γ 2 )] 3 Bu [H 1/2 00 (Γ 2 )] 3 = η [H 1/2 00 (Γ 2 )] 2 . Moreover we have c (u, λ) = Γ 2 (u • t 1 )λ 1 ds + Γ 2 (u • t 2 )λ 2 ds = Γ 2 η • λ ds. Then c (u, λ) u 1, Ω Γ 2 η • λ ds η [H 1/2 00 (Γ 2 )] 2 λ -1/2, Γ 2 .
Lemma 2.7. We have

inf p ∈M sup u∈V 0 Ω p∇ • u dx u 1, Ω p 0, Ω 1.
Proof. Let p = p 0 + p ∈ M, with p 0 with zero average and p constant. We let

u 0 ∈ [H 1 0 (Ω)] d be such that Ω p 0 ∇ • u 0 dx ≥ p 0 2 0, Ω , u 0 1, Ω p 0 0, Ω .
Such a function exists in view of the inf-sup condition for the continuous Stokes problem with Dirichlet boundary conditions. Let ū ∈ [H 2 (Ω)] d be a xed harmonic function with

ū = 0 on Γ 1 , ū × n = 0 on Γ 2 , Γ 2 ū • n ds = 1.
Note that the H 2 regularity of the function ū is not mandatory here, but it will be subsequently needed in the proof of Lemma 3.5. We control p with u = u 0 + t p ū, where t > 0 is a parameter to be chosen later. We have

Ω (p 0 + p)∇ • (u 0 + t p ū) dx = Ω p 0 ∇ • u 0 dx + t p Ω p 0 ∇ • ū dx + t p2 Ω ∇ • ū dx = Ω p 0 ∇ • u 0 dx + t p Ω p 0 ∇ • ū dx + t p2 Γ 2 ū • n ds ≥ p 0 2 0, Ω -β 0 t | p| p 0 0, Ω + t p2 ≥ p 0 2 0, Ω + t p2 -β 0 t 1 2ε p 0 2 0, Ω -β 0 t ε 2 p2 ,
where β 0 > 0 is a xed constant only depending on ū. We now choose ε in such a way that

β 1 = 1 -β 0 ε/2 > 0.
Once ε is chosen we choose t > 0 in such a way that β 2 = 1 -β 0 t/(2ε) > 0. We then obtain

Ω (p 0 + p)∇ • (u 0 + t p ū) dx ≥ β 2 p 0 2 0, Ω + t β 1 p2 p 2 0, Ω .
Observing that u 1, Ω p 0, Ω we get the desired inf-sup condition.

The proof of Theorem 2.5 now follows easily. Existence, uniqueness and stability are simply a consequence of Theorem 1.1, [START_REF] Brezzi | Mixed and hybrid nite element methods[END_REF] (Section II.1). If u and p are su ciently smooth, by a classical argument we obtain (2.1-2.5) almost everywhere by using suitable test functions, and repeating the integration by parts process backwards.

Remark 2.8. It is clear that the Lagrange multiplier formulation described in Problem 2.4 is less straightforward to use in practice, since it introduces supplementary unknowns that increase the complexity of the numerical solution. Nevertheless, this novel formulation allows for pressure boundary conditions with L 2 regularity on the boundary. This result was believed possible but was not covered by the analysis in [START_REF] Bernardi | Finite element discretization of the Stokes and Navier-Stokes equations with boundary conditions on the pressure[END_REF], as explained in the discussion of Sec. 6. Moreover, while the previous treatment of the Laplacian expressed by a rotational formulation required more regularity on the pressure and a velocity eld with smooth curl and div components [START_REF] Conca | The Stokes and Navier-Stokes equations with boundary conditions involving the pressure[END_REF][START_REF] Girault | Curl-conforming nite element methods for navier-stokes equations with non-standard boundary conditions in âĎIJ3[END_REF][START_REF] Bernardi | Finite element discretization of the Stokes and Navier-Stokes equations with boundary conditions on the pressure[END_REF], Theorem 2.5 proves the existence of a solution to the Stokes problem (2.1-2.5) in the same H 1 × L 2 functional spaces as for standard boundary conditions.

D

We turn now to the discretization of Problem 2.4. Throughout this section we will consider the more challenging three dimensional case, and leave the easier two dimensional case to the reader. We start by introducing a compatible tessellation T h of the domain Ω in tetrahedral or hexahedral elements. We assume that the tessellation T h is shape regular and quasi uniform, and that it is compatible with the splitting of ∂Ω into Γ 1 ∪ Γ 2 , and, more precisely, that, given any element K ∈ T h with K ∩ Γ ∅ we either have K ∩ Γ ⊂ Γ1 or K ∩ Γ ⊂ Γ2 , so that T h induces a proper compatible decomposition of Γ 2 . On T h , we introduce piecewise polynomial spaces V h ⊆ V , Q h ⊂ M, respectively approximating velocity and pressure, and we assume that such spaces satisfy the standard inf-sup condition (3.1) inf

p h ∈Q 0 h sup u h ∈V h ∩[H 1 0 (Ω)] 3 Ω p h ∇ • u h dx u h 1, Ω p h 0, Ω 1. 
(where

Q 0 h = q h ∈ Q h : Ω q h = 0 )
, so that they provide a stable discretization of the Stokes problem with standard Dirichlet boundary conditions. 3 where W h is itself a nite element space on the two-dimensional mesh T Γ 2 h induced on Γ 2 by the three-dimensional tessellation T h . Remark (see the de nition of the space V ) that the functions in W h satisfy homogeneous boundary conditions on ∂Γ 2 . We then let Λ h = [W h ] 2 . We consider the following discrete problem:

We now observe that

V h | Γ 2 = [W h ]
Problem 3.1. Find u h ∈ V h , p h ∈ Q h , λ h ∈ Λ h such that for all v h ∈ V h , q h ∈ Q h , η h ∈ Λ h 2µ Ω D(u h ) : D(v h ) dx - Ω p h ∇ • v h dx -c (v h , λ h ) = ρ Ω f • v h dx - Γ 2 p 0 n • v h ds, (3.2) Ω q h ∇ • u h dx = 0, (3.3) c (u h , η h ) = 0. (3.4)
The following Theorem holds: Theorem 3.2. There exists h 0 such that, if h ≤ h 0 , Problem 3.1 admits a unique solution (u h , p h , λ h ) which veri es

u h 1, Ω + p h 0, Ω + λ h -1/2, Γ 2 f 0, Ω + p 0 0, Γ 2 .
Moreover the following error estimate holds:

u -u h 1, Ω + p -p h 0, Ω inf v h ∈V 0 h u -v h 1, Ω + inf q h ∈Q h q -q h 0, Ω , where V 0 h = {u h ∈ V h : c (u h , λ h ) = 0, ∀λ h ∈ Λ h } .
Once again, as in the continuous case, the proof of Theorem 3.2 will reduce to prove two inf-sup conditions. We will then start by proving the equivalent of Lemmas 2.6 and 2.7.

Lemma 3.3. It holds that (3.5) inf λ h ∈Λ h sup u h ∈V h c (u h , λ h ) λ h -1/2, Γ 2 u h 1, Ω 1.
Proof. The key observation that allows us to prove this is that

(3.6) B T [W h ] 3 ⊆ [W h ] 3 , B[W h ] 3 ⊆ [W h ] 3 .
We next observe that we have

(3.7) inf λ h ∈Λ h sup η h ∈Λ h Γ 2 λ h • η h ds λ h -1/2, Γ 2 η h [H 1/2 00 (Γ 2 )] 2 1.
We can prove (3.7) by using Proposition 2.8, Section II.2 in [START_REF] Brezzi | Mixed and hybrid nite element methods[END_REF]. Adapted to our case, this states that if the infsup condition at the continuous level (in our case (2.19)) holds true, a su cient condition for the validity of the discrete inf-sup condition (3.7) is the existence of a projector

Π h : [H 1/2 00 (Γ 2 )] 2 → Λ h verifying Π h (η) [H 1/2 00 (Γ 2 )] 2 η [H 1/2 00 (Γ 2 )] 2 ,
and

Γ 2 (η -Π h (η)) • λ h = 0 ∀λ h ∈ Λ h .
We take

Π h as the [L 2 (Γ 2 )] 2 projection onto Λ h ⊂ [H 1 0 (Γ 2 )] 2 . The quasi-uniformity of the tessellation T Γ 2 h implies that Π h bounded in [H 1 0 (Γ 2 )
] 2 (this can be proven by using a global inverse inequality [START_REF] Bank | An optimal order process for solving nite element equations[END_REF]) and, by space interpolation, in [H 1/2 00 (Γ 2 )] 2 :

Π h η [H 1/2 00 (Γ 2 )] η [H 1/2 00 (Γ 2 )]
. All the assumptions of the above mentioned Proposition are then satis ed, yielding (3.7). Consequently, for any given λ h ∈ Λ h there exists a η h ∈ Λ h such that

Γ 2 λ h • η h ds η h [H 1/2 00 (Γ 2 )] 2 λ h -1/2, Γ 2 .
We build u h ∈ V h as the solution to

Ω ∇u h : ∇v h dx = 0 ∀v h ∈ V h ∩ [H 1 0 (Ω)] 3 , u h = 0 on Γ 1 , u h = B T η h,1 η h,2 0 on Γ 2 .
This equation has a well de ned solution since the function which vanishes on Γ 1 and assumes the value

B T [η h,1 , η h,2 , 0] T belongs to V h | Γ . We observe that u h 1, Ω u h 1/2, Γ .
From here the proof is identical to the proof of Lemma 2.6.

Lemma 3.4.

There exists h 0 such that, if h ≤ h 0 it holds that (3.8) inf

q h ∈Q h sup u h ∈V 0 h Ω q h ∇ • u h ds u h 1, Ω q h 0, Ω 1.
Proof. In order to prove (3.8) we follow the same reasoning as in the continuous case. Letting p h ∈ Q h , we split it as p h = p 0 h + p with p 0 h ∈ Q 0 h and p constant. The standard inf-sup condition (3.1) implies the existence of a

u 0 h ∈ V h ∩ [H 1 0 (Ω)] 3 (⊂ V 0 h ), with u 0 h 1, Ω p 0 h 0, Ω such that Ω p 0 h ∇ • u 0 h dx ≥ p 0 h 2 0, Ω .
We then build a function ūh ∈ V 0 h such that (3.9) ūh 1, Ω 1 and

Ω ∇ • ūh dx = 1.
In order to do so, we let ηh

∈ V h | Γ 2 ∩ [H 1 0 (Γ 2 )] 3 denote the L 2 (Γ 2 ) orthogonal projection of ū| Γ 2 (
where ū is the function introduced in the proof of Lemma 2.7), and we let ûh ∈ V h denote the solution of

Ω ∇( ûh ) : ∇(v h ) = 0, ∀v h ∈ V h ∩ [H 1 0 (Ω)] 3 , ûh = ηh on Γ 2 , ûh = 0 on Γ 1 .
It is not di cult to check that ûh ∈ V 0 h . In fact we have, for

λ h ∈ Λ h : c ( ûh , λ h ) = Γ 2 ( ûh • t 1 )λ h,1 + ( ûh • t 2 )λ h,2 ds = Γ 2 ζ h,1 λ h,1 + ζ h,2 λ h,2 ds,
where ζ h = Bη h . By the linearity of the L 2 (Γ 2 ) projection operator and since B is a constant matrix, we have that

ζ h is the [L 2 (Γ 2 )] 3 projection of ζ = B ū, which implies c ( ûh , λ h ) = Γ 2 ζ h,1 λ h,1 + ζ h,2 λ h,2 ds = Γ 2 ζ 1 λ h,1 + ζ 2 λ h,2 ds = Γ 2 ( ū • t 1 )λ h,1 + ( ū • t 2 )λ h,2 ds = 0.
Moreover we have the following Lemma.

Lemma 3.5. There exists h 0 such that for all h ≤ h 0 we have

ûh 1, Ω ū 1, Ω , Γ 2 ûh • n ds 1.
Then the function ūh = ûh (

Γ 2 ûh • n ds) -1 ,
satis es (3.9). We control p h with u h = u 0 h + t p ūh . We have

Ω (p 0 h + p)∇ • (u 0 h + t p ūh ) dx = Ω p 0 h ∇ • u 0 h dx + t p Ω p 0 h ∇ • ūh dx + t p2 Ω ∇ • ūh dx = Ω p 0 h ∇ • u 0 h dx + t p Ω p 0 h ∇ • ūh dx + t p2 Γ 2 ūh • n ds ≥ p 0 h 2 0, Ω -γ 0 t | p| p 0 h 0, Ω + t p2 ≥ p 0 h 2 0, Ω + t p2 -γ 0 t 1 2ε p 0 h 2 0, Ω -γ 0 t ε 2 p2
.

We now choose ε in such a way that γ 1 = 1 -γ 0 ε/2 > 0. Once ε is chosen we choose t > 0 in such a way that γ 2 = 1 -γ 1 t/(2ε) > 0. We then obtain

Ω (p 0 h + p)∇ • (u 0 h + t p ūh ) dx ≥ γ 2 p 0 h 2 0, Ω + tγ 1 p2 p h 2 0, Ω . ûh • n ds = Γ ū • n ds - Γ ( ū -ûh ) • n ds = 1 -I .
On the one hand:

1 -I 1 + |I | 1 + ū -ûh 0, Γ ≤ 1 + Ch 3/2 ū 2, Ω .
Once again, since ū 2, Ω is a xed number we can introduce the constant

β = 1 ū 2, Ω ,
and we can write

Γ ûh • n ds ≤ (1 + Chβ ) 1.
As far as the lower bound is concerned we have:

Γ ûh • n ds ≥ (1 -Chβ ).
Choosing h ≤ h 2 with h 2 such that Ch 2 β < 1/2 we get the thesis for h 0 = min{h 1 , h 2 }.

Proof of Theorem 3.2. The validity of the two inf-sup conditions (3.5) and (3.8) implies the existence, uniqueness and stability part of Theorem 3.2.

In order to derive an error estimate we start by observing that we have V 0 h ⊂ V 0 . In fact assuming that c (u h , λ h ) = 0, ∀λ h ∈ Λ h and taking

λ h = (λ h,1 , λ h,2 ) with λ h,1 = u h • t 1 ∈ W h and λ h,2 = u h • t 2 ∈ W h , we obtain Γ 2 |u h • t 1 | 2 + |u h • t 2 | 2 ds = 0 ⇒ u h ∈ V 0 .
By applying Proposition 2.4, Chapter 2 in [START_REF] Brezzi | Mixed and hybrid nite element methods[END_REF], and in particular the estimate (2.12) we have

u -u h 1, Ω + p -p h 0, Ω inf v h ∈V 0 h u -v h 1, Ω + inf q h ∈Q h q -q h 0, Ω .
Remark 3.6. Remark that there is no reason why the multiplier i(λ) = τ (u, p) should vanish at the boundary of Γ 2 . Therefore, the proposed discretization cannot, in general, yield an optimal approximation of the Lagrange multiplier. Nevertheless, since V 0 h ⊂ V 0 , the approximation properties for the Lagrange multiplier do not enter the error estimate in Theorem 3.2, and we get an optimal error estimate for both velocity and pressure (see e.g. (4.2)).

Remark 3.7. Throughout Sections 2 and 3 we assumed that Γ 2 was a at surface (or, more precisely, we assumed that n was constant on the connected components of Γ 2 ). Let us consider two cases in which this assumption is not satis ed. If a connected component of Γ 2 is the union of two (or more) at subregions sharing a vertex (in 2D) or an edge (in 3D), we observe that, at the continuous level, if n 1 and n 2 are constant unit normals to the two subregions with direction chosen in such a way that on the common vertex or edge we have u = |u|n 1 = |u|n 2 , if n 1 n 2 then u = 0, so that the solution vanishes at the interface between the two subregions. At the discrete level one needs then to strongly force the velocity to vanish on such interface. Once this is done, the analysis presented above remains valid.

If, on the other hand, Γ 2 is a curved surface, the situation is more complex. Let us rst consider the continuous problem. Theorem Things are more complex when it comes to discretizing Problem 2.4. In fact, the two inclusions in (3.6) do not generally hold for curved boundaries. In addition, if the normal to the discrete boundary has jumps (which would automatically happen when approximating a curved boundary with a nite element mesh), we do not even have

B(W h ) 3 ⊆ [H 1/2 00 (Ω)] 3 .
The whole method would then be non conforming. Remark that we might also need to resort to a non conforming discretization if we drop the requirement that the tessellation T h is compatible with the splitting of ∂Ω into Γ 1 ∪ Γ 2 .

4. S 4.1. Discretization and algebraic solution. We now turn to the solution strategy. We consider T h to be a tetrahedral mesh and we use Taylor-Hood elements, that is, for some k ≥ 2 we set:

V h = {u ∈ [C 0 (Ω)] 3 : ∀K ∈ T h u| K ∈ [P k (K )] 3 }, Q h = {p ∈ C 0 (Ω) : ∀K ∈ T h p| K ∈ P k-1 (K )}.
It is well known that such elements satisfy the inf-sup condition (3.1), see for instance [START_REF] Brezzi | Mixed and hybrid nite element methods[END_REF]. Moreover for all v ∈ [H s (Ω)] 3 , 1 ≤ s ≤ k + 1, and for all q ∈ H t (Ω), 0 ≤ t ≤ k we have (4.1) inf

v h ∈V h v -v h 1, Ω h s-1 v s, Ω , inf q h ∈Q h q -q h 0, Ω h t q t, Ω .
Thanks to the planarity of the connected components of Γ 2 , for v with v = 0, the in mum in the rst bound of (4.1) can be taken over the smaller space V 0 h without changing the right hand side. Then, thanks to Theorem 3.2, if the solution to Problem 2.4 satis es u ∈ [H k+1 (Ω)] 3 and p ∈ H k (Ω), we have

(4.2) u -u h 1, Ω + p -p h 0, Ω h k ( u k+1, Ω + p k, Ω ).
We thus expect optimal convergence rates provided the solution has su cient regularity. If this is not the case (as for instance in the case of a Stokes problem with mixed boundary conditions in a nonsmooth domain [START_REF] Orlt | Regularity of viscous Navier-Stokes ows in nonsmooth domains, Boundary value problems and integral equations in nonsmooth domains[END_REF]), we could think of enriching the polynomial approximation spaces we previously used with non-smooth functions in order to deal with the singularities, in the spirit of the XFEM methodology [START_REF] Fries | The extended/generalized nite element method: An overview of the method and its applications[END_REF]. We believe that the theoretical abstract framework we developed could be easily adapted to such a class of methods.

Let us now consider the corresponding algebraic representation; it reads:

(4.3) A D T E T D 0 0 E 0 0 U P Λ = F 0 0
where A corresponds to the velocity terms, E and E T the coupling terms between the Lagrange multipliers and the velocity and D, D T the coupling terms between velocity and pressure. U , P, Λ are respectively the algebraic representation of u, p, λ. , we follow the framework proposed in [START_REF] Elman | Finite elements and fast iterative solvers: with applications in incompressible uid dynamics[END_REF] to develop an e cient preconditioner. To apply this framework, we remark that (4.3) can be seen as a double saddle point problem: we gather either the velocity-pressure unknowns and or the velocity-Lagrange multiplier unknowns to setup a two level preconditioner.

Remark 4.1. As mentioned before, it is clear that the Lagrange multiplier formulation described in Problem 2.4 is less straightforward to implement in practice: the main di culty comes from the double saddle point structure of the problem, that cannot be handled only by a direct use of a Stokes or Navier-Stokes code as a black box. Nevertheless, having a exible and powerful computational framework which enables advanced numerical methods as described hereafter, this formulation does have several advantages: (i) optimal a priori estimates are available in the natural norms for the problem (ii) no stabilization is being required and hence the formulation requires no tuning parameters as in [START_REF] Bernardi | Finite element discretization of the Stokes and Navier-Stokes equations with boundary conditions on the pressure[END_REF] and (iii) the coupling between the velocity and the Lagrange multiplier λ occurs only on Γ 2 and hence has little impact on the problem size. 4.2. Computational framework. The analysis hereafter is developed in the framework of the Finite Element Embedded Library in C++ (Feel++). Feel++ allows to use a very wide range of Galerkin methods and advanced numerical techniques such as domain decomposition (including mortar and three elds methods), ctitious domain or certi ed reduced basis. The ingredients include a very expressive embedded language, seamless interpolation, mesh adaption and seamless parallelization. It has been used in various contexts including the development and/or numerical veri cation of (new) mathematical methods or the development of large multi-physics applications [START_REF] Caldini Queiros | Towards large-scale three-dimensional blood ow simulations in realistic geometries[END_REF][START_REF] Chabannes | Hemodynamic simulations in the cerebral venous network: A study on the in uence of di erent modeling assumptions[END_REF]. The range of users spans from mechanical engineers in industry, physicists in complex uids, computer scientists in biomedical applications to applied mathematicians thanks to the shared common mathematical embedded language hiding linear algebra and computer science complexities.

Feel++ provides a mathematical kernel for solving partial di erential equation using arbitrary order Galerkin methods ( , , , , ) in 1 , 2 , 3 and on manifolds using simplices and hypercubes meshes [START_REF] Prud'homme | Feel++: A Computational Framework for Galerkin Methods and Advanced Numerical Methods[END_REF] : (i) a polynomial library allowing for a wide range polynomial expansions including H div and H curl elements, (ii) a light interface to B .UB , E 3 and PETS [START_REF] Balay | PETSc users manual[END_REF]/SLEP as well as a scalable in-house solution strategy (iii) a language for Galerkin methods starting with fundamental concepts such as function spaces, forms, operators, functionals and integrals, (iv) a framework that allows user codes to scale seamlessly from single core computation to thousands of cores and enables hybrid computing.

Regarding the speci c implementation with Feel++ of the proposed methodology, we would like to point out some non-standard aspects, namely the treatment of the terms associated to the Lagrange multipliers. Feel++ provides a mechanism to extract submeshes of faces and keep a relation between the extracted mesh and the parent mesh. The relation is necessary to ensure an e cient treatment of the coupling terms between the velocity and the Lagrange multipliers. The geometrical data, i.e the normals, are automatically deduced from the parent mesh.

Regarding the implementation of the three strategies described in 4.1, we use the PETS interface developed in Feel++ and in particular we use the FieldSplit preconditioning framework to implement the block preconditioners strategies.

N

In this section we evaluate the performances of the method proposed in Section 2.2 and Section 3 when solving two types of problems. First, we construct a manufactured solution in a simple three-dimensional domain and we assess the convergence properties of the method for di erent choices of nite elements, by performing a standard mesh re nement study. In addition, we investigate the particular case of a Stokes ow in a tube with Γ 2 aligned to an axis and explore the capabilities of the method when applied in a case when Γ 2 is curved. Second, we implement this new approach in a complex application, namely to compute the solution to a three-dimensional computational model of the cerebral venous blood ow that we described in Section 2.1.

Problem 1: Stokes ow in a curved tube. We start by checking numerically the convergence properties of the method by means of a comparison with an analytical solution on a curved geometry, namely a torus sector with square cross-section.

The geometry is built as follows: (i) we consider a disk D with inner radius r 1 and outer radius r 2 then (ii) we extract a section S of angle θ = α 2 -α 1 such that at least one of the boundary is not aligned with one of the axis, e.g. π 3 , π 6 and nally (iii) we extrude in the z direction to obtain Ω such that the cross-section is a square of side length R = r 2 -r 1 . We display in Figure 2 an example of geometry with r 1 = 1.9 and r 2 = 2.1, θ = π 6 and R = 0.2: Γ 1 corresponds to the lateral boundary and Γ 2 corresponds to the square surfaces at the extremities of the torus, as shown in Figure 2. The analytical solution is computed according to the following steps: (i) we rst consider the Stokes equations on the section S as in (2.1 -2.5) (ii) we next analytically solve in polar coordinates (r, θ ) the mass and momentum equations with given boundary conditions and nally (iii) the above solution is extruded in the z direction and we impose the exact solution on upper and lower sides in z. Note that we are not exactly in the case of Equations (2.1 -2.5), since the velocity is non-zero on the lower and upper sides in the z direction. However, this can be dealt with in a standard way by means of a suitable lifting as explained for instance in [14, Section 3.2.2] without impacting the theory.

The explicit expressions for the exact solution, in the case where the angle α 2 corresponds to the in ow section and the angle α 1 corresponds to the out ow section respectively, can be therefore written as follows:

p ex (r , θ, z) = p in (θ -α 1 ) + p out (α 2 -θ ) α 2 -α 1 , (5.1) u ex (r , θ, z) = [0, p in -p out α 2 -α 1 ( 1 2 r ln(r ) + C 1 r + Dr ), 0] T , (5.2) 
where

C = 1 2 r 2 1 r 2 2 ln(r 1 ) -ln(r 2 ) r 2 1 -r 2 2 , D = - 1 2 r 2 1 ln(r 1 ) -r 2 2 ln(r 2 ) r 2 1 -r 2 2 .
The results presented in the sequel are obtained for µ = 1, when imposing p in = 10 at in ow and p out = 1 at out ow (we use adimensional units). Figure 3 displays velocity and pressure solution pro les in the torus geometry for θ = π 6 , showing a Poiseuille-like pro le for the velocity and a constant pressure eld on each cross-section, correctly enforced at both in ow and out ow section. Figure 4 displays the order of the spatial discretization error as a function of the mesh size h for θ = π 6 on the 3D torus geometry described above. The convergence rates expected by (4.2) are obtained.

Figure 5 plots the velocity and pressure errors with respect to (i) the number of non-zero entries (nnz) in the matrix associated to the discretization of problem 2.5 (ii) the number of velocity and pressure unknowns and (iii) the number of Lagrange multiplier unknowns. It gives some insight into the error versus memory/computational cost of the methodology proposed and the chosen approximation parameters. We recall that (i) the Lagrange multipliers have little impact on the problem size size, since they are de ned only on Γ 2 hence dimΛ h << {dimV h , dimQ h } and (ii) the Lagrange multipliers do not play any role in the a priori error estimates (4.2). Stokes ow in a tube with Γ 2 aligned to an axis. In the case where Γ 2 is aligned to an axis, there is no need to use the Lagrange multiplier formulation. Indeed, it su ces to set to 0 the tangential components of u which correspond to the components orthogonal to the axis Γ 2 is aligned to. For example, if Γ 2 is aligned to the X axis, the Y and Z components of u are set to 0 strongly. Note however that the pressure is still imposed weakly, p ∈ L 2 (Ω). As a comparison, Figure 6 illustrates a Poiseuille ow in a rectangular domain with the classical do nothing condition at the out ow (left panel) and with the boundary conditions set as above (right panel).

Stokes ow in a tube with curved Γ 2 . As discussed in Section 3, at the continuous level, the natural boundary condition applied on a curved boundary takes the form p + 2µ |u|κ = p 0 , on Γ 2 . Consequently, it is not the pressure per se that is imposed: a Robin-like condition appears in the formulation, in which the curvature of Γ 2 plays a role. In order to investigate the in uence of the curvature, we performed a series of two-dimensional numerical tests in a domain Ω constructed as before: we consider a disk D with inner radius r 1 and outer radius r 2 , then we extract a section S of angle θ = π 12 , π 6 , π 3 , 2π 3 . The non-standard boundary condition is not applied on the straight part of the boundary anymore, but on the curved inner part p in = 10 and outer part p out = 1, respectively, together with the rest of the previously described boundary conditions. Results for the di erent angles are presented in Figure 7: velocity in the right panel and pressure in the left panel, for θ = π 12 , π 6 , π 3 and 2π 3 , respectively. Interestingly, although the stability and convergence results obtained in Section 3 do not apply in this case, as discussed in Remark 3.7, we still get promising results when applying our method. The velocity pro le qualitatively shows a Poiseuille-like pro le and no tangential ow on the curved boundaries, in a coherent manner with the imposed condition. The pressure eld displays decreasing values, as expected, and show the increasing impact of the curvature term. Further theoretical and numerical investigations are therefore needed in order to adapt the method and we plan at developing this encouraging preliminary study in a forthcoming work.

Problem 2: physiological ow in a realistic geometry. We now consider a more realistic context, an application to hemodynamics, which complements a previous work we developed in [START_REF] Chabannes | Hemodynamic simulations in the cerebral venous network: A study on the in uence of di erent modeling assumptions[END_REF] on blood ow computational modeling in the cerebral venous network. We use medical images from the project and we use the A TK platform [START_REF]Angiotk project[END_REF] to construct ve di erent levels of re nement of the computational mesh generated from the MRI images. The characteristics of the meshes {M i } 4 i=0 are described in Table 1, together with the number of degrees of freedom of the problem when using a stable P 2 P 1 Taylor-Hood spatial discretization. Meshes of the cerebral venous network: h min , h max , h a er a e are respectively the minimum, maximum and average edge length in the meshes, N elt is the number of tetrahedra and N dof is the number of degrees of freedom for velocity and pressure.

We consider blood to be a Newtonian uid with dynamic viscosity µ = 3.4815 • 10 -3 [Pa • s] and an external force f = 0. Pressure drop values reported in the clinical literature are quite scarce and it is currently di cult to nd precise gures; the following values extracted from a recent study [START_REF] Gadda | A new hemodynamic model for the study of cerebral venous out ow[END_REF] were used as guidelines: P s (pressure in the venous sinuses) = 6 mmHg, P jl 3 (pressure in the upper segment of the left jugular vein) = 5.85 mmHg, P jr 3 (pressure in the upper segment of the right jugular vein) = 5.85 mmHg. Consequently, we impose the following boundary conditions when solving the Stokes system: (i) p = 6.75 mmHg on the inlet sections connected to the superior sagittal sinus; (ii) p = 6.58 mmHg on the inlet sections connected to the straight sinus; (iii) p = 5.85 mmHg on the right outlet sections and p = 6.14 mmHg on the left outlet, together with the condition of no tangential ow on these boundaries; and (iv) u = 0 on the lateral walls.

Figure 8 displays the pressure eld (left panel) and instantaneous streamlines, colored with velocity magnitude (right panel), illustrating the pressure drop e ect and a complicated three-dimensional ow behavior. A zoom on some inlet, respectively outlet sections is presented in Figure 9, demonstrating that the ow is normal to both in ow and out ow surfaces. We highlight the interest of imposing the pressure value and the zero tangential component of the velocity in this context: the current formulation allows to retrieve a Poiseuille-like behavior that is physically meaningful when dealing with arti cial boundary conditions, while keeping the viscous stress tensor in the expression of the Stokes problem, useful from a modeling standpoint. The order of magnitude of the maximum velocity is slightly higher than values retrieved in the clinical literature, see for instance [START_REF] Schaller | Physiology of cerebral venous blood ow: from experimental data in animals to normal function in humans[END_REF], therefore more precise values need to be included in further work. However, the development of a computational model able to capture, to this level of accuracy, di erent features of the ow can be seen as a very promising approach for analyzing, by means of numerical simulations, the dynamics of ow patterns in morphologically complex vascular districts.

The results of the mesh convergence study are displayed in Table 2, showing satisfactory agreement on ow rates and mean pressure value when decreasing the mesh size. Note that an asymmetric behavior of the venous ow appears, equally showed in [START_REF] Miraucourt | Blood ow in the cerebral venous system: modeling and simulation[END_REF], that could be explained, at least partly, by the asymmetric architecture of the venous network. Finally, to give an insight about the importance of the preconditioning strategy when solving complex ow problems, we gather in Table 3 results allowing a direct comparison between three possible choices in term of be attained for standard inf-sup stable nite element spaces, such as Taylor-Hood elements. Di erent algebraic solution strategies are proposed including block factorization based preconditioners. Finally, two numerical experiments are performed: the rst one numerically illustrates the converge properties of the method and the second one shows the interest of the proposed formulation in a realistic application, namely blood ow modeling of the cerebral vascular network.

The current methodology should be further developed, in particular by (i) devising an adapted discretization strategy for the case of a curved boundary, in order to overcome the di culties brie y discussed in Section 3; (ii) improving linear solvers scalability by means of well-suited block-preconditioning strategies in the spirit of [START_REF] Elman | Finite elements and fast iterative solvers: with applications in incompressible uid dynamics[END_REF]; (iii) extending the present analysis to the incompressible Navier-Stokes equations and to Generalized non-Newtonian models in the context of blood ow modeling described in [START_REF] Formaggia | Cardiovascular mathematics, volume 1 of ms&a. modeling, simulation and applications[END_REF]Chap. 6]. Furthermore, an exploration of the close connection between Lagrange multipliers technique and a classical method by Nitsche as suggested in [START_REF] Stenberg | On some techniques for approximating boundary conditions in the nite element method[END_REF] provides a promising perspective of the present work.

Finally, simulating blood ow in the cerebral venous network when subject to a physiological pressure gradient gave relevant and interesting results. In view of these ndings and targeting the validation of the results with respect to experiments, we aim at including more data at di erent levels: (i) geometrical description of the network; (ii) mechanical parameters; (iii) more precise measures at the in ow/out ow boundaries, as predominant factors pointed out in [START_REF] Chabannes | Hemodynamic simulations in the cerebral venous network: A study on the in uence of di erent modeling assumptions[END_REF]. 
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  2.3 does not yield (σ (u, p)n) • n = -p. Though the splitting (2.7) still holds, it does not reduce to (2.8) anymore. The natural boundary condition implicit in equation (2.14) is not (2.5), but rather (3.10) p + 2µ |u|κ = p 0 , on Γ 2 .

	Nevertheless, Problem 2.4 is still well posed, and Theorem 2.5 still holds, provided equation (2.5) is replaced by
	equation (3.10).

  To solve (4.3), we consider three strategies: (i) Strategy P GASM couples monolithically a Krylov iterative solver with an additive Schwarz preconditioner and (ii) Strategy P B

		1	and Strategy P B 2
	couple a Krylov iterative solver with a block preconditioning strategy.
	Regarding strategies P B 1	and P B 2

  Mesh re nement e ect: FlowRate0 and FlowRate1 correspond to the ow rate on each outlet section, MeanPressure is evaluated on the whole mesh.

				3.18926 • 10 -6	6.51364
		1	4.27849 • 10 -6	3.20839 • 10 -6	6.51337
		2	4.29280 • 10 -6	3.21806 • 10 -6	6.51328
		3	4.31223 • 10 -6	3.23130 • 10 -6	6.51314
		4	4.31968 • 10 -6	3.23678 • 10 -6	6.51309
	T	2.		

[H 1/2 00 (Γ 2 )]

≥ 1 2 ū 2 [H 1/2 00 (Γ 2 )] 3 .As far as the second part of our statement is concerned, we have Γ

Proof of Lemma 3.5. By a standard reasoning it is possible to show that the L 2 (Γ 2 ) projection onto

On the other hand, by triangular inequality we have: 3 . We now recall that ū was chosen in [H 2 (Ω)] 3 . This allows us to write

Since ū is a xed function, chosen once for all, ū 3/2, Γ 2 and ū [H 1/2 00 (Γ 2 )] 3 are two xed numbers, essentially depending on Ω and Γ 2 , and their ratio the number of iterations grows strongly with respect to the problem size. Further re nements regarding the di erent choices are required and will be subject of future research.

C

The objective of the present work is to propose a novel formulation for the Stokes problem with non standard boundary conditions prescribing pressure values, together with the condition of no tangential ow, on a part of the boundary. The variational problem, based on a Lagrange multiplier formulation, is shown to be well-posed in the same functional framework as for standard boundary conditions. Moreover, under suitable regularity assumptions, we prove that a strong solution to the initial Stokes problem can be retrieved thanks to this formulation. Next, we consider nite element discretizations, that we analyze, proving that optimal convergence rates can