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�BigStat� for Big Data

�Big Data 
lustering through the BigStat SaaS platform�

Christophe Bierna
ki

∗

University of Lille & CNRS & Inria, Fran
e

Abstra
t

BigStat is a web platform devoted to 
lustering of big data sets through

two hosted software, MixtComp and Blo
kCluster. The former adress

mixed, missing and un
ertain data in a moderate dimensional setting,

whereas the latter is devoted to high dimensional data sets with non-

mixed, non-missing and non-un
ertain data. Mathemati
al foundations

of both rely on mixture models and related algorithms.

Keywords. Model-based 
lustering, mixed and missing data, high dimen-

sion, SaaS platform.

1 Introdu
tion

1.1 Big Data: IT genesis

The Big Data phenomenon mainly originates in the in
rease of 
omputer and

digital resour
es at an ever lower 
ost. Indeed, the storage 
ost by Mb (Mega

bytes, 106 bytes) rose from 700$ in 1981 to 1$ in 1994 then to 0.01$ in 2013

1

(the pri
e has been divided by 70,000 in thirty years) whereas hard drives of

8 Tb (Tera bytes, 1012 bytes) storage 
apa
ity are now easily available, to be


ompared to 1.02 Gb (Giga bytes, 109 bytes) storage 
apa
ity in 1982

2

(storage


apa
ity multiplied by 8,000 on the same period). Simultaneously, the pro
ess-

ing speed of the existing most powerful 
omputer starts from one gigaFLOPS

(a FLOPS 
orresponds to the FLoating-point Operations Per Se
ond) in 1985

to rea
h 33 petaFLOPS in 2013

3

(speed multiplied by 33 million). It leads to

the so-
alled storage 
hallenge, whi
h is the �IT side� of Big Data gathering the

storage, the transfer, the preservation and the availability of data.

One should be aware that any human a
tivities are impa
ted by su
h a digital

data a

umulation: trade and business (
ompanies information systems, banks,

booking systems. . . ), governments and other organizations (laws and other reg-

ulations, standardization rules. . . ), entertainment (musi
, video, games, so
ial

networks. . . ), fundamental s
ien
es (astronomy, physi
s, power, genomi
s. . . ),

∗
Christophe.Bierna
ki�math.univ-lille1.fr
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health (medi
al �le. . . ), environment (
limat, pollution, alimentation. . . ), hu-

manities and so
ial s
ien
es (knowledge digitization, literature, history, art, ar-


hite
ture, ar
haeologi
al data. . . ). Finally, the whole human so
iety 
onverges

towards a so-
alled numeri
al world, so that in 2007 more that 94% of stored

information was available in its digital form (the 6% remaining being available

in its analogi
al form), to be 
ompared again to only 1% in 1986 [Hilbert and

López, 2011℄. Moreover, this amount of stored information ex
eeds now 280 Eb

(Exa bytes, 1018 bytes), versus 0.02 Eb in 1986 (14,000 times more). It leads

to the so-
alled so
ietal and e
onomi
 
hallenge, whi
h is the �soft s
ien
e side�

of Big Data gathering prote
tion of private life, right to be forgotten, property

rights, operating rights, 
ost of energy storage or transfer.

1.2 New data but 
lassi
al statisti
al 
hallenges

Sin
e Laney [2001℄, the Big Data phenomenon is also des
ribed by the �3V�

analyti
 point of view, mixing Volume, Velo
ity and Variety terms, respe
tively

des
ribing the quantity of data to be pro
essed, the response delay in the pro-


essing and the form the data 
an take (stru
tured, unstru
tured). Moreover,

it is now 
urrent to meet �4V� or �5V� terminologies, for instan
e by adding the

term Vera
ity whi
h des
ribes un
ertainty due to data in
ompleteness. It leads

to the so-
alled data analysis 
hallenge, whi
h is the �hard s
ien
e side� of Big

Data gathering together hardware, software and mathemati
al skills. Anyway,

the volume is 
ertainly the most emblemati
 feature of Big Data for all these

skills. The reason is 
ertainly the exponential growth of the data sets size over

time, both on the number of individuals and on the number of variables of the

data sets as observed by Alelyani et al. [2013℄ from data sets extra
ted from

UCI ma
hine learning repository.

However, although su
h new kinds of data sets are more and more present,

the statisti
al aims stay entirely un
hanged. They still rely on the same user

questionings, 
orresponding to exploration goals (typi
ally visualization and un-

supervised 
lassi�
ation) and predi
tion ones (typi
ally supervised 
lassi�
ation

and regression). This fa
t is illustrated from the 4th Annual Rexer Analyti
s

Data Miner Survey

4

, whi
h is the largest survey of data mining, data s
ien
e,

and analyti
s professionals in the industry, where de
ision trees, regression and


luster analysis form a triad of 
ore algorithms, and by far, for most data s
i-

entists in the world.

1.3 Fo
us of the paper

In the present paper, we fo
us our attention on the unsupervised 
lassi�
a-

tion task (also 
alled 
lustering or 
luster analysis) sin
e it is one of the �rst

three main statisti
al aims of data miners (or data s
ientists) as previously dis-


ussed. In this 
ontext, we present di�erent model-based 
lustering situations,

varying in data volume (individuals, variables), in data variety (mixed data,

typi
ally gathering 
ontinuous and 
ategori
al variables) and in data vera
ity

(missing and un
ertain data). The model-based approa
h has advantage to rely

on the mathemati
al statisti
al framework, thus is able to provide rigorous an-

swers to 
lustering for su
h 
hallenging kinds of data. The presented models

4
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are implemented in two di�erent software (MixtComp and Blo
kCluster), ea
h

spe
ialized in a di�erent 
ontext as des
ribed later. Both are gathered in the

BigStat platform

5

freely available in SaaS mode (Software as a Servi
e).

The ouline of the paper is the following. In Se
tion 2, the model-based 
lus-

tering prin
iple is given and a spe
i�
 dis
ussion 
on
erning e�e
t of data volume

on partition estimates is 
ondu
ted, separating the number of individuals and

the number of variables situations. Se
tion 3 is devoted to the moderate num-

ber of variables 
ase with possibility to deal simultaneously with mixed, missing

and un
ertain data. The related models are implemented in the MixtComp soft-

ware of the BigStat platform and a illustration on a real data set is provided.

Se
tion 4 is devoted to the high number of variables 
ase, but with non-mixed

and non-missing data. The related models are implemented in the Blo
kCluster

software of the BigStat platform and an illustration on a real data set is also

provided. Se
tion 5 
on
ludes the paper and draws some prospe
ts both from

the statisti
al model and the software points of view.

2 Model-based 
lustering and large data sets

2.1 Model-based 
lustering prin
iple

Mixture hypothesis Cluster analysis is one of the main data analysis method.

It aims at partitioning a data set x = (x1, . . . ,xn) = (xO,xM ), 
omposed by n
individuals and lying in a spa
e X of dimension d into K 
lasses G1, . . . , GK .

Here the observed part of x has been denoted by x
O

whereas the missing or

un
ertain one (un
ertain means partially missing like intervals) is denoted by

x
M
. Moreover, X designates possibly a mixed feature spa
e, it means a spa
e

mixing features of di�erent kinds like 
ontinuous, 
ategori
al or integer. An

illustration of missing, un
ertain and mixed features is displayed in Table 1.

observed data set x
O

? 0.5 red 5

0.3 0.1 green 3

0.3 0.6 {red,green} 3

0.9 [0.25 0.45℄ red ?

↓ ↓ ↓ ↓

ontinuous 
ontinuous 
ategori
al integer

Table 1: A mixed, missing and un
ertain data set 
omposed by n = 4
individuals and d = 4 variables.

The target partition is denoted by z = (z1, . . . , zn), lying in a spa
e Z, where

zi = (zi1, . . . , ziK)′ is a ve
tor of {0, 1}K su
h that zik = 1 if individual xi be-

longs to the kth 
lass Gk, and zik = 0 otherwise (i = 1, . . . , n, k = 1, . . . ,K).

Model-based 
lustering allows to reformulate 
luster analysis as a well-posed

estimation problem both for the partition z and for the number K of 
lasses.

It 
onsiders data x1, . . . ,xn as n i.i.d. realizations of a mixture distribution

5
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f(·; θ) = ∑K
k=1 πkf(·;αk), where f(·;αk) indi
ates the distribution, parameter-

ized by αk, asso
iated to the 
lass k, where πk indi
ates the mixture proportion

of this 
omponent (

∑K
k=1 πk = 1, πk ≥ 0) and where θ = (πk,αk; k = 1, . . . ,K)

indi
ates the whole mixture parameters.

The question is then to estimate the 
lass numberK and the partition z from

x
O
. Figure 1 gives an illustration of this prin
iple when d = 2. The standard

solution relies on �rst the estimation of the mixture parameter θ̂ as we des
ribe

now.

−2 0 2 4

−
2

0
2

4

X1

X
2

−2 0 2 4

−
2

0
2

4

X1

X
2

x = (x1, . . . ,xn) −→ ẑ = (ẑ1, . . . , ẑn), K̂ = 3

Figure 1: The 
lustering purpose illustrated in the two-dimensional setting.

Mixture parameter estimation From the observed data set x
O
it is then

possible to obtain a mixture parameter estimate θ̂ by maximizing the observed

log-likelihood ℓ(θ̂;xO) = ln f(xO
i ; θ) where

f(xO
i ; θ) =

K
∑

k=1

πkf(x
O
i ;αk) =

K
∑

k=1

πk

∫

xM
i

f(xO
i ,x

M
i ;αk)dx

M
i , (1)

provided that missing data x
M

are obtained by a missing at random (MAR)

pro
ess.

For optimizing ℓ(θ;xO), the EM (Expe
tation-Maximization) algorithm of

Dempster et al. [1977℄ is often performed or some of its variants (see also Redner

and Walker [1984℄) like the SEM (Sto
hasti
 EM) [Celeux and Diebolt, 1985℄.

A SEM algorithm 
an be used to maximize the observed-data log-likelihood,

des
ribed as follows for iteration q ≥ 1, when starting from a parameter θ(0)

sele
ted at random:

• E-step: 
ompute 
onditional probabilities f(xM , z|xO; θ(q)),

• S-step: draw (xM(q), z(q)) from f(xM , z|x0; θ(q)),

• M-step: maximize θ(q+1) = argmaxθ ln f(x
O,xM(q), z(q); θ).

Sin
e the parameter sequen
e (θ(q)) generated by SEM does not pun
tually


onverges, due to the S-step de�nition, the algorithm generally stops after a

prede�ned number of iterations. This sequen
e 
onverges in distribution to-

wards the unique stationary distribution. Asymptoti
ally on q, the mean of the

sequen
e (θ(q)) approximates θ̂ and thus provides a sensible lo
al estimate of

4



the maximum likelihood. In addition, the varian
e of the sequen
e (θ(q)) gives

on�den
e intervals on θ. SEM has also advantage to be less dependent on the

initial value θ(0)
than EM does if a �su�
ient� iteration number is performed

and so avoids uninteresting lo
al maxima. Finally, managing missing data is

easier than with EM thanks to its so-
alled sto
hasti
 S-step, while preserving

a 
lassi
al M-step like EM.

Partition (and missing data) estimation On
e θ̂ is obtained, a so-
alled

SE algorithm (a SEM without the M step) 
an be used to estimate partition z,

and simultaneously missing data x
M
. Its qth iteration is given by

• E-step: 
ompute 
onditional probabilities f(xM , z|xO; θ̂),

• S-step: draw (xM(q), z(q)) from f(xM , z|xO; θ̂).

After a given iteration number, the mean and/ormode of the sequen
e (xM(q), z(q))
estimates (xM , z), denoted by (x̂M , ẑ), with again the possibility to derive some


on�den
e intervals on these unknown quantities.

Estimation of the 
lass number It is now possible to derive an estimate

K̂ from an estimate of the observed 
onditional probability f̂(K|xO) or also

from the 
ompleted-partition 
onditional probability f̂(K|xO, z). The �rst one
leads to retaining K̂ whi
h maximizes the so-
alled BIC (Bayesian Informa-

tion Criterion) 
riterion [S
hwarz, 1978℄, whereas the se
ond one 
orresponds

to maximizing the so-
alled ICL (Integrated Completed Likelihood) 
riterion

[Bierna
ki et al., 2000℄, de�ned by

ICL = ln f(xO, ẑ; θ̂)− D

2
lnn, (2)

D denoting the number of free (
ontinuous) parameters in the model at hand.

Advantage of ICL over BIC in a 
lustering 
ontext is its ability to integrate the


lustering purpose in its de�nition through the use of the estimate partition ẑ

in (2). As a 
onsequen
e it will favour well-separated 
lusters, so less 
lusters

but more valuable 
lusters than BIC provide, even if the model de�nition of


omponents f(·;αk) is erroneous.

Illustration in the Gaussian 
ase The multivariate mixture model is 
er-

tainly the most known and used model for 
ontinuous data. It has a long history

of use in 
lustering (see for instan
e Wolfe [1971℄, Bo
k [1981℄). In that 
ase,

xi (i = 1, . . . , n) are 
ontinuous variables X = R
d
and the 
onditional density

of 
omponents is written (k = 1, . . . ,K)

f(·;αk) = N(µk,Σk) =
1

(2π)d/2|Σk|1/2
exp

(

−1

2
(· − µk)

′
Σ

−1
k (· − µk)

)

, (3)

with αk = (µk,Σk), µk ∈ R
d
the 
omponent mean (or 
entre) and Σk ∈ R

d×d

its varian
e-
ovarian
e matrix. Figures 2 (a), (b) and (
) respe
tively display

univariate, bivariate and trivariate Gaussian mixtures.

5
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Figure 2: Gaussian mixtures in (a) univariate, (b) bivariate and (
) trivariate

situations.

2.2 The large number of individuals 
ase

In statisti
s, theory is often asymptoti
s on the number of individuals and thus,

theoreti
ally, in
reasing n is a good news, model-based 
lustering in
luded. The

standard way to address the e�e
t of n on the partition estimate quality is to

express the related bias/varian
e trade-o�. We note err(z1, z2) ≥ 0 a distan
e-

like measure between two partitions z1 and z2. When the number of 
lasses in

ea
h partition is identi
al, it 
an be the 
lassi
al empiri
al error rate. When the

number of 
lasses di�ers, it 
an be for instan
e the Rand 
riterion de�ned in

Rand [1971℄. We also de�ne z
∗ = argmin err(z, ·) the best partition asso
iated

to the model at hand with regards to the true partition z. We then have the

simple but important following de
omposition:

err(z, ẑ) =
{

err(z, z∗)− err(z, z)
}

+
{

err(z, ẑ)− err(z, z∗)
}

(4)

=
{

bias

}

+
{

varian
e

}

. (5)

The bias 
orresponds to the so-
alled error of approximation and the varian
e

to the so-
alled error of estimation.

When the sample size grows, as expe
ted the varian
e automati
ally de-


reases. However, vanishing asymptoti
ally the whole error term err(z, ẑ) re-

quires also to de
rease the bias. If the proposed model at hand does not 
or-

respond to the true (unknown) model, the only issue is to 
hange it by a more


omplex one. Typi
ally, in
reasing the 
andidate number of 
lassesK is thus the

opportunity to redu
e su
h a model approximation as illustrated on Figure 3.

2.3 The large number of variables 
ase

However, in the Big Data 
ontext, in
reasing the volume may mean in�ating the

number of individuals (n) or alternatively the number of variables (d) (or both).
The question is now to 
ontrol the error err(z, ẑ) previously de�ned in (5) with

regards to d. Contrary to in
reasing n, in
reasing d may have both positive

and negative e�e
ts on the 
lustering task, usually designated respe
tively by

�blessing� and �
urse� of the dimension.

Blessing fa
tors Consider the following two-
omponent multivariate Gaus-

sian mixture: π1 = π2 = 1
2 , f(·;α1) = N(0, I) and f(·;α2) = N(1, I), with

6



Figure 3: Opportunity to redu
e error of approximation when n grows by

in
reasing K̂.

a = (a . . . a)′ a real ve
tor of size d. We display a 
orresponding sample in

Figure 4 (a). In that 
ase the two 
omponents are more and more separated

when d grows sin
e ‖1 − 0‖I =
√
d. The reason is that ea
h variable uni-

formly provides its own separation information su
h that the asso
iated theo-

reti
al error de
reases when d grows. Indeed, this thoreti
al error is equal to

errtheo = Φ(−
√
d/2), where Φ is the 
umulative distribution of N(0, 1). We 
an

see this de
rease with d by a dash line in Figure 4 (b). An interesting 
onse-

quen
e is then that the empiri
al error rate de
reases also with d as it 
ould be

noti
ed in 
ontinuous line in Figure 4 (b). It means that in
reasing dimension

may have a positive e�e
t on the 
lustering task as soon as all variables 
onvey

meaningful information on the hidden partition. From the bias/varian
e inter-

pretation (5), it means that bias de
reases faster than varian
e grows when d is

larger.
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Empirical
Theoretical

(a) (b)

Figure 4: Dimension blessing in the 
lustering 
ontext when most variables


onvey independent partitioning information: (a) A bivariate data set example

with isodensity of ea
h 
omponent and (b) the theoreti
al (dash line) and the

empiri
al (
ontinuous line) error rate when d in
reases.

Curse fa
tors In fa
t, in
reasing dimension may have a positive e�e
t on


lustering retrieval only if variables inje
t some partioning information. In ad-

dition, su
h information has to be not redundant. It is a 
onsequen
e that, in

both 
ases, bias does not de�ates whereas varian
e 
lims. We illustrate now

7



these two parti
ular features.

Firstly, we 
onsider many variables whi
h provide no separation information.

We retrieve the same previous parameter setting ex
ept that the 
omponents

are not more separated when d grows sin
e ‖µ2 − µ1‖I = 1, where µ1 = 0

is the 
enter of the �rst Gaussian and where µ2 = (1 0 . . . 0)′ is the one of

the se
ond, thus (k = 1, 2): f(·;αk) = N(µk, I). A sample is displayed on

Figure 5 (a). Figure 5 (b) shows in dash line that the theoreti
al error rate

is 
onstant (it 
orresponds to errtheo = Φ(− 1
2 )) when the dimension in
reases,

as expe
ted. Consequently, the empiri
al error rate degrades in this situation

(
ontinuous line of the same �gure).
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(a) (b)

Figure 5: Dimension 
urse in the 
lustering 
ontext when variables 
onvey no

partitioning information: (a) A bivariate data set example with isodensity of

ea
h 
omponent and (b) the theoreti
al (dash line) and the empiri
al

(
ontinuous line) error rate when d in
reases.

Se
ondly, we 
onsider a 
ase where many variables provide separation, but

redundant information, in the following sense: It is the same parameter setting

as before for the �rst dimension ex
ept for all other ones, thus X1j = X11 + εj

where εj
iid∼ N(0, 1) (j = 2, . . . , d). See a data example in Figure 6 (a). Thus,


omponents are not more separated when d grows sin
e ‖µ2 − µ1‖Σ = 1, Σ
denoting the 
ommon 
ovarian
e matrix of ea
h Gaussian 
omponent, and µk

denoting the 
enter of the 
omponent k = 1, 2. Consequently, errtheo = Φ(− 1
2 )

is 
onstant and the empiri
al error in
reases with d, as illustrated in Figure 6 (b)
with previous 
onventions.

Attempt to rea
h the bias/varian
e trade-o� As previously explained,


urse fa
tors are the 
onsequen
e of the varian
e in
rease, whereas bias is stable.

The solution is to signi�
antly de
rease the varian
e even if in
reasing the bias

to a lesser extent. Sin
e 
lass separation grows in Figure 6 (a), it be
omes

possible to use a simpler model, namely here a Gaussian model with diagonal


ovarian
e matri
es while preserving a quite low error rate. It is illustrated in

Figure 6 (b) with the 
ontinuous line. This remark will be fundamental for the

models implemented in the MixtComp and Blo
kCluster software we des
ribe

now.

8
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Figure 6: Dimension 
urse in the 
lustering 
ontext when variables 
onvey

redundant partitioning information: (a) A bivariate data set example with

isodensity of ea
h 
omponent and (b) the theoreti
al (dark dash line), the

empiri
al 
orrelated model related (gray dash line) and the empiri
al

independent model related (
ontinuous line) error rate when d in
reases.

3 BigStat platform for mixed/missing variables

In the BigStat platform, the MixtComp software is dedi
ated to 
lustering of

(full) mixed data (
ontinuous, 
ategori
al, integer, ordinal, rank and 
ontinuous

fun
tional), allowing also missing values and un
ertain values (like intervals in

the 
ontinuous 
ase, but available for all other data types). It implements a

SEM and a SE algorithms for all estimations, in
luding missing and un
ertain

data, as des
ribed in Se
tion 2.1. From a pra
ti
al point of view, a single zip

�le, 
ontaining both the data set and the variable des
riptor, is provided as

an input on the web site. The output 
orresponds to an intera
tive entropy

visualization of the estimated 
lusters, with the mixture parameters, and also

to the possibility to download the 
orresponding R obje
t for further use in the

R environment. A wiki do
umentation is also available

6

.

3.1 Models for a moderate number of mixed variables

Intra-type 
onditional independen
e As dis
ussed in the previous se
tion,

in
reasing dimension d of data imposes to restri
t the model 
omplexity in

order to 
ontrol the varian
e even if in
reasing moderately the bias. In 
ase

when dimension d is �moderate�, the model 
omplexity should be also. For

instan
e, in Figure 6 (b) a diagonal Gaussian model is e�
ient to obtain a

good partitioning of 
lusters with yet intra-
orrelated variables. We propose to

extend this idea for all kinds of data types by assuming that all variables xij

of xi (j = 1, . . . , d) are 
onditionally independent knowing the latent 
lasses.

Thus, f(xi;αk) =
∏d

j=1 f(xij ;αkj) where αk = (αkj ; j = 1, . . . , d), f(·;αkj)
denoting the univariate distribution asso
iated to the variable j in the 
lass k.
This latter is de�ned as follows, depending on the data type:

• Continuous: ea
h f(·;αkj) = N(µkj , σ
2
kj). It 
orresponds to the diago-

nal Gaussian model of Celeux and Govaert [1995℄ (see an illustration on

Figure 2 (
)).

6

https://modal.lille.inria.fr/wikimodal/doku.php?id=mixt
omp
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• Categori
al: ea
h xij = (xijh;h = 1, . . . ,mj) has mj response levels

where xijh = 1 if i has response level h for variable j and xijh = 0 other-

wise. The standard model for 
lustering observations des
ribed through


ategori
al variables is the so-
alled latent 
lass model (see for instan
e

Goodman [1974℄) where f(·;αkj) = M(αkj) is the multinomial distribu-

tion with αkj = (αkjh;h = 1, . . . ,mj), αkjh denoting the probability that

variable j has level h if individual i is in 
luster k.

• Integer: ea
h xij ∈ N and f(·;αkj) = P(λkj), the Poisson distribution of

parameter λkj .

• Other: ea
h xij 
ould be also an ordinal data, a ranking data or also a

(dis
retised) 
ontinuous fun
tional data (see respe
tive univariate distri-

butions in Bierna
ki and Ja
ques [2016℄, Bierna
ki and Ja
ques [2013℄ and

Samé et al. [2011℄).

Inter-type 
onditional independen
e It is frequent in pra
ti
e to mix dif-

ferent kinds of data types, for instan
e 
ontinuous, 
ategori
al and integer ones.

Thus the ith individual is 
omposed by three parts, xi = (xcont
i ,xcat

i ,xint
i ),

x
cont
i , x

cat
i and x

int
i designing the 
ontinuous, the 
ategori
al and the integer

ones respe
tively. In that 
ase, the proposed solution for symmetry between

data types is to mixed all types by inter-type 
onditional independen
e [Mous-

taki and Papageorgiou, 2005℄:

f(xi;αk) = f(xcont
i ;αcont

k )× f(xcat
i ;αcat

k )× f(xint
i ;αint

k )

with αk = (αcont
k ,αcat

k ,αint
k ) the obvious asso
iated parameters by data type.

3.2 Illustration on a prostate 
an
er data set

Hunt and Jorgensen [1999℄ (see also M
La
hlan and Peel [2000℄ p. 139�142) 
on-

sidered the 
lustering of patients on the basis of petrial variates alone for the

prostate 
an
er 
lini
al trial data of Byar and Green [1980℄ whi
h is reprodu
ed

in Andrews and Herzberg [1985℄ p. 261�274. This data set was obtained from

a randomized 
lini
al trial 
omparing four treatments for n = 506 patients with
prostati
 
an
er grouped on 
lini
al 
riteria into two Stages 3 and 4 of the dis-

ease. As reported by Byar and Green [1980℄, Stage 3 represents lo
al extension

of the disease without eviden
e of distan
e metastasis, while Stage 4 represents

distant metastasis as eviden
ed by elevated a
id phosphatase, X-ray eviden
e,

or both. Twelve pre-trial variates were measured on ea
h patient, 
omposed by

eight 
ontinuous variables (age, weight, systoli
 blood pressure, diastoli
 blood

pressure, serum haemoglobin, size of primary tumour, index of tumour stage

and histoli
 grade, serum prostati
 a
id phosphatase) and four 
ategori
al vari-

ables with various numbers of levels (performan
e rating, 
ardiovas
ular disease

history, ele
tro
ardiogram 
ode, bone metastases). The skewed variables �size of

primary tumour� and �serum prostati
 a
id phosphatase� were transformed by

using a square root and a logarithm transformation, respe
tively. There are 62

missing values, so about 1% of the whole sample, and 475 patients have �nally

no missing data.

We 
ompare �ve strategies for using the MixtComp software: (1) �raw-506�:

the 506 raw missing/mixed data, (2) �impute-506�: the 506 mixed data after

10



imputation of missing data by the mi
e R pa
kage

7

, (3) �mixed-475�: the 475

non-missing mixed data, (4) �
ont-475�: the 475 non-missing 
ontinuous-only

data, (5) �
at-475�: the 475 non-missing 
ategori
al-only data. The ICL 
ri-

terion (2) is then 
al
ulated in ea
h situation for estimating K in the range

1,. . . ,7. Only three strategies (raw-506, mixed-475, 
ont-475) retain K̂ = 2,
strategies impute-506 and 
at-475 respe
tively preferring K̂ = 7 and K̂ = 1.
Now, by �xing K = 2, the mis
lassi�
ation error rate is displayed in Table 2

for all strategies. Both previous results on K sele
tion and the error rate when

K = 2 indi
ate all interest on dealing dire
tly on raw data. Indeed, imputa-

tion before 
lustering, and to a lesser extend missing data removing, may loose

some 
luster information. In addition, 
ategori
al variables alone 
onvey few

information on the partition but 
ould be informative asso
iated to 
ontinuous

variables.

Strategy raw-506 impute-506 
ont-475 
at-475 mixed-475

% mis
lassi�ed 8.1 12.8 9.46 47.16 8.63

Table 2: Mis
lassi�
ation error rate on the 
an
er data set with K = 2.

4 BigStat platform for high dimension

In the BigStat platform, the Blo
kCluster software is dedi
ated to 
lustering of

non-missing and homogeneous data (
ontinuous, 
ategori
al or integer, but not

mixed) of very high dimension thanks to a 
o-
lustering approa
h. It implements

a SEM algorithm (and other) for all estimations. Similarly to MixtComp, a

single zip �le is provided as an input on the web site 
ontaining both the data set

and some tuning parameters. It provides a visualization of the estimated 
lusters

(and 
o-
lustering blo
ks) and also the possibility to download the 
orresponding

R obje
t for further use in the R environment. A 
orresponding R pa
kage is

also available

8

.

4.1 Models for a high number of homogeneous variables

Models implemented in the MixtComp software are not parsimonious enough to

be used in the very high dimensional setting. Simultaneous 
lustering of rows

and 
olumns, usually designated by bi-
lustering, 
o-
lustering or blo
k 
luster-

ing, is an important te
hnique in two way data analysis allowing very simple

models even with many variables. They 
onsider the two sets simultaneously

and organize the data into homogeneous blo
ks. Two partition representations

are thus now needed. First, as usual, a partition of n individuals (lines of the

data matrix x) into K 
lusters still noti
ed z. Se
ond, and symmetri
ally, a par-

tition of d variables (
olumns of the data matrix x) into L 
lusters is denoted

by w = (w1, . . . ,wd) where wj = (wj1, . . . , wjL) with wjl = 1 if j belongs to


luster l and wjl = 0 otherwise. Both spa
e partitions are respe
tively denoted

by Z and W .

7

http://
ran.r-proje
t.org/web/pa
kages/mi
e/mi
e.distribution

8

https://
ran.r-proje
t.org/web/pa
kages/blo
k
luster/index.html
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We refer to the book of Govaert and Nadif [2013℄ for providing more details

on 
o-
lustering te
hniques, probabilisti
 or not. Here, we fo
us on model-based


o-
lustering as being often a generalization of non-probabilisti
 methods and al-

lowing 
oherent formulation from estimation to model sele
tion. In the following

set, produ
t on i, j, k and l stands for ranges {1, . . . , n}, {1, . . . , d}, {1, . . . ,K}
and {1, . . . , L} respe
tively. Blo
k model-based 
lustering 
an be seen as an

extension of the traditional mixture model-based 
lustering (see Se
tion 2.1).

The basi
 idea is to extend the latent 
lass prin
iple of lo
al (or 
onditional)

independen
e. Ea
h data point xij is assumed to be independent on
e zi and

wj are �xed. We note θ = (π,ρ,α) with α = (αkl) and where π = (πk) and
ρ = (ρk) are the ve
tors of probabilities πk and ρl that a row and a 
olumn

belong to the kth row 
omponent and to the lth 
olumn 
omponent respe
tively.

Assuming also independen
e between all zi and wj , the latent blo
k mixture

model has �nal probability distribution

f(x; θ) =
∑

(z,w)∈Z×W

∏

i,j,k,l

(πkρlf(xij ;αkl))
zikwjl . (6)

Finally, the distribution f(·;αkl) depends on the data type of xij (
ontinuous,


ategori
al, integer) and thus is similar to these ones de�ned in Se
tion 3.1,

ex
ept that mixed data are not allowed this time. Su
h models 
an be very

parsimonious even when d is very large, provided that L is moderate. Indeed,

by 
omparison to a 
lassi
al intra-type 
onditional independen
e model with D
parameters to be estimated (see Se
tion 3.1), the 
orresponding 
o-
lustering

model requires only D× L
d parameters. In addition, a spe
i�
 expression of the

ICL 
riterion (2) 
an be invoked for sele
ting the pair (K,L).

4.2 Illustration on a do
ument data set

Figure 7 (a) displays a text mining example

9

. It mixes Medline (1,033 med-

i
al abstra
ts) and Cran�eld (1,398 aeronauti
al abstra
ts) making a total of

n = 2, 431 do
uments. Furthermore, all the words (ex
luding stop words) are


onsidered as features making a total of d = 9, 275 unique words. The data ma-

trix 
onsists of do
uments on the rows and words on the 
olumns with ea
h entry

giving the term frequen
y, that is the number of o

urren
es of 
orresponding

word in 
orresponding do
ument. Sin
e it 
on
erns a 
ontingen
y table (
ross


ounting do
uments and words) we apply a Poisson blo
k 
lustering model. The

�true� blo
k partitioning involves K = 2 do
ument 
lusters (row) and L = 2
word 
lusters (
olumn). Table 3 displays the 
onfusion table for do
uments by

using 2×2 blo
ks. We show that we exa
tly retrieve the underlying do
ument

stru
ture, what is expe
ted by the blessing e�e
t of high dimensional 
lustering,

the data set being here with d = 9, 275. Figure 7 (b) gives a view of the data set

after reorganization by blo
k-
lustering. We also distinguish 
lear partitioning

in rows and 
olumns.

5 Con
lusion

The BigStat platform o�ers a freely available solution for 
lustering without

any pa
kage installation and any 
omputer resour
e (any mobile devi
e may

9

This data set is publi
ly available at ftp://ftp.
s.
ornell.edu/pub/smart.
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Medline Cran�eld

Medline 1033 ·
Cran�eld · 1398

Table 3: Confusion table by applying blo
k 
lustering for text partitioning.

(a) (b)

Figure 7: Text mining example: (a) the initial data set; (b) the reorganized

data set with (K,L) = (2, 2).

be appropriate, not ne
essarily a laptop) sin
e it 
an be laun
hed as a SaaS

appli
ation from a web page. The output 
an be either dire
tly visualized on

the devi
e as a graphi
al display, or downloaded as an R obje
t for further use

in an R environment.

Two 
lustering software are available in BigStat, and rely both on the model-

based 
lustering paradigm. First, the MixtComp software is able to deal with

mixed, missing and un
ertain data in a moderate dimension setting. Se
ond,

the Blo
kCluster software extend 
lustering, through a 
o-
lustering prin
iple,

to the high dimension setting but restri
t its use to non-mixed and non-missing

data. Future theoreti
al and methodologi
al works will 
on
ern possibility to

address simultaneously both situations, it means mixed, missing and un
ertain

data in a high dimension setting.

Finally, the BigStat platform will migrate soon towards a new platform 
alled

MASSICCC

10

(Massive Clustering on Cloud Computing) allowing a even more


onvivial interfa
e with more powerful 
omputer servers.
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