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“BigStat” for Big Data
“Big Data clustering through the BigStat SaaS platform”

Christophe Biernacki*
University of Lille & CNRS & Iunria, France

Abstract

BigStat is a web platform devoted to clustering of big data sets through
two hosted software, MixtComp and BlockCluster. The former adress
mixed, missing and uncertain data in a moderate dimensional setting,
whereas the latter is devoted to high dimensional data sets with non-
mixed, non-missing and non-uncertain data. Mathematical foundations
of both rely on mixture models and related algorithms.

Keywords. Model-based clustering, mixed and missing data, high dimen-
sion, SaaS platform.

1 Introduction

1.1 Big Data: IT genesis

The Big Data phenomenon mainly originates in the increase of computer and
digital resources at an ever lower cost. Indeed, the storage cost by Mb (Mega
bytes, 10% bytes) rose from 700$ in 1981 to 1$ in 1994 then to 0.01$ in 2013*
(the price has been divided by 70,000 in thirty years) whereas hard drives of
8 Tb (Tera bytes, 102 bytes) storage capacity are now easily available, to be
compared to 1.02 Gb (Giga bytes, 10° bytes) storage capacity in 19822 (storage
capacity multiplied by 8,000 on the same period). Simultaneously, the process-
ing speed of the existing most powerful computer starts from one gigaFLOPS
(a FLOPS corresponds to the FLoating-point Operations Per Second) in 1985
to reach 33 petaFLOPS in 2013% (speed multiplied by 33 million). It leads to
the so-called storage challenge, which is the “IT side” of Big Data gathering the
storage, the transfer, the preservation and the availability of data.

One should be aware that any human activities are impacted by such a digital
data accumulation: trade and business (companies information systems, banks,
booking systems. .. ), governments and other organizations (laws and other reg-
ulations, standardization rules...), entertainment (music, video, games, social
networks. . . ), fundamental sciences (astronomy, physics, power, genomics...),
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health (medical file...), environment (climat, pollution, alimentation...), hu-
manities and social sciences (knowledge digitization, literature, history, art, ar-
chitecture, archaeological data. . .). Finally, the whole human society converges
towards a so-called numerical world, so that in 2007 more that 94% of stored
information was available in its digital form (the 6% remaining being available
in its analogical form), to be compared again to only 1% in 1986 [Hilbert and
Lopez, 2011]. Moreover, this amount of stored information exceeds now 280 Eb
(Exa bytes, 108 bytes), versus 0.02 Eb in 1986 (14,000 times more). It leads
to the so-called societal and economic challenge, which is the “soft science side”
of Big Data gathering protection of private life, right to be forgotten, property
rights, operating rights, cost of energy storage or transfer.

1.2 New data but classical statistical challenges

Since Laney [2001], the Big Data phenomenon is also described by the “3V”
analytic point of view, mixing Volume, Velocity and Variety terms, respectively
describing the quantity of data to be processed, the response delay in the pro-
cessing and the form the data can take (structured, unstructured). Moreover,
it is now current to meet “4V” or “5V” terminologies, for instance by adding the
term Veracity which describes uncertainty due to data incompleteness. It leads
to the so-called data analysis challenge, which is the “hard science side” of Big
Data gathering together hardware, software and mathematical skills. Anyway,
the volume is certainly the most emblematic feature of Big Data for all these
skills. The reason is certainly the exponential growth of the data sets size over
time, both on the number of individuals and on the number of variables of the
data sets as observed by Alelyani et al. [2013] from data sets extracted from
UCI machine learning repository.

However, although such new kinds of data sets are more and more present,
the statistical aims stay entirely unchanged. They still rely on the same user
questionings, corresponding to exploration goals (typically visualization and un-
supervised classification) and prediction ones (typically supervised classification
and regression). This fact is illustrated from the 4th Annual Rexer Analytics
Data Miner Survey*, which is the largest survey of data mining, data science,
and analytics professionals in the industry, where decision trees, regression and
cluster analysis form a triad of core algorithms, and by far, for most data sci-
entists in the world.

1.3 Focus of the paper

In the present paper, we focus our attention on the unsupervised classifica-
tion task (also called clustering or cluster analysis) since it is one of the first
three main statistical aims of data miners (or data scientists) as previously dis-
cussed. In this context, we present different model-based clustering situations,
varying in data volume (individuals, variables), in data variety (mixed data,
typically gathering continuous and categorical variables) and in data veracity
(missing and uncertain data). The model-based approach has advantage to rely
on the mathematical statistical framework, thus is able to provide rigorous an-
swers to clustering for such challenging kinds of data. The presented models

4http://www.rexeranalytics.com/Data-Miner-Survey-Results-2011.html



are implemented in two different software (MixtComp and BlockCluster), each
specialized in a different context as described later. Both are gathered in the
BigStat platform® freely available in SaaS mode (Software as a Service).

The ouline of the paper is the following. In Section 2, the model-based clus-
tering principle is given and a specific discussion concerning effect of data volume
on partition estimates is conducted, separating the number of individuals and
the number of variables situations. Section 3 is devoted to the moderate num-
ber of variables case with possibility to deal simultaneously with mixed, missing
and uncertain data. The related models are implemented in the MixtComp soft-
ware of the BigStat platform and a illustration on a real data set is provided.
Section 4 is devoted to the high number of variables case, but with non-mixed
and non-missing data. The related models are implemented in the BlockCluster
software of the BigStat platform and an illustration on a real data set is also
provided. Section 5 concludes the paper and draws some prospects both from
the statistical model and the software points of view.

2 Model-based clustering and large data sets

2.1 Model-based clustering principle

Mixture hypothesis Cluster analysis is one of the main data analysis method.
It aims at partitioning a data set x = (x1,...,%,) = (x¢,xM), composed by n
individuals and lying in a space & of dimension d into K classes Gi,...,Gk.
Here the observed part of x has been denoted by x© whereas the missing or
uncertain one (uncertain means partially missing like intervals) is denoted by
xM . Moreover, X' designates possibly a mixed feature space, it means a space
mixing features of different kinds like continuous, categorical or integer. An
illustration of missing, uncertain and mixed features is displayed in Table 1.

observed data set x©

? 0.5 red 5
0.3 0.1 green 3
0.3 0.6 {red,green} 3
0.9 [0.25 0.45] red ?

1 \ \ 1

continuous continuous  categorical integer

Table 1: A mixed, missing and uncertain data set composed by n = 4
individuals and d = 4 variables.

The target partition is denoted by z = (21, ..., 2z,), lying in a space Z, where
z; = (2i1,...,2ix)" is a vector of {0, 1} such that z;, = 1 if individual x; be-
longs to the kth class Gi, and z;; = 0 otherwise (i = 1,...,n, k =1,..., K).
Model-based clustering allows to reformulate cluster analysis as a well-posed
estimation problem both for the partition z and for the number K of classes.
It considers data xi,...,x, as n ii.d. realizations of a mixture distribution

Shttps://modal-research.lille.inria.fr/BigStat /



f(0)= Zszl 7 f(; ar), where f(; ay) indicates the distribution, parameter-
ized by o, associated to the class k, where 75 indicates the mixture proportion
of this component (Ei(:l mr =1, T > 0) and where 6 = (7, a;k=1,..., K)
indicates the whole mixture parameters.

The question is then to estimate the class number K and the partition z from
x©. Figure 1 gives an illustration of this principle when d = 2. The standard
solution relies on first the estimation of the mixture parameter 0 as we describe
now.

x = (X1,...,Xp) — 2= (21,...,2,), K=

Figure 1: The clustering purpose illustrated in the two-dimensional setting.

Mixture parameter estimation From the observed data set x© it is then
possible to obtain a mixture parameter estimate 6 by maximizing the observed
log-likelihood £(6;x?) = In f(x¢; 0) where

K K
FO050) =Y msxZian) = Some [ focanaxt’, ()
k=1 k=1 X

provided that missing data x are obtained by a missing at random (MAR)
process.

For optimizing ¢(8;x°), the EM (Expectation-Maximization) algorithm of
Dempster et al. [1977] is often performed or some of its variants (see also Redner
and Walker [1984]) like the SEM (Stochastic EM) [Celeux and Diebolt, 1985].
A SEM algorithm can be used to maximize the observed-data log-likelihood,
described as follows for iteration ¢ > 1, when starting from a parameter 6(°)
selected at random:

e E-step: compute conditional probabilities f(xM, z|x?;0(),
e S-step: draw (xM(@ z(@) from f(xM,z|x";0@),
e M-step: maximize 891 = argmaxg In f(x2,xM (@) 29, 9).

Since the parameter sequence (8(9)) generated by SEM does not punctually
converges, due to the S-step definition, the algorithm generally stops after a
predefined number of iterations. This sequence converges in distribution to-
wards the unique stationary distribution. Asymptotically on ¢, the mean of the
sequence (0(‘7)) approximates 0 and thus provides a sensible local estimate of



the maximum likelihood. In addition, the variance of the sequence ((9)) gives
confidence intervals on 6. SEM has also advantage to be less dependent on the
initial value 8(©) than EM does if a “sufficient” iteration number is performed
and so avoids uninteresting local maxima. Finally, managing missing data is
easier than with EM thanks to its so-called stochastic S-step, while preserving
a classical M-step like EM.

Partition (and missing data) estimation Once 6 is obtained, a so-called
SE algorithm (a SEM without the M step) can be used to estimate partition z,
and simultaneously missing data x™. Its qth iteration is given by

e E-step: compute conditional probabilities f(x™,z|x?;8),
e S-step: draw (xM@ z@) from f(xM,z|x?;6).

After a given iteration number, the mean and/or mode of the sequence (x™ (@) z(@))
estimates (x, z), denoted by (¥, 2), with again the possibility to derive some
confidence intervals on these unknown quantities.

Estimation of the class number It is now possible to derive an estimate
K from an estimate of the observed conditional probability f(K|x°) or also
from the completed-partition conditional probability f (K|x9,z). The first one
leads to retaining K which maximizes the so-called BIC (Bayesian Informa-
tion Criterion) criterion [Schwarz, 1978], whereas the second one corresponds
to maximizing the so-called ICL (Integrated Completed Likelihood) criterion
[Biernacki et al., 2000], defined by

ICL = In f(x°,2;0) — = Inn, (2)

D
2
D denoting the number of free (continuous) parameters in the model at hand.
Advantage of ICL over BIC in a clustering context is its ability to integrate the
clustering purpose in its definition through the use of the estimate partition z
in (2). As a consequence it will favour well-separated clusters, so less clusters
but more valuable clusters than BIC provide, even if the model definition of
components f(-; o) is erroneous.

Ilustration in the Gaussian case The multivariate mixture model is cer-
tainly the most known and used model for continuous data. It has a long history
of use in clustering (see for instance Wolfe [1971], Bock [1981]). In that case,
x; (i = 1,...,n) are continuous variables X = R? and the conditional density
of components is written (k=1,..., K)

f( o) = N(pg, Xg) = W exp <—%(' — ) B Mk)) , (3)

with oy = (ux, k), pr € R? the component mean (or centre) and X; € R4

its variance-covariance matrix. Figures 2 (a), (b) and (c) respectively display
univariate, bivariate and trivariate Gaussian mixtures.
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Figure 2: Gaussian mixtures in (a) univariate, (b) bivariate and (c) trivariate
situations.

2.2 The large number of individuals case

In statistics, theory is often asymptotics on the number of individuals and thus,
theoretically, increasing n is a good news, model-based clustering included. The
standard way to address the effect of n on the partition estimate quality is to
express the related bias/variance trade-off. We note err(zy,z2) > 0 a distance-
like measure between two partitions z; and z3. When the number of classes in
each partition is identical, it can be the classical empirical error rate. When the
number of classes differs, it can be for instance the Rand criterion defined in
Rand [1971]. We also deﬁne z* = argminerr(z, -) the best partition associated
to the model at hand with regards to the true partition z. We then have the
simple but important following decomposition:

err(z,z2) = {err(z,z*) - err(z,z)} + {err(z, z) — err(z,z*)} 4)
{bias} + {variance}. (5)

The bias corresponds to the so-called error of approximation and the variance
to the so-called error of estimation.

When the sample size grows, as expected the variance automatically de-
creases. However, vanishing asymptotically the whole error term err(z,z) re-
quires also to decrease the bias. If the proposed model at hand does not cor-
respond to the true (unknown) model, the only issue is to change it by a more
complex one. Typically, increasing the candidate number of classes K is thus the
opportunity to reduce such a model approximation as illustrated on Figure 3.

2.3 The large number of variables case

However, in the Big Data context, increasing the volume may mean inflating the
number of individuals (n) or alternatively the number of variables (d) (or both).
The question is now to control the error err(z,z) previously defined in (5) with
regards to d. Contrary to increasing n, increasing d may have both positive
and negative effects on the clustering task, usually designated respectively by
“blessing” and “curse” of the dimension.

Blessing factors Consider the following two-component multivariate Gaus-
sian mixture: ™ = m = 3, f(sai) = N(0,I) and f(;a2) = N(1,I), with



n=100

Low frequent classes
appear when n grows

Figure 3: Opportunity to reduce error of approximation when n grows by
increasing K.

a = (a...a) a real vector of size d. We display a corresponding sample in
Figure 4 (a). In that case the two components are more and more separated
when d grows since ||[1 — 0|y = v/d. The reason is that each variable uni-
formly provides its own separation information such that the associated theo-
retical error decreases when d grows. Indeed, this thoretical error is equal to
erriheo = ®(—+/d/2), where ® is the cumulative distribution of N(0,1). We can
see this decrease with d by a dash line in Figure 4 (b). An interesting conse-
quence is then that the empirical error rate decreases also with d as it could be
noticed in continuous line in Figure 4 (b). It means that increasing dimension
may have a positive effect on the clustering task as soon as all variables convey
meaningful information on the hidden partition. From the bias/variance inter-
pretation (5), it means that bias decreases faster than variance grows when d is
larger.

= Empirical
= = = Theoretical

Figure 4: Dimension blessing in the clustering context when most variables
convey independent partitioning information: (a) A bivariate data set example
with isodensity of each component and (b) the theoretical (dash line) and the

empirical (continuous line) error rate when d increases.

Curse factors In fact, increasing dimension may have a positive effect on
clustering retrieval only if variables inject some partioning information. In ad-
dition, such information has to be not redundant. It is a consequence that, in
both cases, bias does not deflates whereas variance clims. We illustrate now



these two particular features.

Firstly, we consider many variables which provide no separation information.
We retrieve the same previous parameter setting except that the components
are not more separated when d grows since ||pto — p1ljt = 1, where 1 = 0
is the center of the first Gaussian and where gy = (1 0 ... 0)' is the one of
the second, thus (k = 1,2): f(;axr) = N(ug,I). A sample is displayed on
Figure 5 (a). Figure 5 (b) shows in dash line that the theoretical error rate
is constant (it corresponds to errye, = @(—%)) when the dimension increases,
as expected. Consequently, the empirical error rate degrades in this situation
(continuous line of the same figure).

x2

o . , , .
= Empirical
03
= = = Theoretical
034

Figure 5: Dimension curse in the clustering context when variables convey no
partitioning information: (a) A bivariate data set example with isodensity of
each component and (b) the theoretical (dash line) and the empirical
(continuous line) error rate when d increases.

Secondly, we consider a case where many variables provide separation, but
redundant information, in the following sense: It is the same parameter setting
as before for the first dimension except for all other ones, thus X; = X1 +¢;
where ¢; & N(0,1) (j =2,...,d). See a data example in Figure 6 (a). Thus,
components are not more separated when d grows since |2 — p1fls = 1, 2
denoting the common covariance matrix of each Gaussian component, and g
denoting the center of the component k = 1,2. Consequently, errype, = @(—%)
is constant and the empirical error increases with d, as illustrated in Figure 6 (b)
with previous conventions.

Attempt to reach the bias/variance trade-off As previously explained,
curse factors are the consequence of the variance increase, whereas bias is stable.
The solution is to significantly decrease the variance even if increasing the bias
to a lesser extent. Since class separation grows in Figure 6 (a), it becomes
possible to use a simpler model, namely here a Gaussian model with diagonal
covariance matrices while preserving a quite low error rate. It is illustrated in
Figure 6 (b) with the continuous line. This remark will be fundamental for the
models implemented in the MixtComp and BlockCluster software we describe
now.



Figure 6: Dimension curse in the clustering context when variables convey
redundant partitioning information: (a) A bivariate data set example with
isodensity of each component and (b) the theoretical (dark dash line), the
empirical correlated model related (gray dash line) and the empirical
independent model related (continuous line) error rate when d increases.

3 BigStat platform for mixed/missing variables

In the BigStat platform, the MixtComp software is dedicated to clustering of
(full) mixed data (continuous, categorical, integer, ordinal, rank and continuous
functional), allowing also missing values and uncertain values (like intervals in
the continuous case, but available for all other data types). It implements a
SEM and a SE algorithms for all estimations, including missing and uncertain
data, as described in Section 2.1. From a practical point of view, a single zip
file, containing both the data set and the variable descriptor, is provided as
an input on the web site. The output corresponds to an interactive entropy
visualization of the estimated clusters, with the mixture parameters, and also
to the possibility to download the corresponding R object for further use in the
R environment. A wiki documentation is also availableS.

3.1 Models for a moderate number of mixed variables

Intra-type conditional independence As discussed in the previous section,
increasing dimension d of data imposes to restrict the model complexity in
order to control the variance even if increasing moderately the bias. In case
when dimension d is “moderate”, the model complexity should be also. For
instance, in Figure 6 (b) a diagonal Gaussian model is efficient to obtain a
good partitioning of clusters with yet intra-correlated variables. We propose to
extend this idea for all kinds of data types by assuming that all variables x;;
of x; (j = 1,...,d) are conditionally independent knowing the latent classes.
Thus, f(xi;00) = [[5_, f(i; ;) where o = (oujsj = 1,....d), f(; o))
denoting the univariate distribution associated to the variable j in the class k.
This latter is defined as follows, depending on the data type:

e Continuous: each f(-;ax;) = N(u;,07;). It corresponds to the diago-
nal Gaussian model of Celeux and Govaert [1995] (see an illustration on
Figure 2 (c)).

Shttps://modal.lille.inria.fr/wikimodal/doku.php?id=mixtcomp



e Categorical: each z;; = (x;n;h = 1,...,m;) has m; response levels
where z;;;, = 1 if ¢ has response level h for variable j and x;;, = 0 other-
wise. The standard model for clustering observations described through
categorical variables is the so-called latent class model (see for instance
Goodman [1974]) where f(-; ;) = M(ag;) is the multinomial distribu-
tion with ay; = (agjn;h =1,...,m;), ak;, denoting the probability that
variable j has level A if individual ¢ is in cluster k.

e Integer: each x;; € N and f(-; ay;) = P(Ag;), the Poisson distribution of
parameter ;.

e Other: each z;; could be also an ordinal data, a ranking data or also a
(discretised) continuous functional data (see respective univariate distri-
butions in Biernacki and Jacques [2016], Biernacki and Jacques [2013] and
Samé et al. [2011]).

Inter-type conditional independence It is frequent in practice to mix dif-
ferent kinds of data types, for instance continuous, categorical and integer ones.
Thus the ith individual is composed by three parts, x; = (x¢onf, x¢e xint),
x¢ont x¢at and xi"* designing the continuous, the categorical and the integer
ones respectively. In that case, the proposed solution for symmetry between
data types is to mixed all types by inter-type conditional independence [Mous-
taki and Papageorgiou, 2005]:

o ) = 65 @6™) x5 ett) x (™ o)

with ay, = (™, af®, ai™*) the obvious associated parameters by data type.

3.2 Illustration on a prostate cancer data set

Hunt and Jorgensen [1999] (see also McLachlan and Peel [2000] p. 139-142) con-
sidered the clustering of patients on the basis of petrial variates alone for the
prostate cancer clinical trial data of Byar and Green [1980] which is reproduced
in Andrews and Herzberg [1985] p. 261-274. This data set was obtained from
a randomized clinical trial comparing four treatments for n = 506 patients with
prostatic cancer grouped on clinical criteria into two Stages 3 and 4 of the dis-
ease. As reported by Byar and Green [1980], Stage 3 represents local extension
of the disease without evidence of distance metastasis, while Stage 4 represents
distant metastasis as evidenced by elevated acid phosphatase, X-ray evidence,
or both. Twelve pre-trial variates were measured on each patient, composed by
eight continuous variables (age, weight, systolic blood pressure, diastolic blood
pressure, serum haemoglobin, size of primary tumour, index of tumour stage
and histolic grade, serum prostatic acid phosphatase) and four categorical vari-
ables with various numbers of levels (performance rating, cardiovascular disease
history, electrocardiogram code, bone metastases). The skewed variables “size of
primary tumour” and “serum prostatic acid phosphatase” were transformed by
using a square root and a logarithm transformation, respectively. There are 62
missing values, so about 1% of the whole sample, and 475 patients have finally
no missing data.

We compare five strategies for using the MixtComp software: (1) “raw-506":
the 506 raw missing/mixed data, (2) “impute-506”: the 506 mixed data after
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imputation of missing data by the mice R package”, (3) “mixed-475™ the 475
non-missing mixed data, (4) “cont-475”: the 475 non-missing continuous-only
data, (5) “cat-475” the 475 non-missing categorical-only data. The ICL cri-
terion (2) is then calculated in each situation for estimating K in the range
1,...,7. Ouly three strategies (raw-506, mixed-475, cont-475) retain K =2,
strategies impute-506 and cat-475 respectively preferring K =7and K = 1.
Now, by fixing K = 2, the misclassification error rate is displayed in Table 2
for all strategies. Both previous results on K selection and the error rate when
K = 2 indicate all interest on dealing directly on raw data. Indeed, imputa-
tion before clustering, and to a lesser extend missing data removing, may loose
some cluster information. In addition, categorical variables alone convey few
information on the partition but could be informative associated to continuous
variables.

Strategy raw-506 impute-506 cont-475 cat-475 mixed-475
% misclassified 8.1 12.8 9.46 47.16 8.63

Table 2: Misclassification error rate on the cancer data set with K = 2.

4 BigStat platform for high dimension

In the BigStat platform, the BlockCluster software is dedicated to clustering of
non-missing and homogeneous data (continuous, categorical or integer, but not
mixed) of very high dimension thanks to a co-clustering approach. It implements
a SEM algorithm (and other) for all estimations. Similarly to MixtComp, a
single zip file is provided as an input on the web site containing both the data set
and some tuning parameters. It provides a visualization of the estimated clusters
(and co-clustering blocks) and also the possibility to download the corresponding
R object for further use in the R environment. A corresponding R package is
also available®.

4.1 Models for a high number of homogeneous variables

Models implemented in the MixtComp software are not parsimonious enough to
be used in the very high dimensional setting. Simultaneous clustering of rows
and columns, usually designated by bi-clustering, co-clustering or block cluster-
ing, is an important technique in two way data analysis allowing very simple
models even with many variables. They consider the two sets simultaneously
and organize the data into homogeneous blocks. Two partition representations
are thus now needed. First, as usual, a partition of n individuals (lines of the
data matrix x) into K clusters still noticed z. Second, and symmetrically, a par-
tition of d variables (columns of the data matrix x) into L clusters is denoted
by w = (w1, ...,wy) where w; = (wj1,...,w,) with w;; = 1 if j belongs to
cluster [ and wj; = 0 otherwise. Both space partitions are respectively denoted
by Z and W.

“http://cran.r-project.org/web/packages/mice/mice.distribution
8https://cran.r-project.org/web /packages/blockcluster /index.html
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We refer to the book of Govaert and Nadif [2013] for providing more details
on co-clustering techniques, probabilistic or not. Here, we focus on model-based
co-clustering as being often a generalization of non-probabilistic methods and al-
lowing coherent formulation from estimation to model selection. In the following
set, product on 7, j, k and [ stands for ranges {1,...,n}, {1,...,d}, {1,..., K}
and {1,...,L} respectively. Block model-based clustering can be seen as an
extension of the traditional mixture model-based clustering (see Section 2.1).
The basic idea is to extend the latent class principle of local (or conditional)
independence. Each data point z;; is assumed to be independent once z; and
w; are fixed. We note 8 = (m, p, @) with a = (o) and where @ = (1) and
p = (pr) are the vectors of probabilities 7y and p; that a row and a column
belong to the kth row component and to the Ith column component respectively.
Assuming also independence between all z; and wj;, the latent block mixture
model has final probability distribution

f(x;60) = Z H (mepif (mij; o)) 7" (6)

(z,w)EZXW 1,j,k,l

Finally, the distribution f(-; o) depends on the data type of x;; (continuous,
categorical, integer) and thus is similar to these ones defined in Section 3.1,
except that mixed data are not allowed this time. Such models can be very
parsimonious even when d is very large, provided that L is moderate. Indeed,
by comparison to a classical intra-type conditional independence model with D
parameters to be estimated (see Section 3.1), the corresponding co-clustering
model requires only D X % parameters. In addition, a specific expression of the
ICL criterion (2) can be invoked for selecting the pair (K, L).

4.2 Illustration on a document data set

Figure 7 (a) displays a text mining example®. It mixes Medline (1,033 med-
ical abstracts) and Cranfield (1,398 aeronautical abstracts) making a total of
n = 2,431 documents. Furthermore, all the words (excluding stop words) are
considered as features making a total of d = 9,275 unique words. The data ma-
trix consists of documents on the rows and words on the columns with each entry
giving the term frequency, that is the number of occurrences of corresponding
word in corresponding document. Since it concerns a contingency table (cross
counting documents and words) we apply a Poisson block clustering model. The
“true” block partitioning involves K = 2 document clusters (row) and L = 2
word clusters (column). Table 3 displays the confusion table for documents by
using 2x2 blocks. We show that we exactly retrieve the underlying document
structure, what is expected by the blessing effect of high dimensional clustering,
the data set being here with d = 9,275. Figure 7 (b) gives a view of the data set
after reorganization by block-clustering. We also distinguish clear partitioning
in rows and columns.

5 Conclusion

The BigStat platform offers a freely available solution for clustering without
any package installation and any computer resource (any mobile device may

9This data set is publicly available at ftp://ftp.cs.cornell.edu/pub/smart.
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Medline Cranfield
Medline 1033
Cranfield . 1398

Table 3: Confusion table by applying block clustering for text partitioning.

Unique Words Unique Words
e

BliGlnublelyy

(a) (b)

Figure 7: Text mining example: (a) the initial data set; (b) the reorganized
data set with (K, L) = (2,2).

be appropriate, not necessarily a laptop) since it can be launched as a SaaS
application from a web page. The output can be either directly visualized on
the device as a graphical display, or downloaded as an R object for further use
in an R environment.

Two clustering software are available in BigStat, and rely both on the model-
based clustering paradigm. First, the MixtComp software is able to deal with
mixed, missing and uncertain data in a moderate dimension setting. Second,
the BlockCluster software extend clustering, through a co-clustering principle,
to the high dimension setting but restrict its use to non-mixed and non-missing
data. Future theoretical and methodological works will concern possibility to
address simultaneously both situations, it means mixed, missing and uncertain
data in a high dimension setting.

Finally, the BigStat platform will migrate soon towards a new platform called
MASSICCC!? (Massive Clustering on Cloud Computing) allowing a even more
convivial interface with more powerful computer servers.
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