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�BigStat� for Big Data

�Big Data lustering through the BigStat SaaS platform�

Christophe Biernaki

∗

University of Lille & CNRS & Inria, Frane

Abstrat

BigStat is a web platform devoted to lustering of big data sets through

two hosted software, MixtComp and BlokCluster. The former adress

mixed, missing and unertain data in a moderate dimensional setting,

whereas the latter is devoted to high dimensional data sets with non-

mixed, non-missing and non-unertain data. Mathematial foundations

of both rely on mixture models and related algorithms.

Keywords. Model-based lustering, mixed and missing data, high dimen-

sion, SaaS platform.

1 Introdution

1.1 Big Data: IT genesis

The Big Data phenomenon mainly originates in the inrease of omputer and

digital resoures at an ever lower ost. Indeed, the storage ost by Mb (Mega

bytes, 106 bytes) rose from 700$ in 1981 to 1$ in 1994 then to 0.01$ in 2013

1

(the prie has been divided by 70,000 in thirty years) whereas hard drives of

8 Tb (Tera bytes, 1012 bytes) storage apaity are now easily available, to be

ompared to 1.02 Gb (Giga bytes, 109 bytes) storage apaity in 1982

2

(storage

apaity multiplied by 8,000 on the same period). Simultaneously, the proess-

ing speed of the existing most powerful omputer starts from one gigaFLOPS

(a FLOPS orresponds to the FLoating-point Operations Per Seond) in 1985

to reah 33 petaFLOPS in 2013

3

(speed multiplied by 33 million). It leads to

the so-alled storage hallenge, whih is the �IT side� of Big Data gathering the

storage, the transfer, the preservation and the availability of data.

One should be aware that any human ativities are impated by suh a digital

data aumulation: trade and business (ompanies information systems, banks,

booking systems. . . ), governments and other organizations (laws and other reg-

ulations, standardization rules. . . ), entertainment (musi, video, games, soial

networks. . . ), fundamental sienes (astronomy, physis, power, genomis. . . ),

∗
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health (medial �le. . . ), environment (limat, pollution, alimentation. . . ), hu-

manities and soial sienes (knowledge digitization, literature, history, art, ar-

hiteture, arhaeologial data. . . ). Finally, the whole human soiety onverges

towards a so-alled numerial world, so that in 2007 more that 94% of stored

information was available in its digital form (the 6% remaining being available

in its analogial form), to be ompared again to only 1% in 1986 [Hilbert and

López, 2011℄. Moreover, this amount of stored information exeeds now 280 Eb

(Exa bytes, 1018 bytes), versus 0.02 Eb in 1986 (14,000 times more). It leads

to the so-alled soietal and eonomi hallenge, whih is the �soft siene side�

of Big Data gathering protetion of private life, right to be forgotten, property

rights, operating rights, ost of energy storage or transfer.

1.2 New data but lassial statistial hallenges

Sine Laney [2001℄, the Big Data phenomenon is also desribed by the �3V�

analyti point of view, mixing Volume, Veloity and Variety terms, respetively

desribing the quantity of data to be proessed, the response delay in the pro-

essing and the form the data an take (strutured, unstrutured). Moreover,

it is now urrent to meet �4V� or �5V� terminologies, for instane by adding the

term Veraity whih desribes unertainty due to data inompleteness. It leads

to the so-alled data analysis hallenge, whih is the �hard siene side� of Big

Data gathering together hardware, software and mathematial skills. Anyway,

the volume is ertainly the most emblemati feature of Big Data for all these

skills. The reason is ertainly the exponential growth of the data sets size over

time, both on the number of individuals and on the number of variables of the

data sets as observed by Alelyani et al. [2013℄ from data sets extrated from

UCI mahine learning repository.

However, although suh new kinds of data sets are more and more present,

the statistial aims stay entirely unhanged. They still rely on the same user

questionings, orresponding to exploration goals (typially visualization and un-

supervised lassi�ation) and predition ones (typially supervised lassi�ation

and regression). This fat is illustrated from the 4th Annual Rexer Analytis

Data Miner Survey

4

, whih is the largest survey of data mining, data siene,

and analytis professionals in the industry, where deision trees, regression and

luster analysis form a triad of ore algorithms, and by far, for most data si-

entists in the world.

1.3 Fous of the paper

In the present paper, we fous our attention on the unsupervised lassi�a-

tion task (also alled lustering or luster analysis) sine it is one of the �rst

three main statistial aims of data miners (or data sientists) as previously dis-

ussed. In this ontext, we present di�erent model-based lustering situations,

varying in data volume (individuals, variables), in data variety (mixed data,

typially gathering ontinuous and ategorial variables) and in data veraity

(missing and unertain data). The model-based approah has advantage to rely

on the mathematial statistial framework, thus is able to provide rigorous an-

swers to lustering for suh hallenging kinds of data. The presented models
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are implemented in two di�erent software (MixtComp and BlokCluster), eah

speialized in a di�erent ontext as desribed later. Both are gathered in the

BigStat platform

5

freely available in SaaS mode (Software as a Servie).

The ouline of the paper is the following. In Setion 2, the model-based lus-

tering priniple is given and a spei� disussion onerning e�et of data volume

on partition estimates is onduted, separating the number of individuals and

the number of variables situations. Setion 3 is devoted to the moderate num-

ber of variables ase with possibility to deal simultaneously with mixed, missing

and unertain data. The related models are implemented in the MixtComp soft-

ware of the BigStat platform and a illustration on a real data set is provided.

Setion 4 is devoted to the high number of variables ase, but with non-mixed

and non-missing data. The related models are implemented in the BlokCluster

software of the BigStat platform and an illustration on a real data set is also

provided. Setion 5 onludes the paper and draws some prospets both from

the statistial model and the software points of view.

2 Model-based lustering and large data sets

2.1 Model-based lustering priniple

Mixture hypothesis Cluster analysis is one of the main data analysis method.

It aims at partitioning a data set x = (x1, . . . ,xn) = (xO,xM ), omposed by n
individuals and lying in a spae X of dimension d into K lasses G1, . . . , GK .

Here the observed part of x has been denoted by x
O

whereas the missing or

unertain one (unertain means partially missing like intervals) is denoted by

x
M
. Moreover, X designates possibly a mixed feature spae, it means a spae

mixing features of di�erent kinds like ontinuous, ategorial or integer. An

illustration of missing, unertain and mixed features is displayed in Table 1.

observed data set x
O

? 0.5 red 5

0.3 0.1 green 3

0.3 0.6 {red,green} 3

0.9 [0.25 0.45℄ red ?

↓ ↓ ↓ ↓
ontinuous ontinuous ategorial integer

Table 1: A mixed, missing and unertain data set omposed by n = 4
individuals and d = 4 variables.

The target partition is denoted by z = (z1, . . . , zn), lying in a spae Z, where

zi = (zi1, . . . , ziK)′ is a vetor of {0, 1}K suh that zik = 1 if individual xi be-

longs to the kth lass Gk, and zik = 0 otherwise (i = 1, . . . , n, k = 1, . . . ,K).

Model-based lustering allows to reformulate luster analysis as a well-posed

estimation problem both for the partition z and for the number K of lasses.

It onsiders data x1, . . . ,xn as n i.i.d. realizations of a mixture distribution

5
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f(·; θ) = ∑K
k=1 πkf(·;αk), where f(·;αk) indiates the distribution, parameter-

ized by αk, assoiated to the lass k, where πk indiates the mixture proportion

of this omponent (

∑K
k=1 πk = 1, πk ≥ 0) and where θ = (πk,αk; k = 1, . . . ,K)

indiates the whole mixture parameters.

The question is then to estimate the lass numberK and the partition z from

x
O
. Figure 1 gives an illustration of this priniple when d = 2. The standard

solution relies on �rst the estimation of the mixture parameter θ̂ as we desribe

now.
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x = (x1, . . . ,xn) −→ ẑ = (ẑ1, . . . , ẑn), K̂ = 3

Figure 1: The lustering purpose illustrated in the two-dimensional setting.

Mixture parameter estimation From the observed data set x
O
it is then

possible to obtain a mixture parameter estimate θ̂ by maximizing the observed

log-likelihood ℓ(θ̂;xO) = ln f(xO
i ; θ) where

f(xO
i ; θ) =

K
∑

k=1

πkf(x
O
i ;αk) =

K
∑

k=1

πk

∫

xM
i

f(xO
i ,x

M
i ;αk)dx

M
i , (1)

provided that missing data x
M

are obtained by a missing at random (MAR)

proess.

For optimizing ℓ(θ;xO), the EM (Expetation-Maximization) algorithm of

Dempster et al. [1977℄ is often performed or some of its variants (see also Redner

and Walker [1984℄) like the SEM (Stohasti EM) [Celeux and Diebolt, 1985℄.

A SEM algorithm an be used to maximize the observed-data log-likelihood,

desribed as follows for iteration q ≥ 1, when starting from a parameter θ(0)

seleted at random:

• E-step: ompute onditional probabilities f(xM , z|xO; θ(q)),

• S-step: draw (xM(q), z(q)) from f(xM , z|x0; θ(q)),

• M-step: maximize θ(q+1) = argmaxθ ln f(x
O,xM(q), z(q); θ).

Sine the parameter sequene (θ(q)) generated by SEM does not puntually

onverges, due to the S-step de�nition, the algorithm generally stops after a

prede�ned number of iterations. This sequene onverges in distribution to-

wards the unique stationary distribution. Asymptotially on q, the mean of the

sequene (θ(q)) approximates θ̂ and thus provides a sensible loal estimate of
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the maximum likelihood. In addition, the variane of the sequene (θ(q)) gives
on�dene intervals on θ. SEM has also advantage to be less dependent on the

initial value θ(0)
than EM does if a �su�ient� iteration number is performed

and so avoids uninteresting loal maxima. Finally, managing missing data is

easier than with EM thanks to its so-alled stohasti S-step, while preserving

a lassial M-step like EM.

Partition (and missing data) estimation One θ̂ is obtained, a so-alled

SE algorithm (a SEM without the M step) an be used to estimate partition z,

and simultaneously missing data x
M
. Its qth iteration is given by

• E-step: ompute onditional probabilities f(xM , z|xO; θ̂),

• S-step: draw (xM(q), z(q)) from f(xM , z|xO; θ̂).

After a given iteration number, the mean and/ormode of the sequene (xM(q), z(q))
estimates (xM , z), denoted by (x̂M , ẑ), with again the possibility to derive some

on�dene intervals on these unknown quantities.

Estimation of the lass number It is now possible to derive an estimate

K̂ from an estimate of the observed onditional probability f̂(K|xO) or also

from the ompleted-partition onditional probability f̂(K|xO, z). The �rst one
leads to retaining K̂ whih maximizes the so-alled BIC (Bayesian Informa-

tion Criterion) riterion [Shwarz, 1978℄, whereas the seond one orresponds

to maximizing the so-alled ICL (Integrated Completed Likelihood) riterion

[Biernaki et al., 2000℄, de�ned by

ICL = ln f(xO, ẑ; θ̂)− D

2
lnn, (2)

D denoting the number of free (ontinuous) parameters in the model at hand.

Advantage of ICL over BIC in a lustering ontext is its ability to integrate the

lustering purpose in its de�nition through the use of the estimate partition ẑ

in (2). As a onsequene it will favour well-separated lusters, so less lusters

but more valuable lusters than BIC provide, even if the model de�nition of

omponents f(·;αk) is erroneous.

Illustration in the Gaussian ase The multivariate mixture model is er-

tainly the most known and used model for ontinuous data. It has a long history

of use in lustering (see for instane Wolfe [1971℄, Bok [1981℄). In that ase,

xi (i = 1, . . . , n) are ontinuous variables X = R
d
and the onditional density

of omponents is written (k = 1, . . . ,K)

f(·;αk) = N(µk,Σk) =
1

(2π)d/2|Σk|1/2
exp

(

−1

2
(· − µk)

′
Σ

−1
k (· − µk)

)

, (3)

with αk = (µk,Σk), µk ∈ R
d
the omponent mean (or entre) and Σk ∈ R

d×d

its variane-ovariane matrix. Figures 2 (a), (b) and () respetively display

univariate, bivariate and trivariate Gaussian mixtures.
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Figure 2: Gaussian mixtures in (a) univariate, (b) bivariate and () trivariate

situations.

2.2 The large number of individuals ase

In statistis, theory is often asymptotis on the number of individuals and thus,

theoretially, inreasing n is a good news, model-based lustering inluded. The

standard way to address the e�et of n on the partition estimate quality is to

express the related bias/variane trade-o�. We note err(z1, z2) ≥ 0 a distane-

like measure between two partitions z1 and z2. When the number of lasses in

eah partition is idential, it an be the lassial empirial error rate. When the

number of lasses di�ers, it an be for instane the Rand riterion de�ned in

Rand [1971℄. We also de�ne z
∗ = argmin err(z, ·) the best partition assoiated

to the model at hand with regards to the true partition z. We then have the

simple but important following deomposition:

err(z, ẑ) =
{

err(z, z∗)− err(z, z)
}

+
{

err(z, ẑ)− err(z, z∗)
}

(4)

=
{

bias

}

+
{

variane

}

. (5)

The bias orresponds to the so-alled error of approximation and the variane

to the so-alled error of estimation.

When the sample size grows, as expeted the variane automatially de-

reases. However, vanishing asymptotially the whole error term err(z, ẑ) re-

quires also to derease the bias. If the proposed model at hand does not or-

respond to the true (unknown) model, the only issue is to hange it by a more

omplex one. Typially, inreasing the andidate number of lassesK is thus the

opportunity to redue suh a model approximation as illustrated on Figure 3.

2.3 The large number of variables ase

However, in the Big Data ontext, inreasing the volume may mean in�ating the

number of individuals (n) or alternatively the number of variables (d) (or both).
The question is now to ontrol the error err(z, ẑ) previously de�ned in (5) with

regards to d. Contrary to inreasing n, inreasing d may have both positive

and negative e�ets on the lustering task, usually designated respetively by

�blessing� and �urse� of the dimension.

Blessing fators Consider the following two-omponent multivariate Gaus-

sian mixture: π1 = π2 = 1
2 , f(·;α1) = N(0, I) and f(·;α2) = N(1, I), with

6



Figure 3: Opportunity to redue error of approximation when n grows by

inreasing K̂.

a = (a . . . a)′ a real vetor of size d. We display a orresponding sample in

Figure 4 (a). In that ase the two omponents are more and more separated

when d grows sine ‖1 − 0‖I =
√
d. The reason is that eah variable uni-

formly provides its own separation information suh that the assoiated theo-

retial error dereases when d grows. Indeed, this thoretial error is equal to

errtheo = Φ(−
√
d/2), where Φ is the umulative distribution of N(0, 1). We an

see this derease with d by a dash line in Figure 4 (b). An interesting onse-

quene is then that the empirial error rate dereases also with d as it ould be

notied in ontinuous line in Figure 4 (b). It means that inreasing dimension

may have a positive e�et on the lustering task as soon as all variables onvey

meaningful information on the hidden partition. From the bias/variane inter-

pretation (5), it means that bias dereases faster than variane grows when d is

larger.
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Figure 4: Dimension blessing in the lustering ontext when most variables

onvey independent partitioning information: (a) A bivariate data set example

with isodensity of eah omponent and (b) the theoretial (dash line) and the

empirial (ontinuous line) error rate when d inreases.

Curse fators In fat, inreasing dimension may have a positive e�et on

lustering retrieval only if variables injet some partioning information. In ad-

dition, suh information has to be not redundant. It is a onsequene that, in

both ases, bias does not de�ates whereas variane lims. We illustrate now
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these two partiular features.

Firstly, we onsider many variables whih provide no separation information.

We retrieve the same previous parameter setting exept that the omponents

are not more separated when d grows sine ‖µ2 − µ1‖I = 1, where µ1 = 0

is the enter of the �rst Gaussian and where µ2 = (1 0 . . . 0)′ is the one of

the seond, thus (k = 1, 2): f(·;αk) = N(µk, I). A sample is displayed on

Figure 5 (a). Figure 5 (b) shows in dash line that the theoretial error rate

is onstant (it orresponds to errtheo = Φ(− 1
2 )) when the dimension inreases,

as expeted. Consequently, the empirial error rate degrades in this situation

(ontinuous line of the same �gure).
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Figure 5: Dimension urse in the lustering ontext when variables onvey no

partitioning information: (a) A bivariate data set example with isodensity of

eah omponent and (b) the theoretial (dash line) and the empirial

(ontinuous line) error rate when d inreases.

Seondly, we onsider a ase where many variables provide separation, but

redundant information, in the following sense: It is the same parameter setting

as before for the �rst dimension exept for all other ones, thus X1j = X11 + εj

where εj
iid∼ N(0, 1) (j = 2, . . . , d). See a data example in Figure 6 (a). Thus,

omponents are not more separated when d grows sine ‖µ2 − µ1‖Σ = 1, Σ
denoting the ommon ovariane matrix of eah Gaussian omponent, and µk

denoting the enter of the omponent k = 1, 2. Consequently, errtheo = Φ(− 1
2 )

is onstant and the empirial error inreases with d, as illustrated in Figure 6 (b)
with previous onventions.

Attempt to reah the bias/variane trade-o� As previously explained,

urse fators are the onsequene of the variane inrease, whereas bias is stable.

The solution is to signi�antly derease the variane even if inreasing the bias

to a lesser extent. Sine lass separation grows in Figure 6 (a), it beomes

possible to use a simpler model, namely here a Gaussian model with diagonal

ovariane matries while preserving a quite low error rate. It is illustrated in

Figure 6 (b) with the ontinuous line. This remark will be fundamental for the

models implemented in the MixtComp and BlokCluster software we desribe

now.
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Figure 6: Dimension urse in the lustering ontext when variables onvey

redundant partitioning information: (a) A bivariate data set example with

isodensity of eah omponent and (b) the theoretial (dark dash line), the

empirial orrelated model related (gray dash line) and the empirial

independent model related (ontinuous line) error rate when d inreases.

3 BigStat platform for mixed/missing variables

In the BigStat platform, the MixtComp software is dediated to lustering of

(full) mixed data (ontinuous, ategorial, integer, ordinal, rank and ontinuous

funtional), allowing also missing values and unertain values (like intervals in

the ontinuous ase, but available for all other data types). It implements a

SEM and a SE algorithms for all estimations, inluding missing and unertain

data, as desribed in Setion 2.1. From a pratial point of view, a single zip

�le, ontaining both the data set and the variable desriptor, is provided as

an input on the web site. The output orresponds to an interative entropy

visualization of the estimated lusters, with the mixture parameters, and also

to the possibility to download the orresponding R objet for further use in the

R environment. A wiki doumentation is also available

6

.

3.1 Models for a moderate number of mixed variables

Intra-type onditional independene As disussed in the previous setion,

inreasing dimension d of data imposes to restrit the model omplexity in

order to ontrol the variane even if inreasing moderately the bias. In ase

when dimension d is �moderate�, the model omplexity should be also. For

instane, in Figure 6 (b) a diagonal Gaussian model is e�ient to obtain a

good partitioning of lusters with yet intra-orrelated variables. We propose to

extend this idea for all kinds of data types by assuming that all variables xij

of xi (j = 1, . . . , d) are onditionally independent knowing the latent lasses.

Thus, f(xi;αk) =
∏d

j=1 f(xij ;αkj) where αk = (αkj ; j = 1, . . . , d), f(·;αkj)
denoting the univariate distribution assoiated to the variable j in the lass k.
This latter is de�ned as follows, depending on the data type:

• Continuous: eah f(·;αkj) = N(µkj , σ
2
kj). It orresponds to the diago-

nal Gaussian model of Celeux and Govaert [1995℄ (see an illustration on

Figure 2 ()).

6
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• Categorial: eah xij = (xijh;h = 1, . . . ,mj) has mj response levels

where xijh = 1 if i has response level h for variable j and xijh = 0 other-

wise. The standard model for lustering observations desribed through

ategorial variables is the so-alled latent lass model (see for instane

Goodman [1974℄) where f(·;αkj) = M(αkj) is the multinomial distribu-

tion with αkj = (αkjh;h = 1, . . . ,mj), αkjh denoting the probability that

variable j has level h if individual i is in luster k.

• Integer: eah xij ∈ N and f(·;αkj) = P(λkj), the Poisson distribution of

parameter λkj .

• Other: eah xij ould be also an ordinal data, a ranking data or also a

(disretised) ontinuous funtional data (see respetive univariate distri-

butions in Biernaki and Jaques [2016℄, Biernaki and Jaques [2013℄ and

Samé et al. [2011℄).

Inter-type onditional independene It is frequent in pratie to mix dif-

ferent kinds of data types, for instane ontinuous, ategorial and integer ones.

Thus the ith individual is omposed by three parts, xi = (xcont
i ,xcat

i ,xint
i ),

x
cont
i , x

cat
i and x

int
i designing the ontinuous, the ategorial and the integer

ones respetively. In that ase, the proposed solution for symmetry between

data types is to mixed all types by inter-type onditional independene [Mous-

taki and Papageorgiou, 2005℄:

f(xi;αk) = f(xcont
i ;αcont

k )× f(xcat
i ;αcat

k )× f(xint
i ;αint

k )

with αk = (αcont
k ,αcat

k ,αint
k ) the obvious assoiated parameters by data type.

3.2 Illustration on a prostate aner data set

Hunt and Jorgensen [1999℄ (see also MLahlan and Peel [2000℄ p. 139�142) on-

sidered the lustering of patients on the basis of petrial variates alone for the

prostate aner linial trial data of Byar and Green [1980℄ whih is reprodued

in Andrews and Herzberg [1985℄ p. 261�274. This data set was obtained from

a randomized linial trial omparing four treatments for n = 506 patients with
prostati aner grouped on linial riteria into two Stages 3 and 4 of the dis-

ease. As reported by Byar and Green [1980℄, Stage 3 represents loal extension

of the disease without evidene of distane metastasis, while Stage 4 represents

distant metastasis as evidened by elevated aid phosphatase, X-ray evidene,

or both. Twelve pre-trial variates were measured on eah patient, omposed by

eight ontinuous variables (age, weight, systoli blood pressure, diastoli blood

pressure, serum haemoglobin, size of primary tumour, index of tumour stage

and histoli grade, serum prostati aid phosphatase) and four ategorial vari-

ables with various numbers of levels (performane rating, ardiovasular disease

history, eletroardiogram ode, bone metastases). The skewed variables �size of

primary tumour� and �serum prostati aid phosphatase� were transformed by

using a square root and a logarithm transformation, respetively. There are 62

missing values, so about 1% of the whole sample, and 475 patients have �nally

no missing data.

We ompare �ve strategies for using the MixtComp software: (1) �raw-506�:

the 506 raw missing/mixed data, (2) �impute-506�: the 506 mixed data after
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imputation of missing data by the mie R pakage

7

, (3) �mixed-475�: the 475

non-missing mixed data, (4) �ont-475�: the 475 non-missing ontinuous-only

data, (5) �at-475�: the 475 non-missing ategorial-only data. The ICL ri-

terion (2) is then alulated in eah situation for estimating K in the range

1,. . . ,7. Only three strategies (raw-506, mixed-475, ont-475) retain K̂ = 2,
strategies impute-506 and at-475 respetively preferring K̂ = 7 and K̂ = 1.
Now, by �xing K = 2, the mislassi�ation error rate is displayed in Table 2

for all strategies. Both previous results on K seletion and the error rate when

K = 2 indiate all interest on dealing diretly on raw data. Indeed, imputa-

tion before lustering, and to a lesser extend missing data removing, may loose

some luster information. In addition, ategorial variables alone onvey few

information on the partition but ould be informative assoiated to ontinuous

variables.

Strategy raw-506 impute-506 ont-475 at-475 mixed-475

% mislassi�ed 8.1 12.8 9.46 47.16 8.63

Table 2: Mislassi�ation error rate on the aner data set with K = 2.

4 BigStat platform for high dimension

In the BigStat platform, the BlokCluster software is dediated to lustering of

non-missing and homogeneous data (ontinuous, ategorial or integer, but not

mixed) of very high dimension thanks to a o-lustering approah. It implements

a SEM algorithm (and other) for all estimations. Similarly to MixtComp, a

single zip �le is provided as an input on the web site ontaining both the data set

and some tuning parameters. It provides a visualization of the estimated lusters

(and o-lustering bloks) and also the possibility to download the orresponding

R objet for further use in the R environment. A orresponding R pakage is

also available

8

.

4.1 Models for a high number of homogeneous variables

Models implemented in the MixtComp software are not parsimonious enough to

be used in the very high dimensional setting. Simultaneous lustering of rows

and olumns, usually designated by bi-lustering, o-lustering or blok luster-

ing, is an important tehnique in two way data analysis allowing very simple

models even with many variables. They onsider the two sets simultaneously

and organize the data into homogeneous bloks. Two partition representations

are thus now needed. First, as usual, a partition of n individuals (lines of the

data matrix x) into K lusters still notied z. Seond, and symmetrially, a par-

tition of d variables (olumns of the data matrix x) into L lusters is denoted

by w = (w1, . . . ,wd) where wj = (wj1, . . . , wjL) with wjl = 1 if j belongs to

luster l and wjl = 0 otherwise. Both spae partitions are respetively denoted

by Z and W .

7

http://ran.r-projet.org/web/pakages/mie/mie.distribution

8

https://ran.r-projet.org/web/pakages/blokluster/index.html
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We refer to the book of Govaert and Nadif [2013℄ for providing more details

on o-lustering tehniques, probabilisti or not. Here, we fous on model-based

o-lustering as being often a generalization of non-probabilisti methods and al-

lowing oherent formulation from estimation to model seletion. In the following

set, produt on i, j, k and l stands for ranges {1, . . . , n}, {1, . . . , d}, {1, . . . ,K}
and {1, . . . , L} respetively. Blok model-based lustering an be seen as an

extension of the traditional mixture model-based lustering (see Setion 2.1).

The basi idea is to extend the latent lass priniple of loal (or onditional)

independene. Eah data point xij is assumed to be independent one zi and

wj are �xed. We note θ = (π,ρ,α) with α = (αkl) and where π = (πk) and
ρ = (ρk) are the vetors of probabilities πk and ρl that a row and a olumn

belong to the kth row omponent and to the lth olumn omponent respetively.

Assuming also independene between all zi and wj , the latent blok mixture

model has �nal probability distribution

f(x; θ) =
∑

(z,w)∈Z×W

∏

i,j,k,l

(πkρlf(xij ;αkl))
zikwjl . (6)

Finally, the distribution f(·;αkl) depends on the data type of xij (ontinuous,

ategorial, integer) and thus is similar to these ones de�ned in Setion 3.1,

exept that mixed data are not allowed this time. Suh models an be very

parsimonious even when d is very large, provided that L is moderate. Indeed,

by omparison to a lassial intra-type onditional independene model with D
parameters to be estimated (see Setion 3.1), the orresponding o-lustering

model requires only D× L
d parameters. In addition, a spei� expression of the

ICL riterion (2) an be invoked for seleting the pair (K,L).

4.2 Illustration on a doument data set

Figure 7 (a) displays a text mining example

9

. It mixes Medline (1,033 med-

ial abstrats) and Cran�eld (1,398 aeronautial abstrats) making a total of

n = 2, 431 douments. Furthermore, all the words (exluding stop words) are

onsidered as features making a total of d = 9, 275 unique words. The data ma-

trix onsists of douments on the rows and words on the olumns with eah entry

giving the term frequeny, that is the number of ourrenes of orresponding

word in orresponding doument. Sine it onerns a ontingeny table (ross

ounting douments and words) we apply a Poisson blok lustering model. The

�true� blok partitioning involves K = 2 doument lusters (row) and L = 2
word lusters (olumn). Table 3 displays the onfusion table for douments by

using 2×2 bloks. We show that we exatly retrieve the underlying doument

struture, what is expeted by the blessing e�et of high dimensional lustering,

the data set being here with d = 9, 275. Figure 7 (b) gives a view of the data set

after reorganization by blok-lustering. We also distinguish lear partitioning

in rows and olumns.

5 Conlusion

The BigStat platform o�ers a freely available solution for lustering without

any pakage installation and any omputer resoure (any mobile devie may

9

This data set is publily available at ftp://ftp.s.ornell.edu/pub/smart.
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Medline Cran�eld

Medline 1033 ·
Cran�eld · 1398

Table 3: Confusion table by applying blok lustering for text partitioning.

(a) (b)

Figure 7: Text mining example: (a) the initial data set; (b) the reorganized

data set with (K,L) = (2, 2).

be appropriate, not neessarily a laptop) sine it an be launhed as a SaaS

appliation from a web page. The output an be either diretly visualized on

the devie as a graphial display, or downloaded as an R objet for further use

in an R environment.

Two lustering software are available in BigStat, and rely both on the model-

based lustering paradigm. First, the MixtComp software is able to deal with

mixed, missing and unertain data in a moderate dimension setting. Seond,

the BlokCluster software extend lustering, through a o-lustering priniple,

to the high dimension setting but restrit its use to non-mixed and non-missing

data. Future theoretial and methodologial works will onern possibility to

address simultaneously both situations, it means mixed, missing and unertain

data in a high dimension setting.

Finally, the BigStat platform will migrate soon towards a new platform alled

MASSICCC

10

(Massive Clustering on Cloud Computing) allowing a even more

onvivial interfae with more powerful omputer servers.
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