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Ordinal data ?

Definition
An ordinal variable µ takes values among m full ordered modalities

µ ∈ {1, . . . ,m} with 1 < . . . < m

Widespread data
� Marketing: customer satisfaction

surveys
� Sociology: education levels
� Medecine: pain evaluation
� Many nominal data are . . . ordinal!
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Co-clustering ?
Simultaneous clustering of rows (individuals) and column (features)
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Overview
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BOS(µ, π) model: parameters and properties [1]

� µ: position parameter (unique mode if π > 0)
� monotonic decrease around µ
� π: precision parameter:

� p(µ;µ, π) increases with π
� p(µ;µ, π)− p(x ;µ, π) increases with π (x 6= µ)
� uniform distribution if π = 0
� Dirac in µ if π = 1

� identifiability (if π = 0)

[1] Biernacki & Jacques (2015), Model-based clustering of multivariate ordinal
data relying on a stochastic binary search algorithm, to appear in Statistics and
Computing.

6 / 28



BOS(µ, π) model: illustration
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BOS(µ, π) model: inference

Due to the nature of the BOS(µ, π) model, maximum likelihood should
be estimated thanks to an EM algorithm.
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Latent Block Model

Latent Block Model (LBM)

BOS(µk`, πk`)

orginal data coclustering result
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Latent Block Model

Latent Block Model (LBM)
n × d random variables x are assumed to be independent once the row
v = (vik )i,k and column w = (wh`)h,` partitions are fixed:

p(x; θ) =
∑
v∈V

∑
w∈W

p(v; θ)p(w; θ)p(x|v,w; θ)

with
� V (W ) set of possible partitions of rows (column) into K (L) groups,
� p(v; θ) =

∏
ik α

vik
k and p(w; θ) =

∏
h` β

wh`
`

� p(x|v,w; θ) =
∏

ihk` p(xih;µk`, πk`)vik wh` where p(xih;µk`, πk`) ∼ BOS(µk`, πk`)

� θ = (πk`, µk`, αk , β`)
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LBM inference

LBM inference
� The aim is to estimate θ by maximizing the observed log-likelihood

`(θ; x̌) =
∑

x̂

ln p(x; θ). (1)

with x̌ is the observed data and x̂ the unobserved one
� v and w are missing
� EM is not computationally tractable
� ⇒ variational or stochastic version should be used
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LBM inference

SEM-Gibbs algorithm for LBM inference
� init : θ(0), w(0)

� SE step
� generate the row partition v (q+1)

ik |x̌,w(q)

p(vik = 1|x̌,w(q); θ(q)) =
α
(q)
k fk (x (q)

i. |w
(q); θ(q))∑

k′ α
(q)
k′ fk′(x (q)

i. |w(q); θ(q))

� generate the column partition w (q+1)
h` |x̌, v(q+1)

p(wh` = 1|x̌, v(q+1); θ(q)) =
β
(q)
` g`(x (q)

.h |v
(q+1); θ(q))∑

`′ β
(q)
`′ g`′(x

(q)
.h |v(q+1); θ(q))

� M step
� Estimate θ, conditionally on v(q+1),w(q+1) obtained at the SE step (and

also conditionally to x̌), using the EM algorithm for BOS inference.
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LBM inference

SEM-Gibbs algorithm for LBM inference
� θ̂ is obtained by mean / mode of the sample distribution (after a burn

in period)
� final bipartition (v̂, ŵ) estimated by MAP conditionally on θ̂
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LBM inference

Choosing K and L
We propose to adapt the ICL-BIC criterion developed in (Keribin et al.
2014) for categorical data coclustering based on the multinomial
distribution.
Thus, K and L can be chosen by maximizing

ICL-BIC(K ,L) = log p(x, v̂, ŵ; θ̂)− K − 1
2

log n − L− 1
2

log d − KL
2

log(nd)

Missing data
Within the SEM-Gibbs framework, missing data can be easily taken into
account by considering them as an additional missing random variable
to be simulated in the SE step.
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Experimental setup

� K = L = 3 clusters in row and column
� d = 100 ordinal variables with m = 5 levels
� n = 100 observations
� values of (µk`, πk`)

Setting 1 Setting 2
k /` 1 2 3
1 (1,0.9) (2,0.9) (3,0.9)
2 (4,0.9) (5,0.9) (1,0.5)
3 (2,0.5) (3,0.5) (4,0.5)

k /` 1 2 3
1 (1,0.2) (2,0.2) (3,0.2)
2 (4,0.2) (5,0.2) (1,0.1)
3 (2,0.1) (3,0.1) (4,0.1)
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Example of data

Setting 1:

Setting 2:
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How many iterations do we need ?
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Accuracy of estimation and co-clustering

Setting 1:
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Selection of the number of co-clusters

Exp. setup
� experimental setting 1
� ICL-BIC computed for 2 to 4 clusters in row / column
� 50 simulations

Results

L
2 3 4

K

2 0 0 0
3 0 46 3
4 0 1 0
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Comparison with competitors

Competitors
� R package blocksluter for nominal data.
� R package blocksluter for continuous data.
� Optimal is the Bayes classifier using the true model parameter values.

Results

setting 1 setting 2
ARI row ARI column ARI row ARI column

BOS 0.971 (0.117) 0.960 (0.139) 0.581 (0.149) 0.589 (0.171)
bc categ. 1(0) 0(0) 0.288 (0.088) 0.018 (0.055)
bc conti. 0.841 (0.290) 0.833 (0.288) 0.421 (0.103) 0.270 (0.110)
Optimal 1(0) 1(0) 0.761 (0.087) 0.759 (0.087)
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Conclusions

Results
� BOS: new probability distribution for ordinal data which respects the

ordinal scale of data
� (co-)clustering algorithms have been developed based on the BOS

model
� Applications are welcome !
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