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Abstract—The aim of this paper is to develop an exact synthesis
technique for matching filters in connexion with the use of single
band antennas. A certified algorithm based on Youla’s matching
theory and convex optimization is presented. A practical example
is considered with the synthesis of a matching filter in SIW
technology used behind a microstrip patch antenna at 1.5 Ghz.

Index Terms—Filter, Antenna, Synthesis, Matching, SIW,
Patch Antenna

I. INTRODUCTION

The synthesis of filters and antennas present in microwave
reception or emission chains are usually done by assuming a
fix resistive reference (usually 50 Ohm) at their connecting
ports. The antenna’s mismatch is then either ignored or com-
pensated by an additional matching network, resulting either
in a degradation of the energy efficiency or in an increased
footprint of the overall hardware. The aim of this paper is to
develop a synthesis technique for matching filters, allowing
to handle the matching and filtering requirements in a single
filter and rendering superfluous the use of an extra matching
network.

The literature about matching problems is vast. In the fifties
and sixties Bode, Fano and Youla [1], [2], [3] pioneered their
broad-band matching theory based on the use of the Darlington
two port equivalent and extraction procedures. Despite its
undeniable elegance this approach did not result in massive
practical applications, mainly because of its complexity and
the relative rigidity of its induced practical implementations.
The theory was for example used to synthesize matching
networks with a Tchebychev type transducer power gain [4],
nevertheless this type of responses is known to be non optimal
in terms of matching performances unless the load is a con-
stant impedance. This approach was therefore progressively
replaced by the optimization based “real frequency” technique
of Carlin [5] which is more oriented to practical applications.
These methods however focuses only on matching requirement
of the designed network and do not allow to impose rejection
specifications in specified frequency bands. Moreover, like any
non-convex optimization approach, this method does not guar-
antee the optimality of the obtained transducer gain function.

The presented approach proposes a guaranteed optimal
synthesis technique yielding the best possible matching filter
for a given load, provided its reflection coefficient can be
reasonably approached by a rational function of degree one in
the band of interest. Specifications are, like in classical filter
synthesis, given in terms of return loss and rejection levels. We
first detail the algorithmic structure of our synthesis procedure

based on Youla’s matching machinery coupled with convex
optimization techniques. The method is then demonstrated at
hand of a single band planar patch antenna and the design of
a matching filter in SIW technology.

II. DERIVING NECESSARY AND SUFFICIENT CONDITION
FOR THE LOAD EXTRACTION

Following Youla’s and Fano’s approach, our method deals
with the synthesis of the overall system of degree N + 1
composed of a matching filter of degree N chained at port
2 with a two-ports loss-less reciprocal load (Fig. 1) of degree
one. The global system is represented by the scattering matrix
SC meanwhile the matching filter and the load are represented
by the matrices SF and SA respectively. If the passive load is
known by its reflection coefficient SA11 at port 1, the Darlington
equivalent can be constructed yielding a loss-less two port with
same reflection coefficient.

Necessary and sufficient conditions in order to allow for the
extraction of a specified load at port 2 of SC , are readily given
by deriving the expression of the reflection coefficient SC22:

SC22 = SA22 +
SA21S

A
12S

F
22

1− SA11SF22
. (1)

At the transmission zero1 ω0 of the load (SA12(ω0) =
SA21(ω0) = 0), (1) yields following conditions on SC :

SC22(ω0) = K0 |K0| = 1 (2)

−=
[
d

dω
logSC22(ω)

]
≤ K1 K1 ≥ 0 (3)

where = represents the imaginary part and K0 and K1 are
defined as follows:

K0 = SA22(ω0) (4)

K1 = −=
[
d

dω
logSA22(ω)

]
ω = ω0 (5)

The left hand term of (3) representing therefore the angular
derivative of SC22 meanwhile K1 stands for the angular deriva-
tive of SC22.

Moreover note SC22 can be multiplied by any uni-modular
value without modifying (3). If the class of functions where
SC22 is sought for allows for such a multiplication, (2) can be

1We suppose here that the TZ occurs at finite frequency. The same
framework with slightly different formulas can we developed when the TZ
occurs at infinity
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Fig. 1. Global system structure and scattering parameters.

replaced by the fact ω0 is also a transmission zero of SC . Thus
the necessary conditions over SC become:

SC12(ω0) = SC21(ω0) = 0 (6)

−=
[
d

dω
logSC22(ω)

]
≤ K1 K1 ≥ 0 (7)

A core result of Youla’s matching theory is that these necessary
conditions are indeed sufficient to ensure that the load SA can
be extracted from the scattering matrix SC at port 2 [5].

III. MATCHING FILTER SYNTHESIS PROBLEM AS A
CONVEX OPTIMIZATION PROBLEM

A. Deriving equations

We suppose [6] that the loss-less two ports have rational
frequency responses and can therefore be represented by
means of the Belevitch form, that is:

SC =
1

q

(
εp∗ −εr∗
r p

)
(8)

where q = q(p) is the unique Hurwitz polynomials satisfy-
ing the spectral equation qq∗ = pp∗+rr∗, ε is an uni-modular
constant and r = −εr∗. The squared modulus of SC22 = p

q can
be expressed as:

|SC22|2 =
pp∗

pp∗ + rr∗
=

1

1 +
(
pp∗

rr∗

)−1 . (9)

Therefore, as used heavily in classical filter synthesis [6],
uniform constraints on the modulus of SC22 can be casted to
uniform constraints on the filtering function pp∗/rr∗. Note
that condition (6) translates into the fact that ω0 is a root
of r. As for the possible other finite transmissions zeros of
SC , we suppose as in classical filter synthesis, that they are
fixed by the user and therefore not part of the optimization
process. We set SC22 to be of maximal order N + 1. Finding
the reflection coefficient SC22 with the best return loss level on
the frequency band B1 with a specified rejection on the stop
band B2, while ensuring that the load with matrix SA can be
extracted from SC (at port 2) can therefore be formulated as
following optimization problem:

Problem 1. Find Lopt = min
p∈PN+1

(
max
ω∈B1

pp∗

rr∗ (ω)

)
, subject to:

pp∗

rr∗
(ω) ≥ Γ ω ∈ B2 (10)

−=
[
d

dω
log

p

q(p)
(ω)

]
≤ K1 ω = ω0 (11)

In the latter PN is the set of polynomials of degree at most
N, meanwhile Γ can be computed from the specified rejection
constraint:

Γ =
1

γ−1 − 1
(12)

with γ representing the rejection constraint on |SC22|2.
This problem presents a remarkable property,

• There exist a minimum phase polynomial p solution to
the problem which does not vanish at ω = ω0. Thus p
can be restricted to be a Hurwitz polynomial in the broad
sense, that is with roots in the closed left half plane.

B. A convex problem

Problem 1 is not convex since it involves the computation
of the spectral factorization of qq∗ needed in condition (11).
Nevertheless due to the minimum phase property of p, (11) can
be expressed as a function of the modulus function |p/q|2 by
means of the Hilbert Transform. Eventually with the change
of variable: pp∗ = P , rr∗ = R, condition (11) is rewritten as
f(P ) ≤ K1 where f(P ) is the function:

f(P ) =
1

2π

∫
R

log

(
1 +

R(ω)

P (ω)

)
(ω − ω0)

−2
dω. (13)

Again, condition (6) implies that R(ω) presents a double
zero at ω0, which cancels the double singularity at ω = ω0

rendering the integral definite if P (ω0) 6= 0.
Problem 1 restates as:

Problem 2. Find Lopt = min
P∈PM

+

(
max
ω∈B1

P
R (ω)

)
, subject to:

P (ω) ≥ Γ ·R(ω) ω ∈ B2 (14)
f(P ) ≤ K1 (15)

where PM+ denote the positive polynomials of degree at most
M with M = 2N + 2.

This problem has the following properties:

1) The space PM+ is a convex set.
2) f(P ) with P ∈ PM+ is strictly convex as function of P .

The convexity guarantees therefore the absence of local
minima meanwhile uniqueness of the solution can be
obtained from the strict convexity.

3) The optimum return loss level is reached in N+2 points.

As an illustrative example to show the interest of solving
the previous problem, Figure 2 shows the optimum response
in terms of matching satisfying the following specifications:
an interval B1 (passband) at −1 ≤ ω ≤ 1, a required rejection
of -50dB in the interval B2 (stopband) composed of the union
of intervals −5 ≤ ω ≤ −3 and 3 ≤ ω ≤ 5 and an antenna
providing a derivative K1 = 1. An optimum return loss level
of -11.86dB is attained. Conversely, if the global system is
designed by means of a Tchebyshev response satisfying the
same specifications, because of the constraint over the area, a
return loss level of -7.6dB is obtained (Fig. 2).
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Fig. 2. Example of filter responses satisfying the constraints.

C. A Practical Algorithm

Eventually problem 2 can be solved efficiently by using its
dual version which involves only linear constraints.

Problem 3. Find Kopt = min
P∈PM

+

f(P ), subject to:

P (ω) ≤ L ·R(ω) L ≥ 0 ω ∈ B1 (16)
P (ω) ≥ Γ ·R(ω) Γ ≥ 0 ω ∈ B2 (17)

Properties of this dual problem are listed below:
1) Problem 3 is equivalent to Problem 2 in the following

sense: if Popt solves Problem 2 with optimal criterion
Lopt then it is also the solution of Problem 3 with L =
Lopt and optimal criterion Kopt = K1.

2) The parameter L can be chosen in the interval [Lmin,∞[.
Here Lmin is the value of Lopt obtained in Problem 2
when constrained (15) is removed, that is by means
of a quasi-elliptic response that satisfies the rejection
constraint (14). We note Kmax the optimal value Kopt

obtained in Problem 3 with L = Lmin.
3) For any positive value K1 ∈]0,Kmax], the value of

parameter L in the dual problem can be adjusted by
dichotomy to ensure that its optimal criterion Kopt = K1.
Therefore Problem 2 can be solved at hand of Problem 3.

The results presented in this paper have been computed
with the fmincon function of MATLAB. Handling of the linear
constraints (16) and (17) is made by the discretization of the
frequency intervals B1 and B2 and the positivity of P (ω) is
ensured by a set of additional constraints P (ωi) > 0 where
ωi is a given number of control points properly distributed
around the passband.

D. Different kinds of solutions

In Problem 2, two different kinds of solutions can be
distinguished depending on which constraints are active:
• Quasi-elliptic response: if (15) is not active, the solution
Popt solves a classical filter synthesis problem. If popt is
defined as poptp∗opt = Popt then popt is the Tchebychev
polynomial of the interval B1 with weight 1/|r| [6].

• Minimum-area responses: if (15) is active, the solution
realizes the best possible matching level under the spec-
ified selectivity requirement.

IV. RESULTS

To show the practical interest of the above algorithm we
consider the case of a microstrip patch antenna for a GNSS
receiver. The specifications are the coverage of the band
L1 (from 1.55GHz to 1.6GHz) with a required rejection of
−20dB at fc1 ≤ 1.495 and fc2 ≥ 1.625. At hand of these
specifications our algorithm yields the best possible response
SC of order 4 (Fig. 3). After deembedding the antenna at
port 2 of the matrix SC , the Belevitch model of the matching
filter of order 3 is obtained. As a comparison a classical
Tchebyshev filter of degree N = 3 (matched on 50Ω) is
designed to satisfy the previous specifications with the lowest
return loss. The reflection coefficient of the overall system
made of this Tchebyshev filter plugged on the antenna is also
plotted in dotted lines on Fig. 3 showing the improvement in
the power transfer towards the antenna obtained by means of
the matching filter at the border of transmission band. In both
cases the transducer gain (TG) of the antenna is considered
to compute the transmission of the global system [5]:

TG = 1− |S11|2 (18)

Note the system SC within the passband when using a
Tchebyshev filter matched on 50Ω corresponds approximately
to the response of the antenna referenced to 50Ω (Fig. 3).

The matching filter is synthesized as an in-line coupled
resonator filter realized in SIW planar technology fed with
CPWG input and output lines (Fig. 4) by using the substrate
Rogers RT/duroid 6010LM. In addition, a transmission line of
10.5mm has been required to adjust the phase of SC22.

The practical design of the filter is done via the classical
coupling matrix approach [6] and using the full wave simula-
tion software Ansoft Electronic Desktop. Note that the target
coupling matrix (MT ) is obtained from the previous algorithm.

MT =


0 1.195 0 0 0

1.195 0 1.018 0 0
0 1.018 −0.007 0.7 0
0 0 0.7 −0.404 1.009
0 0 0 1.009 0

 (19)

However this kind of filtering functions differs from the
classical Tchebyshev responses in the sense that they do not
present all reflection zeros distributed on the frequency axis
but inside the complex plane. For this reason and in order to
achieve a good agreement between the circuital response and
the EM response, the design has been assisted with the circuit -
extraction software PRESTO-HF [7] that compares the target
coupling matrix with the one extracted from the EM response
adjusting the physical dimensions in consequence. The final
error in the coupling matrix is computed as E = MT −MEM :

E =


0 −3.2 0 0.5 0

−3.2 −0.4 0.3 −0.3 0.5
0 0.3 −1.1 0.8 0

0.5 −0.3 0.8 −0.6 −2.1
0 0.5 0 −2.1 0

 · 10−2 (20)
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Fig. 3. Reflexion coefficient and transducer gain of the antenna compared to
the global system (SC ) in both cases (Tchebyshev and minimum-area).

Fig. 4. Structure of the 3-poles substrate-integrated-waveguide (SIW) filter
fed with coplanar-waveguide (CPWG) transmission lines designed with the
software Ansoft Electronic Desktop and featuring a footprint of 120x40 mm.

Figures 5 and 6 show comparison between the S-parameters
of the filter and the overall system, obtained in one case from
the EM simulation of the filter and in the other case from its
circuital analogue where a quality factor of Q = 200 has been
considered.

The excellent match which is observed validates the em-
ployed synthesis and tuning technique for SIW filters and
confirms the benefits of using a matching filter.

V. CONCLUSION

An algorithm for the design of matching filters used in
connection with antennas has been presented. Provided the
reflection coefficient of the antenna can be approached in the
band of interest by a rational function of degree one, the pre-
sented approach yields the guaranteed best matching response
in a given frequency band while satisfying rejection constraints
in a prescribed stop band. In this sense it is the generalization
of the classical quasi-elliptic synthesis technique for filters
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matched on a resistive load to the case of filters plugged on a
frequency varying load.

To prove the efficiency of this algorithm, a 3-poles matching
filter is synthesized to match a microstrip patch antenna. This
filter has been designed in SIW technology with excellent
results, improving the return loss level of the system from
−7.5dB to −14dB.
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