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Light rings and light points of boson stars

Philippe Grandclément
LUTH, Observatoire de Paris, PSL Research University, CNRS,

Université Paris Diderot, 5 place Jules Janssen, 92190 Meudon Cedex, France.

This work is devoted to the study of photon trajectories around rotating boson stars. The basic
properties of boson star models are given with a particular emphasis on the high compactness those
objects can have. Using an effective potential method, circular orbits of photon around rotating
boson stars are then obtained, at least for relativistic enough configurations. A particular class of
light rings is exhibited, where the photons are at rest. It is proposed to call those orbits light points.
Their existence is only possible for very specific boson stars and the link between light points and
ergoregions is investigated.

I. INTRODUCTION

Boson stars were first introduced in the late sixties in [1–3]. They consists of a complex scalar field coupled to
gravity. Various families of boson stars have been constructed, with various potentials for the scalar field, with or
without rotation, in various dimensions (see [4–7] and references therein)...

One of the main motivation for the study of boson stars is the fact that they can act as black mimickers [8]. What it
means is that they can have a large mass with a small size without developing any horizon nor singularity. Moreover
boson stars have no hard surface, the scalar field interacting with ordinary matter only trough gravitation. Possible
scenarii for the formation of boson stars have been studied. There has also been a number of studies that proposed
observational means of discriminating boson stars from black holes. This could for instance be done by direct imaging
of the galactic center [9]. Observations of gravitational waves could also be a fruitful way of investigating the nature
of the compact objects observed in the universe [10, 11].

Apart from being an alternative to black holes, boson stars are very interesting testbeds for a lot of situations where
intense gravitational fields play a role. For instance, in a previous paper, we investigated a class of peculiar orbits
for massive particles [12]. Other specific effects concerning the imaging of accretion disks around boson stars were
studied in [9, 13].

The main goal of the current paper is to investigate the existence of light rings around boson stars. Those are
closed (circular) orbits of photons. They can only appear for very compact objects (dubbed ultracompact in [14]).
It is known that black holes can admit light rings and that they can lie outside the horizon. The link between light
rings and various instabilities is explored in a recent study by V. Cardoso al. [14]. Light rings can also be important
in the context of gravitational waves. It has been shown in [15] that the first gravitational wave signals observed
by the LIGO observatory [16] could not discriminate between black holes and alternative compact objects. Indeed,
the observed ringdown signal is shown to be an indication of the existence of a light ring and not of an horizon.
Horizonless objects with light rings would have the same ringdown signal as the one observed. The existence of boson
stars (even if unlikely), could not be excluded, provided some of them admit light rings.

This paper is organized as follows. In Sec. II the reader is reminded about models of boson stars. In particular, the
high compactness of such objects is exhibited. Section III describes the study of light rings by means of an effective
potential method. In Sec. IV a particular class of light rings, where the photons are at rest, is investigated. The
existence of those light points is a new effect that is typical of boson stars. Indeed, their appearance requires an intense
gravitational field but they cannot exist in the case of black holes due to the presence of the horizon. Conclusions are
given in Sec. V.

II. BOSON STAR MODELS

In this section we recall the setting used in [12] to compute boson star spacetimes. Boson stars consist of a complex
scalar field Φ coupled to gravity. This is achieved by considering the following action

S =

∫
(Lg + LΦ)

√
−gdx4, (1)

where Lg is the Hilbert-Einstein Lagrangian and LΦ the Lagrangian of the complex scalar field. They are given by
the standard expressions
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Lg =
1

16π
R (2)

LΦ = −1

2

[
∇µΦ∇µΦ̄ + V

(
|Φ|2

)]
. (3)

∇ denotes the covariant derivative associated to g and R the Ricci scalar. V
(
|Φ|2

)
is a potential that can be

modified to construct various models of boson stars. In this paper one considers the simplest possible choice where
the scalar field is a free-field and which implies that

V
(
|Φ|2

)
=
m2

h̄2 |Φ|
2
. (4)

m is the mass of the individual boson and the factor m/h̄ then appears as a scale factor for the various quantities
(distances, masses...). Throughout this paper geometric units are used, such that G = 1 and c = 1.

Rotating boson stars are computed by demanding that the scalar field takes the form

Φ = φ (r, θ) exp [i (ωt− kϕ)] , (5)

where φ is the amplitude of the field (and so a real), ω is a real constant (smaller than m/h̄) and k an integer known
as the rotational quantum number. Due to the U (1) symmetry of the action (1), it does not depend on t and ϕ,
leading to axisymmetric solutions. This is why the amplitude φ depends on (r, θ) only. The numbers ω and k appears
as parameters of the various boson stars. Let us point out that the case k = 0 corresponds to spherically symmetric
boson stars.

For the metric, quasi-isotropic coordinates are well adapted to the symmetry of the problem. The metric reads

gµνdxµdxν = −N2dr2 +A2
(
dr2 + r2dθ2

)
+B2r2 sin2 θ

(
dϕ2 + βφdϕ2

)
. (6)

In the 3+1 language, N is the lapse, the shift vector is βi = (0, 0, βϕ) and the spatial metric γij =

diag
(
A2, B2r2, B2r2 sin2 θ

)
. The unknowns are the functions N , A, B and βϕ, all of them depending only on (r, θ).

The unknown fields obey the Einstein-Klein-Gordon system which results from the variation of the action (1) with
respect to both the metric g and the scalar field Φ.

Those equations are solved by means of highly accurate spectral methods, implemented by the KADATH library
[17]. This enabled us to compute sequences of rotating boson stars for k ranging from 0 to 4. Numerical methods
and tests are given in details in [12]. We present here the sequences in a different way: by plotting the compactness
of the various configurations. In order to do so, one needs to define the radius of the boson stars. This cannot be
done unambiguously because the scalar field extends up to infinity and those objects have no true surface. In the
following, the radius R of the boson star is defined as the radius where the field is 0.1 times its maximal value, in the
equatorial plane. The precise value of the thus defined radius obviously depends on the value of the threshold (here
0.1). However, due to the fast decay of the field far from the origin, it is a small effect. Figure 1 shows the radii of the
various boson star models. One can clearly see the known facts that the size of a boson star increases with ω and k.

With this definition of the radius, it is possible to define the compactness of the objects, by just taking the
adimensional ratio M/R, where M is the standard ADM mass of the boson stars. It is shown in Fig. 2. First one
can notice that the result depends very moderately on the value of k. The variation of the mass and radius with k
almost cancel so that the compactness depends almost only on ω. One can also notice that it can reach very high
values of the order unity (remember that typical neutron stars have a compactness of about 0.2), illustrating the fact
that boson stars are indeed good black hole mimickers. Let us also mention that spherically symmetric boson stars
(i.e. for which k = 0) can only reach compactness of about 0.25. This is mainly due to the fact that they cannot
attain small enough values of ω, due to the turning point in the sequences (see Fig. 1 for instance).

III. LIGHT RINGS

Given the high compactness of boson stars, there is a good hope that those objects could have some light rings.
Those are closed orbits of photons. Mathematically speaking one needs to find closed null geodesics of the spacetime.
Given the fact that boson stars are axisymmetric objects, one looks for circular orbits in the equatorial plane, as in
the case of a Kerr black hole. In this work such orbits are localized using an effective potential method which proceeds
as follows.
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FIG. 1: Radii of the various boson stars. It is defined as the radius where the field is 0.1 times its maximal value, in the
equatorial plane.
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FIG. 2: Compactness of the various boson stars.

Let us call Uµ the tangent vector of a photon trajectory. As we consider only orbits in the equatorial plane, it
reduces to (U t, Ur, 0, Uϕ). Boson star spacetimes admit two independent Killing vectors : (∂t)

µ
and (∂ϕ)

µ
. Their

existence leads to two conserved quantities along the geodesics, being the scalar products of Uµ with the two Killing
vectors:
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Uµ (∂t)
µ

=
(
−N2 +B2r2βϕ 2

)
U t +B2r2βϕUϕ = E (7)

Uµ (∂ϕ)
µ

= B2r2βϕU t +B2r2Uϕ = L, (8)

where E and L are two constants along the geodesic. From those equations, one can express the components U t and
Uϕ, as functions of E and L :

U t =
βϕL− E
N2

(9)

Uϕ =
L

B2r2
− βϕ

N2
(βϕL− E) . (10)

Injecting those expressions into the fact that the geodesic is null (i.e. UµU
µ = 0) leads to an equation on Ur. It can

be put into the form (Ur)
2

+ Veff = 0 where Veff is an effective potential, given by

Veff =
1

A2

[
− (βϕL− E)

2

N2
+

L2

B2r2

]
. (11)

Circular orbits are such that Veff = 0 and ∂rVeff = 0. The second condition is necessary to prevent being only at
the periastron or the apoastron of an elliptic orbit. The first condition leads to

E

L
= βϕ − ε N

Br
, (12)

where ε = ±1. Contrary to the massive particle case, E and L are not constrained independently but only via their
ratio. This is basically due to the fact that there is no scale of mass in the case of photons.

The condition ∂rVeff = 0, along with Veff = 0 leads to an equation involving the radius of the orbit and the various
metric fields :

I (r) =

(
ε
∂rβ

ϕ

NB

)
r2 +

(
∂rB

B3
− ∂rN

NB2

)
r +

1

B2
= 0. (13)

This is a purely radial equation (remember one works in the equatorial plane) but it is not a second order equation
on r, the various fields depending on r. Figure 3 shows the functions I (r) for two values of ω, in the case k = 1.
Let us first mention that choosing ε = +1 leads to functions I (r) that always remain strictly positive. This is the
situation illustrated by the dashed curves of Fig. 3. When ε = −1 the function I (r) can sometimes vanish, depending
on the boson star considered. Basically, only the most relativistic boson stars (i.e. boson stars with small value of ω)
are in that case and thus admit light rings. In Fig. 3, the boson star k = 1;ω = 0.8 has no light ring (the solid blue
curve is always positive), whereas the boson star k = 1;ω = 0.7 has two light rings, corresponding to the two values
of r where I (r) vanishes (see solid black curve).

Figure 4 shows the value of the minimum of I (r), in the case ε = −1. When this minimum is below zero the boson
star admits light rings. This correspond to the configurations with low values of ω and it can happen for all values
of k > 0. The case k = 0 is not shown in Fig. 4 because the minimum is much above zero. Spherically symmetric
boson stars do not have light rings. The light ring of a Schwarschild black hole is located at 3M . If the radius of the
k = 0 boson stars was much smaller than this value, light rings would have been expected to exist. However, from
Fig. 2 one can see that the compactness of the spherically symmetric boson stars cannot exceed 0.3. This moderate
compactness is an argument against the existence of light rings in that particular case. This is confirmed from our
study of the function I (r).

The shape of the function I (r) depicted in Fig. 3 is very generic : when the minimum of I (r) is negative there are
two light rings, corresponding to two radii Rminus and Rplus. Moreover, it is easy to see that ∂rVeff and I (r) have
opposite signs. It follows that Rminus corresponds to a minimum of Veff and is stable whereas Rplus corresponds to a
maximum of Veff and so to an unstable orbit. Figure 4 shows the minimum values of I (r). All the configurations for
which it is below zero admit light rings. The radii of the light rings are show in Fig. 5.

By inserting Eq. (12) into Eqs. (9-10) one can find the value of
dϕ

dt
for the light rings. It leads to

dϕ

dt
= − N

Br
− βϕ. (14)
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FIG. 3: Function I (r) for k = 1. The blue curves correspond to ω = 0.8 and the black ones to ω = 0.7. The dashed lines
denote the cases where ε = +1 and the solid lines the cases ε = −1.
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FIG. 4: Minimum of the function I (r), when ε = −1. The configurations for which the minimum is below zero admit light
rings.

The right hand side of Eq. (14) must be evaluated at Rminus or Rplus depending on the light ring considered. The

tangent vector of the trajectories is then given by Uµ =

(
1, 0, 0,

dϕ

dt

)
where the parameter along the trajectory has
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FIG. 5: Radii of the inner light rings (first panel) and the outer ones (second panel).

been chosen to be the coordinate t. Orbital frequencies of the inner (resp. outer) light rings are shown in Fig. 6.
They will be discussed furthermore in Sec. IV.

IV. LIGHT POINTS

The most striking result from Fig. 6 is the fact that the orbital velocity of the inner light ring can change sign and
so that there are boson stars for which it is zero. The associated trajectories are simply given by Uµ = (1, 0, 0, 0). In
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FIG. 6: Orbital frequency
dϕ

dt
of the inner light rings (first panel) and the outer ones (second panel).

term of spatial coordinates (r, θ, ϕ), those photons are not moving. They correspond more to light points than light
rings.

Even if those light points seem to be peculiar, a detailed study can confirm their existence and location. One first
condition is that the vector Uµ = (1, 0, 0, 0) must be a null vector. Given the fact that the quasi-isotropic metric is
diagonal it is equivalent to gtt = 0. This condition is the same as the one defining the boundary of an ergoregion (see
Sec. IV-E of [12] for a detailed study of ergoregions of boson stars). So light points necessary lies on the boundary of
an ergoregion.
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However not all the null curves are geodesics. The geodesic equation is
dUµ

dt
+ ΓµαβU

αUβ = C (t)Uµ where C (t)

is a function along the curve. Note that, a priori, one cannot make C = 0 because there is no guarantee that t is
an affine parameter. Γ denotes the four-dimensional Christoffel symbols. Inserting Uµ = (1, 0, 0, 0) in the geodesic
equation leads to the condition

Γµtt =
1

2
gµα [−∂αgtt] = C (t)Uµ, (15)

where all the time derivatives have been set to zero. Moreover, ∂tgtt and ∂ϕgtt vanish due to the stationarity and
axisymmetry of the problem. ∂θgtt is also zero because the considered orbits are in the equatorial plane which is
a surface of symmetry. Equation (15) then reduces to gµr [−∂rgtt] = 2C (t)Uµ. Given the form of the metric (i.e.
the use of quasi-isotropic coordinates), one can show that gtr, gθr and gϕr all vanish. It first implies that one must
necessary set C (t) = 0 which means that t is indeed an affine parameter. Only the radial component of the geodesic
equation is not trivially satisfied and it reduces to

∂rgtt = 0. (16)

This condition on the derivative, along with the fact that gtt must vanish at the light points implies that they can
only be situated exactly when an ergoregion starts to form. This is illustrated in Fig. 7 where the quantity −gtt is
plotted, in the plane z = 0, for three different boson stars. The curve ω = 0.7 never goes to zero hence the associated
boson star has no ergoregion. The curve ω = 0.6 gets below zero and vanishes at two different radii. They are the
inner and outer radii of the ergoregion (for boson stars ergoregions have the shape of a torus ; see Sec. IV-E of [12]).
The curve ω ≈ 0.638 corresponds to the case where an ergoregion appears. gtt vanishes at just one point, which is
also the minimum of the curve. This point is such that gtt = 0 and ∂rgtt = 0 and so is a light point.
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FIG. 7: −gtt for three boson stars with k = 2. The upper curve has no ergoregion. The lower one has a standard ergoregion
in the shape of a torus. The middle curve corresponds to the critic case where an ergoregion just starts to appear.

Figure 8 gives another illustration of the location of the light points (for the sequence k = 2). The solid black curve
denotes the inner radius of the ergoregions and the dashed black one the one of the outer radius. Those two curves
join at ω ≈ 0.638 which is the frequency at which an ergoregion starts to develop. The blue curve show the radius of
the inner light ring for which dϕ/dt < 0 whereas the red curve denotes the same radius but for configurations with
dϕ/dt > 0. It is clear from Fig. 8 that the light point lies at the intersection of the various curves. Moreover, it
is located exactly at the radius where the ergoregion appears. This is not so surprising. Ergoregions are defined as
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which is the light point.

TABLE I: Parameters of the light points for k = 1 to k = 4.

k ω Rminus

1 0.6582 0.779

2 0.6387 1.99

3 0.6383 3.36

4 0.6401 4.83

being locations where nothing can remain at rest, due to the frame-dragging effect generated by rotation. When it
just appears only massless particles moving at the speed of light can overcome this effect and remain at rest. In other
words, at the onset of the ergoregion, the frame-dragging effect is just compensated by a velocity of c. Light points
are not seen in the case of a Kerr black hole because the ergoregion starts to appear exactly at the location of the
horizon. Each sequence of boson stars with k > 0 admits a single light point. The corresponding values of ω and
Rminus are summarized in Tab. I.

The obtained results can be checked by integrating numerically the geodesic equation. This is done using the tool
Gyoto [18]. One can compute the radius of a light ring, put a photon there, with the right angular velocity (i.e. given
by Eq. (14)) and check whether the computed orbit is indeed a circle. Figure 9 shows such a computation, in the
case of a boson star k = 2 and ω = 0.7. The first panel corresponds to the inner light ring (Rminus = 3.11139 and
dϕ/dt = −0.0404863). The second panel corresponds the outer light ring (Rplus = 7.07489 and dϕ/dt = −0.0637682).
The photon on the inner light right remains nicely on a circular orbit. The one on the outer light ring starts by
describing a circular orbit but is eventually kicked out. This is consistent with the fact that only the inner light ring
is stable, corresponding to a minimum of the effective potential. The last panel corresponds to the light point of the
k = 2 sequence (i.e. ω = 0.6387 and R = 1.99). As expected, the photon stays at the same spatial location and so
appears as a single point in Fig. 9.
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FIG. 9: Orbits integrated numerically. The first panel corresponds to a stable inner light ring whereas the second one depicts
the orbit of an unstable outer one (for k = 2 and ω = 0.7). The last panel corresponds to the light point of the k = 2 sequence.

V. CONCLUSION

In this paper, models of rotating boson stars are studied. They were obtained numerically in a previous work [12].
It is confirmed that rotating boson stars are objects that can reach very high compactness. It implies that boson stars
can exhibit effects were strong gravitational fields are required. The existence of closed orbits of photon are such an
effect. Existence of those orbits, called light rings, is confirmed for a large class of boson stars (i.e. the one with high
enough compactness). Existence of those light rings could have strong implications on the stability of the boson stars
themselves [14].

A new class of light rings has been exhibited, which corresponds to trajectories were the photons are at rest, with
respect to an observer at infinity. It is proposed to call those orbits light points. Their existence is closely linked to
the appearance of an ergoregion. They are very specific of boson stars in the sense that they cannot exist in the black
hole case, due to the presence of the horizon. It is believed it is the first time that those light points are exhibited.
Their existence and stability has been confirmed by a direct integration of the geodesic equation.
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