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Abstract

The phenomenon of concomitant resistance, discovered since 1906, traduces
the inhibitory effect from a first tumor on the growth of a distant tumor. The
importance of the investigation on the concomitant resistance was found following
the removal of the primary tumor which could lead to dramatic clinical conse-
quences due to the suppression of this inhibition : the post-surgery metastatic
acceleration. We report here on a study of a mathematical model representing
the concomitant resistance between two tumors in the same organism.

First, the study involves a statistical analysis of the tumor growth in 10 mice
with a population approach:the non-linear mixed effect model which is the most
common tool to describe the global behavior of all individuals. The goal was
to compare different software which implement the method, where the function
NLME on R has the fastest execution time.

Second, the study allows the validation of the concomitant resistance mathemati-
cal model on independent data thanks to the obtaining of a highest goodness-of-fit
and a good prediction.

This study not only informs on the validity of the model but also provides a non-
monotony of the metastatic acceleration depending on the volume of the tumor
at the day of excision.
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Introduction

During the 4th year as student at INSA Toulouse (Institut National des Sciences Ap-
pliquées), I had the opportunity to do an internship as part of one’s school course at
Inria (Institut national de recherche en informatique et en automatique) in Bordeaux
which is a public research institution focusing on computer science and applied mathe-
matics.

I worked for three months in MONC, a research team of Inria specialized in applications
of mathematical modeling and simulations in Oncology.

Then, the context of my internship was the applied mathematics in the cancer research,
a current issue, which was very enriching and complete because it gathered several fields
and skills : the study of a mathematical model based on ordinary differential equations,
the use of statistical tools and the assimilation of knowledge in cancer’s biology.

Particularly, I was focusing on a cancer’s curious phenomenon called «concomitant
resistance»which was studied in pre-clinical experiments [Chiarella et al., 2012].
The concomitant resistant consists in the inhibition of a second tumor by the presence
of a first tumor. Indeed, it involves that a primary tumor inhibits the growth of distant
tumors (i.e metastasis) and also may lead them in dormancy.
The importance of this phenomenon occurs in some clinical results where the surgical
removal of the tumor is followed by a dramatic acceleration of metastasis’ growth due
to the release of the inhibition exerted by the primary tumor which can lead to the death.

Thus, the goal of my internship was to get acquainted with articles from the litera-
ture about the phenomenon of concomitant resistance and with modeling works already
made.

The aim was also to go into the study and the validation in depth of a mathematical
model, formalized by M. Benzekry, representing this phenomenon and established from
experiments involving the growth of two tumors in the same organism [Benzekry et al., 2016].



1 MONC of Inria a laboratory on applications of
mathematical modeling in Oncology

1.1 Inria a public science and technology research institute

The Institut National de Recherche en Informatique et en Automatique (Inria) is a
french national public research institution placed under the supervision of the French
ministries of research and industry. It was created in 1967 and has 8 research centers
in France whose CEO is Antoine Petit with a total budget of 230 million euros.

Inria is composed of 2700 employees from 87 different countries whose goal is to rise
to the challenges of digital sciences which are involved in the future of our societies,
regrouping the skills and talents of french and international researchers in computer
sciences and applied mathematics.

Inria is tackling research subjects crucial to the current social issues and presents 4600
scientific publications per year in its scientific activities.

The original research model of Inria is that the research is organized in 178 «project
teams »composed around 20 scientists (researchers, PhD students, engineers) sharing a
common research program on a specific scientific topic. The project team is headed by
a project team manager.

The advantage of project teams is that the team has a large measure of scientific and
financial independence. Moreover, the teams may be associated with partner institu-
tions (universities, schools, research organizations).

However, the Inria project-team has 4 years to achieve its objectives but it can be ex-
tended until a maximum lifetime of 12 years.

The general fields of scientific research at Inria are :

e Applied Mathematics, Computation and Simulation

Algorithmic, Programming, Software and Architecture

Networks, Systems and Services, Distributed Computing

Perception, Cognition and Interaction

Digital Health, Biology and Earth

Inria is able to provide an efficient response to the multidisciplinary challenges. Indeed,
it transfers research results to companies (startups, SMEs and major groups) in various
areas as health care, energy, security, transport, communication.



1.2 MONC an Inria project team on mathematical modeling
in Oncology

Actually, the mathematics can apply to the health in many ways such as treat data
from medical imaging to let doctors interpret it, prescribe quantities of treatment where
the doses are adapted for the patient.

The use of digital sciences constantly progresses with the evolution of medical imag-
ing and medical treatment, and is the current trend to be involved to do personalized
medicine (as specify a treatment to a patient) or predictive medicine (as predict the
effect and the efficient of a treatment).

Then, MONC is an Inria project team common with the University of Bordeaux,
INP and CNRS, composed of 20 scientists (researchers, engineers, PhD students and
even doctors) whose team leader is Olivier Saut.

The team works on problems of modeling in oncology. It is devoted to applications of
mathematical modeling, simulations and scientific calculus in oncology to exploit avail-
able data.

The main goals of MONC are to develop personalized mathematical models for indi-
vidualization of prognosis and treatments, to help the development of new therapies
as electroporation or interventional radiology, and to ameliorate the understanding of
cancer growth and metastasis by the construction of mathematical models able to re-
produce and to predict the cancer’s behavior.

The originality of this team is the collaboration between the mathematical re-
searchers and the doctors specializing in oncology from CHU Bordeaux and the Institut
Bergonie or with biologists from Bordeaux and Toulouse. The advantage is that this
collaboration allows to help the interpretation of experiment results, to ameliorate the
understanding of results and to extract the most information possible. Moreover, they
can directly applied mathematical models of cancer’s study on clinical data from imag-
ing data (such as computed tomography images) of patients.

Recently, at the end of MONC research team’s works, it has been created a startup
named Nenuphar. It consists in the setting up of a software positioning and available
for doctors. Nenuphar is capable of describe and model the lung metastasis’ growth or
the response to treatment.



2 Comparison of different tools implementing the
NLME model for the analysis of the tumor’s growth

For a first approach to the works effected by the team MONC about the tumors’ behav-
ior, I look into a statistic tool : the non linear mixed-effects (NLME) model which allows
me to analyze data from a tumor’s growth [Benzekry et al., 2014b] to a population scale.

The non linear mixed-effects model is an extension of the method of non-linear re-
gression. We can extend to a population the results of a few individuals.
Mixed-effects modeling is the most used method for analysis of population approach,
it can pool all the individual together and estimate a global distribution of the model
parameters in the population.

The aim of our present is to compare the speed, efficiency and precision of several
tools which implement this method for an unique model.

2.1 The Nonlinear Mixed-effects model for the population ap-
proach

2.1.1 Recall on the Linear Models

The matrix writing of the linear model is :

y=Xp+e
where y = (y1, ..., Yi, .--yn)’ the vector (n x 1) of the n observations.
X11 le
X =] Xa .. X | the matrix of the size (n x p)
Xot o Xy

B = (B1,...05,)" the vector (p x 1) of the p parameters to estimate.
€ = (€1, ..., €,) the vector (n x 1) of the residual errors where g; ~ N(0, 0?).

To determine the estimate of the parameters 3, we solve the problem of least square
minimization on the function f defines like :

n

FB) = (Yi— (XB))* =Y - XB||>=<Y - XBY — X3 >

i=1
We are looking # which minimizes f(3) (i.e V.f(5) = 0).
ViB+h)=<Y-X(B+h),Y—-X(B+h)>
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=<Y - X(B),Y = X(B)>+2<Y — XB,Xh > +o(||]])
= f(B) + V£(B).h+o(]|h]])
where Vf(B) =2X'(Y — XP).

Then, the solution of minimization is :

ViB) =06 = || = xx)xy)
6,

2.1.2 Recall on the nonlinear Models

We can extend the linear model to more general ones where the observed phenomenon
can be described mathematically (by structural model like differential equations). These
nonlinear model have the form :

y; = M(t;, ®) +¢;

for 7 € 1,...,n individuals. where ® is a vector of parameters for a structural model M.
The model M is a nonlinear function of the components ®.

2.1.3 The Nonlinear mixed-effects models

The main goal of the nonlinear mixed-effects models is to regroup all data together of
all individuals and to extract a typical curve for the population.

A nonlinear mixed-effects model is described by :
i = M(tij, Bi) + €
with 8; = 8 +n; ~N(B,w?) and 1; ~N(0,w?).
Where,
— y;; is the j™ observation of the i individual at time ;;.

— M is a nonlinear function of the components 3; composed of # and n;.

— ¢ ~ N(0,0?) represent the residual errors.



— [ represents the population parameter, also called fized effects. We can note that

2.2

they are often estimated by likelihood maximization performed, for instance, with
the Stochastic Approximation of Expectation Maximization (SAEM) algorithm.
It gives a general description of the observations of all individuals.

n; ~N(0,w?) are the individual parameters, called random effects. They are
distributed random variables in the population and allow to adapt the variability
between individuals in the model.

The tools and software for the nonlinear mixed-effects
models

Monolix :

Monolix is a non-free software specialized for nonlinear mixed-effects modeling
(NLME) for pharmacometrics. It is based on the stochastic approximation ex-
pectation maximization (SAEM) algorithm computing the maximum likelihood
estimator of the population parameters. It purposes an ergonomic interface which
is easy to use with less programming. Monolix automatically generates a full set
of diagnostic plots for example the Visual Predictive Check, Boxplot of the distri-
bution of the effects random, Observation vs Prediction plot, Random effects,...
To implement our Gompertz Model which is a ordinary differential equation,
Monolix purpose to construct our model using Mlxtran. The model file contains
the structural models.

NLME on R :

R is a programming language and software environment for statistical computing.
It allows us to do a nonlinear mixed- effects model thanks to this package "NLME”
which has a lot of functions whose nlme function. This function fits a nonlinear
mixed-effects model :

nlme(model, data, fixed, random, groups, start, correlation,
weights, subset, method, na.action, naPattern, control, verbose)

With NLME, the diagnostic plots are narrower than those Monolix.

SAEMIX on R :

SAEMIX is an R implementation of the Stochastic Approximation Expectation
Minimization algorithm for parameter estimation in nonlinear mixed-effects mod-
els. It also computes the maximum likelihood estimator of the population param-
eters and provides standard errors for the maximum likelihood estimator. The
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difficult with SAEMIX is that we need to adapt the writting of the data and
the model according to SaemixData and SaemixModel. We can not just call the
Gompertz function, we have to transform it in a saemixModel specifying the dis-
tribution for each parameter, the fixed estimate, the covariate model, ...

The SAEMIX package have as much diagnostic plots as Monolix.

e NLMEFIT on Matlab :
Matlab is a numerical computing environment and programming langage which
allows matrix manipulations, plotting of functions and data, implementation of
algorithms.
For the nonlinear mixed-effects, we use the nimefit function in MATLAB which
fits a nonlinear mixed-effects regression model and returns estimates of the fixed
effects parameters.

2.3 The study of the tumor growth in 10 mice

To compare the performance of these different tools, we selected a common study
which involves volume data of tumor growth for 10 mouses measured over several days
[Benzekry et al., 2014D].

To understand the tumor’s growth, in his article, [Benzekry et al., 2014b] compared the
efficient of several mathematical models which attempt to describe and predict these
experiments.

Total number of subjects: 10
Total/Average/Min/Max numbers of observations: 137 13.70 11 16

6000 o)
5000+
4000+
> 3000+
2000+

1000+

04 - — ; ; . :
5 10 15 20 25 30
time

Figure 1: Volume of tumor data for 10 mices with Monolix
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We take the Gompertz mathematical model for the tumor growth which reveals a
very goodness-of-fit and allows to trace for each mice an individual fit. The Gompertz
model is defined by :

v _ —pt
o ae 3V (1)
V(t=0)= 1lmm

whose the solution is : t

V(t) = Voes ™)
where V' is the volume of tumor, a is the initial proliferation rate and [ the rate of
exponent decay of this proliferation rate.

Around the Gompertz model : This writing is non-autonomous and it can also

be expressed by : v p
V(t=0)= Imm?

This ordinary differential equation verifies the Cauchy problem where the solution exists
and is unique :

V()= Kt

where K is the tumor size at the saturated level.

We can raise the question if the initial condition was V' (0) = 0, a possible solution
might be V (t) = 0.
Indeed, f(V) = Vln(%) is not lipschitz in 0 so it can not verify the Cauchy problem.
However, if we simplify the problem with K =1,

dv " "
— ——Van@/ —Van /O dt =t

It has no solution because according to Riemann theorem, the term on the left diverges
and t; is a finite time.

Then, V(t) = 0 is the unique solution and the Gompertz model is well-posed in 0. It
means that if the initial size of the tumor is 0 (V(0) = 0), we will not have any tumor
(V(t) = 0) which is biologically acceptable.

Nevertheless, the problem is not well-posed for initial quantities of volume infinitely
small (V(0) — 0).
av
— ==VinV =Vg(V
- n 9(V)
with g(V) = —=InV — +o0.
V=0

g(V) represents the proliferation rate and this result means that the smaller the initial

12



volume of the tumor is, the more quickly it will grow which is biologically false. Indeed,

a small tumor will take time to grow due to the cell division.

2.4 Analysis of results obtained for each method used

2.4.1 Comparison of the estimated parameters

Globally, all the tools used for the nonlinear mixed-effects model give us approximately
the same values for the fixed effects and their standard errors. Nevertheless, according

the method involved, we can reach more information about the model.

We summarize in a table the results with the time of execution for each method to

better compare.

a =1 and 8 = 0.1 are the initial values of the fixed effects.

MONOLIX | NLME | SAEMIX | NLMEFIT
Estimate Value : a 0.671 0.667 0.664 0.672
. 0.067 0.066 0.066 0.067
Fixed Effect Standard error : i 0.017 0.021 0.020 0.017
15} 0.0021 0.0027 0.006 0.0022
Estimate Value :w, 0.0719 0.0614 0.088
w 0.0794 0.0735 0.1091
Random Effects Standard error : wi 0.019 0.0624
wg 0.026 0.083
-2 x log-likelihood : 1756.60 1739.7 | 1758.108 1756.5
Statistical Criteria AIC 1766.60 1751.704 | 1768.108 1766.5
BIC 1768.11 1769.224 | 1769.621 1768.1
Execution time (s) 100 0.61 14.44 2.47

We can note that for all the methods, the estimation of the population parameters
(fixed effect) are close. MONOLIX and NLMEFIT have values of the standard errors of
the fixed effects, an indication of the reliability of the value, lower than the other tools,
they estimated with more precision than suggested by NLME and SAEMIX outputs.

For the estimation of the random effects, MONOLIX seems to be the more accurate
with standard errors of 0.019 and 0.026. The values of NLME are closest of MONO-
LIX’s values but we can not check with the absence of a function returning the standard

errors of the random effects.

The output of the summary function includes the values of the Akaike Information
Criterion (AIC) and the Bayesian Information Criterion (BIC)used to compare models
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with different numbers of parameters.
AIC = =2logLik + 2npa,
BIC = —2logLik + npelog(N)

where n,,, represents the number of parameters in the model and N the total number
of observations.

NLME on R presents the lowest value of AIC, indeed it is preferable to have a model
with the smaller AIC and BIC.

The Execution time shows the faster tools to estimate a nonlinear mixed-effects
model. Monolix estimates a large time of 100 seconds of execution. NLME offers the
quickest execution time with 0.61 second.

2.4.2 Interpretation of diagnostic plots

For better analysis of the goodness-of-fit of the model, it is necessary to have diagnos-
tic plots as graphical analysis of residuals and predictions, distribution of the residual
errors, random-effects parameters, ...

MONOLIX generates a wide variety of graphics that we will present following. MAT-
LAB has the fewest options of plots for the analysis of the nonlinear mixed-effects
models (Individual Fit, Population Fit, boxplot of the distribution of the random ef-
fects).

6000+ / 6000 A
* Observed data Pa
Spline i i
5000 v 50001
. o o
40004 / 4000 d
* o A /,‘
> v e > 3 ,‘: =
» | [P 0 | wa{
8 3000 .- : 8 3000 ?{{,.
LI =
- s - s
20001 ire 3" 20001 &
./n'l . gn.
;i= A o
i /o0 e i
1000 é!’.:‘. 1000 :?
1000 2000 3000 4000 5000 6000 1000 2000 3000 4000 5000 6000
Pop. pred. Ind. pred. (SAEM)

Figure 2: Observations vs Predictions on Monoliz
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The figure presents observations versus predictions computed using the population
parameters (on the left) and with the individual parameters (on the right).

Using the individual parameters, the scatter plot follows a linear curve (y = x) which
means the predictions are highly similar to the observations. The displayed points using
the estimated population parameters try to follow a linear curve. It is normal to note
some dispersions because a population approach means to represent a general point of
view of all individuals.

200001
18000
16000+ = emp. prctile
@ prctile out.
14000+ e
P.1 50%
12000+
— P.110%
gt P.l out.
8000+
6000+
- L
k ——
dl S—
5 0 15 % -
time

Figure 3: Visual Predictive Check on Monoliz

The graphic displays the Visual Predictive Check which summarizes the structural
and statistical models by computing several quantiles of the empirical distribution of
the data and the prediction intervals for these quantile are estimated. In the study of
tumor growth in mices, the figure presents the VPC with the prediction interval for the
quantiles 10, 50 and 90. The model is admissible because the quantiles of the empirical
distribution are in the associated prediction intervals.
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5000+
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(a) Gompertz model

Figure 4: Prediction distribution on Monolix

The figures @ display the prediction distribution curves and allow to compare
the observations with the theoretical distribution of the predictions. The black curve
represents the population prediction median, the bands corresponding to the percentiles.
Here, we varied the mathematical model to compare. On the left, it is the Gompertz
model and on the right the Logistic model. The Gompertz model has a better prediction
with the data than the other model.

The Logistic model is defined by :

& = aV(l—%)
V(t=0)= lmm®

where K is the carrying capacity which means the nutritional support that the tumor
needs to grow.

16
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Quantiles of standard normal

(a) Normal plot of residual with NLMFE on R

Quantiles of standard normal

Standardized residuals

beta

-0.10 -0.05

0.00

0.05

Random effects

010 -0.010 -0.005 0000 0005 0.010

(b) Normal plot of random effects with NLME
on R

The graphic on the left displays the normal plot of residual. The points follow a
straight line which means the normality assumption of residual can be acceptable.

The second figure represents the normal plot of random effects. The assumption of
normality for the random effects is reasonable.

Standardized random effects
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(a) Boxplot of the random effects on Monoliz

the parameter a. For both, the mean is quite close of zero.
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(b) Convergence SAEM on Monoliz

On the left (a), it is a graph showing the distribution of the random effects on the
population with boxplots for each parameters. The horizontal lines show the quantiles
of a standard gaussian distribution. The distribution seems to be more expanded for

The figure (b) displays the convergence of the SAEM algorithm to estimate the
parameters. For all the parameters, the convergence is quick, we can also reach the
graphic with SAEMIX on R.
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Figure 7: Population and Individual fits for each mouse NLME on R

This figure displays the population fit using the fixed effects, it is a typical curve
for the population. The population fit represents a general look for all individuals. We
can also note some variabilities between the population fit and the observations (for
example the 4th or 7th mouse). Then, it is important to have individual parameters
(random effects) distributed in the population which try to have a goodness-of-fit for
each individual (pink curves).

Conclusion

To conclude, the nonlinear mixed-effects model with the Gompertz structural model is
well-suited to describe the general shape of the volume tumor growth for the population
of 10 mice. Thanks to the random effects, each individual can also be described by a
single model. Then, the nonlinear mixed-effects model is able to explain variability in
the individual’s curves.

We use an unique structural model to compare different tools for the analysis of
mixed-effects models. MONOLIX is the most complete software, it gives us the nec-
essary information for the study (estimated parameters, standard errors, statistical
criteria, correlation matrix of the estimates). Nevertheless, it takes time to generate
the results and the graphics because it has a wide choice of plots. Indeed, it lets us

18



more focus on exploring models and less programming with an ease of use.

The SAEMIX’s outputs are the same as Monolix’s but less precise.

NLME on R has the fastest execution time and it can be interfaced with Python. It also
returns a lot of information like the confidence intervals on estimated parameters of the
model and standardized within-group residuals except the standard errors of random
effects. The possible plots are narrowest than Monolix’s.

NLMEFIT on Matlab is accurate but the quantity of given information is very limited.
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3 A mathematical model of two tumors in interac-
tion

3.1 Discovery and assumptions of the concomitant resistance

Concomitant tumor resistance is a curious phenomenon by which the presence of a tu-
mor (for example, a breast cancer) inhibits the growth of another implant (for example,
in the lung), it trains a systemic (at the organism scale) growth suppression effect.
The first who described this phenomenon was Paul Ehrlich (1906) where he observed
in mice bearing a growing tumor suppressed the growth of tumor cells inoculated at
different sites.

Several hypothesis try to explain the concomitant immunity:.
Paul Ehrlich (1906) assumed that two tumors competed for nutrients. Then, the first
growing tumor would leave less nutrients for the other tumor growth (athrepsia : com-
petition for nutrients).
The term "concomitant immunity” was introduced in reference to the Bashford’s hy-
pothesis (1908). For him, the growing of the primary tumor induced an anti-tumor
immune response which failed to inhibit its progression. Nevertheless, the anti-tumor
immune response could be effective in suppressing the second small tumor.
In 1972, DeWys studied this phenomenon and supposed that the primary tumor se-
creted inhibitory factors which suppressed directly the growth of the distant metastatic
cells.
A similar assumption was formalized by Folkman in 1994 where he suggested that
there was a systemic inhibition of the angiogenesis. That means the tumors release
anti-angiogenesis factors in the organism which will slow the other tumor growth.
The angiogenesis traduces the situation in which the tumor attracts the blood vessels
to get nutrients and to grow.

3.2 Experiments for the study of two tumors in interaction

Then, I worked during my internship around the study of [Benzekry et al., 2016] about
the dynamics of concomitant resistance in which a mathematical model was established
from experimental data obtained in collaboration with the Center of Cancer and Sys-
tems Biology at Boston, involving the two tumors growth inoculated simultaneously in
the same organism.

Indeed, the experiments consisted in the simultaneous injection of two tumors of

10® Lewis Lung Carcinoma (3LL) cells in 10 mice. Tumor size was measured regularly
over several days.
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A statistical analysis of the volume data was performed to know if the differences in
the increase of the tumors were significant or were due to natural variability in the
tumor growth. Thus, the analysis involved control mice bearing single implants that
we compared the growth with mice bearing two tumors.
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Figure 8: Volume of tumor data for control mice and mice bearing two tumors
[Benzekry et al., 2016]

These results shown statistically significant differences between the small tumors
from mice bearing two tumors and the ”"small control” tumors.
Then, in a mice bearing two tumors, one tumor is growing normally which means
at the same speed as a single tumor (Large and Small control), but the other grows
significantly slower.

3.3 The mathematical model based on a theory explaining the
phenomenon

[Benzekry et al., 2016] formalized a mathematical model from the theory of direct in-
hibition of proliferation to try to explain the phenomenon of concomitant tumor resis-
tance, particularly the significantly slower kinetics observed in the small tumor in his
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volume data of mice bearing two tumors.

The assumption of direct inhibition of proliferation consisted in the release of anti-
proliferative factors from the tumor in the organism which will directly inhibit the
growth of distant tumors.

The mathematical model which represents in a simple way this theory is defined by

@ = P — (BP+7(Py + P2)lpso, Pi(t=0)=Vp,

11%71: BP1+’Y(P1+P2)1P1>0, Ql(tZO):O (2)
2= aPy— (BP+7v(P+ P2))lpso, Pa(t=10) = Vps

%2 — BPy + (P + P2)1p,s0, Qa(t=0)=0

Where :

— Py, P, the proliferative cells of respectively the first and the second tumor
— @1, Q2 the quiescent cells of respectively the first and the second tumor

— « the proliferation rate

— [ the product of the production rate of anti-proliferation factors and the transfer
rate from proliferation to quiescence

— v the parameter representing the interaction between the two tumors (the tumor
cells into the blood circulation)

Volumes of the two tumors at time t were denoted V;(¢) and Va(?).
In this model, the population of tumor cells is divided between proliferative cells (P
and P,) and quiescent cells (@7 and Q»).

An assumption made on the experiments was the cell loss during the injection,
where one tumor (V4 ;) had initially more cells than the other (V4 2). Thus, it was fixed

Vo1 = Ilmm? (=~ 10%ells) and Vj o = 0.75mm?.

We note that the model is defined so that nothing happens if there is not proliferative
cells (Heaviside functions).
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Figure 9: Simplified representation of the direct inhibition model [Benzekry et al., 2016]

The figure (9) summarizes and schematizes the role of the parameters involved in
the mathematical model.
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3.4 Results and goodness-of-fit of the model
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Figure 10: Fit on the two tumors data for a mouse and simulation without interaction
(v =0) [Benzekry et al., 2016]
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Figure 11: Fit vs data |[Benzekry et al., 2016|

The model was fitted against the volume data of the two tumors in mice. The results
(Fig. shown a relevant goodness-of-fit, the model is able to fit the data very well
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for each mouse.

Moreover, the prediction of the tumors behavior without the parameter of interaction
~ permitted to confirm that the difference of the growth did not only come from the
initial quantity of tumor cells inoculated but was also due to the potential interaction
existing between the two tumors involved.

The good description was also confirmed by the figure where the points of the fit
versus the data follow a linear curve.

To understand the phenomenon of concomitant resistance, [Benzekry et al., 20106]
investigated experimentally and theoretically. He formalized a mathematical model
based on his experiments to try to represent the growth suppression of one of the two
tumors in mice.

The model was constructed under the assumption of a direct growth rate decrease
between the two tumors due to passage to quiescence, whose model’s expression is
simplified with only three parameters involved and identical for the two tumors. It
also has a structural symmetry, indeed the inhibition effect is identical between the two
tumors.

Moreover, its goodness-of-fit and identifiability of the parameters revealed to be satisfied
and excellent. Then the model of direct inhibition of proliferation can explain the
dynamics of concomitant resistance.
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4 Confrontation of the two tumors model against
others data

The goal of my internship was in a first time to improve the validation of the mathemat-
ical models defined in [Benzekry et al., 2016] which reproduce tumor growth, especially
the Gompertz model and the direct inhibition of proliferation in two tumors model
constructed from pre-clinical experiments.

For that reason, we test the mathematical models against independent data present in
the scientific literature with Matlab.

In particular, we confront the models with [Gorelik et al., 1981] results which display
several cases that we attempt to reproduce in silico.

4.1 Report on Gorelik’s research on the mechanism of tumor
«Concomitant Immunity »

To understand the complex interactions existing between the primary tumor and its
distant metastases, [Gorelik et al., 1981] investigated on:

e the inhibitory effect exerted by the primary tumor on a tumor graft, taking into
account the size of the first tumor and the number of reinoculated cells

e the inhibitory effect manifested in immunosuppressed mice

e the degree of specificity of the inhibitory effect

Conditions of the experiments : He used various sort of mice (immunocom-
petent or immunodeficient mice) and several kinds of tumors (Lewis Lung cacinoma
3LL, melanoma B16, lymphoma EL4, T-10 tumor, Madison lung carcinoma M109) to
analyze the mechanism of concomitant immunity.

For his experiments, mice were inoculated subcutaneously with tumor cells (primary
tumor) and when the tumor reached a certain size, mice were reinoculated intra food-
pad with other tumor cells (second tumor graft).

We assumed that the relationships between the first tumor and the second tumor graft
might reproduce the relationships existing during the growth of a primary tumor and
its distant metastases.

The encountered difficulties during the experiments was mice might die from the first
tumor before the develops to a visible second tumor. On the other hand, the intro-
duction of high cell doses of the inoculated second tumor may modify the effect of
concomitant immunity.
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Influence of the size of the first tumor and number of reinoculated cells :
The first series of experiments was to analyze the influence of the size of the growing
first tumor and the inoculum size.

The first results shown that the inhibition of the growth of the second tumor de-
pended on the size of the first tumor. Indeed, for the same number of reinoculated
tumor cells, the second tumor was more inhibited when the mice had larger primary
tumor.

In a second time, we can note that for the same volume of the primary tumor, the
size of the second tumor can influence the inhibition. Indeed, for mice bearing tumors
larger than 2cm in diameter, the growth of the reinoculated tumors is more suppressed
when the quantity of injected tumor cells is smaller.

Then, these results demonstrate that the inhibitory effect is a function of the size
of the tumor and the initial inoculum size.

Influence of the immune response : The next series of experiments were to
study the involvement of the immune system in the concomitant immunity:.
He tested the inhibitory effect in immunosuppressed mice (B mice or BALB/c mice)
and in normal immunocompetent mice (normal mice or BALB mice) by varying the
size of the tumor and the inoculum size.
In both experiments, the growth of the second graft in normal and in immunosuppressed
mice was suppressed even completely arrested in some cases.

Moreover, we noted that after the surgical removal of the primary tumor, it oc-
curred an augmented growth of metastases. Gorelik observed this spread with different
immunosuppression procedures (Irradiation, Splenectomy;...).

The results shown that the inhibitory effect has a nonimmune component because in
immunosuppressed mice, we observed the metastatic growth was more accelerated fol-
lowing removal of the local tumor, compared with normal tumor-bearing mice.

The concomitant immunity is not a result of specific immune response. Both im-
munological and non-immunilogical mechanisms might be involved in suppression of
metastatic growth.

The specificity of the inhibitory effect : Gorelik repeated his experiments
with tumors which differs in their growth characteristics to test the specificity of the
inhibitory effect by varying the initial doses of tumor cells to reach a certain size of the
tumor.

Indeed, in his previous study [Gorelik et al., 1978], he assumed that the inhibition of
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metastatic growth is a tumor-specific phenomenon because his experiments reinoculat-
ing 3LL tumors cells was effective in the arrest of the accelerated metastatic growth,
but not with EL4 and B16 tumors.

Nevertheless, these results shown that the suppression of growth of a second tumor
seems to be tumor-non-specific. He observed an inhibition of the inoculum tumor cells
whatever the first or the second tumor involved. This previous hypothesis may be at-
tributed to the high growth rate of 3LL reinoculated tumor cells involving a stronger
inhibitory effect.

To conclude, |Gorelik et al., 1981] discovered that the primary tumor cells produced
inhibitory factors which suppressed the proliferation of second inoculum tumor cells.
This inhibition was non-tumor-specific and not specially dependent of the immune re-
sponse.

This inhibitory effect was also function of the size of the local tumor and the size of
inoculum cells, indeed it appeared only when the first tumor reached a certain size.
Then, following removal of the primary tumor, without the inhibitory factors, the metas-
tases accelerated their growth.

Moreover, other studies explained that tumors may have an antiproliferative effect in
normal tissues.
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Figure 12: Suppression of the development of a second tumor cell inoculum transplanted
into tumor-bearing mice |[Gorelik et al., 1981]

Thanks to this study, we have available several tumor growth curves that we can use
as data to fit with the model by modifying it to reproduce the Gorelik’s experiments.
However, the model has limits, it does not permit to simulate all the experiments
available, for example we can not distinguish in the model the tumor growth in im-
munosuppressed mice or in normal mice.

Then, we selected the data from the Gorelik’s article present on (Fig. which involved
the volume data of the second tumor measured over the time and reinoculated 10 days
after the first implant (10% 3LL cells) varying the quantities of 3LL cells reinoculated.
The symbols represented : Normal non-tumor-bearing (control) mice inoculated with
5 x 10°(A) or 2 x 10° (o) tumor cells ; mice bearing a 3LL tumor reinoculated with
5 x 10°(A) or 2 x 10° (e).

The observations shown that the inhibition of the growth of the second tumor was cor-
related with the initial reinoculum size.
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4.2 Comparison of single tumor growth

First, we focus on a single tumor growth in normal mice inoculated intra footpad with
different quantities of Lewis Lung Carcinoma (3LL) tumor cells (1 x 10% 5 x 10° or
2 x 109).

Moreover, from [Benzekry et al., 2016] we have 20 control mice bearing a single 3LL
tumor with an initial value of 1 x 10° in their organism.

4.2.1 Gompertz model

The Gompertz model, whose equation expression is (1), exhibited a relevant goodness-
of-fit and gives us a set of 20 parameters that we used to compare a single tumor growth
with the data from |Gorelik et al., 1981].

Results
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Figure 13: Simulation of tumor growth with Gompertz model

These plots which return Gorelik’s data and the mean of the 20 Gompertz model sim-
ulations with an initial value of 1 x 10% or 2 x 10° tumor cells, show that the curves
have the same behavior and similar values.

Globally, the single tumor model predicts correctly the tumor growth from Gorelik’s
experiments even if it seems to increase slightly slower than in reality when predicting
tumor growth kinetics with a different initial tumor cells load (0.2mm?*) and using the
parameters inferred from fitting the independent data set from [Benzekry et al., 2016].
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Figure 14: Tumor growth in control normal mice with Gompertz model

On the Fig[14] it is surprising that the tumor growth in Gorelik’s data is similar
injecting a tumor volume of Imm? or 0.5mm?.
The model can not represent well this phenomenon. Indeed, the initial condition influ-
ences the tumor growth in the Gompertz model due to the expression of the solution.

The larger the number of implanted tumor cells, the faster the tumor grows.

4.2.2 Comparison with the Quiescent model

We can also compare the Gompertz model with another named Quiescent model which
separates the tumor cells between proliferative factors P and quiescent factors Q.

The model is defined by :

%: aP—(f+v)P

Cil_t: (B+7)P (3)
Pit=0)= W

Qit=0)= 0

whose solutions are :
{ Pt) = Vpela—B-mt

1% _B_
Q) = (e~
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Figure 15: Simulation of tumor growth with Quiescent model

Thanks to the fits obtained here, the quiescent model has a good prediction of the data
for V, = 1mm? which is the same initial condition than the experiments of the 20 mice.
Nevertheless, we observe that it does not reproduce the Gorelik’s experiment with an
initial injection of Vj = 0.2mm? because the quiescent curve on the second graph is far
from the data and grows slower. The model is more sensitive to the initial conditions
than the Gompertz model.

Therefore, the Gompertz model which was used and fitted for the experiments of the
20 mice [Benzekry et al., 2016] reproduces well independent and external data. It also
has a better prediction of the general tumor growth than the Quiescent model which is
very influenced by the initial conditions.
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4.3 Test of the two tumors model against Gorelik’s data

Second, we want to reproduce the Gorelik’s experiments involving the data reached
from Fig.. Hence it is interesting to simulate this reinoculation, the impact of the
first tumor thanks to the two tumors tools that we will need to modify and to compare
the results.

4.3.1 First simulation test

We recall that in [Benzekry et al., 2016] report, we have volume data of tumors mea-
sured over several days for 10 mice inoculated by two simultaneous 3LL tumor implants
with V51 = Imm? and V55 = 0.75mm?.

We fit these data with the model of direct inhibition of proliferation whose equation (2)
is expressed in the part 3. of the report, known for its goodness-of-fit which represents
the interaction between two tumors in which a tumor produces inhibitory and prolifer-
ating factors.

Then, thanks to the 10 parameter sets reached following the fitting, we can simulate
the Gorelik’s experiment adapting the model.
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Figure 16: Simulation of the second tumor growth with 10 days after the first implant

These graphs display the second tumor growth simulated with a set of parameter
obtained directly from [Benzekry et al., 2016] and added 10 days after the first inocu-
lation of the primary tumor at ¢ = 0 with V5 ; = Imm?® corresponding to 1 x 10 tumor
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cells.

We observe that regardless of the set of parameters, the second tumor rapidly sat-
urates and becomes constant. This can be explained by the small quantity of tumor
cells V2 (5 x 10° or 2 x 10° tumor cells) implanted at a time T, where the first tumor
volume V;(7p) is very important.

Indeed, the quantity of proliferative cells P is not enough compared to the inhibition
Py (P, << P;) which will quickly exhaust the proliferative factors until the value 0.

Therefore, the two tumors model can not predict well this phenomenon of small
tumor’s reinoculation with the parameters obtained thanks to the fits of previously
volume data.

4.3.2 Second simulation test

An other way to try to reproduce and to get closer to Gorelik’s volume data is to start
with his data and to fit them thanks to the direct inhibition model. The new returned
parameters will allow us to simulate the phenomenon.

New set of parameters reached using volume data of the second tumor

In a first attempt, we fit the model on the volume data of the second tumor in normal
tumor-bearing mice. We let the model adapt itself for the primary tumor volume
behavior given the initial volumes and the day 7§ of the reinoculation.
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Figure 17: Fitting on the second tumor data in mice reinoculated with 2 x 105 tumor
cells

We have a goodness-of-fit in the mice reinoculated with 2 x 10° tumor cells (Fig
), we can also observe on the graph the blue curve which represents the first tumor
growth that the model adapts itself.
Moreover, the parameters v are approximately close to 0 which means the model fits
considering few or any interaction between the two tumors which is easier to adjust
independently the second tumor.
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Figure 18: Prediction for a reinoculation of 5 x 10°cells

We adapt the direct inhibition model to simulate the Gorelik’s experiment following
his steps with the parameters obtained.
On the Fig ., we use the parameters’ set of the fit in mice reinoculated with V; o =
0.2mm? whose the goodness-of-fit is relevant (Fig ) to predict the second tumor
growth with an initial second tumor value of 0.5mm?.
The plot shows an appropriated simulation and predicts quite well the data. Indeed,

for the same volume of the primary tumor, the size of the second tumor can influence
the inhibition.

Then, we wonder what is the behavior and the dynamic of the primary tumor since
the model fits without having any information about it.
We compare it with other tumor growth descriptions.
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Figure 19: Primary tumor growth curves

20

These graphs display the primary tumor growth curves of our simulation with the
previously parameters, Gorelik’s data from his article, control mice simulated by the
Gompertz model (Fig[19}) and with the first two tumors simulation.
At the beginning, the plot seems to comport as the others and follows well the Gorelik’s

data and the Gompertz prediction.

Later in time, the primary tumor increases faster than the other plots and attains high

values (10°mm?) but keeps the same dynamic than the two tumors simulation.

Globally, the behavior of the primary tumor with the parameters reached with these
data is possible.
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Use of local and second tumor data for the simulation

We also try to fit the data taking into account the control mice curves inoculated with
1 x 10° tumor cells as the behavior of the primary tumor.

¢
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Figure 20: Fitting on volume data of control mice inoculated with 1 x 10° 3LL and on
second tumor data in mice reinoculated 10 days later with V5,mm? of 3LL

To adjust the best, we search manually the initial parameters which allow a good
description of the data.
Then, the two tumors model have a goodness-of-fit and adjust well the data of the
primary and the second tumor (Fig [20]).
We use the parameters obtained where ~ value is low, to predict the experiments of
Gorelik.
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Figure 21: Prediction for a reinoculation of 5 x 10° tumor cells

We use the parameters obtained to simulate and try to predict the data.
On the Fig ., taking the parameters of the fit in mice reinoculated with V55 = 0.2mm?
(Fig b.), the red graph shows that we predict well the second situation where mice
are reinoculated with Voo = 0.5mm?.

Therefore, the two tumors model based on the experiments from [Benzekry et al., 2016]
can not reproduce the reinoculation of a second tumor with the existing parameters.
Indeed, the large size of the primary tumor completely inhibits the growth of the second
tumor which saturates quickly with these parameters.

An other way is to use the data from [Gorelik et al., 1981] and to fit on to obtain
new sets of parameters. The direct inhibition of proliferation model exhibits a relevant
goodness-of-fit and allows a good prediction of Gorelik’s experiments.

Conclusion

To conclude, whereas it was constructed from [Benzekry et al., 2016] experiments, the
strength of the direct inhibition of proliferation model is to be able to fit and describe
external and independent data, but also to predict different and varied situations. It
may be possible that the biological variability of mice (due to the life conditions or the
temperature,...) was involved in difficulties taking directly the parameters used from
[Benzekry et al., 2016]. It is also interesting to note that the data we treat here have
the same sort of tumor cells in the two studies : Lewis Lung Carcinoma (3LL).
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5 Study on the acceleration of metastases’ growth
What is the importance of the concomitant resistance ?

The importance of this phenomenon occurs following the surgical removal of the pri-
mary tumor where the suppression of the inhibition’s strength leads to a dramatic
acceleration of metastatic growth. These dramatic post-surgical consequences was find
in some clinical cases which had cause death of patients.

Tumor Present Tumor Removed

Whole
Lung
(Day 14)

Microscopic
Section
(Ab tovon

Willebrand's )

Figure 22: The presence of a Primary Tumor is Associated with an Inhibition of Neo-
vascularization and Growth of its Metastases - O’Reilly, Folkman et al., Angiostatin:
A Nowvel Angiogenesis Inhibitor That Mediates te Suppression of Metastases by a Lewis
Lung Carcinoma, Cell 1994

The image reflects well the impact of the surgical removal of the local tumor on
metastasis. Indeed, on the left of the figure, the arrows point small metastasis presents
in the mouse lung ; after that the tumor removed, on the right, we observe a metastatic
explosion.

Hence an other part of my study internship was to modify the initial Matlab program
(IBenzekry et al., 2016]) implementing the two tumors tools to simulate the surgical
removal’s impact and to quantify this acceleration.
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5.1 Simulation of surgical removal

First, we modify the Matlab program taking the 10 parameters directly obtained from
[Benzekry et al., 2016], to simulate the surgical removal of the first tumor by varying
the day of excision (7). Then, we can test the effect of the ablation of the primary
tumor on the development of the second.

1500 ‘ ‘ ‘ 1500
m’g 1000 m’gflOOO’
E E
Q [}
S 1S
> =]
o o
> 500 >+ 500
0 ‘ - : 0 ‘ ‘ :
0 5 10 15 20 O 5 10 15
Days Days
(a) Ty = 5 days (b) Tp = 10 days

2 data Large tumaor

2 data Small turnor
Large Tumoar

Srall Turmor

— ——Large Tumor Ablation
= — = Small Turnor Ablation

Figure 23: Ablation of the primary tumor at day 7 after implant in mouse

These plots show well an acceleration of the second tumor growth following surgical
removal of the primary tumors. The inhibitory effects from the local tumor to the sec-
ond tumor are suppressed thanks to the ablation. The direct inhibition of proliferation
model can represent the augmented metastatic growth.

We can note that [Gorelik et al., 1978] also studied the effects of the local tumor’s
presece on the inhibition of metastatic growth, in particular the increase of metastatic

growth following the removal of the primary tumor.
He tested the effect of the ablation of the primary tumor (3LL tumor cells) induced in

footpad in mice, on the development of lung metastases.
Following the amputation, he observed a dramatic increase of pulmonary metastases
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growth (697mg against 231mg in non-amputated mice). Moreover, the ablation was
following in all cases by severe dyspnea.

Then, this model which generates the inhibitory behavior of a local tumor on pro-
gression of metastases, also simulates the assumptions of Gorelik on the increase of
metastatic growth following tumor excision.
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Figure 24: Particular cases - Ablation of the primary tumor 10 days after implant in
mouse

Nevertheless, we have two particular cases were the phenomenon was not observ-
able. Indeed, after the ablation of the primary tumor, the other tumor grows in the
same way as without amputation. These plots don’t indicate a significant increase of
metastatic growth.

It is interesting to note that these cases occur in mice where a connecting blood vessel
joining the two tumors were found in [Benzekry et al., 2016] experiments.
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5.2 Quantify the metastatic acceleration

5.2.1 Method

After simulating the surgical removal of a local tumor in mice, we investigated on this
metastatic acceleration to evaluate it according the day of the amputation or the vol-
ume of the excised tumor because each tumor grows differently. Indeed, we want to
know if it exists a link or a dependence between them.

To quantify the increase of metastatic growth, we define in percent the acceleration

by
V(TO + 7') — V;ef<T0 + T)

V;ef (TD + 7—)
Where Tj is the day of ablation, 7 days after the excision, V,.s the fit of the second
tumor without amputation, V' the second tumor with ablation.
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Figure 25: Acceleration of metastatic growth

5.2.2 Results

We summarize in a table the results of the acceleration in percent for some mice ac-
cording the day of excision T and the volume of excised tumor V4.

We note that the acceleration vary for each mouse because the volume of tumors doesn’t
grow in the same way, for some it grows faster than others.
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Mouse 4 :
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Figure 26: Acceleration in percent 5 days after amputation in mouse 4
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Mouse 6 :
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Figure 28: Acceleration in percent 5 days after amputation in mouse 6

Even if the acceleration grows more or less slowly depending on the mouse, these
results which occur in 8/10 mice reveal acceleration’s curves non-monotone which is
quite surprising and non-intuitive.
Until a certain size of the local tumor Vp* (i.e corresponding to one amputation’s day
Tox), the second tumor growth increases. Beyond this day, thanks to the plots, we
observe a reduction of this acceleration.
Hence, that means until a volume of the primary tumor, the surgical removal can
have dramatic consequences leading an augmented metastatic growth caused by the
inhibitory effect suppression of the local tumor. If we wait long enough that a tumor
reaches a certain size, the incidence of the amputation will be less important.
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Non-amputated

bl 10% 3LL tumor cells were inoculated into the right footpad. Fifteen days later mice were divided into groups according to l._he diameter
of their primary tumors. Mine days following excision of the primary tumor the development of pulmonary metastases was examined,

TABLE 11
EFFECT OF SIZE OF LOCAL TUMOR AT TIME OF EXCISION ON THE INCREASE OF PROGRESSION
OF LUNG METASTASIS !
Diameter of
a local tumor No. of Volume of Weight of Weight of
[’r'f“" MNe. of mice Treatment at time of metastases metastases lungs spleen
o. amputation per lung {mm") (mg) (mg)
(mm)
1 9 Amputated 8-10 29 2.84+04* 215+24 % 159416 *
2 10 Amputated 6-9 19 414+08* 248422 * 163 +5*
3 10 Amputated 4-6 5* 3q=11"* 171 =11 * 143 £5*
4 11 0.4L0.09 141+7.2 325142

1

* Significantly different from group 4, p<0.05.

Figure 29: |Gorelik et al., 197§]| results on the increase of progression of lung metastasis

These observations were already been found in |Gorelik et al., 1978 experiments

(see Fig[29) where he varied the size of the excised tumor to see the influence on the
metastatic acceleration. The number of metastases was correlated with the size of the

primary tumor whereas their volume increased (3.4mm? to 4.1mm?) and decreased

(4.1mm? to 2.8mm?) when the size of the local tumor augments.

300 w !
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—P2 [0 ' .
—Q2 seel =11 ' s
150} 0 h )
T 1T { |
£ ---T,=15 § g
@ 5 f ' 1
g 100 ‘ : 7
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50’ ,I’ " II
/\ 507 l’l /,’ "I |
0 5 - 10 15 2C 0 ; =it
Time(days) 0 5 10 15 20
Days

(a) Proliferative and Quiescent cells in the sec- . .
ondary tumor without amputation in mouse 4 (b) Proliferative cells growth

The phenomenon found in the mice can be explained by the evolution of the pro-
liferative and the quiescent cells in the secondary tumor. Following a certain date of
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the amputation, the proliferative cells decreases may be due to the local tumor which
reaches a big size and send a large quantity of inhibitory factors. Then, the metastatic
acceleration’s impact is less important because the quantity of proliferative cells is not
enough compared to the inhibition (P, << P;). Subsequently, following the excision of
the primary tumor, the acceleration stays at the value 0 due to the depletion of P.

We recapitulate all the results in a general table.

Aceq, 5(%)
1o 1 3 4 5 6 7 8 10 median | mean std
1 | 431 | 14.29 | 35.20 | 11.14 | 28.10 9.36 18.29 21.05 12.72 13.75 | 12.36
5 | 3.81 | 14.01 | 54.18 9.97 34.89 8.67 18.88 24.13 11.99 16.49 | 17.53
10 | 4.69 | 1880 | 241.81 | 11.91 | 92.52 | 10.56 | 28.60 42.53 15.35 44.99 | 74.57
15| 541 | 32.01 | -3.97 | 16.26 | 13.75 | 71.21 0.11 132.47 9.58 26.41 | 43.68
20 | 6.28 | 67.66 | -2.35 | 29.03 | -1.41 | 20.82 | -1.08 -1.631 2.60 14.66 | 24.45
25| 735 | -0.74 | -1.73 | 31.80 | -0.94 | 45.11 | -0.72 -1.07 -0.73 9.88 18.22
30| 9.13 | -0.36 | -1.11 -0.27 | -0.47 0.42 -0.34 -0.54 -0.35 0.81 3.39

ACCTOJ()(%)
1 ]16.29 | 50.87 | 189.88 | 37.76 | 123.76 | 32.47 | 67.79 83.03 44.31 59.92 59.9
5 | 17.74 | 62.90 | 753.43 | 42.36 | 277.96 | 36.74 | 93.00 | 129.71 52.63 | 141.41 | 230.4
10 | 19.11 | 101.99 | 3351 55.09 | 948.96 | 45.59 | 225.15 | 449.94 78.54 | 519.82 | 1038.2
15 1 22.19 | 271.53 | -3.97 | 94.82 | 67.44 | 485.92 | 2.76 | 1070.14 | 44.82 | 200.82 | 344.1
20 | 25.60 | 356.82 | -3.12 | 202.45 | -1.84 | 139.69 | -1.43 -2.25 12.08 89.49 0.13
2513179 | -1.14 | -2.51 | 131.61 | -1.37 | 302.63 | -1.07 -1.69 -1.11 57.28 0.11
30 | 4258 | -0.76 | -1.89 -0.56 -0.90 2.79 -0.69 -1.16 -0.73 4.92 0.02
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ACCVO75(%)

o 1 3 4 5 6 7 8 10 median | mean std

1 4.25 | 14.58 | 33.24 | 11.59 | 27.74 9.53 18.60 | 20.81 13.08 13.49 | 12.04
250 | 4.00 | 21.35 | 223.53 | 12.73 | 57.62 | 11.41 | 25.91 | 40.55 17.76 43.29 | 77.44
500 | 4.65 | 31.89 | 308.93 | 15.81 | 98.89 | 14.02 | 39.85 | 62.94 24.83 58.50 | 93.31
750 | 4.70 | 47.82 | 226.68 | 19.14 | 140.50 | 16.42 | 60.12 | 90.15 33.48 60.20 | 74.22
1000 | 5.75 | 60.16 | 105.61 | 22.55 | 148.23 | 17.74 | 74.04 | 109.73 | 42.58 52.64 | 52.64
1500 | 5.87 | 70.04 0 31.21 | 116.74 | 22.56 | 82.24 | 140.42 | 50.63 58.64 | 52.13
2000 | 5.40 | 55.31 0 41.54 | 42.14 | 26.54 | 62.54 | 138.18 | 41.84 46.46 | 43.15

Accyy10(%)

1 17.17 | 50.96 | 166.42 | 38.58 | 115.28 | 33.22 | 66.76 | 80.16 44.77 56.72 52.9
250 | 20.12 | 166.55 | 3489.7 | 62.56 | 714.22 | 55.33 | 230.49 | 438.21 | 114.56 | 517.66 | 1069.2
500 | 20.45 | 288.62 | 3795.1 | 93.00 | 1033.8 | 73.61 | 381.37 | 722.70 | 190.81 | 640.80 | 1161.0
750 | 21.60 | 359.24 | 2775.1 | 132.90 | 1157.6 | 93.41 | 459.44 | 902.16 | 246.07 | 590.07 | 865.4
1000 | 22.42 | 387.04 | 1252.6 | 162.52 | 1165.4 | 109.64 | 492.16 | 998.89 | 279.34 | 431.78 | 453.5
1500 | 24.1 | 372.6 0 212.7 | 889.4 | 171.0 | 462.9 | 1089.8 | 292.63 | 402.81 | 398.0
2000 | 25.4 | 279.3 0 226.6 | 314.7 | 2124 | 346.6 | 1034.5 | 252.99 | 304.95 | 320.9

Even if the experimental conditions attempt to reduce the variability, these results
present high variations with important values of the standard deviation. Indeed, the
organism where the tumors grow or the life conditions is different for each mouse and
may interfere in the findings.

Mouse 2 :
To (days) ACCT075 (%) ACCTOJ()(%)
1 -3.18 -3.45
) -2.61 -1.64
10 -1.31 -1.28
15 -0.80 -0.30

Vo(mm?) | Acey, 5(%) | Aceyy 10(%)
1 -3.79 -2.79
250 -2.88 -2.44
500 -2.43 -2.57
750 -2.76 -2.64
1000 -2.77 -2.06

We also note for 2 mice that their accelerations Accr, » and Accy, » are very weak
and stay approximately constant close to 0. Moreover, the small variation may be due
to the numerical error in the resolution of the ordinary differential equation with Euler
method. These results can be explained by particular observations of the experiments
in mice whose the two tumors were connected (Fig . In these cases, the presence of
the primary tumor would not have influence on the other tumor growth.
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Conclusion

To conclude, simulate with a reliable model allows to realize virtually difficult experi-
ments. Indeed, we can observe the evolution of the tumor’s volume over time without
training the death of the subject caused by the tumor.

In our present, it enables firstly to confirm that the concomitant resistance and con-
sequent post-surgery metastatic acceleration have important implications. Indeed, the
effect of the local tumor growth on progression of metastasis has a significant increase
in the growth of secondary tumor following the primary tumor’s excision found in some
clinical cases.

Secondly, the simulation lets us test the impact of the local tumor’s volume at day of
the amputation on the metastatic acceleration. The study reveals a non-monotony of
the metastatic acceleration that has already been observed in [Gorelik et al., 1978].
We do not have enough available data about the concomitant resistance but we should
continue to investigate on the post-surgery metastatic acceleration, because it might
lead to a new path of cancer treatment if these pre-clinical results might occur in hu-
man patients. Indeed, control the patient tumor burden which has been experimentally
demonstrated in the prevention of the metastatic acceleration with neo-adjuvant ther-
apy, might be more beneficial than surgery therapeutic option in some instances.
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6 Bibliographic Reports on Dynamics of Metastasis

Concomitant resistance and consequent post-surgery metastatic acceleration have im-
portant implications.

We can extend the study of the concomitant resistance based on a mathematical model
describing the simple interaction between two tumors in the same organism, by the
development of mathematical models for the systemic dynamics of metastases. Here,
we have the representation of a population of metastasis in interaction.

[Benzekry et al., 2014a] completed the work of [Iwata et al., 2000] which describes a
growing population of metastases, by integrating the systemic inhibition of angiogene-
sis.

Hence, we summarize the fundamental mathematical tools from these two articles on
dynamics of metastasis.

6.1 A Dynamical Model for the Growth and Size Distribution
of Multiple Metastatic Tumors, [Iwata et al., 2000]

A major problem in the treatment for cancer therapy is the possible presence of multiple
metastasis in addition to a primary tumor in patients.

Indeed, tumors are able to disseminate multiple tumor cells to form distant metastatic
tumors.

Actually, clinical imaging techniques have difficulties to detect small sizes of metastases.
Then, the goal of [Twata et al., 2000] in his article was to develop a dynamical model
for the colony size distribution of multiple metastatic tumors that he compared the
prediction of the metastases’ behavior against computed tomography (CT) images of a
patient having hepatocellular carcinoma in the liver.

6.1.1 The Mathematical Model

The mathematical model that [Iwata et al., 2000] presented estimates the number of
tumors even undetectable and predicts the future behavior of metastases.

Assumptions : The mechanism of dissemination can be explained as :

— a primary tumor is generated from a single cell at t = 0 and grows at rate g(x)
per unit time

— the first tumor emits metastatic single cells at rate f(x)

— each metastatic cell becomes a new tumor and also grows at rate g(x) spreading
new nuclei of metastasis at rate ()
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Moreover, Iwata supposed that the colonies are far enough from each other to not
merge. He further assumed in his model that tumors are not eliminated by treatment
or natural death.

Model : Thus, the mathematical model which describes the dynamics of the
colony size of distribution is the von Foerster equation defined by :

(Op(x,t)  Og(x)p(x,t)
o or (4)
p(x,0) =0 (5)
g(1)p(1t) = / B, Dz + B, (1)) (6)

Where,
x ¢ the cell number
zp(t) : the number of cells in the primary tumor at time ¢
p(x,t) : the colony size distribution of metastatic tumors at time ¢ with x cell number
p(x,t)dx : the number of metastatic tumors whose sizes is in [z, z + dz| at time t

g(x) : the rate of growth per unit time represented by the Gompertz expression :

b
x) = axlog(—
o) = arlog(")
where a is the growth rate constant and b is the tumor size at the saturated level.
f(x) : the rate of metastatic single cells emitted defined by :
B(x) = ma®

where m is the colonization coefficient and « the fractal dimension of blood vessels
in contact with the tumor (equal to % if the tumor vascularity is on the surface of
the tumor, and 1 if the distribution of the blood vessels is homogeneously in the
whole tumor).

Thus, the colonization rate (x) is proportional to the number of tumor cells in

contact with the blood vessels which are able to spread metastatic cells via the
blood.

The transport differential equation (4) results from the development of :
p(z, t) Az = p(z + g(x)At,t + At) x ((z + Azx) + g(z + Az)At — z + g(x)At))
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This traduces that the number of tumor cells at time ¢ whose size belongs to [z, z + Ax]
is equal to the number of tumors cells at time t + At whose size is in

[z + g(z)At, (x + Az) + g(x + Ax)At]

Indeed, a tumor of size x at time ¢ grows to a tumor of size = + g(z)At at time t + At.

The first initial condition (5) interprets that at ¢ = 0 there are not metastatic tumor.
The second boundary condition (6) means that the number of new metastatic single
cells created per unit time at time ¢ is the total quantity of metastastic cells released
by metastatic tumors present and the primary tumor.

Moreover, the theoretical cumulative distributions are defined by :

N(z,t) = /OO p(x, t)dx

The cells number in the primary tumor x,(t) is the solution of

where the solution is x,(t) = pl—e

6.1.2 Results

To assess the model, [Iwata et al., 2000] confronted it with clinical data observed be-
fore the treatment from CT images of a patient with a hepatocellular carcinoma as a
primary tumor, which presented multiple metastatic tumors in the liver.

The observed data were cumulative size distribution of metastases at 432, 559, 632 days
after the first diagnosis as a primary tumor.

His results showed that the whole clinical data fitted well with the theoretical cu-
mulative distributions curves.
He plotted the colony size distribution of metastatic tumors which was monotonically
decreasing due to the criterion m > aalog(bab_l) with the parameters obtained.
Moreover, it had a good prediction of the primary tumor growth with the observed
data.
We also note that the estimated parameter « is close to % meaning the tumor vascular-

ity is superficial which was confirmed by CT imaging.

To conclude, Iwata constructed a dynamical model for the growth and size distri-
bution of multiple metastatic tumors.
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It can be used to predict the future behavior of metastasis, to estimate the number of
small tumors undetectable with clinical diagnostic techniques and the times of origin
of metastases.

6.2 Global Dormancy of Metastases Due to Systemic Inhibi-
tion of Angiongenesis, [Benzekry et al., 2014a]

Studies, particularly autopsy studies, demonstrate that most individuals even the most
healthy adults possess small tumor lesions that they do not necessarily train to the
death.

Indeed, these lesions will not progress or have very slow tumor growth and stay stable,
it is the tumor dormancy phenomenon.

The phenomenon of concomitant resistance offers an explanation for this dormancy
in secondary tumors which is caused by the presence of the primary tumor.
One of these explanations proposes that the primary tumor releases angiogenesis in-
hibitors via the blood leading to the inhibition of vascular development at secondary
sites and to prevent their growth limiting the nutrients.
Indeed, tumor cells liberate stimulatory growth factors, such as vascular endothelial
growth factor (VEGF), and angiogenesis inhibitory factors, such as angiostatin, endo-
statin or thrombospondin-1 molecules.

Then, the goal is to complete the [[wata et al., 2000] mathematical model which
describes a growing population of metastases, by integrating the systemic inhibition of
angiogenesis.

6.2.1 The Mathematical Model

The proposed model describes the dissemination of population of metastases, the growth
of the primary tumor taking into account angiogenesis and interactions among the var-
ious tumor sites.

This mathematical model in 2D is defined by :

op+ V. (pG)= 0 [0,7] x Q
—G(V, K Vy,p) e (V. K)plt, V. K) = N(V, K)x
[ BOV))p(t,V, K)AVAE + B(V, (1))} 0,7 x 99+
p(0.V.K) = p°(V.K) Q
Where,
Vy, V' i respectively the volume of the primary tumor and the metas-
tases
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K,, K : respectively the carrying capacity of the primary tumor and the
metastases

p(t,V, K) : the density of metastases having volume V' and carrying capac-
ity K at time ¢

G(V,K;V,,p) : the tumor growth rate vector G is composed of a Gompertz
model for the tumor volume growth, and second term for the carrying capacity

K
' B aVin(%)
G(V,K;Vp,p) = <5tim(v, K) — Inhib(V, K; V,, p)
with,
Stim(V, K) = bV

where b is the equivalent of the concentration of angiogenic stimulating factors.

It is considered that the inhibition is global and results from inhibitory factors
released by primary and secondary tumors.

Inhib(V, KV, p) = dViK + eI K

where dV'3 K represents the local inhibition and I(t; V,, p(t, V, K)) is the concen-
tration of the inhibitor from the population of tumors of density p at time ¢

B(V) : the emission rate of new metastatic cells which depends only on

the volume is :
mVe V>V,

0 otherwise

(.50 = {

This term quantifies the number of newly created metastases. Here, it is assumed
that the very small metastases under the volume V,,, do not spread new metastatic
cells because they do not have access to blood circulation.

N(V,K) = §v.r)=(vi, i) : the repartition of metastases at birth
Q = (Vo, +00) x (0,+00) : the domain for the possible values of (V, K)

Here, the transport differential equation in 2D traduces the same phenomenon of
conservation of mass as [Iwata et al., 2000].
The first boundary condition describes that the number of new metastatic cells created
per unit time is equal to the total number of cells released by the entire population of
tumors.
v is the unit normal vector to the boundary of the domain €2 and allows to select the
incoming flux i.e the new cells to the domain. Indeed, here it is chosen that the new
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created metastatic cells are cells of size Vj with a initial carrying capacity K.
The total number of metastases is :
N(#) = /Q ot V, )V K
The total metastatic burden is defined by :
M(t) = /QVp(t, V,K)dVdK

The mean size of the metastases is :

6.2.2 Results

The data used come from Huang’s report(2002) which are number and mean size of

metastases and primary tumor over the time from mouse breast tumors.

Nevertheless, it is difficult to find metastases which manifest a global dormancy. Then,
the systemic inhibition of angiogenesis is neglected with I = 0. Indeed, I does not have

any impact on the model simulations.

The values parameters are obtained from literature, heuristic deviation, or by fitting

the model to these data.

The model revealed a relevant goodness-of-fit with the data from primary tumor

growth and from number and mean size of metastases.
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Figure 31: [Benzekry et al., 2014a]

The parameter estimation allowed to simulate the experiment of Huang and returned
(Fig. the growth of the total metastatic burden and the colonies size distribution
where it reveals a nontrivial size distribution at the end time of the experiment.

Then, the simulation also permitted to predict the cancer history starting from one
initial tumor cells. It shows that the mouse would die from growth of its metastasis
and not from the initial tumor.

The last result integrated the global dormancy represented by a high values of the pa-
rameter of inhibitor production rate p in large time simulation. It showed a possible
convergence of the system to a steady state with the stabilization of the metastatic
burden composed of small lesions.

To conclude, the model is able to describe data of primary tumor and metastasis

development. It gives other information as the size distribution of metastases and their
total number.
The model allows prediction of whole cancer history and lets the simulation of the
systemic inhibition of angiogenesis which shows the stabilization of the cancer disease.
Hence, the next step is to integrate in this global model the mathematical model of two
tumors in interaction [Benzekry et al., 2016]. It could be beneficial and let a complete
mathematical model of the concomitant resistance. It could also lead to personalized
quantification of the impact of concomitant resistance in patients and to predict the
post-surgical metastatic acceleration.
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Conclusion

This internship met my expectations. Indeed, It was a first real work experience in my
field of study. It also helped me to discover the research worker in the mathematical
modeling.

I have strong knowledge in applied mathematics and I wanted to use these skills in the
area of bio-medical, particularly I was proud to be involved in the cancer research and I
hope that my investigation may help it. Working for a cause was very stimulating and
motivating.

The internship was also professionally enriching because it gathered several compe-

tences : statistical tools, mathematical models based on ordinary differential equations,
numerical simulations and knowledge of cancer biology.
I think that it was fascinating to study the limits of a mathematical model which de-
scribes the tumor growth in a specific instance («the concomitant resistance ») and to
confront directly these mathematical tools against data obtained from real experiments.
Additionally, I discovered many things about the cancer disease : the characteristics
of tumor cells, the cancer cell formation, the treatments and the phenomenon of con-
comitant resistance. I globally obtained good results in my work, but I did not have
the time to integrate the mathematical model of two tumors interaction in the global
model of systemic dynamic metastatic.

This internship allowed me to be more determined on my professional project.
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