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o Electricité de France, R&D division, F-78400 Chatou, France

♠ ONERA, The French Aerospace Lab, F-31055 Toulouse, France

Abstract

The Large Eddy Simulation (LES) of two-phase flows with resolved

scale interfaces is investigated through the a priori filtering of Direct

Numerical Simulations (DNS) of one-fluid and multifield models. A

phase inversion benchmark [1–4] is considered highlighting many coa-

lescence and interface rupture events in a kind of atomization process.

The order of magnitude of specific two-phase subgrid LES terms is

first considered with the two modeling approaches. Then, different

existing models such as Smagorinsky [5], Wall-Adapting Local Eddy-

viscosity (WALE) model [6], Bardina [7], Mixed [8] and Approximate

Deconvolution Model (ADM) [9] are used to account for two-phase

subgrid effects. These models are compared to filtered DNS results.

The main conclusion concerning a priori LES filtering is that the in-

ertia term is not predominant in two-phase flows with fragmentation

and rupture of interface. This conclusion is different from that of the

studies of [3, 10–13]. concerning LES models, functional modeling do
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not correlate to filtered DNS results whereas structural approaches do.

Bardina and ADM are clearly the good LES framework to consider for

two-phase flows with resolved scale interfaces. ADM is clearly better

than Bardina in our study.

keywords: phase inversion, two-phase flows, a priori filtering, LES mod-

eling, one-fluid model, multi-field approach
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1 Introduction

Turbulent two-phase flows occur in many academic and applied fluid me-

chanics problems such as boiling crisis in nuclear plants, chemical reactors,

material coating by plasma projection, bubbles in pipes, wave breaking, oil

extraction in porous media, powder and fluidized beds processes, fuel injec-

tion in engines to cite a few. Exhaustive presentation of various turbulent

multi-phase flows is given for example in [14]. As soon as turbulence and

interface interact in a non linear way with macroscopic interfacial deforma-

tions inducing ligaments, coalescence or rupture, the experimental charac-

terization of these flows is difficult due to the heterogeneous character of the

multi-phase medium. Modeling and numerical simulation thus represent an

interesting way to study the physical processes that control these flows.

Various models are available in literature to tackle with two-phase flows.

For dispersed flows, when a scale separation can be assumed between the car-

rier fluid and the dispersed phase, i.e. droplets or bubbles, Eulerian-Eulerian

or Eulerian-Lagrangian models exist [16] in which the continuous phase, also

called the carrier fluid, is treated with the classical fluid mechanics equations

and the dispersed phase is taken into account through an Eulerian concentra-

tion variable or discrete Lagrangian positions and velocities. Specific source

terms are added to the mass and momentum equations in order to represent

the interaction effects between both phases. When the characteristic size of

the interfacial structures is comparable to the macroscopic size of the prob-

lem or to the local mesh size, the previous scale separation models are no

more valid.

The present work is concentrated on two-phase flow problems involving a

wide range of interfacial structures that can be large and small at the same
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Figure 1: Example of multi-scale interfacial character of phase separation for
a liquid-liquid two-phase system. The interface is plotted in blue and the
black lines represent the wall of the cubic box. Following [2,3,15], Re=7000
and We=11.

time, depending on the zone of the flow that is considered. Among others,

examples are the primary atomization of a liquid jet or sheet [17–19] or the

liquid-liquid phase separation [2, 3, 15] presented in figure 1. As a starting

point, we consider here multi-scale two-phase flows with separate phases

in unsteady and turbulent regime. It is assumed that no scale separation

exists between large interfacial structures and small turbulent scales. For

large Reynolds numbers, performing a Direct Numerical Simulation (DNS)

of the flow, i.e. a simulation with numerical time and space scales that

are smaller than the physical characteristics of turbulence and interface, is

almost impossible as it would require computer resources not available even

on the most powerful parallel computers. As a consequence, for a kind of

mesoscopic modeling issue, it has to be assumed that all the interfacial scales
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will be resolved whereas turbulence will be modeled by means of a Large

Eddy Simulation (LES) approach [20]. This way, relatively large grids and

time steps could be considered that give access to deterministic and unsteady

simulations on meshes coarser than with a DNS. However, two basic points

have to be specified to lead our mesoscopic representation of the turbulence-

interface interaction: on one hand, the choice of models that allow the solving

of deformable interfaces between non miscible fluids and on the other hand,

the LES filtering of these models in the framework of two-phase flows. These

two points are the main theme of our work. On a general point of view,

one can adress the following remarks in order to build a LES two-phase flow

modeling with resolved scale interfaces:

• concerning the modeling of two-phase flows with separated phases and

non miscible fluids, the most widely used model in the literature is the

single fluid or one-fluid model (OFM) [21–23]. This Eulerian model is

based on the use of a regular kernel of control volumes on which the in-

terface is located by means of an auxiliary Eulerian variable. This vari-

able can be the local Volume fraction of one phase in the other phase,

i.e. the Volume Of Fluid (VOF) [24], the signed distance function to

the interface, i.e. the Level Set approach [25], or the VOF function

resulting from the projection of a Lagrangian tracking of the interface,

i.e. the Front Tracking method [26]. In these three approaches, the

standard incompressible Navier-Stokes equations are considered, with

an additive specific capillary source term that accounts for the normal

jump of constraints at the interface. In the VOF and Level Set, an addi-

tional advection equation of the interface is solved in an Eulerian way

while a Lagrangian interface marker equation is considered with the

Front Tracking. The one-fluid model allows the representation of two-

phase flows with separated fluids and deformable interfaces. Another

class of models can be considered to have the same kind of two-phase
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flow representation. It is called the multi-field approach (MFA) [27–29]

or segregated phase modeling [23]. This type of two-phase flow mod-

eling was initially designed for a dispersed phase that is represented

through an Eulerian variable such as the local concentration of the

dispersed phase in the surrounding carrier fluid. However, this Euler-

Euler model can be extended to large scale and resolved interfaces by

introducing a sharpening equation together with the transport of the

dispersed phase concentration [27, 29]. This sharpening equation is

coupled with mass and momentum equations in order to ensure mass

conservation to almost zero computer error. The obtained multi-field

model allows simulating large scale interfaces in a similar approach as

phase field models [30], with an interface that is given a prescribed

thickness of several grid cells. The OFM and MFA will be consid-

ered in the present article to discriminate the modeling strategy that is

most suited for the simulation of turbulent two-phase flows with large

interfaces.

• regarding the LES modeling of turbulence, this is an area of fluid me-

chanics that has been widely studied and developed for single-phase

flows past twenty years [20, 31]. For cons, the LES of two-phase flows

with large scale interfaces remains an understudied area. Among the

few existing references, it is worth mentioning the work on LES for-

mulation for the one-fluid model and subsequent a priori LES filter-

ing of DNS simulations for the estimate of new specific two-phase

contributions in the mass, momentum and VOF advection equations

[2, 3, 10–13, 32]. Two main conclusions arise from these studies: new

subgrid terms have to be modeled when the LES of two-phase flows is

undertaken and the magnitude of these subgrid terms strongly varies

depending on the considered physical configuration so that none of

these subgrid terms can be neglected a priori, except perhaps the vis-
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cous subgrid term. Concerning the modeling of the two-phase LES

subgrid terms, most advanced works have been devoted to the iner-

tial and capillary terms with formulations based on Smagorinsky or

deconvolution like approaches [12,33]. None of these LES models have

clearly demonstrated that it was possible to perform a LES of resolved

scale interfaces with success, except perhaps [12] for the atomization

of a fuel jet. In addition, no LES model have been proposed for the

viscous, advection or mass conservation subgrid terms.

If one refers to the previous literature review, it can be noted that there

is a real need to make a comprehensive and systematic a priori study of the

two-phase LES subgrid terms appearing in the one-fluid and even more multi-

field formalisms. In addition, representative models have to be proposed for

all subgrid terms and validated against DNS of turbulent two-phase flows.

These two lines of research are the main goal of the present work. The article

is structured as follows. In the next section, the OFM and MFA are shortly

presented with associated numerical methods. A phase inversion benchmark

configuration is also proposed for the LES modeling of two-phase flows with

multi-scale interfaces. Section 3 is devoted to a priori LES filtering of OFM

and MFA as well as comparison of subgrid term magnitude and classification.

LES models for two-phase subgrid terms of OFM and MFA is proposed in

section 4. These models are compared and discussed regarding DNS of phase

inversion. Conclusions and perspectives are finally drawn in section 5.

2 Modeling and simulation of phase inversion

2.1 Phase inversion benchmark

Various configurations of phase inversion benchmark have previously been

proposed and used for a priori LES filtering, comparison of interface track-
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Figure 2: Definition sketch for the phase inversion benchmark in a closed
box [2, 3, 15].

ing methods, characterization of multi-scale interfacial flow and comparison

of DNS two-phase flow codes [2–4, 15, 33, 34]. A previous configurations was

chosen here for its turbulent regime and large range of interfacial scales. The

initial condition of the problem is described in Figure 2. An initial cubic blob

of light liquid, referred to as fluid 1, is placed in the bottom part of a cubic

box filled with a heavier liquid, referred to as fluid 2. The size of the box is

(H,H,H), while the size of the blob of light fluid is (H/2, H/2, H/2), with

H = 1m. All outer walls are considered as free-slip impermeable walls. The

gravity is oriented along the vertical axis and its magnitude is −9.81m.s−2.

The interest of the present configuration lies in simplicity of initial and final

flow configurations, i.e. all light fluid is inside a cubic blob initially and all

light fluid is in the top part of the cavity at long times. Another advantage

is that phase inversion naturally provides multiple coalescence, break-up and
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fragmentation events in a kind of atomization process, while not depend-

ing on complex initial or forcing conditions such as those encountered in

real turbulent two-phase flow configurations [17] [35]. The characteristics

of fluid 1 and 2 are ρ1 = 900kg.m−3, ρ2 = 1000kg.m−3, µ1 = 0.1Pa.s and

µ2 = 0.001Pa.s. The constant surface tension coefficient is chosen equal to

0.45N.m−1.

Figure 3: Simulation of a phase inversion in a closed box with a one-fluid
model - The interface between the two liquids is plotted in orange - from left
to right and top to bottom, the dimensionless time is 0, 0.246, 0.492, 0.738,
0.984, 1.329, 1.969, 3.396 and 15.305.

The fluids and flow properties that control the phase inversion dynamics

can be expressed in terms of Atwood, Reynolds and Weber numbers. These
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numbers are defined as

At =
ρ2 − ρ1

ρ1 + ρ2

, (1)

Re1 =
ρ1HUg

µ1

and Re2 =
ρ2HUg

µ2

, (2)

We1 =
ρ1HU2

g

σ
and We2 =

ρ2HU2

g

σ
, (3)

where the gravitational velocity Ug is obtained as the balance between the

pressure forces on the light fluid and the net gravity force on this fluid [3,4].

It reads

Ug =
ρ2 − ρ1

ρ1

√
gH

2
= At1/2

ρ1 + ρ2

ρ1

√
gH

2
(4)

Based on Ug and a characteristic space scale of H/2, the characteristic time

scale is

tc =
H

2Ug

= At−1/2
ρ1

(ρ1 + ρ2)

√
H

2g
. (5)

The characteristic parameters of phase inversion are At = 0.053, Ug =

0.246m.s−1, Re1 = 2.214 · 103, Re2 = 2.460 · 105, We1 = 1.210 · 102, We2 =

1.345 ·102, and tc = 2.032s. An example of simulation with these parameters

is illustrated in figure 3 for a 5123 grid with a one-fluid model. Due to large

Reynolds and Weber numbers, the flow is first dominated by inertial effects

induced initially by gravity forces with negligible capillary forces. For larger

times, inertia decreases and surface tension forces become predominant. It is

observed that initially the light fluid blob goes to the top of the cavity while

being subjected to large interface deformation with rupture of ligaments into

droplets. In a second step, a kind of atomization process occurs with the

phase separation being active inducing coalescence of many droplets with

the top layer of light fluid.
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2.2 One-fluid model (OFM)

2.2.1 A single velocity formulation for two-phase flows

As is now well established, incompressible two-phase flows involving fluid-

fluid interfaces and Newtonian fluids can be modeled by a single set of

incompressible Navier-Stokes equations with variable density and viscosity

and possibly extra interfacial forces (e.g. the capillary force), together with

the transport equation of the phase function C. The resulting model takes

implicitly into account the mass and momentum jump relations at the inter-

face [36] [22], whereas the continuity of the fluid-fluid and fluid-solid inter-

faces are taken into account by the C equation. The entire set of equations

reads:

∇ · u = 0 , (6)

ρ(
∂u

∂t
+ u · ∇u) = −∇p + ρg + ∇ ·

[
µ

(
∇u + ∇tu

)]
+ Fst , (7)

∂C

∂t
+ u · ∇C = 0 , (8)

where p is the pressure, Fst is the interfacial force per unit volume and ρ and

µ are the local density and viscosity of the two-phase medium, respectively.

In the rest of the article, the viscous stress tensor will be referred to as

S =
1

2

(
∇u + ∇tu

)
. Motion of the interface in a given velocity field u is

considered in equation (8) through the VOF function C. In the present

work, it is chosen instead to use the signed distance function to the interface

φ, that satisfies the following equation:

∂φ

∂t
+ u · ∇φ = 0 (9)

Capillary effects are inserted in the source term Fst in the form Fst =

σκniδi, where σ denotes the surface tension, κ is the local mean curvature
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of the interface, i.e. κ = −∇ · n = −∇ ·

(
∇C

‖∇C‖

)
, ni is the unit vector nor-

mal to the interface and δi is the interface Dirac function [37], such that

niδi = ∇C.

The above OFM is almost identical to the classical incompressible Navier-

Stokes equations, except that it involves an extra interfacial force and the

local properties ρ and µ of the equivalent fluid depend on C, as does the cap-

illary force. Localizing the interface requires solving the additional advection

equation for the Level Set φ such that φ = 0 at the interface and φ > 0 (resp.

< 0) in fluid 2 (resp. 1). In this case, C is defined as the Heaviside function

C = H(φ) [25]. It is assumed that all space and time scales present in the

flow are resolved, so that no turbulence model is required.

2.2.2 Numerical methods

The in-house computational fluid dynamics library developed at ONERA

called DyJeAT (Dynamic of Jet ATomization) is used. Velocity/pressure

coupling is ensured with classical projection methods [38] [39] on a staggered

grid. The Ghost Fluid method [25, 40] is implemented to deal with surface

tension forces as well as density and viscosity jumps. Instead of inserting a

surface tension volume force in the momentum equations as was proposed

by [37], with the Ghost fluid method, the jump relations are directly used in

prediction and projection steps so as to handle density and viscosity contrasts

at the interface as well as capillary effects. In the LES formalism, the delta

formulation of [37] is kept only to provide an interpretation of the under

resolved capillary forces. The Level Set approach is also used for tracking

interfaces, as previously specified. To avoid singularities in the φ field, the

fifth order conservative WENO [41] scheme is applied to discretize space

advection terms together with a 3rd order Runge-Kutta TVD scheme for

time derivatives [42]. When the Level Set advection is solved, high velocity
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gradients can generate artificial spreading or stretching of φ which then no

longer remains a distance function. A redistancing algorithm [43] is thus

considered to restore the distance property of φ, i.e. ‖∇φ‖ = 1. Details of

implementation and validation can be found in [19,44,45].

2.3 Multi-field approach (MFA)

2.3.1 A two-velocity model for two-phase flows

The two-fluid model of Ishii [46] is used for a two-phase flow. Initially,

the Ishii Eulerian model for two-phase flows was considering the interaction

between a carrier fluid (field 1) and a dispersed phase (field 2) under scale

separation assumption. In our approach, the density, the viscosity and the

local velocity are defined for each field as for Ishii model. However, field k = 1

corresponds to the first fluid and k = 2 to another fluid that is immiscible

inside field 1. This study is restricted to incompressible and isothermal cases

with a constant density in each field. The following governing equations are

solved for each field k:

∂αkρk

∂t
+ ∇ · (αkukρk) = 0 , (10)

∂αkρkuk

∂t
+ ∇ · (αkρkuk ⊗ uk) = −αk∇pk

+αkρkg + ∇ · [αkµkSk] + Fst,k + Fd,k , (11)

With αk the local volume fraction of field k, Sk the viscous stress tensor

of field k, i.e. Sij,k =
∂ui,k

∂xj,k

+
∂uj,k

∂xi

−
2

3

∂ui,k

∂xi

δij and Fd,k a volume force

ensuring the coupling between the continuous fields through a drag force.

This drag force is crucial since it allows coupling the velocity of the two

continuous fields at the interface. Thus, a new drag force expression has

been developed to deal with large interfaces within the MFA. Details can be

found in [29,47]. The modeling of large interfaces and surface tension forces
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with the Ishii model is based on a volumetric formulation [27, 29, 48] taken

from [37]. It reads Fst,k = αkσκkni,kδi with κk = −∇ · nk = −∇ ·

(
∇αk

‖∇αk‖

)

and ni,kδi = ∇αk.

2.3.2 Numerical methods

The code NEPTUNE CFD is based on an Eulerian approach with a finite

volume discretization. In the code NEPTUNE CFD, the assumption of a

common pressure for all fields is made. The solver SIMPLE (Semi-Implicit

Method for Pressure-Linked Equations) is used [49] with a collocated arrange-

ment for all variables. An iterative coupling of the equations is implemented

to ensure mass conservation. Details are given in [29,50].

By nature, the Ishii model is diffuse as it represents the interaction be-

tween two phases (or fields) through a mixed Eulerian representation of the

different fluids in a given volume. Here, the idea is to tackle with sharp

interfaces, even if the MFA is a priori not adapted to a discontinuous rep-

resentation of a two-phase flow. In order to limit the interface smearing

induced by the resolution of the two-fluid equations, an interface sharpening

equation, initially proposed by [51] and adapted to the two-fluid formulation,

is solved for each continuous field [50]:

∂αk

∂t
+ ∇ · (αk [1 − αk]ni,k) = ǫ∇2αk (12)

With ni,k the interface normal vector pointing outside phase k. The value of

ǫ is chosen equal to half the space step ∆x while the time step of the interface

sharpening equation is taken equal to ∆x/32. With these parameters, the

obtained final interface thickness is always equal to 5 cells whatever the initial

interface diffusion [27,52].
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3 Model comparison on macroscopic quanti-

ties

Several macroscopic quantities characterizing the evolution of the flow field

are of primary interest to check whether the two models describe the same

two-phase motion. These quantities can be expected to be a priori essentially

independent of the choice of the model and interface tracking techniques used

in the computations. In all of what follows, we use the characteristic or color

function C that is defined with respect to fluid 2, so that C = 1 in fluid

2 and C = 0 in fluid 1. Among these physically relevant quantities and in

agreement with previous work on the phase inversion benchmark [3, 4], we

select:

• the domain integrals of potential energies Ep,2 =
∫
Ω

Cρ2gydV and

Ep,1 =
∫
Ω
(1−C)ρ1gydV in fluid 1 and 2 (with g = ‖g‖) and the domain inte-

grals of kinetic energies Ek,2 = 1

2

∫
Ω

Cρ2u
2dV and Ek,1 = 1

2

∫
Ω
(1−C)ρ1u

2dV

will also be stored at each time step. They will help monitoring the conversion

of potential energy into kinetic energy. they provide a sort of characteriza-

tion of the stratification inside the fluids. Due to the simple topology of the

interface in the initial and final stages, it can be shown that Ep,1 = ρ1g
H4

32
and

Ep,2 = ρ2g
31H4

32
for t = 0 and Ep,1 = ρ1g

15H4

128
and Ep,2 = ρ2g

49H4

128
for t → ∞.

The typical magnitude of the kinetic energy in both fluids may be estimated

by using the gravitational velocity Ug, yielding Ek,1 = O
(

1

16
ρ1H

3U2

g

)
and

Ek,2 = O
(

1

16
ρ2H

3U2

g

)
.

• the time evolution of the volume integral of the enstrophy in both fluids

will also be recorded. This quantity is defined as Er,1 = 1

2

∫
Ω
(1 − C)w2dV

and Er,2 = 1

2

∫
Ω

Cw2dV , respectively, w = ∇× u denoting the vorticity.
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The simulated values are made dimensionless by using the previous ref-

erence estimates of time as well as potential and kinetic energies. For en-

strophy, the time maximum of the value obtained with the one fluid model

is used, as was proposed in [4]. A synthesis of the dimensionless parameters

is given in table 1. The results are presented in figure 4. For potential and

kinetic energies in fluid 1 and 2, it is observed that the two models are in

rather good agreement. They capture the same time evolution with peak of

energies being located at the same instants. For intermediate times, when

droplet generation is maximum, some discrepancies are noticed. They are

due to the different interface tracking techniques and also to single velocity

field representation of the two-phase flow by the OFM, compared to two-

velocity description brought by the MFA. Concerning enstrophy in fluid 1

and 2, the OFM brings two to three times larger magnitudes than MFA. The

peak of enstrophy is located at the same dimensionless time for both models,

i.e. t∗ ≈ 2.5 in fluid 1 and t∗ ≈ 4 in fluid 2. The major differences observed

concerning enstrophy were also reported in [4] concerning the comparison of

different codes on different grids (up to 20483 mesh). It was demonstrated

that on a vorticity point of view, a 5123 grid is not enough to perform a

real DNS for the phase inversion benchmark whereas potential and kinetic

energies can be assumed converged. In the rest of the work, it will be con-

sidered that a 5123 grid simulation is enough for performing a DNS of the

phase separation benchmark and provide a representative simulation of this

complex two-phase flow, illustrated in figure 3. If different information is not

specified, all the results presented in the following sections are investigated

with the OFM and MFA on a 5123 regular Cartesian mesh.

4 A priori filtering of turbulent two-phase flows

In the present section, we discuss the filtering of the motion equations formu-
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Parameter Value Unit

t∗ =
t

tc
=

tUg

H
=

t(ρ2 − ρ1)

ρ1

√
g

2H

t

2.032
-

15ρ1gH4

128
the potential energy in fluid 1 for t → ∞ 1035 J

49ρ2gH4

128
the potential energy in fluid 2 for t → ∞ 3755 J

E∗
cin,1 =

Ecin,1

1/16ρ1U2
g H3

Ecin,1

3.4063
-

E∗
cin,2 =

Ecin,2

1/16ρ2U2
g H3

Ecin,2

3.7847
-

Maximum of enstrophy in fluid 1 (one-fluid model) 56.72 m3.s−2

Maximum of enstrophy in fluid 2 (one-fluid model) 224.03 m3.s−2

Table 1: Parameters used to define the dimensionless variables for phase
inversion benchmark.

lated for two-phase flows. By filtering, one must understand the application

of the Large Eddy Simulation filter to flow variables and subsequent con-

servation equations. Thanks to the phase function C indicating phase k, a

low-pass frequency filtering operator G defining the spatial filtering of a given

variable Ψ is written as the convolution product of G with Ψ as Ψ = GoΨ.

The phase-weighted filtering of the velocity u, i.e. called Favre average, is

also defined as ũ =
ρu

ρ
for the OFM whereas it reads ũk =

αkuk

αk

for the MFA.

It is assumed here that the commutation between the spatial filter and the

derivative is satisfied, as in single-phase LES modeling [20,53]. This assump-

tion is reasonable as the commutation error depends more on the topology of

the mesh than on the characteristic of the flow [54,55]. In our simulation, the

mesh is regular and isotropic so that commutation errors should be negligible.

By applying the filtering operators to the one fluid and multi-field models,

specific subgrid terms appear in the LES formalism of two-phase flow with

resolved scale interfaces. These subgrid terms have previously been discussed

in [3, 10, 11, 32, 56] for the OFM and in [57] for the MFA. These two-phase
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Figure 4: Time evolution of macroscopic quantities for one-fluid and multi-
field models.

LES terms are associated respectively to acceleration, inertia, viscous effects

and interface presence. Their presence is due to the filtering and averaging

operations of the mass and momentum equations. The common terms for
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Subgrid term Filter · Favre average ·̃

One-fluid model

Time derivative τt ρ
∂u

∂t
− ρ

∂u

∂t
(ρ2 − ρ1)ũτia

Convection τc ρu · ∇u − ρ u · ∇u ρũ · ∇u − ρ ũ · ∇ũ

Diffusion τd ∇ · [2µS] −∇ ·
[
2µS

]
∇ · [2µS] −∇ ·

[
2µS̃

]

Surface tension τst σ
(
κ∇C − κ̂∇C

)
σ

(
κ∇C − κ̂∇C

)

Interface advection τia u · ∇C − u · ∇C u · ∇C − ũ · ∇C
Multi-field model

Time derivative τt ρk

(
∂αkuk

∂t
−

∂αk uk

∂t

)
-

Convection τc ρk

(
∇ · (αkuk ⊗ uk) ρk

(
∇ · (αkuk ⊗ uk)

−∇ · (αk uk ⊗ uk)) −∇ · (αk ũk ⊗ ũk))

Diffusion τd µk

(
∇ · [αkSk] -

−∇ ·
[
αkSk

])

Surface tension τst σ
(
αkκk∇αk σ

(
αkκk∇αk

−αk κ̂k∇αk

)
−αk κ̂k∇αk

)

Interface advection τia ρk

(
∇ · (αkuk) −∇ · (αk uk)

)
-

Table 2: Two-phase LES subgrid terms obtained with one-fluid and multi-
field models by A priori filtering.

the OFM and MFA are presented in table 2. The formulations are written

as they should be estimated by a priori filtering. In fact, for the sake of

simplicity, for all ∇Ψ like terms, the commutation between the filtering and

derivation operations has been assumed, such that it has been considered

that for any variable Ψ, ∇Ψ = ∇Ψ. For OFM, the filtered curvature of the

interface κ̂ is equal to −∇ ·

(
∇C

‖∇C‖

)
according to the filtering of Brackbill

CSF force [37]. An equivalent expression is used for the filtered curvature

κ̂k of phase k with the MFA which is −∇ ·
(

∇αk

‖∇∇αk‖

)
. For the MFA, as was

demonstrated by [57], two others subgrid terms exist associated to pressure

gradient and drag force. They are not considered in the present work as they

19



do not exist in the OFM. For more details, the reader is referred to [57].

It can be observed that 5 subgrid LES terms exist with the standard filter

whereas less terms appear with a Favre average, i.e. 4 for the OFM and 2

for the MFA. It has to be kept in mind that the subgrid terms τc, τd, τst

and τia appear in the mass, momentum and interface tracking equations as

extra terms, as soon as a real LES simulation is investigated. For example,

if τia is not zero, the flow is no more divergence free in the cells cut by the

interface, even if no phase change is considered. In the present work, the

time derivative subgrid term τt has not been considered. Indeed, its a priori

filtering would require to store at least two successive fields of the 5123 DNS

simulations. This was not achieved due to its numerical cost.

Subgrid term Filter · Favre average ·̃

One-fluid model
τc 7.54 3.01
τd 1.19 0.14
τst 37.81 37.81
τia 10.29 9.61

Multi-field model
τc 2.24 0.86
τd 0.14 -
τst 5.29 5.29
τia 1.07 -

Table 3: Relative magnitude (in %) of the vertical component of two-phase
LES subgrid terms obtained with one-fluid and multi-field models after a
priori filtering. The terms are made dimensionless by the magnitude of the
vertical component of the largest resolved DNS term, i.e. the convective
contribution. The width of the low-pass filtering operator G is 2 cells in each
direction.

The first interesting issue is the estimate of the relative order of mag-

nitude of the specific two-phase subgrid LES terms which appear in mass,

momentum and interface advection equations. An a priori filtering of the
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Subgrid term Filter · with 2 cells width Filter · with 4 cells width

τc 7.54 13.24
τd 1.19 1.96
τst 37.81 44.18
τia 10.29 16.17

Table 4: Effect of width of the low-pass filtering operator G on the relative
magnitude (in %) of the vertical component of two-phase LES subgrid terms
obtained with one-fluid model after a priori filtering. The terms are made
dimensionless by the magnitude of the vertical component of the largest
resolved DNS term, i.e. the convective contribution.

DNS results have been provided for τc, τd, τst and τia at the enstrophy peak,

i.e. for t∗ ≈ 3. The averaged magnitude of the subgrid terms is normalized

by the maximum, at each time step, of the filtered resolved contributions

of the flow (inertia for the momentum equation and advection for the phase

function equation). The width of the low-pass filtering operator G is 2 cells

in each direction. From a global point of view, the magnitude of the vertical

component of the subgrid terms is larger than the contributions in the x

and y directions. In the z-direction or gravity direction, the flow is strongly

anisotropic. This is induced by the key phenomenon of the phase separation,

i.e. the buoyancy force. Moreover, it was observed that the magnitude of the

subgrid terms is almost the same in the x and y directions. In the rest of this

section, only the vertical component of the subgrid terms will be considered.

According to table 3, a classification of LES subgrid terms can be deduced:

• contrary to what could be intuitively expected, the inertial or con-

vective subgrid term τc is not the predominant term. With the OFM, its

averaged magnitude is 7.5% the filtered resolved convective term with the

top hat filtering and 3% with the Favre average. Concerning the MFA, the

averaged estimated values of the subgrid convective term are 2.2% with filter

· and 0.9% with the Favre average. This term cannot be neglected in LES
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Subgrid term 1283 DNS mesh 2563 DNS mesh 5123 DNS mesh

Filter ·
τc 14.73 10.03 7.54
τd 0.68 0.75 1.19
τst 16.72 19.54 37.81
τia 23.43 16.60 10.29

Favre average ·̃
τc 8.99 4.49 3.01
τd 0.18 0.14 0.14
τst 16.72 19.54 37.81
τia 22.41 15.43 9.41

Table 5: Effect of the DNS mesh size on the relative magnitude (in %) of
the vertical component of two-phase LES subgrid terms obtained with one-
fluid model after a priori filtering. The terms are made dimensionless by the
magnitude of the vertical component of the largest resolved DNS term, i.e.
the convective contribution. The width of the low-pass filtering operator G
is 2 cells in each direction.

modeling of resolved scale two-phase flows. For both OFM and MFA, using

a Favre average reduces the order of magnitude of the subgrid contribution

by a factor of 2.

• concerning the subgrid viscous contribution τd, it is clearly the lower

one, compared to convective, surface tension and interface advection, with

both the OFM and MFA modeling approaches. This conclusion was previ-

ously given by [2, 3, 10, 13] for various physical configurations. Its order of

magnitude is two-times less than the filtered resolved convective terms. This

term could be discarded in future LES modeling of two-phase flows.

• the capillary subgrid contribution τst is larger than τc, τd and τia. This

conclusion is different from what was obtained for example by [11] for an

isolated bubble interacting with a Homogeneous Isotropic Turbulence (HIT).

This is mainly due to the fact that in our phase separation problem, a kind
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of atomization process is observed for t∗ = 3. In our configuration, many

droplets are generated. They are poorly resolved on the 5123 grid with only

a few grid cells (3 to 6) over a droplet diameter. This resolution effect is

measured by the magnitude of τst. Indeed, as soon as the poorly resolved

interfacial structures are filtered, the corresponding subgrid terms associated

to interface, i.e. the surface tension contribution here, becomes significant

compared to the filtered convective DNS terms. The same behavior arises for

OFM and MFA. As a conclusion, for dispersed flows without scale separa-

tion, the subgrid surface tension LES term cannot be neglected. This is the

predominant filtered effect. Contrary to what was noticed for the subgrid

convective contribution, using a Favre average does not allow to decrease the

magnitude of τst as this therm is the same with both filtering approaches.

This term is highly dependent on the interfacial structure and the associated

fluid properties. The Favre average uses the density in the filtering oper-

ations. In the present work, no particular attention has been paid to the

local anisotropy of the interface. This way, when a given quantity is filtered

in a cell cut by the interface, the density used can be ρ1, ρ2 or an isotropic

average of the two. It has been demonstrated by [58] that for resolved scale

two-phase flows, anisotropic filters should be used in order to build correct

LES models in an heterogeneous medium such as the phase separation flow.

• the interface advection subgrid term is more important with OFM than

with MFA. The diffuse character of the interface in MFA is certainly respon-

sible for the lower order of magnitude of τia with MFA compared to OFM.

As for τst, using a Favre average instead of filter · does not decrease the mag-

nitude of the interface advection subgrid term. In fact, the Favre average

reduces the importance of the subgrid terms as soon as the filtering is ap-

plied to the velocity field. This effect does not hold when filtering interface

depending terms. The subgrid term τia is clearly not negligible with OFM
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while it could be discarded with MFA.

On a general point of view, the magnitude of the two-phase LES subgrid

terms is lower with MFA than with OFM. This is a direct consequence of

the diffuse character of the two-fluid model. In the OFM, every change of

interfacial position is directly correlated to velocity and volume fraction gra-

dients so that the subgrid terms τc, τst and τia are always significative in the

phase inversion problem when the fragmentation mechanisms are observed.

In table 4, the width of the low-pass filtering operator G is changed from 2

cells witdh to 4 cells. The effect of this change on the relative magnitude

(in %) of two-phase LES subgrid terms is considered with OFM. As was

previously observed in a priori filtering works [3,10], the larger the compact

support of the filter, the higher the magnitude of the subgrid terms is. This

is particularly noticeable for τc and τia.

To finish with a priori filtering of DNS results, three simulations are in-

vestigated with OFM on 1283, 2563 and 5123 grids. Even if with the two

coarser grids, we are not really able to perform true ”DNS”, the main goal

here is to estimate the effect of implicit LES, i.e. under resolved DNS, on

two-phase subgrid contributions. The results are reported in table 5. With

top hat filter ·, refining the mesh size reduces the magnitude of the con-

vective and interface advection subgrid terms, whereas the diffusive viscous

and surface tension contributions increase. These observations are intuitive

for τc and τia, not for τd and τst. In fact, the filtering effect on velocity

decreases with the local mesh size. This is a classical tendency that is ob-

served in single phase flows. This effect is recovered for two-phase flows and

resolved scale interfaces as in the present phase separation problem, the flow

is isothermal without phase change and so the velocity field is continuous

across interface. On a kinematic point of view, the problem is continuous
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and an isotropic filtering is well adapted for LES filtering. On the contrary,

when filtered volume fraction terms are put into play, such as in τst, the be-

havior of the subgrid term magnitude according to grid refinement is totally

different. Indeed, the more you refine, the more small structures you resolve.

As a consequence, the magnitude of the subgrid term is increased as more

interfacial structures of larger curvature are obtained. In this case, using a

phase-conditioned filter [58] should perhaps be more suited to decrease the

filtering effect when refining the simulation mesh. Concerning the viscous

term, it can be assumed almost constant over all grids. A clear explanation

is not straightforward. The same tendencies are observed all subgrid terms

with the Favre average. The same conclusions hold.

5 LES modeling of turbulent two-phase flows

5.1 Large Eddy Simulation (LES) models for two-phase

flows involving resolved scale interfaces

The understanding and characterization of the coupling between turbulence

and fluid interfaces is a difficult task. As we reported in the introduction sec-

tion, few experimental [59,60] and numerical works [2,12,13,33,61–63] exists

to investigate the formulation of LES models for two-phase flows involving

resolved scale interfaces. A synthesis of literature works is proposed in table

6. Among the few existing publications, it can be observed that none of the

authors have studied all the subgrid terms for a same two-phase problem.

In addition, none of the authors have considered τd, that is always assumed

negligible. The goal of the present section is to contribute, for a given phase

inversion benchmark problem, to the evaluation of LES models for all two-

phase subgrid terms that have been formulated in section 4, except the time
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Physical case τt τc τd τst τia

THI interacting - Smagorinsky [5] - - -
with a 2D droplet Wale [6], Bardina [7]

[10] Mixed [8]
THI interacting Bardina Bardina - - Bardina

with a 3D droplet [7] [7] [7]
[11]

Liquid jet - Smagorinsky - - Smagorinsky
atomization Lilly Lilly

[12] [5] [5]
Phase inversion - - - ADM -
in a 3D cavity [9]

[11]

Table 6: Literature review of LES models that have been formulated for
two-phase subgrid LES terms.

subgrid term τt.

Based on single-phase LES [20], functional models are first considered for

two-phase LES subgrid terms. By nature, these functional models have been

designed for inertial (or convective) terms. They rely on an energy cascade

assumption and a dissipation modeling of turbulence at small scale. In this

way, they can only be applied to subgrid terms τc and τia as follows:

• the Smagorinsky model [5] is first considered for its simplicity and robust

behavior. For the convective term, we classically obtain

τc = −2∇ · (Cs∆)2‖S‖f S (13)

By analogy, the interfacial subgrid term is written as

τia = −2∇ · (Cs∆)2‖S‖∇C (14)
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With this approach, a subgrid scale LES viscosity can be defined as νs =

(Cs∆)2‖S‖. The Smagorinsky constant Cs is generally chosen between 0.1

and 0.24.

• The Wall-Adapting Local Eddy-Viscosity (Wale) model [6] which is

a modification of the Smagorinsky model in order to better predict turbu-

lence behavior near solid boundaries. In particular, this model recovers the

expected asymptotic values of the subgrid viscosity near the wall. It reads

τc = −2∇ ·
(
νwfS

)
(15)

τia = −2∇ ·
(
νw∇C

)
(16)

with νw = (Cw∆)2‖

(
Z : Z

)3/2

(
S : S

)5/2

+
(
Z : Z

)5/4
and Cw in the range 0.55 − 0.6.

In addition,

Z = SS + ΩΩ −
1

3

(
S : S − Ω : Ω

)
Id (17)

with Ω the rotation tensor defined as

Ω =
1

2

(
∇u −∇tu

)
(18)

In all LES models, f is 1 for the OFM whereas f = αk for MFA. In addi-

tion, for this last model, a k index have to be added in all LES expressions

for velocity depending terms. To finish with, terms based on C have to be

switched into terms depending on αk.

A second class of LES approaches can be used to design models for two-

phase subgrid terms. It is called structural analysis [20]. The main interest of

the structural LES is that it does not rely on an explicit understanding and

formulation of the coupling between resolved and filtered scales of turbulence

(and interfaces in the case of two-phase flows). The objectives and strategy
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of these approaches are to approximate the inverse of the LES filter and to

build models with same mathematical structure as the subgrid term. A very

interesting aspect with these formulations is that they use only the resolved

filtered variables. Once G−1 and the filtered variables are known, the real

unknowns can be reconstructed, as well as the subgrid contributions. Two

main structural approaches have been selected:

• The Bardina model [7] considers a scale similarity which is to assume

that the statistical structure of subgrid terms is similar to the terms evaluated

from the smaller resolved scales. With this assumption, the filtering of a

product is simply the product of filtered variables, i.e. ab = ab. After some

manipulations, the two-phase subgrid LES terms read for the OFM:

τc = Cb

(
ρu · ∇u − ρ u · ∇u

)
(19)

τd = Cb∇ ·
[
2µS

]
−∇ ·

[
2µS

]
(20)

τst = Cbσ
(
κ∇C − κ∇C

)
(21)

τia = Cbu · ∇C − u · ∇C (22)

with κ = −∇ ·

(
∇C

‖∇C‖

)
. For the MFA, it reads:

τc = Cbρk

(
∇ · (αkuk ⊗ uk) −∇ ·

(
αkuk ⊗ uk

))
(23)

τd = Cbµk

(
∇ ·

[
αkSk

]
−∇ ·

[
αkSk

])
(24)

τst = Cbσ
(
αkκ̂k∇αk − αkκk∇αk

)
(25)

τia = Cbρk

(
∇ · (αkuk) −∇ ·

(
αkuk

))
(26)

with κk = −∇·
(

∇αk

‖∇αk‖

)
. The Bardina constant Cb is adjustable. A value

of 1 has been used here.
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• The Approximate Deconvolution Model (ADM) [9] is a general frame-

work for building models that respect the mathematical structure of the

subgrid terms. First, an approximation of the inverse G−1 is build with

a given order of accuracy, in a kind of Taylor expansion. Based on G−1,

reconstructed unfiltered variables are build and used directly in the native

structure of the subgrid LES terms as follows for the OFM:

τc = Ca

(
ρu∗ · ∇u∗ − ρ u∗ · ∇u∗

)
(27)

τd = Ca∇ · [2µS∗] −∇ ·
[
2µS∗

]
(28)

τst = Caσ
(
κ∗∇C∗ − κ∗∇C

∗
)

(29)

τia = Cau∗ · ∇C∗ − u∗ · ∇C
∗

(30)

And for the MFA:

τc = Caρk

(
∇ · (αk

∗uk
∗ ⊗ uk

∗) −∇ · (αk
∗uk

∗ ⊗ uk
∗)

)
(31)

τd = Caµk

(
∇ · [αk

∗S∗
k] −∇ ·

[
αk

∗Sk
∗
])

(32)

τst = Caσ
(
αk

∗κk
∗∇αk

∗ − α∗
kκ̂k

∗∇αk
∗
)

(33)

τia = Caρk

(
∇ · (αk

∗uk
∗) −∇ · (αk

∗uk
∗)

)
(34)

with u∗ ≈ G−1

7
ou, C∗ ≈ G−1

7
oC and αk

∗ ≈ G−1

7
oαk. The approximate

inverse filter of order k is such that

G−1

k =
∑

l=0,k

(1 − G)l (35)

γ∗ = G−1oγ ≈
∑

l=0,k

(1 − G)l oγ ≈ γ +
(
γ − γ

)
+

(
γ − γ + γ

)
+ ... (36)

We have used a 7th order of approximation for G−1 , instead of a classical 5th
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order found in literature [9,33], because we have observed better accuracy of

modeled subgrid terms compared to filtered DNS terms. For higher orders,

no significative improvements have been found. These results are presented

in the next section. It has to be stressed that the Bardina model is no more

than the ADM model of 2nd order.

The last type of model that has been considered is the mixed Smagorinsky-

Bardina model [8]. It combines the positivity property of the functional

model with the structural representativeness of the Bardina model. Due to

the intrinsic construction of the functional part of the model, it can only be

applied to convective and interfacial subgrid terms. It reads for the OFM:

τc =
1

2
f

[
∇ ·

(
−2(Cs∆)2‖S‖S

)
+ Cb

(
ρu · ∇u − ρ u · ∇u

)]
(37)

τia =
1

2
f

[
∇ ·

(
−2(Cs∆)2‖S‖∇C

)
+ Cb

(
u · ∇C − u · ∇C

)]
(38)

And for the MFA:

τc =
1

2

[
∇ ·

(
−2(Cs∆)2‖Sk‖αkSk

)
+ Cbρk

(
∇ · (αkuk ⊗ uk) −∇ ·

(
αkuk ⊗ uk

))]
(39)

τia =
1

2

[
∇ ·

(
−2(Cs∆)2‖Sk‖∇αk

)
+ Cbρk

(
∇ · (αkuk) −∇ ·

(
αkuk

))]
(40)

5.2 Evaluation of LES models for two-phase subgrid

terms

Thanks to DNS simulations, the two-phase LES subgrid terms can be

directly calculated by applying filter G to the various variables of the phase

separation problem. Moreover, the various LES models applied to τc, τd, τst

and τia can also be calculated with the DNS results. The main objective
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Figure 5: Spatial correlation of two-phase LES subgrid terms - The mod-
eled terms are plotted according to the filtered DNS subgrid terms. A per-
fect modeling would be on the y=x line. Five LES models are considered:
Smagorinsky [5], WALE [6], Bardina [7], Mixed model [8] and ADM [9]. Left
column is for the one-fluid model whereas right column is for the multi-field
approach.
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Subgrid term Smagorinsky Wale Bardina Mixed ADM

One-fluid model
τc 93 108 40 64 17
τd - - 72 - 32
τst - - 54 - 24
τia 105 88 62 78 58

Multi-field model
τc 100 100 25 59 9
τd - - 43 - 20
τst - - 44 - 21
τia 100 100 28 59 11

Table 7: Average relative error (in %) of the modeled two-phase LES subgrid
terms compared to the filtered DNS subgrid terms. Both one-fluid and multi-
field models are considered. Filter · is applied to DNS, with a width of the
low-pass filtering operator G equal to 2 cells in each direction.

of the present section is to evaluate the representativeness of LES models

presented in the previous section compared to filtered DNS subgrid terms.

Results are presented in figure 5 in terms of correlation between a given

model (Smagorinsky, Wale, Bardina, Mixed, ADM), for a given subgrid LES

term, i.e. τc, τd, τst and τc, and the filtered DNS of a corresponding subgrid

term. The evaluation of LES models is provided for both OFM and MFA.

On a general point of view, it is observed that compared to OFM, the models

applied to MFA involve less dispersion of the correlation between LES mod-

els and filtered DNS. Indeed, the phase average αk is present in all terms for

MFA. It tends to eliminate the LES modeling far from the interfacial zone

and it damps the gradients or filtering operations in the interfacial zone. On

the contrary, in the OFM, all values of the models are a priori sharper and

present everywhere, including zones far from the interface. In this case, a

larger dispersion of correlation between LES models and filtered DNS sub-

grid terms is induced. If attention is now paid to the quality of models for a

given subgrid term, several observations arise:
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• only structural models are able to model all subgrid terms. Indeed,

functional based models such as Smagorinsky, Wale or Mixed do rely on

a physical interpretation of the behavior and interaction of under-resolved

scales with large scales of turbulence (energy cascade of Kolmogorov, dissi-

pative effect of small scale turbulent structures, ...). They are mainly based

on interpretation of kinetic energy and inertial effects in turbulent flows.

However, they do not consider the multi-scale character of interfaces when

two-phase flows are dealt with. They so can only be applied to advection or

inertial terms in conservation equations. This is the reason why functional

LES approaches are not possible to be investigated for τd and τst. If we pre-

tend to perform real LES simulations accounting for all two-phase subgrid

terms, using functional models seems to be inappropriate as they do not ap-

ply for all subgrid terms. This discussion is valid for both OFM and MFA.

• for the inertial and interfacial terms, all LES models can be com-

pared. It is observed that for both one-fluid and multi-field approaches,

the Smagorinsky and Wale models are not representative of filtered DNS

terms. The Mixed model is better as it incorporates a contribution from the

Bardina model that is working pretty well. The ADM approach is clearly

the best for all terms and all modeling approaches (OFM and MFA). The

functional based models involve a lot of dispersion and they do not respect

the y = x slope that should be obtained if a perfect correlation between

LES models and filtered DNS will be reached. The interesting point here

is that ADM based models (and also Bardina but with poorer results) are

working for all subgrid terms and all two-phase flow modeling approaches

(OFM and MFA). The average percentage error that is obtained for all mod-

els, all subgrid terms and all two-phase flow models is given in table 7. It

can be clearly inferred that Smagorinsky and Wale model are not suitable
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for two-phase subgrid terms, even concerning inertia. The representativeness

of Mixed model is better than Smagorinsky, as it incorporates a part of Bar-

dina modeling. The Bardina model is performing quite nicely for all subgrid

terms. It behaves less well for τd and τia when OFM is considered whereas

its quality is worse for τd and τst with regard to MFA. It could be imagined

to play on the Bardina constant Cb so as to improve the performance of this

model and to get closer to y = x curve on the correlation plots. Finally, the

ADM model is the best for all subgrid terms and all two-phase flow model-

ing approaches. The maximum error with MFA is at least 20% whereas this

error is in the range 17 to 32% for OFM, with a peak of error of 58% for τia.

If true LES were simulated, the use of LES models for convective subgrid

terms will be equivalent to add a turbulent viscosity in the viscous term

of the momentum equations. It is interesting to evaluate the equivalent

turbulent viscosity resulting from the use of a given LES model, compared

to the equivalent viscosity that the filtering of the DNS provides when the

two-phase convective LES subgrid term is considered. Classically [10,20], we

can write the turbulent viscosity µt for the OFM as follows:

µt =
τc : ∇u

S : ∇u
(41)

And for the MFA:

µt = α1

τc,1 : ∇u1

S1 : ∇u1

+ α2

τc,2 : ∇u2

S2 : ∇u2

(42)

Equivalent LES turbulent viscosities compared to equivalent filtered DNS

one are plotted in figures 6 and 7. For OFM, the instantaneous turbulent

viscosities are extracted in a vertical slice starting from point (0.6, 0.6, 0)

whereas for MFA, the strating of the slice is (0.8, 0.8, 0). A time t∗ ≈ 3

is considered for the peak of enstrophy. The instantaneous simulations of
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OFM and MFA at a given time are not exhibiting the same interfacial and

flow structures. The slices for turbulent viscosities have been chosen in order

to cut different times the interface. If we focus on the equivalent DNS vis-

cosity that we should obtained with LES models, we observe that negative

values are obtained. This have previously been been reported by [10, 11].

This important feature of the effect of inertial subgrid term cannot be repre-

sented by functional LES approaches as they are intrinsically built on positive

terms. This is illustrated in the top right and bottom plots of figures 6 and

7. This way, Smagorinsky and Wale models are again discriminated against

structural ones. If we now compare Bardina, ADM and Mixed models, we

notice that the first two are much better as expected. Concerning equivalent

turbulent viscosities, we observe that ADM is globally nearer to DNS than

Bardina, even if locally, Bardina can exhibit closer values to DNS reference.

To conclude on LES modeling of two-phase subgrid LES terms, it has been

demonstrated that the structural approaches are the correct way of building

models. The ADM formalism allows to recover the negative values of equiv-

alent turbulent viscosities in the good zones of the flow and they respect

the behavior of filtered DNS subgrid terms with less than 30% discrepancy

(50% for τia). We have to keep in mind that ADM modeling allows to re-

construct the fields between the explicit filter that we have and the implicit

filter brought by the simulation mesh. In real LES, an additive relaxation

term will have to be incorporated in the momentum equations [9] in order to

obtain the effect of under-resolved scales smaller than the implicit filter size.

6 Summary, conclusion and future work

Based on direct numerical simulation of two-phase flow with resolved scale

interfaces, i.e. a phase inversion problem, a priori filtering of two-phase sub-

35



grid LES terms has been investigated. The one-fluid model and multi-field

approaches were considered and filtered. In addition, different LES models

taken from the turbulent single-phase flow literature were utilized to propose

functional and structural LES models for two-phase LES subgrid terms. The

order of magnitude of all a priori filtered subgrid terms and LES models

for these terms were compared to filtered DNS values for the first time on

a same two-phase problem. The formulation of LES models for all subgrid

terms was also proposed and discussed for the first time, in particular for a

multi-field approach.

For the first time, the filtered LES formulation of one-fluid and multi-field

approaches were compared in a same work and on a common phase inversion

test problem with resolved scale interfaces and multi-scale interface topolo-

gies (kind of atomization process). An important result of the present study

is to observe that the filtered LES subgrid terms obtained by both OFM and

MFA can be (or not) modeled by the same models.

Concerning a priori filtering, the main conclusion is that the inertia term

is not predominant in two-phase flows with fragmentation and rupture of

interface that exhibit a kind of atomization process. This conclusion is dif-

ferent from that of the studies of [3,10–13]. As soon as small-scale interfacial

structures are generated, correlation terms induced by the curvature in the

subgrid surface tension terms or between the local interface presence and the

velocity are predominant against inertial terms. The diffusive viscous term

is always small in our phase inversion problem, whatever the two-phase flow

model or the kind of filtering.

Five different LES models applied to two-phase subgrid LES terms have

been compared against filtered DNS results. Two classes of models have been
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considered, the functional (Smagorinsky, Wale) and the structural (Bardina,

ADM) approaches. A combined functional-structural model, called Mixed

Bardina-Smagorinsky, have also been investigated. Conclusion are clear for

both OFM and MFA: functional LES modeling do not correlate to filtered

DNS results whereas structural approaches do. Bardina and ADM are clearly

the good LES framework to consider for two-phase flows with resolved scale

interfaces. ADM is clearly better than Bardina in our study. It has to be

noticed that we do not have triggered the Bardina constant to try to improve

the Bardina results. This could be useful to try to get closer to ADM. The

improvement of Bardina, if possible, would be a nice point as ADM of 7th is

clearly more CPU time consuming. The Mixed approach, as expected, is bet-

ter than functional models and worse than structural LES techniques. For the

first time, we have been able to demonstrate that a common LES framework

could be used for modeling all two-phase subgrid terms with resolved scale

interfaces, i.e. the approximate deconvolution method. The main interest of

structural approaches is their capability of representing negative equivalent

turbulent viscosities whereas functional models are generating intrinsically

positive viscosities. We have shown that filtered equivalent DNS viscosities

are clearly negative in specific zones of the flow, not only near the interface.

This negative feature is expected from LES models.

Future works will be oriented in two ways:

• performing a priori LES filtering and model comparisons on finer DNS

meshes. A 20483 grid is under consideration for phase inversion. The same

analysis will be used on other two-phase flows with separated phases, such

as the atomization of a liquid sheet in a HIT flow [44]. The idea is to control

the turbulence forcing and to vary the properties of the fluid and interface

properties to try to extract general conclusions on LES modeling frameworks
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for two-phase flows.

• investigating real ADM LES with both OFM and MFA. A coarse LES

grid will be used in this case. The idea is to see if compared to DNS, the LES

are able to capture the main features of the flow. The other important point

is to compare implicit LES, i.e. LES without explicit modeling of the subgrid

terms, and ADM models for all two-phase subgrid terms. In particular, the

role of the introduction of a relaxation term [9] in the momentum equations

will be discussed and evaluated compared to subgrid LES contributions. The

starting test problem could be the phase inversion benchmark, for which

different Re and We can be chosen in order to adjust inertial and capillary

effects compared to viscous and gravity contributions. The interest of this

case is that DNS can be generated and used for LES comparisons.
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Figure 6: Comparison of equivalent turbulent viscosities obtained with DNS
and LES OFM models, i.e. Smagorinsky [5], WALE [6], Bardina [7], Mixed
model [8] and ADM [9]. The bottom line is a zoom on the middle plot. The
results are plotted in a vertical line centered on [x = 0.6, y = 0.6]. The
volume fraction is also plotted to locate interface position as C = 0.5.
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Figure 7: Comparison of equivalent turbulent viscosities obtained with DNS
and LES MFA models, i.e. Smagorinsky [5], WALE [6], Bardina [7], Mixed
model [8] and ADM [9]. The bottom line is a zoom on the middle plot. The
results are plotted in a vertical line centered on [x = 0.8, y = 0.8]. The
volume fraction is also plotted to locate interface position as C = 0.5.
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