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Abstract. Some theoretical difficulties that arise from dimensionality
reduction for tensors with non-negative coefficients is discussed in this
paper. A necessary and sufficient condition is derived for a low non-
negative rank tensor to admit a non-negative Tucker decomposition with
a core of the same non-negative rank. Moreover, we provide evidence that
the only algorithm operating mode-wise, minimizing the dimensions of
the features spaces, and that can guarantee the non-negative core to
have low non-negative rank requires identifying on each mode a cone
with possibly a very large number of extreme rays. To illustrate our
observations, some existing algorithms that compute the non-negative
Tucker decomposition are described and tested on synthetic data.

Keywords: Non-negative Tucker Decomposition, Non-negative Canoni-
cal Polyadic Decomposition, dimensionality reduction, Non-negative Ma-
trix Factorization

Notation

The following notation will be used: bold calligraphic letters T for tensors, bold
uppercase letters U for matrices or linear operators, and bold lowercase letters a
for vectors. Here tensors are real-valued vectors in RK ⊗RL⊗RM or multilinear
operators inRK×R1⊗RL×R2⊗RM×R3 with K,L,M,Ri integers and the product
⊗ is a tensor product [1], which implies λx⊗ y = x⊗ λy = λ(x⊗ y). Rank-one
linear operators acting on tensors are denoted as U ⊗V ⊗W , where the tensor
product is the canonical tensor product for linear applications inherited from the
tensor product of vectors, and by definition, (U ⊗ V ⊗W ) (U2 ⊗ V 2 ⊗W 2) =
UU2 ⊗ V V 2 ⊗ WW 2. Also, for two-way arrays, (U ⊗ V )T = UTV t. The
Kronecker product [2] is denoted by � and is one possible expression of a tensor
product in RKLM . Further discussion on notations can be found in [3].
? Research funded by ERC advanced grant “DECODA” no. 320594, ERC starting
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1 Tensor decomposition models

In this section we quickly survey two tensor decomposition models, namely the
Tucker Decomposition (TD) and the Canonial Polyadic Decomposition (CPD)
[4].

1.1 Tucker Decompositions

Given a tensor T ∈ RK ⊗ RL ⊗ RM , the TD finds so-called factor matrices
U ,V ,W of respective sizes K × R1, L × R2 and M × R3 defining bases onto
which the tensor can be expressed mode-wise:

T = (U ⊗ V ⊗W )G, (1)

where G is a tensor of coefficient often called the core of the TD. In other words,
the span of U contains all the columns in T . This is interesting for dimensionality
reduction if R1 is strictly smaller than K. The same observation holds for the
two other modes. TD has been first investigated by Hitchcock in 1927 [4], and
is now a widely used data mining model [5]. The main drawback is that there
are infinitely many solution to decompose T , so that it may not be possible to
recover the ground truth for U ,V ,W ,G from the data T solely.

Similarly to the matrix factorization problem, in the hope to restore identi-
fiability of the parameters, the Non-negative Tucker Decomposition (NTD) was
introduced recently [6]:{

T = (U ⊗ V ⊗W )G,
G ≥ 0, U ≥ 0, V ≥ 0, W ≥ 0,

(2)

but NTD was later shown to be unique up to permutation and scaling ambiguities
if and only if NMF of each unfolding is unique, which is a very strong assumption
and may not be verified in practice [7]. Imposing non-negativity constraints
however improves the interpretability of the results of the Tucker Decomposition
in some applications, see for instance [7] for an application in neuroscience.

Again to reduce the set of solutions to (2), a Sparse Non-negative Tucker
Decomposition (SNTD) was suggested by Morup et. al. [6] in which the factors
matrices and the core are also constrained to be sparse. As we will show below,
imposing sparsity on the factors may not be sufficient to restore identifiability.

Note that other constraints have been imposed on the factors of TD in the lit-
erature, notably orthogonality constraints and slice-orthogonality on the core [8].

1.2 Canonical Polyadic Decomposition

Maybe the most widely used tensor decomposition model is the Canonical Polyadic
Decomposition (CPD) also called PARAFAC. It is similar to TD in the sense
that a basis is sought on each mode, but in CPD the core is required to be
diagonal, which makes CPD a much more constrained model than TD:

T = (A⊗B ⊗C)IR, (3)
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where A,B,C are respectively of sizes K × R, L × R and L × R and R is the
minimal integer so that (3) holds. CPD is often unique (up to permutations and
scaling ambiguities) under mild conditions on the factors often verified in prac-
tice. A very common assumption is that R is much smaller than the dimensions
of the data, in which case T is said to be a low rank tensor. CPD has been used
in many applications ranging from chemometrics to social sciences [9].

In those applications, it often makes sense to look for non-negative factors.
The Non-negative CPD (NCPD) [10] can then be used instead as a decomposi-
tion model: {

T = (A⊗B ⊗C)IR,
A ≥ 0, B ≥ 0, C ≥ 0,

(4)

where R is now called the non-negative rank of T if it is the smallest integer so
that (4) holds. It is denoted rank+(T ).

2 Propagating non-negativity and non-negative rank
through NTD

In the following, we show that NTD may not propagate the low non-negative
rank of the original tensor T , and that to ensure G has the same non-negative
rank as T , it is sufficient to identify the rays of a particular cone. We also
show that no mode-wise procedure with R1 = R2 = R3 = R can guarantee
non-negative rank propagation.

2.1 Elements of cone theory
First let us define some basic tools of cone theory that we shall use later in this
section, most of which can be found in [11]. We start with a possible definition
of the cone generated by columns of a matrix U :
Definition 1. The cone generated by the columns of a matrix U ∈ RK×R1 is
the set cone(U) = {Ux, x ∈ RR1

+ }.
Another important notion is the extreme rays of a cone, intuitively the generating
set of all elements in the cone:
Definition 2. A vector y in cone(U) spans an extreme ray if there does not
exists x, z ∈ cone(U)\cone(y) such that y = x+ z.
Moreover, a cone is said to be simplicial if and only if all the extreme rays are
linearly independent. Clearly, given a full column rank matrix U in RK×R1 with
R1 strictly smaller than K, then cone(U) is simplicial and the columns of U are
the extreme rays.

A set of interest for what follows is H(U) = span(U) ∩ RK
+ , namely the

intersection of the non-negative orthant with the span of the columns of matrix
U ≥ 0. It can be seen that H(U) is a cone [12], and its number of extreme rays is
between R1 and O(CR1

K ) [11] (the upper bound is attained by cones whose slices
are cyclic polytopes with many vertices). This means that H(U) may be a cone
with a very large number of extreme rays. Note however that H(U) ⊂ cone(I)
which has K rays and corresponds to a trivial factorization (U = IU).
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2.2 Working hypotheses

In this paper we wish to explore the properties of the NTD. In particular, we
found the case of a low non-negative rank tensor T of particular interest; see
below. These results are meant as a first step in the understanding of NTD
so we allow ourselves to make restrictive hypotheses. Note however that these
hypotheses are often verified in real-life applications, for instance in fluorescence
spectroscopy or neuroimaging.

Here are the working hypotheses that we need in order to establish the results
presented in the remainder of this section:

– H1: T is non-negative, i.e. all entries of T are greater or equal to 0.
– H2: T admits a unique NCPD with factors A,B,C. 1

All three hypotheses are required for results presented in subsection 2.3 to hold,
but only H1 is used in section 2.4.

2.3 Propagating the non-negative rank to the core

Our goal in this subsection is to study the propagation of the non-negative
rank of T to the core G in (2). A property enjoyed by Tucker Decomposition
is that the rank of T and the rank of G are always equal in the exact setting
provided factors U ,V ,W admit left inverses. This may not be the case however
for the non-negative rank and the NTD. First, we give a necessary and sufficient
condition for the two non-negative ranks to match:

Proposition 1. 2 Let T be a K × L×M non-negative tensor of non-negative
rank R satisfying H1,H2. Let T = (U ⊗ V ⊗W )G be a NTD with G of size
R1×R2×R3 so that U ,V ,W admit left inverses. Then R = rank+(G) if and only
if A,B,C belongs respectively to cone(U), cone(V ) and cone(W ). Moreover, if
U ,V ,W do not admit left inverses, then there exists a core G′ of non-negative
rank R such that T = (U ⊗ V ⊗W )G′, where G −G′ belongs to the null space
of U ⊗ V ⊗W .

Proof. First suppose that rank+(G) = R. Then there exists Ac,Bc,Cc such
that:

T = (U ⊗ V ⊗W ) (Ac ⊗Bc ⊗Cc)IR (5)

so that T admits a NCPD with factors UAc,V Bc,WCc. Because the NCPD
of T is unique, we can conclude that A = UAc and similarly on the other
modes. Conversely, first note that Equation (5) after developping shows that
rank+(G) ≥ R. Moreover, because A,B,C belong to the cones spanned by
1 ERRATUM 2020/03/31: Hypothesis 3, stating that the factors needed to be full

column rank, was unnecessary and has been removed. Also, Hypothesis 2 required
the tensor rank to be smaller than the dimensions, which is also unnecessary and has
been removed. Thanks to Erik Skao and Derek DeSantis for spotting this mistake.

2 ERRATUM 2020/03/31: The proposition has been corrected, so that the statement
and the proof still hold even with weaker assumptions H1 and H2.
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U ,V ,W , there exist Ac,Bc,Cc non-negative Ri×R matrices so that A = UAc,
B = V Bc and C = WCc. These non-negative coefficient matrices are factors
in a NCPD of G because U ,V ,W are left invertible. From this, we get that
rank+(G) ≤ R which concludes the proof. If the factors of the NTD are not
invertible, then simply set G′ = (Ac ⊗Bc ⊗Cc)IR.

In the next section, some algorithms designed for NTD and SNTD will be
tested to check whether this condition is verified or not in practice. But in a the-
oretical perspective, it is natural to wonder whether matrices U ,V ,W can be
found solely from T so that the necessary and sufficient condition from proposi-
tion 1 is always verified. Since this problem can be cast mode-wise, it is closely
related to recent uniqueness results obtained for Non-negative Matrix Factoriza-
tion [13]. In what follows, we study mode-wise approaches to this problem. These
involve the unfoldings of the data tensor, which are the columns/rows/fibers
stacked into matrices. Using the matricization suggested in [3], the unfoldings of
T can be expressed as follows:

T 1 = A (B �C)
T
= UG1 (V �W )

T
,

T 2 = B (A�C)
T
= V G2 (U �W )

T
,

T 3 = C (A�B)
T
= WG3 (U � V )

T
,

(6)

where � is the Khatri-Rao product, that is, the column-wise Kronecker product.
Now, how can we guarantee that, say on the first mode, cone(U) contains

A? A first (non mode-wise) solution is to constrain the core to be diagonal and
actually look for the NCPD instead of the NTD. In the following, we restrict
our preliminary study to the case where span(U) = span(A). In that case it is
possible to choose U as extreme rays of H(A). By definition, H(A) is the largest
cone in the intersection of the non-negative orthant and the column space of A
containing T 1. It also contains A since A belongs to the non-negative orthant.
This means that extreme rays U of H(A) can be used in the NTD to ensure
that the non-negative rank is preserved using Proposition 1.

However finding the extreme rays of H(A) is likely to be of little interest
in practice since the number of extreme rays needed can be larger than K. Yet
a special and easy case is when the non-negative matrix factorization of each
unfolding is unique, then any cone spanning the unfolding on one mode also
spans the NCPD factor on that mode.

In the light of the previous paragraph, a more interesting question is the
following: can we design a procedure to find a simplicial cone cone(U) with
R1 = R extreme rays (i.e. of order R) which always contains A? If a solution
to this problem is found, then in theory it would be possible to compress the
non-negative tensor T into G and to only compute the NCPD on G.

Such a procedure needs to compute a maximal volume cone. Indeed, suppose
the procedure outputs a set U of extreme rays, and suppose there exists a larger
cone U ′ also enclosing T 1, then because the only requirement for A in this
problem is that T 1 belongs to cone(A), then possibly U ′ = A and cone(U) may
not contain the columns of A.
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However, the largest simplicial one of order R may not be unique, and this
provides a counter example to the idea that the largest cone of order R could
always contain the columns of A (see Figure 1).

Sketch of a counter example. Let us build a matrix A in R4×3 and data T 1

so that there will be at least two largest cones H3 containing T 1 with three
extreme rays in the cone H defined by intersection of the span of A and the

non-negative orthant. We set AT =

1 1 0 0
0 1 1 0
0 0 1 1

. Using theorem 9.1.1 from [12],

we know that a non-zero vector from H belongs to an extreme ray if and only
if it is as sparse as possible, and that for each set of 0 indices there is only
one extreme ray. Here this can be applied in a straightforward manner, since
in the span of A there can be no vector with three zeros. This means that the
extreme rays can only have two zeros among 4 coefficients, and we thus need to
check which combinations among the 6 belong to the span of A and the non-
negative orthant. Since A has a simple structure, it is easy to check that H has
4 extreme rays, containing the columns of A and e = [1, 0, 0, 1]T . Finally, the
problem admits a rotational symmetry and it is easy to build T 1 as a smaller
cone contained in both cone([a1,a2, e]) and cone(A), see Figure 1.

a1

a2 a3

e

T 1

H

Fig. 1. A case where symmetry gives birth to two maximal volume cones with 3
extreme rays. The figure is the projection of the cones and data on the subspace

{x ∈ R4|
4∑

i=1

xi = 1}.

This maximal volume cone HR of order R is actually what SNTD computes
since SNTD imposes minimal `1 norm on the factors, meaning they should be
as close as possible to the border of H. Whether SNTD actually manages to
compute cones containing the factors or not is investigated in the simulation
section.

As a partial conclusion here, the only procedure that computes factors inde-
pendently on each mode that can guarantee the propagation of the non-negative
rank and under the constraint span(A) = span(U) is the computation of H(A).
This provides evidence that using NTD as a preprocessing step for NCPD is
difficult, but we cannot conclude that it is impossible since there may exist pro-
cedures working globally on the tensor (not mode-wise) or increasing the dimen-
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sion of the column space of U that can guarantee non-negative rank propagation
other than NCPD.

2.4 Propagating non-negativity to the core

A very fundamental question to answer for computing the NTD is whether some
conditions can be imposed on the factor matrices U ,V ,W to ensure that G
has non-negative entries. At first glance, a natural condition to impose on the
factors is that their cones contain the columns of the unfoldings of T . Clearly
this condition is necessary, otherwise from (6), the product of the core and the
Kronecker product of two factors has to contain negative entries, which itself is
possible only if either the core or the factors contain negative entries.

However contrary to what is trivial for NMF, finding cones containing the
columns of the unfoldings in each mode does not guarantee a non-negative core.
We do not provide in this communication a simple counter-example, but we
made this observation after running some numerical experiments reported in
the next section, and this was confirmed by simulations run by the reviewers
for this communication. This means that computing NMF on each unfolding to
obtain U ,V ,W and infer the core by inverting a linear system may not yield a
non-negative core.

3 Simulations

In this section we run numerical tests to support the previous theoretical discus-
sion and provide evidence that neither NTD nor SNTD propagates non-negative
rank in practice, and that computing NMF on each mode does not ensure ob-
taining a non-negative core.

3.1 Some algorithms for NTD and NMF

There has been a few algorithms reported in the literature to compute NTD. In
the following simulations we make use of Hierarchical Alternating Least Squares
(HALS) by Phan et. al. [14].

HALS is based on coordinate descent, where the set of variables is alterna-
tively each columns of U ,V and W , because with respect to these columns the
underlying constrained least squares optimization problem admits a closed-form
solution. For computing NMF, we used an algorithm based on the same idea from
Gillis et. al. called accHALS for accelerated HALS [15]. Again, other algorithms
exist for computing NMF and NTD that offer at least the same performances,
but the goal here is not to compare state-of-the-art algorithms.

To compute SNTD, we used the algorithms from Morup et. al. which was
the first algorithm designed for SNTD in the literature [6]. It is based on multi-
plicative updates, which are known to be slow for least square problems.
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3.2 Some tests on the outputs of algorithms

Settings For both experiments, the tensors are rank R = 3 non-negative tensors
build using the NCPD from factors drawn from the uniform distribution over
[0, 1], with sizes K = L = M = 20. The NCPD factors are normalized column-
wise using the `2 norm. No noise is added. We set R1 = R2 = R3 = R - we will
study the case where the number of components used in NTD are larger than
the true rank in a longer communication. The maximal number of iterations is
set to 1000 for the HALS algorithm, and to 3000 for the multiplicative algorithm
solving SNTD - which we will abusively denote by SNTD. For accHALS applied
on each unfolding, the maximal number of iterations is set to 1000. We chose
the number of maximal iterations large enough so that convergence is always
reached. In SNTD, the sparsity coefficient on the core is set to 0, and set to
10−3 on factors.

HALS and accHALS compute exact NTD and NMF up to around 10−8 rel-
ative error on the reconstructed tensor when no noise is added on the data and
a good initialization is provided. We chose to initialize with High Order Singu-
lar Value Decomposition [8] to start in the right subspace on each mode. For
SNTD, relative error with respect to the norm of the original data is of order of
magnitude 10−4 in the following simulations.

Experiment 1: Number of negative entries in the core computed by
mode-wise accHALS In this first experiment, NTD is computed using NMF
on each unfolding of a hundred tensors. We plot the number of negative entries
in G obtained by an unconstrained linear system. We also plot the percentage
of negative coefficients in U †T 1, V †T 2 and W †T 3, † denoting the left pseudo
inverse. If the unfoldings are contained in the cones spanned by U ,V ,W , then
there should be no negative coefficients in these products.

Results reported in Figure 2 show that although the unfoldings are indeed
almost contained in the cone of computed factor matrices, the core G obtained
contains a high number of negative entries. Moreover, the negative entries have
a non-negligible intensity. This observation supports the idea that spanning the
columns of the unfoldings is not a sufficient condition to ensure non-negativity
of the core.

Experiment 2: Estimation of the span of factors and propagation of
non-negative rank In this second experiment, 10 different tensors are decom-
posed using the NTD model using HALS and mode-wise accHALS and the SNTD
model using the multiplicative algorithm. We check that the span of factors from
the known NCPD and the computed NTD or SNTD are the same by comparing
the norm of projected columns of A,B,C on the subspaces spanned by NTD
factors. Moreover, we want to show that NCPD factors are not contained in the
cones spanned by U ,V ,W . The latter is checked by computing the amount of
negative entries in products of the form Ac = U †A. Results are presented in
Figure 3.
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Fig. 2. Left: Percentage of negative entries in the core G estimated by three NMF.
Right: Percentage of negative values in the coefficients of vectors of unfoldings of T in
subspaces spanned by U ,V ,W .

We observe that although the spans of factors from NCPD and NTD are the
same (with a small variation for SNTD), the necessary and sufficient condition
from Proposition 1 is not verified in this example. This means that neither NTD
nor SNTD propagate the non-negative rank.

Fig. 3. Left: Average norm of the projected column of factors A,B,C onto the sub-
spaces spanned by estimated U ,V ,W . Right: Percentage of negative entries in the
coefficients Ac,Bc,Cc so that A = UAc among all coefficients.

4 Conclusion

Non-negative Tucker Decomposition is a relatively unexplored research topic
among constrained tensor decomposition models. We have shown in this paper
that choosing the maximum volume cone generating the data does not necessar-
ily restore identifiability of the factor matrices. We have also illustrated on some
numerical experiments that choosing cones containing the unfoldings of the ten-
sor on each mode does not necessarily yield a non-negative core, and that both
algorithms computing the NTD and its sparse counterpart fail at preserving the
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low non-negative rank of the tensor, leaving little hope for designing a compres-
sion scheme based on NTD for large tensors with low non-negative rank. Such a
procedure would require to choose non-trivial U so that cone(U) ⊇ H(A), and
similarly on the other modes.
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