
HAL Id: hal-01420117
https://hal.science/hal-01420117v1

Submitted on 20 Dec 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Data Structure for Progressive Visualisation and
Edition of Vectorial Geospatial Data
Jérémy Gaillard, Adrien Peytavie, Gilles Gesquière

To cite this version:
Jérémy Gaillard, Adrien Peytavie, Gilles Gesquière. A Data Structure for Progressive Visualisation
and Edition of Vectorial Geospatial Data. 3D GeoInfo, Oct 2016, Athènes, Greece. pp.201 - 209,
�10.5194/isprs-annals-IV-2-W1-201-2016�. �hal-01420117�

https://hal.science/hal-01420117v1
https://hal.archives-ouvertes.fr

A DATA STRUCTURE FOR PROGRESSIVE VISUALISATION AND EDITION OF
VECTORIAL GEOSPATIAL DATA

J. Gaillarda, b, A. Peytaviea, G. Gesquièrea

aUniv Lyon, LIRIS, UMR 5205 F-62622, Villeurbanne, France
b Oslandia, France

KEY WORDS: 3D, Visualisation, Web, Geospatial

ABSTRACT:

3D mock-ups of cities are becoming an increasingly common tool for urban planning. Sharing the mock-up is still a challenge since the
volume of data is so high. Furthermore, the recent surge in low-end, mobile devices requires developers to carefully control the amount
of data they process. In this paper, we present a hierarchical data structure that allows the streaming of vectorial data. Loosely based
on a quadtree, the structure stores the data in tiles and is organised following a weight function which allows the most relevant data
to be displayed first. The relevance of a feature can be measured by its geometry and semantic attributes, and can vary depending on
the application or client type. Tiles can be limited in size (number of features or triangles) for the client to be able to control resource
consumption. The article also presents algorithms for the addition or removal of features in the data structure, opening the path for the
interactive edition of city data stored in a database.

1. INTRODUCTION

Virtual cities are an ever more growing research topic, with a
great variety of applications for urban planning, routing, simula-
tion or cultural heritage (Biljecki et al., 2015). Technical chal-
lenges still remain, especially regarding the high amount of data
in a virtual city model. To allow the best user experience, this
data needs to be streamed. While there exist efficient methods
for the progressive streaming of raster data, few satisfying solu-
tions exist for vectorial data. Most of these solutions require a
long preprocessing stage, where the data is organised, simplified
or generalised and often duplicated. The result is generally a new
dataset suitable only for visualisation that needs to be recomputed
whenever the original data is modified.

An alternative to the costly generalisation of the geometry is the
transmission of a subset of the data. In a lot of use cases, only a
handful of features are of interest to the user. Transmitting and
displaying only the most relevant data allows the user to rapidly
access a view containing most of the information he needs at a
low cost.

When transmitted from the server to the client, the city model’s
geometries are usually not sent individually, but packed together
in a tile. With the surge in mobile devices, there is a need to
control the amount of resources allocated to an application, and
therefore the quantity of data within each tile. Since city models
do not have a constant density, vectorial data has to be organised
in hierarchical structures in order to have tiles of roughly the same
size.

Being able to carry out geometrical operations or to edit the data
opens up the use cases of virtual cities. For this purpose, hav-
ing a single model for both the visualisation and the storage of
the data seems convenient. Furthermore, a unified model re-
moves the need to duplicate the data (base model and visuali-
sation model). With datasets covering larger and larger areas,
exceeding the city scale, as well as existing in multiple temporal
versions (Chaturvedi et al., 2015a), storage may well become an
issue in the future.

The contributions of our paper are as follows:

• an efficient hierarchical structure for vectorial data allowing:

– progressive loading of data based on a weight function
– dynamic addition and removal of data
– compatible with rising exchange formats such as 3D-

tiles (3D Tiles - Specification for streaming massive
heterogeneous 3D geospatial datasets, 2016)

• an architecture for visualising data from a geospatial database
featuring:

– fast deployment
– original storage format, suitable for 3D analysis

The paper is organised as follows: we will review the state of the
art in the fields of web 3D and virtual cities, then we will describe
our data model and, in the next section, the detailed algorithms
for creating and updating our data structure as well as ways of
accessing the data. We will then present some results of our im-
plementation of the model, both client-side with visual results of
the progressive streaming and server-side with performance mea-
surements. Finally, we will conclude and present leads for future
works.

2. STATE OF THE ART

Progressive streaming of 3D geometries is a problem that has
been addressed by numerous papers in the last 20 years (Hoppe,
1996). It is especially relevant nowadays, with web applications
becoming so common and embedding 3D content thanks to We-
bGL (Evans et al., 2014). The geospatial field is especially con-
cerned by these works since it deals with a huge quantity of data.
A lot of the research has already been done for terrain streaming
(Lerbour, 2009), but streaming buildings and other city objects
(roads, bridges, tunnels, etc.) is a much more recent topic.

The existing approaches for streaming 3D vectorial data can be
classified in two main categories : generalisation on the one hand
and progressive transmission on the other.

Generalisation is the process of simplifying a geometry or a group
of geometries into a less complex and lighter geometry. It is a

method for generating levels of details where each level is an in-
dependent geometry: transitioning from one level of detail to the
other requires the loading of a whole new object. (Mao, 2011)
presents a variety of methods for creating simplified representa-
tions of city models. (He et al., 2012) and (Guercke et al., 2011)
generate multiple LoDs for building groups by generalising the
footprint of the buildings.

Since its levels of details are independent, generalisation can pro-
duce better quality approximations than other methods that use
additive refinement as level of detail. Such methods fall within
the progressive transmission class. Additive refinement is a de-
sirable feature for web applications since data transmission is a
frequent bottleneck. Progressive data structure may still have a
cost, but it is usually far lower than that induced by generalisa-
tion methods. (Ponchio and Dellepiane, 2015) presents a method
for streaming high-quality meshes. Portions of the meshes are
refined depending on the camera position.

Web city viewers often use very simple progressive loading meth-
ods for buildings. A 2D grid manages the loading of data in
(Chaturvedi et al., 2015b), (Gesquiere and Manin, 2012) or (Gail-
lard et al., 2015). While its simplicity can be attractive for web
applications, the visual result is unsatisfactory: data is loaded
non-uniformly, in chunks. Areas of interest may be loaded last
since only geometric metrics are used to define which grid tiles
are loaded: only the camera position counts, not the nature of the
data.

Hierarchical data structures are popular in the geospatial field,
since they are well suited for data of varying scale. (Suárez et al.,
2015) presents a globe application, where the use of a quadtree
enables constant resource usage. However, this only works for
regularly meshed tiles, where each tile has the same number of
triangles. Furthermore, vectorial data stored in quadtrees often
overstep the boundary of the tiles, making them somewhat com-
plex to manage. In geospatial databases, r-trees (Guttman, 1984)
are often used to index the data. While it offers quick access
to the features and solves the problem of overstepping features,
it is not suitable for progressive streaming: all the features are
stored at the same depth, in the leaves of the tree (there is no hi-
erarchy of features), and features of the same leaf tile are always
close to one another, meaning that a progressive loading based
on this structure will be non-uniform and chunky, similarly to a
grid. (Christen, 2016) uses a bounding volume hierarchy to or-
ganise 3D buildings, but doesn’t provide any insight on how the
BVH should be built. In the ray tracing field, common methods
to build bounding volume hierarchies rely on heuristics such as
SAH (Wald, 2007). However, constructing BVHs in this manner
does not allow the user to control the depth in which the objects
are in the BVH.

Most of recent approaches are based on a strong relation between
the client and its dedicated server. For several years, the Open
Geospatial Consortium has been proposing standards to facili-
tate communication between different servers and clients. Recent
works (3D Portrayal Interoperability Experiment, 2016) tend to
propose a 3D portrayal specification, that may be followed in an
implementation of this paper’s method, in order to provide a non-
intrusive solution server-side.

In this paper, we present a progressive transmission method based
on a data structure which allows a uniform loading of features
over the whole extent of a scene, that takes into account not only
the spatial position of the features, but also their semantic infor-
mation. This produces a partial representation of a city composed
of the most relevant features without the need to generate a new
dataset or to download redundant data.

3. DATA MODEL

In this section, we will present our solution for storing and edit-
ing a geospatial dataset. A description of the data structure is
presented in figure 1. This dataset S is defined as a collection of
features F . A feature Fi is a 3D geometry to which is assigned
a number of semantic attributes Ai. For instance, a feature could
be a building with attributes such as height, energy consumption,
etc. A feature could also be a bridge with its name and date of
construction as attributes.

Figure 1: The bounding box hierarchy (left) and an exploded
view of it (right).

Our goal is to retrieve data in chucks of similar sizes. Addition-
ally, we wish to retrieve the most important data first. Since a
city has variable density, we either need an irregular organisation
of the data or a hierarchical data struture. In our case, hierarchi-
cal data structures are preferable since they allow the ranking of
data. Therefore, we store our data in a Bounding Box Hierar-
chy (BBH): a tree where each node has a bounding box which
strictly encloses all the underlying features (see figure 2). This
is an advantage compared to the usual structures used for tiling
cities (quadtrees or regular grids), where some features may over-
step their tile’s boundaries and causes imprecisions in the loading
of its features. In this paper, we use bounding boxes since our
data has almost no verticality. In some cases, Bounding Volume
Hierarchies (BVH) might be a better choice. The presented meth-
ods work with both BBH and BVH with virtually no change.

The whole hierarchy Level 0 node Level 1 nodes

Feature

Node Bounding Box

Underlying Quadtree Bounding Box

Figure 2: A 2D representation of the bounding box hierarchy
structure.

Choosing a hierarchical data structure allows us to easily enable
progressive loading: by storing features in the nodes of each
level of the tree, the data will automatically be loaded progres-
sively, starting from the topmost nodes down to the leaves. The
higher the node is in the hierarchy, the more relevant it must be to
the user’s visualisation. To quantify this relevance, each feature
has an associated weight. We will discuss the computing of this
weight in section 4.1.

Our bounding box hierarchy is loosely based on a quadtree: the
classification process explained in the next section uses a selec-
tion based on an underlying quadtree. The sole purpose of the
quadtree is to select which feature goes into which node. Basing
our bounding box hierarchy on a quadtree causes the tree to be
imbalanced. Dense parts of the city will have leaf tiles that are

deeper than those of sparse parts. This is not a problem: our main
goal is to have tiles which have a similar weights and progressive
loading, it is therefore natural that we have theses disparities.

In this paper, a tile is the spatial aspect of a node, i.e. the bounding
box and the features contained in a node.

There are various ways of limiting the number of features in a
node. In the examples and algorithms of this paper, we define
a maximum number of features per node, but it is also possible
to set a maximum number of points or triangles per node. This
is especially useful for low-end clients that need to control the
amount of data they download or render. Using these more com-
plex metrics (where the limiting property varies from feature to
feature) raises the issue of packing the features into nodes in an
optimal manner. This is a classic knapsack problem. We use a
very simple approach, where as soon as a feature overfills a node,
it is considered full. This solution offers satisfying results, further
optimisation is left for future works.

Bounding box hierarchies (or bounding volume hierarchies) are
a fairly common data model. Some exchange formats, most no-
tably AGI’s 3D-tiles (3D Tiles - Specification for streaming mas-
sive heterogeneous 3D geospatial datasets, 2016), already support
these kind of structures, assuring compatibility with standard-
compliant web clients. The specificity of our method, namely
the way we order the features inside the hierarchy, takes place on
the server and is completely transparent for the client.

4. DATA PROCESS

In this section, we will describe methods for initialising, editing
and accessing the data of the BBH. An overview of the processes
the BBH undertakes is shown in figure 3. Detailed algorithms are
available in the appendix.

Original scene

Classification

Add

Remove

Feature

Tile Bounding Box

Level-0 objects

Level-1 objects

Figure 3: Manipulation data with our proposed structure: classi-
fication, addition and removal of data.

4.1 Classification

The classification of the features in the bounding box hierarchy
is based on the weight associated to each feature. This weight is
determined by a function f based on the feature’s geometry Gi

and semantic attributes Ai: W (Fi) = f(Gi, Ai).

The choice of weight function depends on the target application.
The most important features for the application should get the
highest weight. For example, in a simple city visualisation appli-
cation, the biggest buildings should be displayed first, and thus
have a higher weight. If the application is focused on tourism,
monuments should be favoured by the function. In section 4.4 we
will present ways of creating and combining weight functions.

In the examples throughout this paper, for the sake of simplic-
ity, we will use a purely geometric weight function based on the
ground surface of a feature: W (Fi) = ground surface(Gi).

Figure 4: Initialisation algorithm for n = 2. (1) Initial state.
Dashed square is the initial quadtree tile, covering the extent
of the scene. (2) Assigning features to the node. (3) Selecting
highest-weight features. (4) Computing bounding box. (5) Re-
cursion, since all features are not assigned to a node yet. Creating
child nodes using quadtree subdivision. (6) Assigning features
to nodes. (7) Computing bounding boxes. (8) Adjusting parent
bounding box. (9) The resulting structure.

Figure 4 goes through the classification process for a simple case.
The algorithm is described hereafter. The numbers refer to the
figure’s corresponding steps.

Initialisation (1):

• The extent of the scene (a bounding box which covers all
the features) is defined. This is also the root of the quadtree
upon which the selection process will be based. For large
datasets, the extent can be cut into a grid where each grid
tile will be the root of a quadtree;

• The features are sorted by descending weight, such that the
first accessed features are always the ones with the highest
weight;

• The maximum number of features n by tile is chosen.

A quadtree tile is assigned to each node of the bounding box hi-
erarchy. This tile allows selection of the features that will poten-
tially populate the bounding box hierarchy node: the node can
only have features which have their centroid inside the tile.

Add the n first features to the node (3). Create the bounding based
on these features (4). Divide the quadtree tile (5) and assign the
remaining features to each of its children based on the position
of their centroids (6). Repeat the process for each child, until no
features are left (7).

Recursively adjust the bounding box of the nodes such as the par-
ent node’s bounding box encloses its features and its children’s
bounding box (8). The resulting structure is shown in (9).

4.2 Adding and Removing Features

Adding or removing data from the structure requires careful reor-
ganisation to maintain the integrity of the database: the ordering
of the features in accordance with their weight must be preserved,
the maximum number of features per node must not be exceeded
and the bounding boxes must be adjusted.

4.2.1 Addition The insertion of a feature (figure 5) requires
finding the first node which fulfils the two following conditions:
• the node is not full or the weight of the new feature is be-

tween the weight of the lowest and highest weight features
of the node;

• the new feature’s centroid is inside the quadtree tile associ-
ated to the node.

The quadtree tiles that contain the new feature’s centroid are tra-
versed from top to bottom until a node that validates the first con-
ditions is found.

The new feature is added to the node. If the node’s number of
features exceeds n, the lowest weight feature of the node is re-
moved and added to the child node. The process is repeated until
the addition of a feature does not cause a node to be overfull.

Once the hierarchy has been reorganised, the bounding boxes of
the altered nodes are recomputed.

(1) (2)

(3) (4)

Figure 5: Adding procedure. (1) Feature to add (in grey). (2) Find
lowest weight feature (red border) of current tile. (3) Remove
lowest weight feature from child tile and add it to the child tile in
which it lies (red dashed border). (4) Recompute bounding boxes.

4.2.2 Removal Removing a feature (figure 6) from a node re-
quires rebalancing the hierarchy. The removed feature of a node
is replaced by the highest weight feature of its children. The child
from which the feature was taken undergoes the same process,
until the leaves of the tree are reached.

The bounding boxes are then resized for each altered node.

(1) (2)

(3) (4)

Figure 6: Removal procedure. (1) Feature to remove (red border).
(2) Find lowest weight child feature (red border). (3) Remove
lowest weight child feature from child tile and add it to current
tile. (4) Recompute bounding boxes.

4.3 Accessing the Data

We recommend storing the features in a spatial database on the
server. The features are indexed by the identifier of the tile to
which they belong. This allows the server to select very quickly
the features that a client needs, as the client sends requests for
specific tiles.

The client accesses the data by querying the tiles that are inside
its field of view and match its desired precision. For this task, the
client must know in advance the bounding box and the level of
detail of each tile. We call refinement scheme the way each tile
is subdivided into its child tiles, that is the number of child tiles
and their bounding boxes.

There are two main ways of managing the transmission of the re-
finement scheme. The refinement scheme of the whole structure
can be sent on initialisation of the application, solving the issue
once and for all. This has the advantage of allowing the client to
query multiple levels of tiles if needed, but can slow the initiali-
sation of an application if the dataset is large and has a lot of tiles.
The alternative is to transmit the scheme progressively, along the
features. When answering a tile query, the server sends both the
features and the tile’s refinement scheme.

4.4 Creating a weight function

In this section, we will define guidelines for creating and com-
bining weight functions. A weight function assigns to a feature
a weight, represented as a floating point number between 0 and
1. The higher the weight, the more importance is attached to the
feature.

F 7→W (F),R→ [0..1]

Surface Weight A classification based on the 2D footprint of a
building allows the largest buildings to be displayed first. It is a
pertinent choice for visualisation applications since these build-
ings are big enough to be seen from afar and can be used as land-
marks for orientation purposes.

The surface weight function is defined as a function which returns
0 for a null surface and 1 for the surface of the largest building of

the dataset. Cities often have a few buildings that are very large in
comparison to the others. To avoid the weight values of most of
the buildings to be clumped up near 0 as a result, we recommend
using a function that returns 0.5 for a building that has the average
size. Here is such a function, with S the surface, avg the average
surface of features in the data set and max the maximum surface:

surface weight(F) =

{
S

2∗avg if S < avg

1− S−max
2∗(max−avg)

if S >= avg

Attribute Weight Semantic attributes can be used as a classifi-
cation method. As they vary wildly in nature, it is hard to define
a precise guideline for these weight functions.

Combining Weight Functions We can combine weight func-
tions to create new, more complex functions. To each function
Wi is assigned an importance factor wi. The weighted arithmetic
mean of these functions form the new weight function.

W (F) =

n∑
i=0

wiWi(F)

n∑
i=0

wi

For example, let’s combine into a function WC the surface weight
function W1 described above and an attribute weight function W2

that returns 1 for red features, 0 for blue features. For w1 = w2 =
1, WC will be a function that first prioritises the red features, then
order features according to their ground surface. For w1 = 1
and w2 = 0.5, WC will be a function that guarantees that the
red features will be displayed first only if their are larger than
average. Figure 7 illustrates this example.

A B C D E

AB CD E

AB CD E

(1)

(2)

(3)

Figure 7: Different weight functions. Highest weight feature is on
the left, lowest weight feature is on the right.(1) Surface weight.
(2) Combined surface and attribute weight. w1 = w2 = 1.
(3)Combined surface and attribute weight. w1 = 1, w2 = 0.5.

5. RESULTS

5.1 Implementation and performance

All the following results were obtained on an Intel c©CoreTMi5-
4590 CPU @ 3.3GHz x 4, Nvidia GeForce GTX 970.

We implemented the algorithms for creating and manipulating
our data structure in Python, using psycopg2 (psycopg2 - Python-
PostgreSQL Database Adapter, 2016) to interact with a postgres

database (PosgreSQL - The world’s most advanced open source
database., 2016). We use the postGIS extension to handle geospa-
tial data (PostGIS - Spatial and Geographic Objects for Post-
greSQL, 2016).

We tested our algorithms on a dataset of close to 30,000 features
of the city of Lyon and a second dataset of 80,000 features of
the city Montréal. Results for Montréal are written in parenthe-
ses. The initial state of the database for our study was a postGIS
database filled with the aforementioned data indexed by gid.

We chose a weight function that returns the area of the footprint
of the building and a maximum of 50 features per tile. It took
6.1 (11.4) seconds to create our data structure. 1.3 (1.9) seconds
were spent fetching the data from the database and computing the
weight of each feature, 4.6 (8.9) seconds were spent updating the
database with a new tile index. The remaining 0.2 (0.6) second
was used to organise the data inside our structure.

Adding and removing features from the database and updating
the data structure is also fast. For the same database, which had
1165 tiles and up to 5 depth levels, each of these operations took
barely more than 10 milliseconds (see table 1).

mean (ms) standard deviation (ms)
Lyon

add 11.5 4.1
remove 10.4 3.9

Montréal
add 17.8 5.5
remove 16.1 5.6

Table 1: Add and remove operations performance.

5.2 Test client

We use an Apache2 server combined with Python scripts to man-
age the server-side processes.

Client-side, we visualise the data using Cesium (Cesium - We-
bGL Virtual Globe and Map Engine, 2016). Our Javascript im-
plementation features the progressive loading of buildings as in-
tended by our data structure.

Figure 8: Screenshot of our web application based on Cesium.
Buildings in red belong to level 0 tiles, those in orange to level 1
tiles, those in yellow to level 2 tiles and those in green to level 3
tiles.

Figure 8 shows the result of the classification of the dataset’s fea-
tures in the web application. We can clearly see that the buildings
with the biggest 2D footprints are assigned to the highest level
of the hierarchy and are therefore displayed first. Figure 9 is an
example of this behaviour: the greater the distance to the cam-
era, the fewer tiles are loaded; only the buildings with the highest
weight remain.

Figure 9: Screenshot of our web application based on Cesium. In the foreground, most of the buildings are loaded, while only the most
prominent are displayed in the background.

We limited the number of triangles loaded in the scene and com-
pared the result for different loading methods. Figure 10 shows
a comparison between our method, with a weight function based
solely on the ground surface of the buildings, and a grid of 500m
x 500m tiles.

We implemented different weight functions to observe the effect
changing these functions has on the displayed scene:

W1(F) = surface weight(F) (1)

W2(F) =
surface weight(F) + is noteworthy(F)

2
(2)

is noteworthy(F) =

{
1 if F has the noteworthy attribute
0 otherwise

(3)

W3(F) =
surface weight(F) + distance weight(F)

2
(4)

distance weight(F) = max(0, 1− distance to rhone

500
) (5)

In figure 11, we see that more noteworthy buildings are loaded
while using W2 instead of W1. Figure 12 shows similar results,
far more buildings are loaded next to the Rhône river when W3 is
used.

5.3 Limitations

Changing the weight function requires the reprocessing of the full
structure. It is however possible to have multiple indexes to pro-
vide different classifications from which to choose.

A drawback of this data structure is that not all the loaded data
will be in the camera’s field of view. Features are stored in each
level of the hierarchy and the topmost tiles can be quite large.
Therefore, if the camera does not cover the full extent of a tile,
which is likely for the tiles that are high in the hierarchy, it is
likely that some features will be loaded despite not being visible.
A way to mitigate this problem is to have multiple level-0 tiles by
cutting the original extent into a grid, as suggested in section 4.1.

Figure 11: Different weight functions and 500,000 triangles limit.
The top image uses W1 and the bottom one W2. Red buildings
are noteworthy.

6. CONCLUSION AND FUTURE WORKS

We have presented a novel data structure for the storage of vec-
torial data. Its hierarchical nature allows the data to be easily
streamed and is therefore suitable for web applications. More-
over, features are ordered according to a weight function, making
the first features to be loaded the most relevant ones. This prop-
erty also means that if only a limited number of features can be
loaded, due to limited processing power or storage, these features
will be the most relevant ones for the current view.

We have also presented algorithms to edit the structure, removing
the need to rebuild the structure when changes are made. Adding

Figure 10: The scene loaded with our method, limited at 500,000 triangles (top left) and 1,000,000 triangles (bottom left). The scene
loaded with a grid, limited at 500,000 triangles (top right) and 1,000,000 triangles (bottom right).

or removing features is fast, a few milliseconds, compared to the
time it takes to create the hierarchy, which takes seconds.

We achieve better visual results sing our bounding box hierarchy
construction method than using traditional data structures such
as grids. Furthermore, thanks to the weight function, we allow
semantic data to have an impact on visualisation. This can be
used to create specific views for use cases by giving higher weight
to features that have semantic attributes that are relevant to the use
case.

Future works include adding support for geometric level of de-
tail. Deeper levels of the hierarchy could be loaded with a lower
geometric level of detail while top levels would be loaded at full
detail.

Another improvement would be the possibility to combine differ-
ent weight functions to generate a new structure on the fly, based
on the classification of each function. This would allow the user
to customise his view without needing to recompute the whole
hierarchy.

A future improvement could be the use of new metrics to de-
cide which tile needs to be refined. Traditionally, only geometric
metrics like screen space error are used to choose which tiles of a
hierarchical data structure have to be displayed. Choosing to load
a tile not only for its position relative to the camera but also for
the quantity of information it brings to the scene (see figure 13)
would allow semantic information to play a bigger role in city
viewing applications, and hopefully lead to a smoother experi-
ence for the user.

ACKNOWLEDGEMENTS

This work has been supported by the french company Oslandia
through the phd thesis of Jérémy Gaillard. CityGML data are
provided by Lyon metropole and Ville de Montréal. This research

Figure 13: An alternative way to handle feature loading. Level
two tiles (in orange) are loaded despite being far from the camera
because they have been found to bring more information to the
scene.

was partly supported by the French Council for Technical Re-
search (ANRT).

REFERENCES

3D Portrayal Interoperability Experiment, 2016. http://www.

opengeospatial.org/projects/initiatives/3dpie. Re-
trieved June 10, 2016.

3D Tiles - Specification for streaming massive heteroge-
neous 3D geospatial datasets, 2016. https://github.com/

AnalyticalGraphicsInc/3d-tiles. Retrieved Mai 30, 2016.

Biljecki, F., Stoter, J., Ledoux, H., Zlatanova, S. and Çöltekin,
A., 2015. Applications of 3d city models: State of the art review.
ISPRS International Journal of Geo-Information 4(4), pp. 2842.

Cesium - WebGL Virtual Globe and Map Engine, 2016. http:

//cesiumjs.org/. Retrieved June 10, 2016.

Chaturvedi, K., Smyth, C. S., Gesquière, G., Kutzner, T. and
Kolbe, T. H., 2015a. Managing versions and history within se-
mantic 3d city models for the next generation of citygml. In:
A. A. Rahman (ed.), Selected papers from the 3D GeoInfo 2015
Conference, Lecture Notes in Geoinformation and Cartography,
Springer, Kuala Lumpur, Malaysia.

Figure 12: Different weight functions and 500,000 triangles limit. The top image uses W1 and the bottom one W3.

Chaturvedi, K., Yao, Z. and Kolbe, T. H., 2015b. Web-based
exploration of and interaction with large and deeply structured
semantic 3d city models using html5 and webgl. In: Bridging
Scales - Skalenübergreifende Nah- und Fernerkundungsmetho-
den, 35. Wissenschaftlich-Technische Jahrestagung der DGPF.

Christen, M., 2016. Openwebglobe 2: Visualization of Complex
3D-GEODATA in the (mobile) Webbrowser. ISPRS Annals of
Photogrammetry, Remote Sensing and Spatial Information Sci-
ences pp. 401–406.

Evans, A., Romeo, M., Bahrehmand, A., Agenjo, J. and Blat, J.,
2014. 3d graphics on the web: A survey. Computers & Graphics
41(0), pp. 43 – 61.

Gaillard, J., Vienne, A., Baume, R., Pedrinis, F., Peytavie, A. and
Gesquière, G., 2015. Urban data visualisation in a web browser.
In: Proceedings of the 20th International Conference on 3D Web
Technology, Web3D ’15, ACM, New York, NY, USA, pp. 81–88.

Gesquiere, G. and Manin, A., 2012. 3D Visualization of Urban
Data Based on CityGML with WebGL. International Journal of
3-D Information Modeling 3(1), pp. 1–15.

Guercke, R., Götzelmann, T., Brenner, C. and Sester, M., 2011.
Aggregation of lod 1 building models as an optimization problem.
{ISPRS} Journal of Photogrammetry and Remote Sensing 66(2),
pp. 209 – 222. Quality, Scale and Analysis Aspects of Urban City
Models.

Guttman, A., 1984. R-trees: A dynamic index structure for spatial
searching. SIGMOD Rec. 14(2), pp. 47–57.

He, S., Moreau, G. and Martin, J., 2012. Footprint-based 3d
generalization of building groups for virtual city visualization.
In: GeoProcessing2012: 4th International Conference on Ad-
vanced Geographic Information Systems, Applications, and Ser-
vices, pp. 177–182.

Hoppe, H., 1996. Progressive meshes. In: Proceedings of the
23rd Annual Conference on Computer Graphics and Interac-
tive Techniques, SIGGRAPH ’96, ACM, New York, NY, USA,
pp. 99–108.

Lerbour, R., 2009. Adaptive streaming and rendering of large
terrains. Theses, Université Rennes 1.

Mao, B., 2011. Visualisation and generalisation of 3D City Mod-
els. PhD thesis, KTH Royal Institute of Technology.

Ponchio, F. and Dellepiane, M., 2015. Fast decompression for
web-based view-dependent 3d rendering. In: Web3D 2015. Pro-
ceedings of the 20th International Conference on 3D Web Tech-
nology, ACM, pp. 199–207.

PosgreSQL - The world’s most advanced open source database.,
2016. https://www.postgresql.org/. Retrieved Mai 30,
2016.

PostGIS - Spatial and Geographic Objects for PostgreSQL, 2016.
http://postgis.net/. Retrieved Mai 30, 2016.

psycopg2 - Python-PostgreSQL Database Adapter, 2016. https:
//pypi.python.org/pypi/psycopg2. Retrieved Mai 30,
2016.

Suárez, J. P., Trujillo, A., Santana, J. M., de la Calle, M. and
Gómez-Deck, D., 2015. An efficient terrain level of detail imple-
mentation for mobile devices and performance study. Computers,
Environment and Urban Systems 52, pp. 21 – 33.

Wald, I., 2007. On fast construction of sah-based bounding vol-
ume hierarchies. In: Proceedings of the 2007 IEEE Symposium
on Interactive Ray Tracing, RT ’07, IEEE Computer Society,
Washington, DC, USA, pp. 33–40.

A. FULL ALGORITHMS

Notations:

• N a node of the tree;

• B(A) the bounding box of the node or the feature A;

• C(N) the list of the child nodes of the node N;

• P (N) the parent node of the node N;

• F (N) the list of the features of a node;

• mF (N) the lowest weight feature of a node;

• MF (N) the highest weight feature of a node;

• QB(N) the bounding box of the quadtree’s tile associated
to the node N;

• F a feature;

• W (F) the weight associated to the feature F;

• n the maximum number of features that a node can contain.

A.1 Classification
1: for F in features do
2: W (F) = f(F) . Compute all weights
3: end for
4: Order features by descending weights
5: ASSIGN(features,root)
6:
7: function ASSIGN(features, N)
8: count← 0
9: for F in features do

10: if F ∈ QB(N) then
11: if count < n then . Add feature if node not full
12: F (N)← F (N) ∪ F
13: B(N)← B(N) ∪B(F)
14: features← features \ F
15: count← count+ 1
16: else . Stop process when node full
17: break
18: end if
19: end if
20: end for
21: if features 6= ∅ then . Subdivide node if features

remain
22: DIVIDE(features,N)
23: for Ni in C(N) do . Adjust bounding box
24: B(N)← B(N) ∪B(Ni)
25: end for
26: end if
27: end function
28:
29: function DIVIDE(features, N)
30: Create children nodes for N
31: for Ni in C(N) do . Assign each feature to the right

child
32: Fi← ∅
33: for F in features do
34: if F ∈ QB(Ni) then
35: Fi← Fi ∪ F
36: features← features \ F
37: end if
38: end for
39: ASSIGN(Fi, Ni)
40: end for
41: end function

A.2 Addition
1: function ADD(F , N)
2: if |F (N)| < n then
3: F (N)← F (N) ∪ F
4: else
5: if W (F) > W (mF (N)) then . Replace lowest

weight feature
6: F (N)← F (N) \ F
7: F (N)← F (N) ∪ F
8: F ← mF (N)
9: end if

10: if C(N) = ∅ then
11: Create children nodes for N
12: end if
13: for Ni in C(N) do . Add feature to the right child
14: if F ∈ QB(Ni) then
15: ADD(F , Ni)
16: break;
17: end if
18: end for
19: end if
20: Update bounding box
21: end function

A.3 Removal
1: function REMOVE(F , N)
2: if F ⊂ F (N) then
3: F (N)← F (N) \ F
4: if C(N) 6= ∅ then
5: for Ni in C(N) do . Get highest weight

children feature
6: if W (MF (Ni)) > W (maxF) then
7: maxF ←MF (Ni)
8: maxN ← Ni
9: end if

10: end for
11: F (N)← F (N) ∪maxF
12: REMOVE(maxF , maxN)
13: else
14: if F (N) = ∅ then
15: Remove N
16: end if
17: end if
18: else
19: for Ni in C(N) do
20: if F ∈ QB(Ni) then
21: REMOVE(F , Ni)
22: break;
23: end if
24: end for
25: end if
26: Update bounding box
27: end function

