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Abstract
Parallelizing industrial simulation codes like the EUROPLEXUS software dedicated to the
analysis of fast transient phenomena, is challenging. In this paper we focus on the efficient
parallelization on a multi-core shared memory node. We propose to have each thread gather the
data it needs for processing a given iteration range, before to actually advance the computation
by one time step on this range. This lazy cache aware layout construction enables to keep
the original data structure and leads to very localised code modifications. We show that this
approach can improve the execution time by up to 40% when the task size is set to have the
data fit in the L2 cache.

Keywords: EUROPLEXUS; Shared Memory; Cache-aware Data Layout ; Parallel Programming

1 Introduction

EUROPLEXUS (EPX) 1 is an industrial grade simulation software co-owned by the Commis-
sariat à l’Énergie Atomique et aux Énergies Alternatives (CEA) and the Joint Research Center
of the European Commission (EC/JRC). EPX si dedicated to the analysis of fast transient
phenomena involving structures and fluids in interaction. It is based on a space discretization
by means of Finite Elements, SPH Particles (Smooth Particle Hydrodynamics) or Discrete El-
ements for structures, or by means of Finite Elements, Finite Volumes or SPH Particles for
fluids. Time integration is achieved through a conditionally stable explicit scheme. The solving
algorithm is completely non-linear, at both geometric level (large displacements; large rotations)
and material level (constitutive laws implementing plasticity or damage for example). The pro-
gram provides a large number of kinematic links between entities, for instance for boundary
conditions, contact between structures or fluid-structure interaction. EPX is characterized by

1http ://www epx.cea.fr/
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its minimal use of non-physical parameters to enforce these links, such as penalty coefficients.
It relies on direct methods to compute the link forces whenever it is possible and otherwise, the
links are dualized by means of Lagrange Multipliers, the unknown forces being then deduced
from the resolution of an additional linear system.

EPX is parallelized with MPI for clusters. But today supercomputer nodes show complex
multi-core shared memory architectures. Relying on MPI for taking advantage of these multiple
core lead to extra memory usage (phantom cells) and complex code to support load balanc-
ing. Task oriented programming models for shared memory architectures, available through
programming environments like OpenMP, Intel TBB, Cilk or XKAAPI , offer an interesting
alternative. The user only needs to delimit the potential parallelism through tasks or loop it-
erations, the runtime taking care of distributing these tasks to cores, relying on dynamics load
balancing schedulers.

A large part of the computational cost in EPX classically occurs in the main loop iterating
over the simulation elements to update their state (75% of the execution time for the MARA2
dataset introduced in Section 4). The cost of iterations is not uniform, mostly due to the
different element formulations and materials co-existing within a single industrial model, but
also to changes in the physical state of the dynamic systems modifying the work load required
to compute the local equations. This calls for dynamics load balancing capable schedulers.
Data access patterns also show some irregularities: updating the state of a given element often
requires to access both its connected nodes and neighbor elements. The iterations of this main
loop being independent, it can easily be parallelized with a task oriented environment.

The cost of accessing the data can significantly impair the performance. It is important
to rely on data structures with a memory layout enabling to efficiently benefit from the cache
hierarchy. However, the data layout EPX works on is inherited from upstream software tools
used to mesh and partition the simulation domain. These tools can be different depending
on the users and the type of simulation targeted. The quality of the data layout regarding
the temporal and spatial locality is thus not ensured and can lead to numerous cache misses
impairing performance.

In this paper we propose to have each task build its own local data structure gathering
the data needed for processing the iteration range associated with this task. This lazy and
parallel layout construction leads to very localized code modifications, and neither affects the
global EPX data structure nor imposes constraints on the upstream tools for the simulation
preparation. Experiments show that the cost of constructing these task local data structures is
small compared to the compute cost and enables to significantly decrease the amount of cache
misses. Globally our solution can lead up to a 40% performance gain when the task size is set
to have the data fit in the L2 cache, compared to the simple loop parallelization on the original
data structure. Without code modification we can benefit from the scheduler’s dynamics load
balancing capabilities. We show that our approach increases the benefits of load balancing by
ensuring a strong locality of computation.

The remainder of the paper is organized as follows. In the second section we briefly present
the EPX data structure. Then, we introduce our GROUP approach for both sequential and par-
allel implementation in section 3. In section 4 we provide some numerical experiments designed
to evaluate the GROUP approach performance and we discuss the results. Section 5 concludes
the paper and explores future research directions to further improve our implementation.
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2 Dynamic Data Grouping

The EXP main loop iterates on the geometric elements that
describe the simulation domain, to advance the simulation by
one time step. Focusing on one element ei (Figure 1), carrying
out an elementary computation from start to finish requires
various data:

• ELEMENTARY data includes information allowing
the definition of the mesh element ei through its intrinsic
characteristics (deformation, internal variables. . . ).

• NODAL data includes information on the nodes of
each mesh element (displacement, velocity, acceleration,
forces. . . ).

• NEIGHBORHOOD data are variables that describe
fluxes between the element and its neighbor cells (ex-
change between Ngi and ei in Figure 1), whether in form
of energy or mass (for Eulerian or Arbitrary Lagrange
Euler formulations).

Figure 1:
Representation of a
mesh element ei and its
neighbors in 2D

These concepts are valid in either structure only, fluid only or fluid/structure. These different
data are stored in separate arrays. The order of the elements in these array is directly inherited
from the files EPX loads for initializing the simulation. We have no guarantee that this layout
will actually lead to an efficient use of the caching mechanism. The problem is amplified in a
parallel context where false sharing for instance, i.e. the concurrent write/write or read/write
of distinct data addresses but that belong to the same cache line, can lead to extra cache line
invalidations.

To improve data locality and thus on cache efficiency, we propose to rewrite the main loop
in 2 nested loops (Algo. 1). The outer loop iterates on GROUPS of elements (DO LOOP GR...)
, while the inner loop (DO IELOOP...) iterates on each element of the processed loop. Each
GROUP consists in a fixed number of elements.

This technique is thus based on a switch from the global structure of arrays layout (SOA) [9]
to a local one. Therefore, an hybrid model, balancing the former layout at the scale of the
different GROUPS and the array of structures layout at the scale of a single GROUP of elements,
has been used. This hybrid SOAOS [15] model promotes the memory locality since the EPX
code is based on a loop iterating over all the mesh elements.

To ensure that the inner loop can process the GROUP’s elements with a high data locality,
each outer loop iteration starts by filling a group data structure that consists in all elements
belonging to these GROUPS (ELEMENTARY data) as well as all NODAL and NEIGHBOR-
HOOD data that are required to update these elements (GROUP CONSTR routine). We consider
that two elements are neighbors if they share at least one common side on the grid mesh. We
determine the list of the cell neighbors by checking all the common sides with the adjacent cells.
Then, we check if the global indexes belong to the list of the elements of the current GROUP.
If this is not the case, it corresponds to extra data that does not belong to any other element
of the GROUP and thus needs to be explicitly added to the GROUP. However, there is no
need to copy the complete package for this added cell. We simply copy information ensuring
its neighbor role (information coming from the NEIGHBORHOOD data), because it is already
completely defined as a local element in another GROUP and therefore it is computed there.

Once the inner loop finished, the updated data are written back to the EPX global data
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structure (UPDATE routine). The elements in each GROUP correspond to consecutive indexes
in the EPX global data structure. A local index is used to indicate the rank of each element
relative to the other elements of the same GROUP. Beside reorganizing the main loop, we thus
also need to change the arguments of the subroutines called in the inner loop to access to the
GROUP’s data instead of the global data structure. Elementary operations inside subroutines
are kept intact.

1

Algorithm 1: The main iteration loop
rewritten with 2 nested loops working on
GROUPS

1 Subroutine COMPUTE(A)
2 ! Initialization step
3 NGR = NELEM NB ELT GR
4 IF (NGR×NB ELT GR < NELEM)

THEN
5 NGR = NGR+ 1
6 ENDIF

7 DO LOOP GR = 1, NGR

8 ISTART=1 + NB ELT GR
9 ×(LOOP GR− 1)

10 IEND = MIN(ISTART+NB ELT GR-1,
NELEM)

11 CALL GROUP CONSTR (A→ A′)
12 DO IELOOP = ISTART, IEND
13 CALL LOOPELM (A’)
14 ENDDO
15 CALL UPDATE (A′ ← A)

16 ENDDO

17 END SUBROUTINE COMPUTE

Algorithm 2: Skeleton of the
XKAAPI code used to paral-
lelize the outer loop on GROUPS
(Algo. 1)

1 Subroutine COMPUTE(A)
2 ! Initialization step
3 NGR = NELEM NB ELT GR
4 IF (NGR×NB ELT GR <

NELEM) THEN
5 NGR = NGR+ 1
6 ENDIF
7 Err =

KAAPIF SET GRAIN(. . . )
8 Err =

KAAPIF SET POLICY(. . . )
9 Err =

KAAPIF SET DISTIBUTION(. . . )
10 Err = KAAPIF FOREACH(. . . ,
11 & KAAPI GROUPS, . . . )
12 END SUBROUTINE

COMPUTE

3 Parallel Implementation

Our implementation relied on the XKAAPI task oriented programming environment2. XKAAPI
is a C++ library providing a low overhead work stealing scheduler. Parallelizing a loop
with independent iterations simply require to rely on the KAAPI FOREACH callback. The
KAAPIF SET POLICY function enables to control the scheduling algorithm used for paralleliz-
ing the loop. The scheduler can be set to be static. In this case the user specifies an initial
distribution pattern of the loop iterations through KAAPIF SET DISTIBUTION. A possibility is to
split the iteration range in p sub ranges, where p is the number of cores involved. When starting
the execution all cores are responsible to process one range. If the work stealing scheduler is
used, the actual parallelism is extracted on demand according to the core availability, leading
to a dynamics work load balancing. The scheduling algorithm works as follow: The first core
initially gets the full iteration range and starts processing the loop sequentially. When a core
becomes idle, it randomly selects a victim core. If this victim core is in charge of executing an

2https://gforge.inria.fr/projects/kaapi/
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iteration range, the idle core steals half of this iteration range. If the victim has no work to
steal, an other victim is randomly selected. A grain parameter (KAAPIF SET GRAIN) prevents
that an iteration range is split in two if too small, to avoid a performance degradation: the cost
of stealing would not be compensated by the extracted parallelism.

The work stealing scheduling algorithm has proven performance [3]. Today several parallel
programming environments like Cilk [2], TBB [12] or XKAAPI [8] rely on low overhead work
stealing schedulers. The decentralized model of work stealing enable to ensure a good scalability
at high core count in opposite to dynamics scheduler that rely on a centralized list cores refer to
when they need more work. We made the choice to rely on XKAAPI, but the implementation
could have been equally done with OpenMP. OpenMP offers all necessary constructs and several
OpenMP runtimes rely on work stealing schedulers. In particular the XKAAPI scheduler can
be used as runtime for OpenMP [4].

We first parallelized the original code (without group construction) with KAAPI FOREACH

on the loop on the elements. For the version with group construction (Algo. 1), the loop on
the groups (line 7) was parallelized with a KAAPI FOREACH (Algo. 2), the work inside a group
being sequentially executed by the core in charge of that group (Algo. 2). Thus in parallel
cores construct groups, compute the new states of the elements of their group accessing only
data local to their group and write back the updated new element values to the global data
structure. Because we expect that the work related to one group be sufficiently large, a grain
of one can be used: a core can steal an iteration loop to a victim if this victim has at least 2
iterations left (the one currently processed and one waiting to be executed).

4 Experiments

4.1 Environment and Use Cases

All experiments are performed on a machine with 4 eight-cores CPU Intel Xeon clocked at 2.2
Ghz (hyperthreading disabled). Each core has its own L1 and L2 cache (256 KB) . The L3
cache (16MB) is shared among the eight cores of each CPU. We use XKAAPI version 3.0.6 and
EUROPLEXUS development version. For all experiments, each thread is pinned on a different
core of the machine. For this reason, in the following the term core is also used to designate
the thread running on this core. All reported measures are the average over 5 runs to obtain
significantly stable values.

Figure 2: Gas bubble expansion and pressure waves in the early moment of the MARA 2
simulation

Experiments are based on the so called MARA2 simulation (Figure 2) named after an
experiment in the field of nuclear safety and consisting in the relaxation of an explosive in
a closed vessel. The fluid in the vessel is composed of a liquid covered with a gas, with a
compressed bubble of another explosive gas located at the center of the vessel. The pressure
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Figure 3: GROUP construction costs for dif-
ferent sizes for sequential and 32 threads runs
for Mara mdm

Figure 4: Elapsed time for different group
sizes for a sequential execution (Reference:
single loop, no group; GROUP: 2 nested
loops with GROUPS) for Mara mdm

in the elements is computed via an iterative system adjusting the volume fractions of each
component to balance the partial pressures. The cost is thus irregular and evolves during the
simulation as it depends on whether the cells are filled with a single fluid material or a mixture of
different fluids. We tested two variations of MARA2, Mara mdm composed of 271.615 elements
(about 61 MB), and a simulation with a finer meshing, Mara big, composed of 2.172.920 mesh
elements (about 495 MB).

4.2 Results

We first evaluate the cost of building a group for different group sizes. Figure 3 plots the
average time spent to build one group divided by the group size (Algo 1 routine GROUP CONSTR).
These performance results are obtained for both, a sequential run (single thread) and one run
parallelised on 32 threads. The results of both versions shows that the sequential version prevails
slightly the 32 threads one. This is due to the intensification of the memory traffic when a large
number of threads accesses simultaneously the shared memory. Notice that for the largest
group size the performance for the sequential an parallel run are identical. In this case we only
have one single group, and thus the parallel execution is reduced to a sequential one. This plot
mainly highlights that the cost of building very small groups is high will it stabilises around
10ms/MB for larger groups.

We now compare the execution time of the Reference execution that corresponds to the
original implementation using a single loop and no group, and the group execution that cor-
responds to the 2 nested loops with the group construction (Figure 4). In this last case the
execution time includes the cost of the group construction as well as the update of the elements
in the global EPX data structure. For group sizes above 0,25 MB, the GROUP version is about
35% faster than the reference one. The data rearrangement into each group leads to improved
performance, mainly due to a more efficient cache usage. This also occurs for the largest group
size where only one groupe is created. The variation of the GROUP version is closely related to
the cost of group construction (Figure 3). Overall, the overheads of group creation and update

6



Cache Aware Dynamics Data Layout for EPX Sridi, Raffin and Faucher

of EPX main data structures stay small enough to keep significant performance gains.
We now run tests with 32 threads using both Mara mdm (Figure 5) and Mara big dataset

(Figure 6). In each case we compare four different parallelizations: the Reference code (resp.
GROUP code) with a static data partitioning (Reference-static, resp Group-static) and with
work stealing enabled dynamic load balancing (Reference-steal, resp. Group-steal).

Figure 5: The elapsed time in the elementary loop with different GROUP sizes for a 32 threads
run using the Mara mdm dataset

Figure 6: The elapsed time in the elementary loop with different GROUP sizes for a 32 threads
run using the Mara big dataset

The work stealing enabled Reference version outperforms the static one by about 20% for
both, the Mara mdm and Mara big datasets. The GROUP code brings in most cases significant
performance gains over the Reference code, the work stealing version often being the best
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one. Notice in particular that the performance of the static version can be affected by a load
imbalance. For instance when there is only 63 groups (Figure 6) one thread has only one group
while all the other have 2 groups each, causing a major performance drop. Work stealing enables
to smooth this type of effect. It enables to take advantage of the uneven group processing time
by allocating unprocessed groups to the fastest cores.

The acceleration with 32 threads is about 21 if we compare the performance for the Mara big
dataset. It is 3 times greater than the reference acceleration. However, the speedup of the
Mara mdm (Figure 4 and figure 5) simulation is 2 times lower than the Mara big one. This
performance gap is due to the limited size of this dataset which reduces the parallelism that
could be extracted in this case.

Figure 7: The L2 cache misses measure-
ment within the EPX subroutines using the
Mara mdm dataset

Figure 8: The L2 cache misses measure-
ment within the EPX subroutines using the
Mara big dataset

We also looked at the average number of the L2 misses per core for the execution with 32
threads and groups of size 0.25 MB (L2 cache size) (Figure 7 and Figure 8). These L2 caches
misses numbers were obtained using LIKWID3 [14]. For each figure we provide the number for
the execution of the full COMPUTE routine (Algo. 1) as well as the execution of the inner loop
for the GROUP code (Algo. 1 DO IELOOP). The GROUP based approach enables to improve
the number of L2 cache misses by about 15%, with about 35% of the remaining cache misses
occurring in the inner loop, the others being spent when creating the groups (GROUP CONSTR

routine) and updating the main data structure. (UPDATE routine). The work stealing based
GROUP code generates slightly more cache misses than the static one. We attribute this to
the coherency management over the L2 private cache and the L3 cache caused by the data
migration during the steal operation.

Globally these results show that it pays off to dynamically build groups. The best results
are obtained when the groups can tightly fit into the L2 cache. This lead to many small groups,
enabling a fine grain load balancing but without the extra overheads that smaller groups lead
to. The performance with larger group sizes is less stable and more dependent on the data set.

3https://code.google.com/p/likwid/
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5 Related work

M. Wolf [16] worked on algorithms to reorder nested loop to improve the cache efficiency
by improving data locality. This approach requires changes in the code while working on
the bounds of the loops as well as on their bodies. It is not always applicable especially in
the case of codes with complex dependencies. M.Kandemir et al. [10] favored memory data
reorganisation using linear algebra techniques to perform transformations on the matrices of
data. P. Clauss [5] proposed a more general method based on polynomial transformations
applied to the data access. This requires the parameterisation of the loop bounds and the array
sizes. The advantage of these approaches based on the reorganization of data tables is that
the code modifications are restricted to the accessed data tables and do not affect the internal
routines. However, they require an a priori knowledge on the order of data accesses.

Other researchers have worked on the data reordering in the memory to promote the tem-
poral and the spatial locality. They apply specific algorithms of mesh elements renumbering
like the Cuthill McKee [11, 6, 7] algorithm used in some implementations of the mesh creator
tool CAST3M. This algorithm permutes the rows of a sparse matrix to reduce the required
bandwidth when accessing the data. The space filling curves (SFC) [13] are another way to
improve the cache use. They consist in projecting the multidimensional physical space in a one-
dimensional space, while maintaining as much as possible the spatial locality of elements. SFCs
require to reorganize the global data structure with a priori knowledge on the access pattern.
These methods are cache oblivious as the data layout is built independently of any specific
cache parameter. Cache oblivious algorithms can be very efficient, but often outperformed by
cache-aware approaches where the data layout is built knowing the cache parameters [17].

6 Conclusion

In this paper we propose to dynamically build groups gathering all the data needed for process-
ing a given iteration sub-range. This approach enables to significantly improve performance
while imposing only very local code modifications. We did not need to revisit the main data
structures of the simulation software. Experiments show that our approach can lead to 40%
performance increase on 32 cores when choosing groups that tightly fit in the L2 cache. We
expect that this approach can be used in other simulation software than EPX on loops whose
performance is impacted by excessive cache misses. Futur work will investigate the benefits of
this approach for architectures with scratch pad. Next generation of Xeon Phi processor will
have a NVRAM (the main memory) and a smaller high bandwidth RAM (the scratch pad). In
this case the user needs to explicitly control the data to be stored in the RAM [1]. We expect
that with minimal code modifications we can have our groups stored in the RAM while the
globale data structure is stored in NVRAM, enabling to efficiently take advantage of the higher
speed of the RAM.
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