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1 Introduction 
The meshless local Petrov-Galerkin approach [1], based on the local symmetric weak form 

(LSWF) and the moving least squares (MLS) approximation, is a truly numerical meshless 
method for solving boundary value problems. The primary advantage of this method over the 
extensively used mesh based method and other so-called meshless methods such as the diffuse 
element method [2], the element free Galerkin method [3], and the reproducing kernel particle 
method [4], is that it does not require a finite element mesh, either to interpolate the solution 
variables, or to integrate the energy. Recently, a meshless local boundary integral equation 
method [5] with the Houbolt finite difference scheme was successfully applied to solve 2D 
elastodynamic problems. 

The Finite Volume Meshless Local Petrov-Galerkin (FVMLPG) method [6] is a new 
meshless method for the discretization of conservation laws. The motivation for developing a 
new method is to unify advantages of meshless methods and Finite Volume Methods (FVM) in 
one scheme. Meshless methods are very flexible because they do not require using any mesh. 
The need for meshless methods will typically arise if problems with time dependent or very 
complicated geometries are under consideration because then the grid handling become 
technically complicated or very time consuming. The basic idea of the FVMLPG is to 
incorporate elements of Finite Volume methods into Meshless Local Petrov-Galerkin (MLPG) 
method. In this present study, the FVMLPG approach for solving problems in elastodynamics is 
developed. The method utilizes a local symmetric weak form (LSWF) and shape functions from 
the MLS approximation. In the present formulation, a generalized local weak form of the 
governing differential equation is represented by the finite volume method (FVM). The trial 
functions are approximated by the MLS approximation. The FVMLPG method for solving 
problems in elastodynamics is a truly meshless method, and needs absolutely no meshes of 
either the traditional mesh based type, either to interpolate the solution variables, or to integrate 
the energy. The formulation involves only domain and boundary integrals over very regular 

Abstract – A Finite Volume Meshless Local Petrov-Galerkin (FVMLPG) method is presented 
for elastodynamic problems. It is derived from the local weak form of the equilibrium equations 
by using the Finite Volume (FV) and the Meshless Local Petrov-Galerkin (MLPG) concepts. By 
incorporating the moving least squares (MLS) approximations for trial functions, the local weak 
form is discretized, and is integrated over the local subdomain. Numerical examples for solving 
the transient response of the elastic structures are included.  

Key words – Finite Volume (FV), Meshless Local Petrov-Galerkin (MLPG), Structural 
Transient Analysis 

1



subdomains and their boundaries. These integrals can be easily and directly evaluated over the 
very regular shapes of the subdomains and their boundaries. 

2 Finite Volume Meshless Local Petrov-Galerkin Method 
A generalized local weak form of the differential equation over a local sub-domain sΩ , can be 

written as 

( ), d 0
s

ij j i i if u vσ ρ
Ω

+ − Ω =∫ && .                                                        (1) 

Bc’s: i iu u=   on uΓ , iu : prescribed displacements, uΓ : displacements boundary     (2) 

i ij j it n tσ= =   on tΓ , it : prescribed tractions, jn : tΓ : traction boundary                             (3) 

Imposing the boundary conditions Eq. (2) and (3) in Eq. (1), one obtains 

( ), 0
s su st s

i i i i i i ij i j i i i i
L

t v d t v d t v d v f v u v dσ ρ
Γ Γ Ω

Γ + Γ + Γ − − − Ω =∫ ∫ ∫ ∫ &&     (4) 

In Eq. (4), there are two sets of local boundaries; one is the boundary which is completely inside 

of the global domain, shown by sL ; the other one is the boundary which has a common side 

with the boundary of the global domain, indicated by sΓ . If the common part is on the 

displacement boundary uΓ , it is called suΓ , in other words, su s uΓ = Γ ΓI ; and if the shared 

part is on the traction boundary tΓ  it is named stΓ  or in other words, st s tΓ = Γ ΓI . 

Therefore, a local symmetric weak form (LSWF) in linear elastodynamics can be written as 

,
s s su s st s

ij i j i i i i i i i i i i
L

v d t v d t v d u v d t v d f v dσ ρ
Ω Γ Ω Γ Ω

Ω − Γ − Γ + Ω = Γ + Ω∫ ∫ ∫ ∫ ∫ ∫&&     (5) 

With the constitutive relations of an isotropic linear elastic homogeneous solid, the tractions in 
Eq. (5) can be written in term of the strains 

s s su st s

i ijkl kl j ijkl kl j i i
L

u d E n d E n d t d f dρ ε ε
Ω Γ Γ Ω

Ω − Γ − Γ = Γ + Ω∫ ∫ ∫ ∫ ∫&&      (6) 

In Eq. (6), displacement and strain are approximated as 

( ) ( ) ( ) ( ) ( )
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i i
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where ( ) ( )xJΦ and ( ) ( )xKΦ  are the shape functions, ( )J
iu  and ( )K

klε  are displacement and 

strain in node I , respectively. By substituting Eq. (7) in Eq. (6), this equation can be discretized 
as 
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The advantage of Eq. (8) is that it does not contain any shape function derivative; because 
the meshless approximation is not efficient for calculating such derivative everywhere in the 
domain, especially when the MLS approximation is used. Hence, it is the benefit resulting from 
this work in comparison with the traditional MLPG [primal] displacement method; in other 
words, in the primal MLPG, the displacement is approximated directly, therefore the derivative 
of the shape function will appear in the discretized local form.  

3 Time integration 
The Newmark β method [7], well known and commonly applied in computations, is used in 

the present study to integrate the governing equations in time. The accelerations, the 
displacements and velocities are calculated from the standard Newmark β method, as 

   

( )

( )

2
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2

v v 1 γ a γa

t t t t t t t

t t t t t t
c

t
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∆
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                    (9) 

For zero damping system, this method is unconditionally stable if 

     
1

2β γ
2

≥ ≥                       (10) 

and conditionally stable if 

    
1

γ
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β
2
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1
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−
                    (11) 

where ωmax is the maximum frequency in the structural system. 

This method can be used in the predictor-corrector way. After specifying the initial conditions, 
the time integrations for each time increment can be done in the following steps. 

Step 1: predict the displacements and velocities 
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Step 2: predict the acceleration 
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Step 3: correct the displacements and velocities 
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Step 4: correct the acceleration 
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( )1

3

3 3

ˆˆ ˆa M f K u

ˆ ˆ ˆa a G G a

t t t t t t
c

t t t t T t t
c c

+∆ − +∆ +∆

+∆ +∆ +∆

= ⋅ − ⋅

= − ⋅ ⋅
 

6    Numerical example 
A computer code is developed in Matlab for this numerical procedure.  Consider a rod fixed 

rigidly at its base and subjected to a step-function loading 0f  at the upper end, as shown in Fig. 

1. The exact solution at any time t  can be obtained by Eqs. (14) and (15) representing the 
displacement and force distributions [8]. 

 
 

 
(a) 

 

 
(b) 

Figure  1 -  Rod subjected to end loading: (a) geometric configuration; (b) step-function 
loading 
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When solving the problem by the FVMLPG method, we took 24L = , 1E = , 1ρ = , 1A = , 

and ( ) ( )f t H t=  where ( )H t  is the Heaviside step function. The bar was divided into 49 

equally spaced nodes. The Newmark β method with the time step size, t∆ , equaled 1.0 sµ  is 

used in this example. The maximum frequency, maxω , is 0.0654 Hz. The axial displacement and 

force along the rod are shown in Fig. 3. The results indicate a very good agreement between the 
FVMLPG and the exact solution. 
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(a) t = 0.1 s 
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(b) t = 0.8 s 

Figure 2 - Axial displacement and axial force of the rod 

 

Figure 3 shows the comparison between the analytical solution of the time histories of the axial 
displacement and force at the midpoint (x = L/2) with the ones which computed with this 
scheme. It is clear the results of the FVMLPG in the axial displacement and force are very good 
in compare to the ones of the exact solutions. 
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Figure 3 - Axial force time history at the midpoint of the rod 

7 Conclusion 
A Finite Volume Meshless Local Petrov Galerkin (FVMLPG) method is developed for 

structural transient problems. The MLS is used for constructing the shape functions at the 
scattered points. Using with the Newmark scheme for time integration, a numerical treatment is 
developed for the enforcement of the kinematic boundary conditions, which is very effective, 
computationally. The numerical examples show the capability of the present FVMLPG method 
for simulating both the transient structural responses. It can be concluded that the present 
FVMLPG method has many distinct advantages. 
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