
HAL Id: hal-01419932
https://hal.science/hal-01419932

Submitted on 22 Dec 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A simple and accurate coupled HLL-type approximate
Riemann solver for the two-fluid two-pressure model of

compressible flows
Christophe Chalons

To cite this version:
Christophe Chalons. A simple and accurate coupled HLL-type approximate Riemann solver for the
two-fluid two-pressure model of compressible flows. International Journal on Finite Volumes, 2016.
�hal-01419932�

https://hal.science/hal-01419932
https://hal.archives-ouvertes.fr


A simple and accurate coupled HLL-type

approximate Riemann solver for the two-fluid

two-pressure model of compressible flows

C. Chalons∗

Abstract

This paper is concerned with the design of a very simple and efficient
Godunov-type method for the so-called two-fluid two-pressure compress-
ible model for two-phase flows. It is a contribution to the proceedings of a
workshop organized by the EDF R&D French utility company and devoted
to the verification of numerical schemes for two-phase flows. The present
study focuses on the convective part of the two-fluid two-pressure model
and is a short form of a longer paper [1] where the numerical strategy
also takes into account additional terms associated with sources, pressure
relaxation and drag forces. Numerical simulations and comparisons with
other strategies are proposed in the last section.

1 Introduction

This paper is concerned with the numerical approximation of the solutions of
the so-called two-fluid two-pressure model which was first proposed by Baer &
Nunziato [7] for granular energetic combustible materials embedded in gaseous
combustion products. Here, our basic motivation is the computation of com-
pressible and subsonic two-phase flows involved in the nuclear industry. We will
focus on the numerical approximation of the convective part of this model and
we will neglect here the pressure relaxation and drag force terms, the dissipation
terms due to laminar or turbulent viscosity, the heat conduction and the exter-
nal forces. Actually, the method proposed in the present paper is nothing but
a simplification of the Godunov-type method introduced in [1] where the full
model is treated and a particular attention is paid to the asymptotic properties
of the solutions when the source terms are stiff. Here, all these terms are set
to be zero. Said differently, the content of the present paper is not new but
already contained in [1] in a more complicated way since additional terms are
taken into account.

Mathematical and numerical studies of the model under consideration or
related ones are abundant in the literature and can be found in many papers
like (without any attempt to be exhaustive) Embid & Baer [23], Stewart &
Wendroff [54], Abgrall & Saurel [50], [51], Kapila et al. [39], Glimm et al. [31],
Abgrall & Saurel [50], Gavrilyuk & Saurel [30], Gallouët, Hérard & Seguin [29],
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Coquel, Gallouët, Hérard & Seguin [14], and more recently Ambroso, Chalons,
Coquel & Galié [2], Tokareva & Toro [56], Ambroso et al. [1], Coquel et al. [15],
[16], [17], [18], see also the references therein.

One of the main features of the two-fluid two-pressure model is to consider
two velocities u1 and u2 and two pressures p1 and p2 which are associated
with the two phases and are not necessarily equal. Unlike the so-called two-
fluid one-pressure models where the two pressures are equal, namely p = p1 =
p2 in the closure relations, this feature makes real (instead of complex) the
characteristic speeds of the model. Moreover, the model is always hyperbolic
in the subsonic regime of interest here. From a mathematical viewpoint, this
flow regime expresses that some of the eigenvalues do not coincide and that the
so-called resonance phenomenon does not occur, which turns out to be relevant
in the nuclear energy industry framework which motivates this work.

From a numerical point of view, the size of the model, its nonlinearities
and the presence of nonconservative products make pretty difficult the design of
cheap and efficient numerical schemes for approximating its solutions. Again,
the literature is large on this topic as briefly reported below, but let us observe
from now on that most of the proposed schemes are based on nonlinear exact or
approximate Riemann solvers and/or consider a specific choice for the interfacial
velocity uI involved in the governing equations. Here, our first objective is to
present a Godunov-type method based on an approximate Riemann solver which
is explicitly defined and able to consider a continuous set of interfacial velocities.
The simplicity and accuracy of the method make it well-adapted to the nuclear
industry.

Let us now briefly review some of the existing schemes for the two-fluid
two-pressure model. A first group of works is due to Saurel and collabora-
tors. Let us first mention that Saurel & Abgrall [50] and Andrianov, Saurel &
Warnecke [5] for instance (see also Saurel & Lemetayer [52] for a multidimen-
sional framework) take into account the nonconservative terms by means of a
free streaming physical condition associated with uniform velocity and pressure
profiles. The discretization technique of [50] is improved by the same authors in
[51]. Then, in Andrianov & Warnecke [6] and Schwendeman, Wahle & Kapila
[53], the common objective is to get exact solutions for the Riemann problem of
the model. The approach is inverse in [6] in the sense that the initial left and
right states are obtained as function of the intermediate states of the solution.
On the contrary, a direct iterative approach is used in [53] leading to exact so-
lutions of the Riemann problem for any initial left and right states. See also
the work of Deledicque & Papalexandris [22]. Another direct approach to con-
struct theoretical solutions is proposed in Castro & Toro [10]. In this work the
authors propose to solve the Riemann problem approximately assuming that all
the nonlinear characteristic fields are associated with rarefaction waves. More
recently, Tokareva & Toro propose in [56] a HLLC-type approximate Riemann
solver which takes into account all the seven waves that are naturally present
in the model, and that can be seen as a similar but faster approach in com-
parison to the exact solver proposed in [53]. Finally, all these (approximate or
exact) solutions are used to develop a Godunov-type method. At last, other
finite volumes methods have been used. For instance in Gallouët et al. [29] (see
also Guillemaud [34]), the approximation of the convective terms of the system
is based on the Rusanov scheme (Rusanov [49]) and the so-called VFRoe-ncv
scheme (Buffard et al. [9]), these strategies being adapted to the nonconser-
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vative framework, at least for systems where nonconservative products are not
active in genuinely nonlinear fields. In Munkejord [46] and Karni et al. [40], the
authors use Roe-type schemes. For additional theoretical and numerical studies
devoted to the two-fluid two-pressure model, we also refer to the recent works
[32], [55], [19], [45], [15], [16], [17], [18], [48], [44], [20], [24].

The outline of the paper is classical and as follows. Section 2 presents the
model under consideration. Section 3 gives the Godunov-type strategy and the
underlying explicit approximate Riemann solver. At last, Section 4 is concerned
with numerical experiments.

2 The model under consideration

We consider the following non conservative system of partial differential equa-
tions in one space dimension















∂tαk + uI∂xαk = 0,
∂t(αk̺k) + ∂x(αk̺kuk) = 0,
∂t(αk̺kuk) + ∂x(αk(̺ku

2
k + pk)) − pI∂xαk = 0,

∂t(αk̺kek) + ∂x(αk(̺kek + pk)uk)− pIuI∂xαk = 0,

(1)

where k = 1, 2. In these equations, αk, ̺k, uk, ek and pk denote the volume
fraction, density, velocity, specific total energy and pressure of the phase k, k =
1, 2. We assume that the phases are unmixable, which writes here

α1 + α2 = 1, (2)

and obey an equation of state of the form

pk = pk(̺k, εk), k = 1, 2, (3)

where εk = ek − u2
k/2 is the specific internal energy.

The nonconservative products pI∂xαk and pIuI∂xαk, where pI and uI have
to be defined, can be understood as coupling terms between two classical gas
dynamics systems of partial differential equations associated with the phases
k = 1, 2. They will play an important role in what follows.
Let us introduce the following condensed form for (1), namely

∂tU+ ∂xF(U) +B(U)∂xU = 0, (4)

where

U =





α1

U1

U2



 , Uk =





αk̺k
αk̺kuk

αk̺kek



 , (5)

F(U) =





0
F1(U1)
F2(U2)



 , Fk(Uk) =





αk̺kuk

αk(̺ku
2
k + pk)

αk(̺kek + pk)uk



 , (6)
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k, l = 1, 2, l 6= k, and

B(U) =





















uI :
0 :

−pI :
−pIuI :

0 :
pI :

pIuI :

O





















. (7)

Before defining the interfacial velocity and pressure uI and pI , let us first recall
the basic hyperbolicity properties of (1) (see for instance [29] for more details).
First of all, easy calculations show that the eigenvalues of the Jacobian matrix
F′(U)+B(U) are real and given by uI , uk, uk±ck, k = 1, 2, where ck denotes the
sound speed of the phase k. However, the system (1) is only weakly hyperbolic
since hyperbolicity can be lost when resonance occurs, that is to say when
uI = uk ± ck for some k. Moreover and away from resonance, the characteristic
fields associated with uk ± ck are genuinely nonlinear and the characteristic
field associated with uk is linearly degenerate. At last, the characteristic field
associated with uI is linearly degenerate provided that

uI = βu1 + (1− β)u2 with β =
χα1̺1

χα1̺1 + (1− χ)α2̺2
(8)

where χ ∈ [0, 1] is a constant. We will adopt this definition with χ = 0, 0.5, 1 in
the numerical experiments but any different value could be considered as well.
The interfacial pressure pI will be defined by

pI = µp1 + (1− µ)p2 with µ = µ(U) ∈ [0, 1]. (9)

The following definition of µ, namely

µ = µ(β) =
(1 − β)T2

βT1 + (1− β)T2

(10)

where Tk is the temperature of the phase k, is motivated by entropy considera-
tions. More precisely, given a monotonically decreasing and convex C1 function
φ = φ(s), it can be proved that the couple (η, q) with

η = η(U) =
2

∑

k=1

αk̺kφ(sk), q = q(U) =
2

∑

k=1

αk̺kφ(sk)uk (11)

defines a natural entropy-entropy flux pair in order to select the shock solutions
of (1). In other words, we impose the entropy inequality

∂η

∂t
+

∂q

∂x
≤ 0 (12)

in the distributional sense for a shock discontinuity to be admissible. As far as
discontinuities associated with linearly degenerate characteristic fields are con-
cerned, they are naturally parametrized thanks to a set of Riemann invariants.
We refer again to [29] for more details in the cases χ = 0, 0.5, 1.
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3 The numerical method

In this section, we describe a Godunov-type method based on the design of a
relevant approximate Riemann solver for the nonconservative system (4). We
will pay a particular attention to the discretization of the coupling wave be-
tween the two phases, which means here to the correct approximation of the
nonconservative products of the model.

We first introduce a constant space step ∆x and a constant time step ∆t, and
define the cell centers xi and the intermediate times tn by

xi = i∆x, i ∈ Z, tn = n∆t, n ∈ N.

We also set ∆ = (∆x,∆t) and denote by Un
i the approximate value of U(xi, tn)

and we set U0
i = U0(xi) for all i where U0 denotes the initial condition. Then,

starting from Un = (Un
i )i∈Z, it is a matter of defining the approximate solution

Un+1 at time tn+1.

Following Gallice [26], [27] and [28], we then briefly recall the notion of con-
sistency of a simple Riemann solver of the form

W∆(x/t;UL,UR) =







U1 = UL, x/t < σ1,
Uk, σk−1 < x/t < σk, k = 2, ..,m,
Um+1 = UR, x/t > σm.

(13)

Generically, such a solver is made ofm waves with speeds σk = σk(UL,UR), 1 ≤
k ≤ m, and m− 1 intermediate states Uk, 2 ≤ k ≤ m such that

lim
UL,UR → U

∆ → 0

W∆(x/t;UL,UR) = U. (14)

Under the CFL condition

max
1≤k≤m

|σk|
∆t

∆x
≤

1

2
, (15)

the Riemann solver (13) is said to be consistent with (4) if the following relation
holds true,

∆F+B∆(UL,UR)∆U =
m
∑

k=1

σk(Uk+1 −Uk), (16)

where ∆U = UR − UL, ∆F = F(UR) − F(UL) and B∆(UL,UR) is a p × p
matrix with

lim
UL,UR → U

∆ → 0

B∆(UL,UR) = B(U). (17)

Note that (16) allows to recover the usual definition of consistency for systems
of conservation laws when B = B∆ = O.
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Once such an approximate Riemann solver is designed, the Godunov-type method
is defined by

∆xUn+1
i =

∫ 0

−∆x

2

W∆(
x

∆t
;Un

i ,U
n
i+1)dx +

∫ ∆x

2

0

W∆(
x

∆t
;Un

i−1,U
n
i )dx, (18)

which equivalently writes

Un+1
i = Un

i −
∆t

∆x
(Gn

i+ 1

2

−Gn
i− 1

2

)−
∆t

2∆x

{

Bn
i− 1

2

(Un
i −Un

i−1)+

+Bn
i+ 1

2

(Un
i+1 −Un

i )
}

(19)

where

G∆(UL,UR) =
1

2

(

F(UL) + F(UR)−

m
∑

k=1

|σk|(Uk+1 −Uk)
)

(20)

and for all i

Gn
i+ 1

2

= G∆(U
n
i ,U

n
i+1), B

n
i+ 1

2

= B∆(U
n
i ,U

n
i+1). (21)

The proposed approximate Riemann solver. In order to design the ap-
proximate Riemann solver W∆, we suggest the following form

W∆ =





α1,∆

W1,∆

W2,∆



 (x/t;UL,UR) (22)

with

Wk,∆(x/t;UL,UR) =















Uk,L, x/t < σk,1,
U∗

k,L, σk,1 < x/t < σ2,
U∗

k,R, σ2 < x/t < σk,3,
Uk,R, x/t > σk,3,

(23)

and

αk,∆(x/t;UL,UR) =

{

αk,L, x/t < σ2,
αk,R, x/t > σ2,

(24)

where the wave speed estimates are taken to be






σk,1 = uk,L − Ck,L/̺k,L,
σk,2 = σ2 = u∗

I ,
σk,3 = uk,R + Ck,R/̺k,R.

(25)

Here, σk,1 and σk,3 are linearizations of the acoustic waves associated with each
phase (the constants Ck,L and Ck,R play the role of Lagrangian sound speeds)
and u∗

I is an approximation of the speed of propagation of the coupling wave.
Such an approximate solver can be understood as two coupled HLL solvers (see
[35]) for each phase. Note that throughout the paper, we will consider subsonic
flows leading to the following a priori given wave configuration,

σk,1 < u∗
I < σk,3.

6



In order to define u∗
I and the intermediate states, let us first observe that the

consistency relation (16) can be written as follows,























∆Fk −





0
p̃I

p̃Iu
∗
I



∆αk = σk,1(U
∗
k,L −Uk,L)+

+u∗
I(U

∗
k,R −U∗

k,L) + σk,3(Uk,R −U∗
k,R).

(26)

where p̃I is a consistent approximation of the interfacial pressure. Note that
(26) implicitly defines in passing the matrix B∆. These relations must be valid
for the sake of consistency, but are not sufficient to single out the intermediates
states. With this in mind, we first impose the Rankine-Hugoniot jump relations
for the mass conservation equation at each wave with speed σk,l, 1 ≤ l ≤ 3:







σk,1(̺
∗
k,L − ̺k,L) = ̺∗k,Lu

∗
k,L − ̺k,Luk,L,

σ2(αk,R̺
∗
k,R − αk,L̺

∗
k,L) = αk,R̺

∗
k,Ru

∗
k,R − αk,L̺

∗
k,Lu

∗
k,L,

σk,3(̺k,R − ̺∗k,R) = ̺k,Ruk,R − ̺∗k,Ru
∗
k,R.

(27)

Note that summing these equations gives the first component of the consistency
condition (26). Note also that (27) yields

{

σk,1 = uk,L − Ck,L/̺k,L = u∗
k,L − Ck,L/̺

∗
k,L,

σk,3 = uk,R + Ck,R/̺k,R = u∗
k,R + Ck,R/̺

∗
k,R,

(28)

and

jk
def
= αk,L̺

∗
k,L(u

∗
k,L − u∗

I) = αk,R̺
∗
k,R(u

∗
k,R − u∗

I). (29)

The momentum and energy equations will be treated in a slightly different way
since they contain the nonconservative products. We suggest to take these
nonconservative products into account across the coupling wave associated with
σ2 = u∗

I . More precisely, we impose the Rankine-Hugoniot jump relations for
the homogeneous momentum conservation equation across the acoustic waves
σk,1 and σk,3,

{

σk,1αk,L(̺
∗
k,Lu

∗
k,L − ̺k,Luk,L) = αk,L(̺

∗
k,Lu

∗2
k,L − ̺k,Lu

2
k,L) + Π∗

k,L −Πk,L,

σk,3αk,R(̺k,Ruk,R − ̺∗k,Ru
∗
k,R) = αk,R(̺k,Ru

2
k,R − ̺∗k,Ru

∗2
k,R) + Πk,R −Π∗

k,R,

(30)
and the generalized Rankine-Hugoniot relation

{

u∗
I(αk,R̺

∗
k,Ru

∗
k,R − αk,L̺

∗
k,Lu

∗
k,L) = αk,R̺

∗
k,Ru

∗2
k,R − αk,L̺

∗
k,Lu

∗2
k,L−

−p̃I(αk,R − αk,L) + Π∗
k,R −Π∗

k,L

(31)

across σ2. Again, (30) and (31) imply the validity of the second component of
the consistency relation (26), namely

{

∆(αk̺ku
2
k +Πk)− p̃I∆αk = σk,1αk,L(̺

∗
k,Lu

∗
k,L − ̺k,Luk,L)+

+u∗
I(αk,R̺

∗
k,Ru

∗
k,R − αk,L̺

∗
k,Lu

∗
k,L) + σk,3αk,R(̺k,Ruk,R − ̺∗k,Ru

∗
k,R).

Note that (30) involves some pressure linearization terms Π∗
k,L and Π∗

k,R which
are unknown at this stage and have to be defined.
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Let us now define the approximate interfacial velocity u∗
I . The definition (8) of

uI leads us to set

u∗
I = βLu

∗
1,L + (1− βL)u

∗
2,L, βL =

χα1,L̺
∗
1,L

χα1,L̺∗1,L + (1− χ)α2,L̺∗2,L

or equivalently

u∗
I = βRu

∗
1,R + (1− βR)u

∗
2,R, βR =

χα1,R̺
∗
1,R

χα1,R̺∗1,R + (1− χ)α2,R̺∗2,R
.

This amounts to set
χj1 + (1 − χ)j2 = 0. (32)

Calculation of (̺∗k,L, ̺
∗
k,R), (u∗

k,L, u
∗
k,R), (Π∗

k,L,Π
∗
k,R) for k = 1, 2, and u∗

I .

By simple but tedious calculations, the previous set of linear relations allow to
obtain the following formulas :























u∗
k,L =

(Ck,L − ̺k,Luk,L)jk + αk,LCk,L̺k,Lu
∗
I

̺k,L(αk,LCk,L − jk)
,

u∗
k,R =

(Ck,R + ̺k,Ruk,R)jk + αk,RCk,R̺k,Ru
∗
I

̺k,R(αk,RCk,R + jk)
,

(33)











u∗
I =

1

2((α1C1)a + (α2C2)a)
{(σ1,1 − σ1,3)j1 + (σ2,1 − σ2,3)j2+

+2((α1C1u1)a + (α2C2u2)a)−∆p} ,

(34)















1

̺∗k,L
=

1

̺k,L
+

u∗
k,L − uk,L

Ck,L

,

1

̺∗k,R
=

1

̺k,R
−

u∗
k,R − uk,R

Ck,R

,

and
{

Π∗
k,L = Πk,L − αk,LCk,L(u

∗
k,L − uk,L),

Π∗
k,R = Πk,R + αk,RCk,R(u

∗
k,R − uk,R).

(35)

In these formulas and in all the sequel, ϕa = 1

2
(ϕL + ϕR) will denote the arith-

metic average of any pair of quantities (ϕL, ϕR).

Calculation of (e∗k,L, e
∗
k,R) for k = 1, 2. First of all, the third component

of the consistency relation (26), which must be valid, reads

∆((αk̺kek +Πk)uk)− p̃Iu
∗
I∆αk = σk,1αk,L(̺

∗
k,Le

∗
k,L − ̺k,Lek,L)+

+u∗
I(αk,R̺

∗
k,Re

∗
k,R − αk,L̺

∗
k,Le

∗
k,L) + σk,3αk,R(̺k,Rek,R − ̺∗k,Re

∗
k,R),

(36)

or equivalently

∆(Πkuk)− p̃Iu
∗
I∆αk = (jk−αk,LCk,L)e

∗
k,L− (jk+αk,RCk,R)e

∗
k,R+2(αkCkek)a,

(37)
which gives one equation for each phase. A second equation is needed for each
phase and we proceed as follows. Like the momentum equation we are tempted
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to write the Rankine-Hugoniot jump relations for the homogeneous energy con-
servation equation at the acoustic waves. This is excluded since one would
obtain three conditions for two unknowns of each phase. Let us nevertheless
write these jump relations where we have replaced e∗k,l and e∗k,R by ēk,l and ēk,R
respectively; we find

σk,1αk,L(̺
∗
k,Lēk,L − ̺k,Lek,L) =

αk,L(̺
∗
k,Lēk,Lu

∗
k,L − ̺k,Lek,Luk,L) + Π∗

k,Lu
∗
k,L −Πk,Luk,L

and
σk,3αk,R(̺k,Rek,R − ̺∗k,Rēk,R) =

αk,R(̺k,Rek,Ruk,R − ̺∗k,Rēk,Ru
∗
k,R) + Πk,Ruk,R −Π∗

k,Ru
∗
k,R.

Using again (28), the above relations become










ēk,L = ek,L +
1

αk,LCk,L

(Πk,Luk,L −Π∗
k,Lu

∗
k,L),

ēk,R = ek,R +
1

αk,RCk,R

(Π∗
k,Ru

∗
k,R −Πk,Ruk,R).

(38)

In order to determine e∗k,L and e∗k,R, we suggest to solve an optimization problem.
Since the consistency relation (37) is of the form

a1e
∗
k,L − a2e

∗
k,R = b

with a1 = jk − αk,LCk,L, a2 = jk + αk,RCk,R and b = ∆(Πkuk) − p̃Iu
∗
I∆αk −

2(αkCkek)a, we minimize the quadratic functional

J(x, y) = (x− ēk,L)
2 + (y − ēk,R)

2

under the linear constraint
a1x− a2y = b1.

Clearly, this optimization problem has a unique solution (x = e∗k,L, y = e∗k,R)
given by



















e∗k,L = ēk,L +
a1

a21 + a22
(b− a1ēk,L + a2ēk,R),

e∗k,R = ēk,R −
a2

a21 + a22
(b− a1ēk,L + a2ēk,R).

The Riemann solver is therefore completely defined provided that we give p̃I .
We simply set

p̃I = µ̃(p1)a + (1 − µ̃)(p2)a with µ̃ = (1− χ)(α2ρ2T2)a. (39)

We have thus explicitly defined a simple approximate Riemann solver which
is able to deal with any interfacial velocity uI (χ ∈ [0, 1]) and which imposes
the validity of classical as well as generalized Rankine-Hugoniot relations across
the extreme and the coupling waves. These relations amount to impose the
continuity of some Riemann invariants across the discontinuities and will permit
in the next section to compute exactly some isolated coupling waves when the
pressure and velocity profiles are constant.

To conclude this section, let us mention that a key point for the efficiency
and stability of the scheme is that of the choice of the parameters Ck,L and
Ck,R. We refer the reader to [1] for more details but notice that for the sake of
simplicity, we have chosen in practice Ck,L = Ck,R, k = 1, 2.
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4 Numerical results

We consider three Riemann problems and compare the numerical solutions pro-
vided by our scheme with the exact solutions and the approximate solutions
given by the HLL-type method by Saurel & Abgrall [50], the strategy presented
in Andrianov, Saurel & Warnecke [5], the VFRoe scheme derived by Gallouët,
Hérard & Seguin [29], and the exact Godunov scheme of Schwendeman, Wahle
& Kapila [53]. The computational domain is [0, 1] and the equations of state are
pk = (γk − 1)ρkεk, k = 1, 2 with γ = γ1 = γ2 = 1.4. The initial discontinuity is
located at point x = 0.5 and the left and right states UL and UR are defined
using the primitive variables α1, ρk, uk and pk, k = 1, 2.

Test 1 : isolated coupling wave. We consider in this paragraph two isolated
coupling waves propagating with velocity uI . The first one (Test 1a) is taken
from [29] with χ = 0.5, which gives

uI =
α1ρ1u1 + α2ρ2u2

α1ρ1 + α2ρ2
,

and

α1,L = 0.9, (ρ1, u1, p1)L = (1, 100, 105) (ρ2, u2, p2)L = (1, 100, 105)
α1,R = 0.5, (ρ1, u1, p1)R = (0.125, 100, 105) (ρ2, u2, p2)R = (0.125, 100, 105).

Solutions are given on Fig. 1 and compared with the VFRoe scheme [29].
Observe that the constant velocity and pressure profiles are strictly preserved
(by construction), while the void fraction and density profiles present exactly
the same numerical diffusion for both schemes. Fig. 2 shows the solutions with
finer meshes.
Test 1b takes χ = 1 so that uI = u1. Initial conditions are taken from [6] and
given by

α1,L = 0.8, (ρ1, u1, p1)L = (2, 0.3, 5) (ρ2, u2, p2)L = (1, 2, 1)
α1,R = 0.3, (ρ1, u1, p1)R = (2, 0.3, 12.8567) (ρ2, u2, p2)R = (0.1941, 2.8011, 0.1).

Observe that the pressures and velocity u2 are not equal anymore. Solutions
are presented on Fig. 3. The results agree with the exact solutions and the
numerical solutions given in [6]. The small amplitude oscillations on ρ1 and u1

are due to the initial pressures and velocity u2 desequilibrium.

Test 2 : a general Riemann problem. We consider

α1,L = 0.8, (ρ1, u1, p1)L = (1, 0, 1) (ρ2, u2, p2)L = (0.2, 0, 0.3)
α1,R = 0.3, (ρ1, u1, p1)R = (1, 0, 1) (ρ2, u2, p2)R = (1, 0, 1).

so that the exact solution contains shock, contact discontinuity and rarefaction
waves, in addition to the coupling wave uI = u1. This test case is taken from [53]
and the final time is t = 0.2. Fig. 4 gives the results with 200, 400 and 800 cells.
We observe that the phase 2 presents a good agreement with the exact solution
while the phase 1 suffers from overshoots and undershoots at the extreme waves.
Fig. 5 details our results, while 6 enables to compare our solutions with the
solutions given by the schemes proposed in Saurel and Abgrall [50] (referred to
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Figure 1: Comparison between exact and numerical solutions of Test 1a at time
t = 3 and for a 1000-point mesh. From the top left to the bottom right : x
versus α1, ρ1, ρ2, u1, u2, p1, p2
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Figure 2: Comparison between exact and numerical solutions of Test 1a at time
t = 3 and for several mesh sizes. From the top left to the bottom right : x
versus α1, ρ1, ρ2

as GHLL), Andrianov et al. [5] (referred to as GASW ) and Schwendeman et al.
[53] (referred to as G1). Recall that the latter is based on the exact resolution
of the Riemann problem. The intermediate states are thus perfectly captured
with this method. We also observe that the GHLL method is the most diffusive
on this test case. The GASW method is less diffusive but the constant states of
the uI coupling wave are not properly captured. On the contrary, our scheme
behaves very well near the coupling wave and the left and right states are better
evaluated.

Test 3 : a general Riemann problem with several values of χ. We now
compare the solutions given by several values of χ (with the same initial data
as in Test 2), namely χ = 0, χ = 0.5 and χ = 1. Fig. 7 shows that unlike
with χ = 1, the solutions obtained with χ = 0 and χ = 0.5 do not exhibit
undershoots and overshoots near the acoustic waves. Interestingly, observe that
the three values of χ give very different solutions which highlights the interest
in a scheme capable of dealing with different values of χ.

5 Conclusion and perspectives

To conclude, this paper presents a Godunov-type method to approximate the
solutions of the two-fluid two-pressure diphasic model. We have considered only
the convective terms, while the original paper [1] also takes into account different
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Figure 3: Comparison between exact and numerical solutions of Test 1b at time
t = 0.1 and for several mesh sizes. From the top left to the bottom right : x
versus α1, ρ1, ρ2, u1, u2, p1, p2
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Figure 4: Comparison between exact and numerical solutions given by our
scheme of Test 2 at time t = 0.2 and for several mesh sizes. From the top
left to the bottom right : x versus α1, ρ1, ρ2, u1, u2, p1, p2

14



 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0  0.2  0.4  0.6  0.8  1

200 pts
exact

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 1.02

 1.04

 1.06

 1.08

 1.1

 0.3  0.35  0.4  0.45  0.5  0.55  0.6  0.65  0.7  0.75  0.8

200 pts
exact

 0.92

 0.94

 0.96

 0.98

 1

 1.02

 1.04

 1.06

 1.08

 1.1

 0  0.2  0.4  0.6  0.8  1

200 pts
exact

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.2  0.4  0.6  0.8  1

200 pts
exact

Figure 5: Behaviour of α1(x), p1(α1), ρ1(x), ρ2(x) with our scheme at time
t = 0.2 and for Test 2
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taken from [53] by courtesy of the authors. The curves are given by method
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sources and the corresponding asymptotic properties. The results given by the
method are very satisfying but the capabilities of the scheme would be further
emphasized by convergence studies with respect to the mesh size, and by an
extension of the method on 2D configurations.
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