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A simple and accurate coupled HLL-type approximate Riemann solver for the two-fluid two-pressure model of compressible flows

Introduction

This paper is concerned with the numerical approximation of the solutions of the so-called two-fluid two-pressure model which was first proposed by Baer & Nunziato [START_REF] Baer | A two phase mixture theory for the deflagration to detonation (DDT) transition in reactive granular materials[END_REF] for granular energetic combustible materials embedded in gaseous combustion products. Here, our basic motivation is the computation of compressible and subsonic two-phase flows involved in the nuclear industry. We will focus on the numerical approximation of the convective part of this model and we will neglect here the pressure relaxation and drag force terms, the dissipation terms due to laminar or turbulent viscosity, the heat conduction and the external forces. Actually, the method proposed in the present paper is nothing but a simplification of the Godunov-type method introduced in [START_REF] Ambroso | A Godunov-type method for the seven-equation model of compressible two-phase flow[END_REF] where the full model is treated and a particular attention is paid to the asymptotic properties of the solutions when the source terms are stiff. Here, all these terms are set to be zero. Said differently, the content of the present paper is not new but already contained in [START_REF] Ambroso | A Godunov-type method for the seven-equation model of compressible two-phase flow[END_REF] in a more complicated way since additional terms are taken into account.

Mathematical and numerical studies of the model under consideration or related ones are abundant in the literature and can be found in many papers like (without any attempt to be exhaustive) Embid & Baer [START_REF] Embid | Mathematical analysis of a two-phase continuum mixture theory[END_REF], Stewart & Wendroff [START_REF] Stewart | Two-phase flow : models and methods[END_REF], Abgrall & Saurel [START_REF] Saurel | A multiphase Godunov method for compressible multifluid and multiphase flows[END_REF], [START_REF] Saurel | Discrete equations for physical and numerical compressible multiphase mixtures[END_REF], Kapila et al. [START_REF] Kapila | Two phase modeling of DDT: structure of the velocity-relaxation zone[END_REF], Glimm et al. [START_REF] Glimm | Two phase flow modelling of a fluid mixing layer[END_REF], Abgrall & Saurel [START_REF] Saurel | A multiphase Godunov method for compressible multifluid and multiphase flows[END_REF], Gavrilyuk & Saurel [START_REF] Gavrilyuk | Mathematical and numerical modeling of twophase compressible flows with micro-inertia[END_REF], Gallouët, Hérard & Seguin [START_REF] Gallouët | Numerical modeling of two-phase flows using the two-fluid two-pressure approach[END_REF],

Coquel, Gallouët, Hérard & Seguin [START_REF] Coquel | Closure laws for a two-phase two-pressure model[END_REF], and more recently Ambroso, Chalons, Coquel & Galié [START_REF] Ambroso | Relaxation and numerical approximation of a two fluid two pressure diphasic model[END_REF], Tokareva & Toro [START_REF] Tokareva | HLLC-type Riemann solver for the Baer-Nunziato equations of compressible two-phase flow[END_REF], Ambroso et al. [START_REF] Ambroso | A Godunov-type method for the seven-equation model of compressible two-phase flow[END_REF], Coquel et al. [START_REF] Coquel | A Robust and Entropy-Satisfying Numerical Scheme for Fluid Flows in Discontinuous Nozzles[END_REF], [START_REF] Coquel | Two properties of two-velocity two-pressure models for two-phase flows[END_REF], [START_REF] Coquel | A robust entropy-satisfying finite volume scheme for the isentropic Baer-Nunziato model[END_REF], [START_REF] Coquel | A splitting method for the isentropic Baer-Nunziato two-phase flow model[END_REF], see also the references therein.

One of the main features of the two-fluid two-pressure model is to consider two velocities u 1 and u 2 and two pressures p 1 and p 2 which are associated with the two phases and are not necessarily equal. Unlike the so-called twofluid one-pressure models where the two pressures are equal, namely p = p 1 = p 2 in the closure relations, this feature makes real (instead of complex) the characteristic speeds of the model. Moreover, the model is always hyperbolic in the subsonic regime of interest here. From a mathematical viewpoint, this flow regime expresses that some of the eigenvalues do not coincide and that the so-called resonance phenomenon does not occur, which turns out to be relevant in the nuclear energy industry framework which motivates this work.

From a numerical point of view, the size of the model, its nonlinearities and the presence of nonconservative products make pretty difficult the design of cheap and efficient numerical schemes for approximating its solutions. Again, the literature is large on this topic as briefly reported below, but let us observe from now on that most of the proposed schemes are based on nonlinear exact or approximate Riemann solvers and/or consider a specific choice for the interfacial velocity u I involved in the governing equations. Here, our first objective is to present a Godunov-type method based on an approximate Riemann solver which is explicitly defined and able to consider a continuous set of interfacial velocities. The simplicity and accuracy of the method make it well-adapted to the nuclear industry.

Let us now briefly review some of the existing schemes for the two-fluid two-pressure model. A first group of works is due to Saurel and collaborators. Let us first mention that Saurel & Abgrall [START_REF] Saurel | A multiphase Godunov method for compressible multifluid and multiphase flows[END_REF] and Andrianov, Saurel & Warnecke [START_REF] Andrianov | A simple method for compressible multiphase mixtures and interfaces[END_REF] for instance (see also Saurel & Lemetayer [START_REF] Saurel | A multiphase model for compressible flows with interfaces, shocks, detonation waves and cavitation[END_REF] for a multidimensional framework) take into account the nonconservative terms by means of a free streaming physical condition associated with uniform velocity and pressure profiles. The discretization technique of [START_REF] Saurel | A multiphase Godunov method for compressible multifluid and multiphase flows[END_REF] is improved by the same authors in [START_REF] Saurel | Discrete equations for physical and numerical compressible multiphase mixtures[END_REF]. Then, in Andrianov & Warnecke [START_REF] Andrianov | The Riemann problem for the Baer-Nunziato two-phase flow model[END_REF] and Schwendeman, Wahle & Kapila [START_REF] Schwendeman | The Riemann problem and a high-resolution Godunov method for a model of compressible two-phase flow[END_REF], the common objective is to get exact solutions for the Riemann problem of the model. The approach is inverse in [START_REF] Andrianov | The Riemann problem for the Baer-Nunziato two-phase flow model[END_REF] in the sense that the initial left and right states are obtained as function of the intermediate states of the solution. On the contrary, a direct iterative approach is used in [START_REF] Schwendeman | The Riemann problem and a high-resolution Godunov method for a model of compressible two-phase flow[END_REF] leading to exact solutions of the Riemann problem for any initial left and right states. See also the work of Deledicque & Papalexandris [START_REF] Deledicque | An exact Riemann solver for compressible two-phase flow models containing non-conservative products[END_REF]. Another direct approach to construct theoretical solutions is proposed in Castro & Toro [START_REF] Castro | A Riemann solver and upwind methods for a two-phase flow model in nonconservative form[END_REF]. In this work the authors propose to solve the Riemann problem approximately assuming that all the nonlinear characteristic fields are associated with rarefaction waves. More recently, Tokareva & Toro propose in [START_REF] Tokareva | HLLC-type Riemann solver for the Baer-Nunziato equations of compressible two-phase flow[END_REF] a HLLC-type approximate Riemann solver which takes into account all the seven waves that are naturally present in the model, and that can be seen as a similar but faster approach in comparison to the exact solver proposed in [START_REF] Schwendeman | The Riemann problem and a high-resolution Godunov method for a model of compressible two-phase flow[END_REF]. Finally, all these (approximate or exact) solutions are used to develop a Godunov-type method. At last, other finite volumes methods have been used. For instance in Gallouët et al. [START_REF] Gallouët | Numerical modeling of two-phase flows using the two-fluid two-pressure approach[END_REF] (see also Guillemaud [34]), the approximation of the convective terms of the system is based on the Rusanov scheme (Rusanov [START_REF] Rusanov | Calculation of interaction of non-steady shock waves with obstacles[END_REF]) and the so-called VFRoe-ncv scheme (Buffard et al. [START_REF] Buffard | A sequel to a rough Godunov scheme. Application to real gas flows[END_REF]), these strategies being adapted to the nonconser-vative framework, at least for systems where nonconservative products are not active in genuinely nonlinear fields. In Munkejord [START_REF] Munkejord | Comparison of Roe-type methods for solving the two-fluid model with and without pressure relaxation[END_REF] and Karni et al. [START_REF] Karni | Compressible two-phase flows by central and upwind schemes[END_REF], the authors use Roe-type schemes. For additional theoretical and numerical studies devoted to the two-fluid two-pressure model, we also refer to the recent works [START_REF] Hérard | A fractional step method to compute a class of compressible gasliquid flows[END_REF], [START_REF] Thanh | A robust numerical method for approximating solutions of a model of two-phase flows and its properties[END_REF], [START_REF] Crouzet | On the Computation of the Baer-Nunziato Model, 42[END_REF], [START_REF] Liu | Contribution à la vérification et à la validation d'un modèle diphasique bifluide instationnaire[END_REF], [START_REF] Coquel | A Robust and Entropy-Satisfying Numerical Scheme for Fluid Flows in Discontinuous Nozzles[END_REF], [START_REF] Coquel | Two properties of two-velocity two-pressure models for two-phase flows[END_REF], [START_REF] Coquel | A robust entropy-satisfying finite volume scheme for the isentropic Baer-Nunziato model[END_REF], [START_REF] Coquel | A splitting method for the isentropic Baer-Nunziato two-phase flow model[END_REF], [START_REF] Rodio | Two-phase flow numerical simulation with real-gas effects and occurrence of rarefaction shock waves[END_REF], [START_REF] Liang | Solving seven-equation model for compressible two-phase flow using multiple GPUs[END_REF], [START_REF] Crouzet | Some Applications of a Two-Fluid Model, Finite Volumes for Complex Applications VII-Elliptic, Parabolic and Hyperbolic Problems[END_REF], [START_REF] Furfaro | A simple HLLC-type Riemann solver for compressible non-equilibrium two-phase flows[END_REF].

The outline of the paper is classical and as follows. Section 2 presents the model under consideration. Section 3 gives the Godunov-type strategy and the underlying explicit approximate Riemann solver. At last, Section 4 is concerned with numerical experiments.

The model under consideration

We consider the following non conservative system of partial differential equations in one space dimension

       ∂ t α k + u I ∂ x α k = 0, ∂ t (α k ̺ k ) + ∂ x (α k ̺ k u k ) = 0, ∂ t (α k ̺ k u k ) + ∂ x (α k (̺ k u 2 k + p k )) -p I ∂ x α k = 0, ∂ t (α k ̺ k e k ) + ∂ x (α k (̺ k e k + p k )u k ) -p I u I ∂ x α k = 0, (1) 
where k = 1, 2. In these equations, α k , ̺ k , u k , e k and p k denote the volume fraction, density, velocity, specific total energy and pressure of the phase k, k = 1, 2. We assume that the phases are unmixable, which writes here

α 1 + α 2 = 1, (2) 
and obey an equation of state of the form

p k = p k (̺ k , ε k ), k = 1, 2, (3) 
where ε k = e k -u 2 k /2 is the specific internal energy. The nonconservative products p I ∂ x α k and p I u I ∂ x α k , where p I and u I have to be defined, can be understood as coupling terms between two classical gas dynamics systems of partial differential equations associated with the phases k = 1, 2. They will play an important role in what follows. Let us introduce the following condensed form for (1), namely

∂ t U + ∂ x F(U) + B(U)∂ x U = 0, (4) 
where

U =   α 1 U 1 U 2   , U k =   α k ̺ k α k ̺ k u k α k ̺ k e k   , (5) 
F(U) =   0 F 1 (U 1 ) F 2 (U 2 )   , F k (U k ) =   α k ̺ k u k α k (̺ k u 2 k + p k ) α k (̺ k e k + p k )u k   , (6) 
k, l = 1, 2, l = k, and

B(U) =           u I : 0 : -p I : -p I u I : 0 : p I : p I u I : O           . ( 7 
)
Before defining the interfacial velocity and pressure u I and p I , let us first recall the basic hyperbolicity properties of (1) (see for instance [START_REF] Gallouët | Numerical modeling of two-phase flows using the two-fluid two-pressure approach[END_REF] for more details). First of all, easy calculations show that the eigenvalues of the Jacobian matrix F ′ (U)+B(U) are real and given by u

I , u k , u k ±c k , k = 1, 2
, where c k denotes the sound speed of the phase k. However, the system (1) is only weakly hyperbolic since hyperbolicity can be lost when resonance occurs, that is to say when u I = u k ± c k for some k. Moreover and away from resonance, the characteristic fields associated with u k ± c k are genuinely nonlinear and the characteristic field associated with u k is linearly degenerate. At last, the characteristic field associated with u I is linearly degenerate provided that

u I = βu 1 + (1 -β)u 2 with β = χα 1 ̺ 1 χα 1 ̺ 1 + (1 -χ)α 2 ̺ 2 (8) 
where χ ∈ [0, 1] is a constant. We will adopt this definition with χ = 0, 0.5, 1 in the numerical experiments but any different value could be considered as well. The interfacial pressure p I will be defined by

p I = µp 1 + (1 -µ)p 2 with µ = µ(U) ∈ [0, 1]. (9) 
The following definition of µ, namely

µ = µ(β) = (1 -β)T 2 βT 1 + (1 -β)T 2 (10) 
where T k is the temperature of the phase k, is motivated by entropy considerations. More precisely, given a monotonically decreasing and convex C 1 function φ = φ(s), it can be proved that the couple (η, q) with

η = η(U) = 2 k=1 α k ̺ k φ(s k ), q = q(U) = 2 k=1 α k ̺ k φ(s k )u k (11) 
defines a natural entropy-entropy flux pair in order to select the shock solutions of (1). In other words, we impose the entropy inequality

∂η ∂t + ∂q ∂x ≤ 0 ( 12 
)
in the distributional sense for a shock discontinuity to be admissible. As far as discontinuities associated with linearly degenerate characteristic fields are concerned, they are naturally parametrized thanks to a set of Riemann invariants. We refer again to [START_REF] Gallouët | Numerical modeling of two-phase flows using the two-fluid two-pressure approach[END_REF] for more details in the cases χ = 0, 0.5, 1.

The numerical method

In this section, we describe a Godunov-type method based on the design of a relevant approximate Riemann solver for the nonconservative system (4). We will pay a particular attention to the discretization of the coupling wave between the two phases, which means here to the correct approximation of the nonconservative products of the model.

We first introduce a constant space step ∆x and a constant time step ∆t, and define the cell centers x i and the intermediate times t n by

x i = i∆x, i ∈ Z, t n = n∆t, n ∈ N.
We also set ∆ = (∆x, ∆t) and denote by U n i the approximate value of U(x i , t n ) and we set U 0 i = U 0 (x i ) for all i where U 0 denotes the initial condition. Then, starting from U n = (U n i ) i∈Z , it is a matter of defining the approximate solution U n+1 at time t n+1 .

Following Gallice [START_REF] Gallice | Solveurs simples positifs et entropiques pour les systèmes hyperboliques avec terme source. (French) [Entropic Godunov-type schemes for hyperbolic systems with source term[END_REF], [START_REF] Gallice | Schémas positifs et solveurs de Riemann simples entropiques pour des systèmes hyperboliques avec terme source : application à la dynamique des gaz avec gravité[END_REF] and [START_REF] Gallice | Positive and entropy stable Godunov-type schemes for gas dynamics and MHD equations in Lagrangian or Eulerian coordinates[END_REF], we then briefly recall the notion of consistency of a simple Riemann solver of the form

W ∆ (x/t; U L , U R ) =    U 1 = U L , x/t < σ 1 , U k , σ k-1 < x/t < σ k , k = 2, .., m, U m+1 = U R , x/t > σ m . (13) 
Generically, such a solver is made of m waves with speeds

σ k = σ k (U L , U R ), 1 ≤ k ≤ m, and m -1 intermediate states U k , 2 ≤ k ≤ m such that lim U L , U R → U ∆ → 0 W ∆ (x/t; U L , U R ) = U. ( 14 
)
Under the CFL condition

max 1≤k≤m |σ k | ∆t ∆x ≤ 1 2 , (15) 
the Riemann solver ( 13) is said to be consistent with (4) if the following relation holds true,

∆F + B ∆ (U L , U R )∆U = m k=1 σ k (U k+1 -U k ), (16) 
where

∆U = U R -U L , ∆F = F(U R ) -F(U L ) and B ∆ (U L , U R ) is a p × p matrix with lim U L , U R → U ∆ → 0 B ∆ (U L , U R ) = B(U). (17) 
Note that [START_REF] Coquel | Two properties of two-velocity two-pressure models for two-phase flows[END_REF] allows to recover the usual definition of consistency for systems of conservation laws when

B = B ∆ = O.
Once such an approximate Riemann solver is designed, the Godunov-type method is defined by

∆xU n+1 i = 0 -∆x 2 W ∆ ( x ∆t ; U n i , U n i+1 )dx + ∆x 2 0 W ∆ ( x ∆t ; U n i-1 , U n i )dx, ( 18 
)
which equivalently writes

U n+1 i = U n i - ∆t ∆x (G n i+ 1 2 -G n i-1 2 ) - ∆t 2∆x B n i-1 2 (U n i -U n i-1 )+ +B n i+ 1 2 (U n i+1 -U n i ) (19) 
where

G ∆ (U L , U R ) = 1 2 F(U L ) + F(U R ) - m k=1 |σ k |(U k+1 -U k ) ( 20 
)
and for all i

G n i+ 1 2 = G ∆ (U n i , U n i+1 ), B n i+ 1 2 = B ∆ (U n i , U n i+1 ). (21) 
The proposed approximate Riemann solver. In order to design the approximate Riemann solver W ∆ , we suggest the following form

W ∆ =   α 1,∆ W 1,∆ W 2,∆   (x/t; U L , U R ) (22) 
with

W k,∆ (x/t; U L , U R ) =        U k,L , x/t < σ k,1 , U * k,L , σ k,1 < x/t < σ 2 , U * k,R , σ 2 < x/t < σ k,3 , U k,R , x/t > σ k,3 , (23) 
and

α k,∆ (x/t; U L , U R ) = α k,L , x/t < σ 2 , α k,R , x/t > σ 2 , (24) 
where the wave speed estimates are taken to be

   σ k,1 = u k,L -C k,L /̺ k,L , σ k,2 = σ 2 = u * I , σ k,3 = u k,R + C k,R /̺ k,R . (25) 
Here, σ k,1 and σ k,3 are linearizations of the acoustic waves associated with each phase (the constants C k,L and C k,R play the role of Lagrangian sound speeds) and u * I is an approximation of the speed of propagation of the coupling wave. Such an approximate solver can be understood as two coupled HLL solvers (see [START_REF] Harten | On upstream differencing and Godunov-type schemes for hyperbolic conservation laws[END_REF]) for each phase. Note that throughout the paper, we will consider subsonic flows leading to the following a priori given wave configuration,

σ k,1 < u * I < σ k,3 .
In order to define u * I and the intermediate states, let us first observe that the consistency relation ( 16) can be written as follows,

           ∆F k -   0 pI pI u * I   ∆α k = σ k,1 (U * k,L -U k,L )+ +u * I (U * k,R -U * k,L ) + σ k,3 (U k,R -U * k,R ). ( 26 
)
where pI is a consistent approximation of the interfacial pressure. Note that [START_REF] Gallice | Solveurs simples positifs et entropiques pour les systèmes hyperboliques avec terme source. (French) [Entropic Godunov-type schemes for hyperbolic systems with source term[END_REF] implicitly defines in passing the matrix B ∆ . These relations must be valid for the sake of consistency, but are not sufficient to single out the intermediates states. With this in mind, we first impose the Rankine-Hugoniot jump relations for the mass conservation equation at each wave with speed σ k,l , 1 ≤ l ≤ 3:

   σ k,1 (̺ * k,L -̺ k,L ) = ̺ * k,L u * k,L -̺ k,L u k,L , σ 2 (α k,R ̺ * k,R -α k,L ̺ * k,L ) = α k,R ̺ * k,R u * k,R -α k,L ̺ * k,L u * k,L , σ k,3 (̺ k,R -̺ * k,R ) = ̺ k,R u k,R -̺ * k,R u * k,R . (27) 
Note that summing these equations gives the first component of the consistency condition [START_REF] Gallice | Solveurs simples positifs et entropiques pour les systèmes hyperboliques avec terme source. (French) [Entropic Godunov-type schemes for hyperbolic systems with source term[END_REF]. Note also that ( 27) yields

σ k,1 = u k,L -C k,L /̺ k,L = u * k,L -C k,L /̺ * k,L , σ k,3 = u k,R + C k,R /̺ k,R = u * k,R + C k,R /̺ * k,R , (28) 
and

j k def = α k,L ̺ * k,L (u * k,L -u * I ) = α k,R ̺ * k,R (u * k,R -u * I ). ( 29 
)
The momentum and energy equations will be treated in a slightly different way since they contain the nonconservative products. We suggest to take these nonconservative products into account across the coupling wave associated with σ 2 = u * I . More precisely, we impose the Rankine-Hugoniot jump relations for the homogeneous momentum conservation equation across the acoustic waves σ k,1 and σ k,3 ,

σ k,1 α k,L (̺ * k,L u * k,L -̺ k,L u k,L ) = α k,L (̺ * k,L u * 2 k,L -̺ k,L u 2 k,L ) + Π * k,L -Π k,L , σ k,3 α k,R (̺ k,R u k,R -̺ * k,R u * k,R ) = α k,R (̺ k,R u 2 k,R -̺ * k,R u * 2 k,R ) + Π k,R -Π * k,R , (30) 
and the generalized Rankine-Hugoniot relation

u * I (α k,R ̺ * k,R u * k,R -α k,L ̺ * k,L u * k,L ) = α k,R ̺ * k,R u * 2 k,R -α k,L ̺ * k,L u * 2 k,L - -p I (α k,R -α k,L ) + Π * k,R -Π * k,L (31) 
across σ 2 . Again, [START_REF] Gavrilyuk | Mathematical and numerical modeling of twophase compressible flows with micro-inertia[END_REF] and [START_REF] Glimm | Two phase flow modelling of a fluid mixing layer[END_REF] imply the validity of the second component of the consistency relation [START_REF] Gallice | Solveurs simples positifs et entropiques pour les systèmes hyperboliques avec terme source. (French) [Entropic Godunov-type schemes for hyperbolic systems with source term[END_REF], namely

∆(α k ̺ k u 2 k + Π k ) -pI ∆α k = σ k,1 α k,L (̺ * k,L u * k,L -̺ k,L u k,L )+ +u * I (α k,R ̺ * k,R u * k,R -α k,L ̺ * k,L u * k,L ) + σ k,3 α k,R (̺ k,R u k,R -̺ * k,R u * k,R ).
Note that (30) involves some pressure linearization terms Π * k,L and Π * k,R which are unknown at this stage and have to be defined.

Let us now define the approximate interfacial velocity u *

I . The definition (8) of u I leads us to set

u * I = β L u * 1,L + (1 -β L )u * 2,L , β L = χα 1,L ̺ * 1,L χα 1,L ̺ * 1,L + (1 -χ)α 2,L ̺ * 2,L
or equivalently

u * I = β R u * 1,R + (1 -β R )u * 2,R , β R = χα 1,R ̺ * 1,R χα 1,R ̺ * 1,R + (1 -χ)α 2,R ̺ * 2,R
.

This amounts to set

χj 1 + (1 -χ)j 2 = 0. ( 32 
)
Calculation of (̺ * k,L , ̺ * k,R ), (u * k,L , u * k,R ), (Π * k,L , Π * k,R
) for k = 1, 2, and u * I . By simple but tedious calculations, the previous set of linear relations allow to obtain the following formulas :

           u * k,L = (C k,L -̺ k,L u k,L )j k + α k,L C k,L ̺ k,L u * I ̺ k,L (α k,L C k,L -j k ) , u * k,R = (C k,R + ̺ k,R u k,R )j k + α k,R C k,R ̺ k,R u * I ̺ k,R (α k,R C k,R + j k ) , (33) 
     u * I = 1 2((α 1 C 1 ) a + (α 2 C 2 ) a ) {(σ 1,1 -σ 1,3 )j 1 + (σ 2,1 -σ 2,3 )j 2 + +2((α 1 C 1 u 1 ) a + (α 2 C 2 u 2 ) a ) -∆p} , (34) 
       1 ̺ * k,L = 1 ̺ k,L + u * k,L -u k,L C k,L , 1 ̺ * k,R = 1 ̺ k,R - u * k,R -u k,R C k,R , 
and Π * k,L = Π k,L -α k,L C k,L (u * k,L -u k,L ), Π * k,R = Π k,R + α k,R C k,R (u * k,R -u k,R ). ( 35 
)
In these formulas and in all the sequel, ϕ a = 1 2 (ϕ L + ϕ R ) will denote the arithmetic average of any pair of quantities (ϕ L , ϕ R ).

Calculation of (e * k,L , e * k,R ) for k = 1, 2. First of all, the third component of the consistency relation [START_REF] Gallice | Solveurs simples positifs et entropiques pour les systèmes hyperboliques avec terme source. (French) [Entropic Godunov-type schemes for hyperbolic systems with source term[END_REF], which must be valid, reads

∆((α k ̺ k e k + Π k )u k ) -pI u * I ∆α k = σ k,1 α k,L (̺ * k,L e * k,L -̺ k,L e k,L )+ +u * I (α k,R ̺ * k,R e * k,R -α k,L ̺ * k,L e * k,L ) + σ k,3 α k,R (̺ k,R e k,R -̺ * k,R e * k,R ), ( 36 
)
or equivalently

∆(Π k u k ) -pI u * I ∆α k = (j k -α k,L C k,L )e * k,L -(j k + α k,R C k,R )e * k,R + 2(α k C k e k ) a , (37) 
which gives one equation for each phase. A second equation is needed for each phase and we proceed as follows. Like the momentum equation we are tempted to write the Rankine-Hugoniot jump relations for the homogeneous energy conservation equation at the acoustic waves. This is excluded since one would obtain three conditions for two unknowns of each phase. Let us nevertheless write these jump relations where we have replaced e * k,l and e * k,R by ēk,l and ēk,R respectively; we find

σ k,1 α k,L (̺ * k,L ēk,L -̺ k,L e k,L ) = α k,L (̺ * k,L ēk,L u * k,L -̺ k,L e k,L u k,L ) + Π * k,L u * k,L -Π k,L u k,L and σ k,3 α k,R (̺ k,R e k,R -̺ * k,R ēk,R ) = α k,R (̺ k,R e k,R u k,R -̺ * k,R ēk,R u * k,R ) + Π k,R u k,R -Π * k,R u * k,R .
Using again [START_REF] Gallice | Positive and entropy stable Godunov-type schemes for gas dynamics and MHD equations in Lagrangian or Eulerian coordinates[END_REF], the above relations become

     ēk,L = e k,L + 1 α k,L C k,L (Π k,L u k,L -Π * k,L u * k,L ), ēk,R = e k,R + 1 α k,R C k,R (Π * k,R u * k,R -Π k,R u k,R ). ( 38 
)
In order to determine e * k,L and e * k,R , we suggest to solve an optimization problem. Since the consistency relation ( 37) is of the form

a 1 e * k,L -a 2 e * k,R = b with a 1 = j k -α k,L C k,L , a 2 = j k + α k,R C k,R and b = ∆(Π k u k ) -pI u * I ∆α k - 2(α k C k e k ) a , we minimize the quadratic functional J(x, y) = (x -ēk,L ) 2 + (y -ēk,R ) 2 under the linear constraint a 1 x -a 2 y = b 1 .
Clearly, this optimization problem has a unique solution (x = e * k,L , y = e * k,R ) given by

         e * k,L = ēk,L + a 1 a 2 1 + a 2 2 (b -a 1 ēk,L + a 2 ēk,R ), e * k,R = ēk,R - a 2 a 2 1 + a 2 2 (b -a 1 ēk,L + a 2 ēk,R ).
The Riemann solver is therefore completely defined provided that we give pI . We simply set

pI = μ(p 1 ) a + (1 -μ)(p 2 ) a with μ = (1 -χ)(α 2 ρ 2 T 2 ) a . (39) 
We have thus explicitly defined a simple approximate Riemann solver which is able to deal with any interfacial velocity u I (χ ∈ [0, 1]) and which imposes the validity of classical as well as generalized Rankine-Hugoniot relations across the extreme and the coupling waves. These relations amount to impose the continuity of some Riemann invariants across the discontinuities and will permit in the next section to compute exactly some isolated coupling waves when the pressure and velocity profiles are constant.

To conclude this section, let us mention that a key point for the efficiency and stability of the scheme is that of the choice of the parameters C k,L and C k,R . We refer the reader to [START_REF] Ambroso | A Godunov-type method for the seven-equation model of compressible two-phase flow[END_REF] for more details but notice that for the sake of simplicity, we have chosen in practice

C k,L = C k,R , k = 1, 2.

Numerical results

We consider three Riemann problems and compare the numerical solutions provided by our scheme with the exact solutions and the approximate solutions given by the HLL-type method by Saurel & Abgrall [START_REF] Saurel | A multiphase Godunov method for compressible multifluid and multiphase flows[END_REF], the strategy presented in Andrianov, Saurel & Warnecke [START_REF] Andrianov | A simple method for compressible multiphase mixtures and interfaces[END_REF], the VFRoe scheme derived by Gallouët, Hérard & Seguin [START_REF] Gallouët | Numerical modeling of two-phase flows using the two-fluid two-pressure approach[END_REF], and the exact Godunov scheme of Schwendeman, Wahle & Kapila [START_REF] Schwendeman | The Riemann problem and a high-resolution Godunov method for a model of compressible two-phase flow[END_REF]. The computational domain is [0, 1] and the equations of state are

p k = (γ k -1)ρ k ε k , k = 1, 2 with γ = γ 1 = γ 2 = 1.4.
The initial discontinuity is located at point x = 0.5 and the left and right states U L and U R are defined using the primitive variables α 1 , ρ k , u k and p k , k = 1, 2.

Test 1 : isolated coupling wave. We consider in this paragraph two isolated coupling waves propagating with velocity u I . The first one (Test 1a) is taken from [START_REF] Gallouët | Numerical modeling of two-phase flows using the two-fluid two-pressure approach[END_REF] with χ = 0.5, which gives

u I = α 1 ρ 1 u 1 + α 2 ρ 2 u 2 α 1 ρ 1 + α 2 ρ 2 ,
and

α 1,L = 0.9, (ρ 1 , u 1 , p 1 ) L = (1, 100, 10 5 ) (ρ 2 , u 2 , p 2 ) L = (1, 100, 10 5 ) α 1,R = 0.5, (ρ 1 , u 1 , p 1 ) R = (0.125, 100, 10 5 ) (ρ 2 , u 2 , p 2 ) R = (0.125, 100, 10 5 ). 
Solutions are given on Fig. 1 and compared with the VFRoe scheme [START_REF] Gallouët | Numerical modeling of two-phase flows using the two-fluid two-pressure approach[END_REF]. Observe that the constant velocity and pressure profiles are strictly preserved (by construction), while the void fraction and density profiles present exactly the same numerical diffusion for both schemes. Fig. 2 shows the solutions with finer meshes. Test 1b takes χ = 1 so that u I = u 1 . Initial conditions are taken from [START_REF] Andrianov | The Riemann problem for the Baer-Nunziato two-phase flow model[END_REF] and given by α 1,L = 0.8, (ρ 1 , u 1 , p 1 ) L = (2, 0.3, 5) (ρ 2 , u 2 , p 2 ) L = (1, 2, 1) α 1,R = 0.3, (ρ 1 , u 1 , p 1 ) R = (2, 0.3, 12.8567) (ρ 2 , u 2 , p 2 ) R = (0.1941, 2.8011, 0.1).

Observe that the pressures and velocity u 2 are not equal anymore. Solutions are presented on Fig. 3. The results agree with the exact solutions and the numerical solutions given in [START_REF] Andrianov | The Riemann problem for the Baer-Nunziato two-phase flow model[END_REF]. The small amplitude oscillations on ρ 1 and u 1 are due to the initial pressures and velocity u 2 desequilibrium.

Test 2 : a general Riemann problem. We consider

α 1,L = 0.8, (ρ 1 , u 1 , p 1 ) L = (1, 0, 1) (ρ 2 , u 2 , p 2 ) L = (0.2, 0, 0.3) α 1,R = 0.3, (ρ 1 , u 1 , p 1 ) R = (1, 0, 1) (ρ 2 , u 2 , p 2 ) R = (1, 0, 1).
so that the exact solution contains shock, contact discontinuity and rarefaction waves, in addition to the coupling wave u I = u 1 . This test case is taken from [START_REF] Schwendeman | The Riemann problem and a high-resolution Godunov method for a model of compressible two-phase flow[END_REF] and the final time is t = 0.2. Fig. 4 gives the results with 200, 400 and 800 cells. We observe that the phase 2 presents a good agreement with the exact solution while the phase 1 suffers from overshoots and undershoots at the extreme waves. Fig. 5 details our results, while 6 enables to compare our solutions with the solutions given by the schemes proposed in Saurel and Abgrall [START_REF] Saurel | A multiphase Godunov method for compressible multifluid and multiphase flows[END_REF] as G HLL ), Andrianov et al. [START_REF] Andrianov | A simple method for compressible multiphase mixtures and interfaces[END_REF] (referred to as G ASW ) and Schwendeman et al. [START_REF] Schwendeman | The Riemann problem and a high-resolution Godunov method for a model of compressible two-phase flow[END_REF] (referred to as G 1 ). Recall that the latter is based on the exact resolution of the Riemann problem. The intermediate states are thus perfectly captured with this method. We also observe that the G HLL method is the most diffusive on this test case. The G ASW method is less diffusive but the constant states of the u I coupling wave are not properly captured. On the contrary, our scheme behaves very well near the coupling wave and the left and right states are better evaluated.

Test 3 : a general Riemann problem with several values of χ. We now compare the solutions given by several values of χ (with the same initial data as in Test 2), namely χ = 0, χ = 0.5 and χ = 1. Fig. 7 shows that unlike with χ = 1, the solutions obtained with χ = 0 and χ = 0.5 do not exhibit undershoots and overshoots near the acoustic waves. Interestingly, observe that the three values of χ give very different solutions which highlights the interest in a scheme capable of dealing with different values of χ.

Conclusion and perspectives

To conclude, this paper presents a Godunov-type method to approximate the solutions of the two-fluid two-pressure diphasic model. We have considered only the convective terms, while the original paper [START_REF] Ambroso | A Godunov-type method for the seven-equation model of compressible two-phase flow[END_REF] Figure 6: Behaviour of α 1 (x), p 1 (α 1 ), ρ 1 (x), ρ 2 (x) (respectively denoted by α, p, ρ and ρ on the picture) at time t = 0.2 and for Test 2. These pictures are taken from [START_REF] Schwendeman | The Riemann problem and a high-resolution Godunov method for a model of compressible two-phase flow[END_REF] by courtesy of the authors. The curves are given by method G HLL (blue), G ASW (green) and G 1 (red). The exact solution appears in black.

sources and the corresponding asymptotic properties. The results given by the method are very satisfying but the capabilities of the scheme would be further emphasized by convergence studies with respect to the mesh size, and by an extension of the method on 2D configurations.
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 2 Figure 2: Comparison between exact and numerical solutions of Test 1a at time t = 3 and for several mesh sizes. From the top left to the bottom right : x versus α 1 , ρ 1 , ρ 2
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 5 Figure 5: Behaviour of α 1 (x), p 1 (α 1 ), ρ 1 (x), ρ 2 (x) with our scheme at time t = 0.2 and for Test 2
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