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Diffusion approximation for random parabolic

operators with oscillating coefficients

Marina Kleptsyna‡ Andrey Piatnitski § and Alexandre Popier‡

December 20, 2016

Abstract

We consider Cauchy problem for a divergence form second order
parabolic operator with rapidly oscillating coefficients that are peri-
odic in spatial variables and random stationary ergodic in time. As
was proved in [24] and [12] in this case the homogenized operator is
deterministic. The paper focuses on non-diffusive scaling, when the
oscillation in spatial variables is faster than that in temporal variable.
Our goal is to study the asymptotic behaviour of the normalized differ-
ence between solutions of the original and the homogenized problems.

1 Introduction

In this work we consider the asymptotic behaviour of solutions to the
following Cauchy problem

(1)

∂

∂t
uε = div

[
a
(x
ε
,
t

εα

)
∇uε

]

uε(x, 0) = ϕ(x).
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Here ε is a small positive parameter that tends to zero, α satisfies the in-
equality 0 < α < 2, a(z, s) is a positive definite matrix whose entries are
periodic in z variable and random stationary ergodic in s.

It is known (see [24, 12]) that this problem admits homogenization and
that the homogenized operator is deterministic and has constant coefficients.
The homogenized Cauchy problem takes the form

(2)

∂

∂t
u0 = div(aeff∇u0)

u0(x, 0) = ϕ(x).

The formula for the effective matrix aeff can be found in [12].
The goal of this paper is to study the limit behaviour of the difference

uε − u0, as ε→ 0.
In the existing literature there is a number of works devoted to homog-

enization of random parabolic problems. The results obtained in [15] and
[19] for random divergence form elliptic operators also apply to the parabolic
case. In the presence of large lower order terms the limit dynamics might
remain random and show diffusion or even more complicated behaviour. The
papers [5], [20], [14] focus on the case of time dependent parabolic operators
with periodic in spatial variables and random in time coefficients. The fully
random case has been studied in [21], [3], [4], [10].

One of the important aspects of homogenization theory is estimating the
rate of convergence. For random operators the first estimates have been
obtained in [22]. Further important progress in this direction was achieved
in the recent works [9], [8].

Problem (1) in the case of diffusive scaling α = 2 was studied in our
previous work [13]. It was shown that, under proper mixing conditions, the
difference uε−u0 is of order ε, and that the normalized difference ε−1(uε−u0)
after subtracting an appropriate corrector, converges in law to a solution of
some limit SPDE.

In the present paper we consider the case 0 < α < 2. In other words,
bearing in mind the diffusive scaling, we assume that the oscillation in spatial
variables is faster than that in time. In this case the principal part of the
asymptotics of uε−u0 consists of a finite number of correctors, the oscillating
part of each of them being a solution of an elliptic PDE with periodic in spa-
tial variable coefficients. The number of correctors increases as α approaches
2. After subtracting these correctors, the resulting expression divided by εα/2

converges in law to a solution of the limit SPDE.
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The case α > 2 will be considered elsewhere.
The paper is organized as follows. In Section 2 we introduce the studied

problem and provide all the assumptions. Then we formulate the main results
of the paper.

In Section 3 we consider a number of auxiliary problems and define the
higher order terms of the asymptotics of solution.

Section 4 focuses on the proof of Theorem 1.
In Section 5 we consider the special case of diffusive dependence on time.

Namely, we assume that a(z, s) = a(z, ξs) where ξ is a stationary diffusion
process in Rn and a(z, y) is a periodic in z smooth deterministic function. It
should be emphasized that in the said diffusive case Theorem 1 does not apply
because the coefficients aij do not possess the required regularity in time.
That is why in the diffusive case we provide another proof of convergence
which is based on the Itô calculus and an estimate based on anticipating
stochastic integral.

In Section 6 we justify this estimate using anticipating calculus and the
properties of the fundamental solution of a stochastic parabolic equation
with random coefficients. The construction and the required properties of
the fundamental solution are postponed in the Appendix.

2 Problem setup and main results

In this section we provide all the assumptions on the data of problem (1),
introduce some notations and formulate the main results.

The studied Cauchy problem reads

(3)

∂

∂t
uε = div

[
a
(x
ε
,
t

εα

)
∇uε

]
in R

d × (0, T ]

uε(x, 0) = ϕ(x);

here ε is a small positive parameter. Our aim is to study the behaviour of a
solution uε as ε → 0.

We assume that the following conditions hold true:

c1. the matrix a(z, s) = {aij(z, s)}
d

i,j=1
is symmetric and satisfies uniform

ellipticity conditions

λ|ζ |2 ≤ a(z, s)ζ · ζ ≤ λ−1|ζ |2, ζ ∈ R
d, λ > 0;
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c2. the coefficients aij(z, s) are periodic in z with the period [0, 1]d and
random stationary ergodic in s. Given a probability space (Ω,F ,P)
with an ergodic dynamical system τs, we assume that aij(z, s, ω) =

a
ij(z, τsω), where {aij(z, ω)}

d

i,j=1
is a collection of random periodic in

z functions that satisfy the above uniform ellipticity conditions.

c3. The realizations aij(z, s) are smooth. For any N ≥ 1 and k ≥ 2 there
exist CN,k such that

E ‖aij‖kCN (Td×[0,1]) ≤ CN,k;

here and in what follows we identify periodic functions with functions
on the torus Td, E stands for the expectation.

c4. ϕ ∈ C∞
0 (Rd). In fact, this condition can be essentially relaxed, see

Remark 1.

c5. Mixing condition. The strong mixing coefficient γ(r) of a(z, ·) satisfies
the inequality ∫ ∞

0

(γ(r))1/2dr <∞.

For the reader’s convenience we recall here the definition of strong mixing
coefficient. Let F≤s and F≥s be the σ-algebras generated by {a(z, t) : z ∈
Td, t ≤ s} and {a(z, t) : z ∈ Td, t ≥ s}, respectively. We set

γ(r) = sup
∣∣P(A ∩ B)−P(A)P(B)

∣∣,

where the supremum is taken over all A ∈ F≤0 and B ∈ F≥r.
According to [12] the sequence uε converges in probability, as ε → 0, to

a solution u0 of problem (2).
In order to formulate the main results we also need a number of auxiliary

functions and quantities. The first auxiliary problem reads

(4) div
(
a(z, s)∇χ0(z, s)

)
= −div a(z, s), z ∈ T

d;

here s and ω are parameters. It has a unique up to an additive constant
periodic solution. This constant is chosen in such a way that

(5)

∫

Td

χ0(z, s) dz = 0 for all s and ω.
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Then, for j = 1, 2, . . . , J0 with J0 = ⌊ α
2(2−α)

⌋+1, the higher order correctors
are introduced as periodic solutions to the equations

(6) div
(
a(z, s)∇χj(z, s)

)
= ∂sχ

j−1(z, s),

where ⌊·⌋ stands for the integer part. Due to (5) for j = 1 this equation is
solvable in the space of periodic in z functions. A solution χ1 is uniquely
defined up to an additive constant. Choosing the constant in a proper way
yields ∫

Td

χ1(z, s) dz = 0 for all s and ω

and thus the solvability of the equation for χ2. Iterating this procedure, we
define all χj , j = 1, 2, . . . , J0.

Next, we introduce the functions uj = uj(x, t), j = 1, . . . , J0. Recall that
u0 has been defined in (2). Functions uj solve the following problems:

(7)

∂

∂t
uj = div(aeff∇uj) +

j∑

k=1

ak,eff
∂2

∂x2
uj−k

uj(x, 0) = 0

with

ak,eff = E

∫

Td

a(z, s)∇χk(z, s) dz.

To characterize the diffusive term in the limit equation we introduce the
matrix

Ξ(s) =

∫

Td

[(
a(z, s) + a(z, s)∇χ0(z, s)

)
−E

(
a(z, s) + a(z, s)∇χ0(z, s)

)]
dz.

By construction the function Ξ is stationary and satisfies condition c5. De-
note

Λ =
1

2

∫ ∞

0

E
(
Ξ(s)⊗ Ξ(0) + Ξ(0)⊗ Ξ(s)

)
ds,

where (Ξ(s) ⊗ Ξ(0))ijkl = Ξij(s)Ξkl(0). Under condition c5. the integral on
the right-hand side converges.

The first main result of this paper is
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Theorem 1 Let conditions c1–c5 be fulfilled, and assume that α < 2. Then
the functions

Uε = ε−α/2
(
uε − u0 −

J0∑

j=0

εj(2−α)uj
)

converge in law, as ε → 0, in L2(Rd × (0, T )) to a solution of the following
SPDE

(8)
dv0 = div(aeff∇v0) dt+ Λ

∂2

∂x2
u0 dWt

v0(x, 0) = 0;

where W· is the standard d2-dimensional Brownian motion.

3 Auxiliary problems

We begin by considering problem (4). This equation has a unique up
to an additive constant periodic solution. Since χ0(·, s) only depends on
a(·, s), the solution with zero average is stationary, and the strong mixing
coefficient of the pair (a(·, s), χ(·, s)) is the same as that for a(·, s). By the
classical elliptic estimates (see [7]), under our standing assumptions we have

(9) ‖χ0‖L∞(Td×(0,∞)) ≤ C, E‖χ0‖NCk(Td×[0,1]) ≤ Ck,N .

By the similar arguments, solutions χj of equations (6) are stationary, satisfy
strong mixing condition with the same coefficient γ(r), and the following
estimates hold:

(10) E‖χj‖NCk(Td×[0,1]) ≤ Ck,N .

Solutions u0 and uj of problems (2) and (7) are smooth functions. More-
over, for any k = (k0, k1, . . . , kd) and N > 0 there exists a constant Ck,N

such that

(11) |Dkuj | ≤ Ck,N(1 + |x|)−N ,

where Dkf(x, t) =
∂k0

∂tk0
∂k1

∂xk11
. . .

∂kd

∂xkdd
f(x, t).
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Next, we write down the following ansatz

V ε(x, t) = ε−α/2
{
uε(x, t)−

J0∑

k=0

εkδ
(
uk(x, t)+

J0−k∑

j=0

ε(jδ+1)χj
(x
ε
,
t

εα

)
∇uk(x, t)

)}
,

here and in what follows the symbol δ stands for 2− α.

4 Proof of Theorem 1

In this section we prove Theorem 1. Denote

â0(z, s) = a(z, s) + a(z, s)∇χ0(z, s) +∇
(
a(z, s)χ0(z, s)

)
,

âk(z, s) = a(z, s)∇χk(z, s) +∇
(
a(z, s)χk(z, s)

)
, k = 1, 2, . . . ,

and

âk,eff = E

∫

Td

[
âk(z, s)

]
dz, k = 1, 2, . . .

Substituting V ε for uε in (3) and taking into account (6), (2) and (7) yields

(12)

∂tV
ε− div

[
a
(x
ε
,
t

εα

)
∇V ε

]
= ε−α/2

J0∑

j=0

εjδ
[
â0
(x
ε
,
t

εα

)
− aeff

] ∂2
∂x2

uj

+ ε−α/2

J0∑

j=0

J0−j∑

k=1

ε(k+j)δ
[
âk
(x
ε
,
t

εα

)
− ak,eff

] ∂2
∂x2

uj +Rε(x, t),

V ε(x, 0) =

J0∑

j=0

ε(jδ+1)χj
(x
ε
, 0
)
∇u0(x, 0)

with

(13) Rε(x, t) = ε−α/2

N0∑

j=0

ε1+jδθj
(x
ε
,
t

εα

)
Φj(x, t),

where θj(z, s) are periodic in z, stationary in s and satisfy the estimates

(14) E
(
‖θj‖kC(Td×[0,1])

)
≤ Ck;
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Φj are smooth functions such that

(15) |DkΦj | ≤ Ck,N(1 + |x|)−N ,

and N0 is a finite number; we do not specify these quantities explicitly be-
cause we do not need this. We represent V ε as the sum V ε = V ε

1 +V ε
2 , where

V ε
1 and V ε

2 solve the following problems:

(16)





∂tV
ε
1 − div

[
a
(x
ε
,
t

εα

)
∇V ε

1

]
= ε−α/2

J0∑

j=0

εjδ
[
â0
(x
ε
,
t

εα

)
− aeff

] ∂2
∂x2

uj

+ ε−α/2
J0∑

j=0

J0−j∑

k=1

ε(k+j)δ
[
âk
(x
ε
,
t

εα

)
− ak,eff

] ∂2
∂x2

uj,

V ε
1 (x, 0) = 0,

and

(17)





∂tV
ε
2 − div

[
a
(x
ε
,
t

εα

)
∇V ε

2

]
= Rε(x, t),

V ε
2 (x, 0) = V ε(x, 0).

Form (9) and (10) it follows that the initial condition in the latter problem
satisfies for any k > 0 the estimate E‖V ε(·, 0)‖kC(Td) ≤ Ckε

kδ/2. Combining

this estimate with (13), (14) and the estimates for Φj , by means of the
standard parabolic estimates we obtain

(18) E‖V ε
2 ‖

2
L2(Rd×(0,T )) ≤ Cεδ.

Denote

〈a〉0(s) =

∫

Td

(
â0(z, s)− aeff

)
dz,

〈a〉k(s) =

∫

Td

(
âk(z, s)− ak,eff

)
dz, k = 1, 2, . . .

It follows from the definition of âk that for any k ≥ 0 and l > 0 there is a
constant Cl,k such that E‖(âk−〈a〉k)‖lCk(Td×[0,1]) ≤ Cl,k. Since for each s ∈ R

the mean value of (âk(·, s)− 〈a〉k(s)) is equal to zero, the problem

∆zζ
k(z, s) = (âk(z, s)− 〈a〉k(s))
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has a unique up to an additive constant periodic solution. Letting Θk(z, s) =
∇ζk(z, s), we obtain a stationary in s vector functions Θk such that

div Θk(z, s) = (âk(z, s)− 〈a〉k(s)), E‖Θk‖lCk(Td×[0,1]) ≤ C.

It is then straightforward to check that for the functions

F ε(x, t) = ε−α/2

J0∑

k=0

J0−k∑

j=0

ε(k+j)δ
[
âk
(x
ε
,
t

εα

)
− 〈a〉k

( t

εα

)] ∂2
∂x2

uj(x, t)

the following estimate is fulfilled:

E‖F ε‖2L2(0,T ;H−1(Rd)) ≤ Cεδ.

Therefore, a solution to the problem

(19)





∂tV
ε
1,2 − div

[
a
(x
ε
,
t

εα

)
∇V ε

1,2

]
= F ε(x, t),

V ε
1,2(x, 0) = 0.

admits the estimate

(20) E‖V ε
1,2‖

2
L2(0,T ;H1(Rd)) ≤ Cεδ.

Splitting V ε
1 = V ε

1,1+V ε
1,2, we conclude that V

ε
1,1 solves the following problem

(21)





∂tV
ε
1,1− div

[
a
(x
ε
,
t

εα

)
∇V ε

1,1

]
= ε−α/2

J0∑

j=0

εjδ
[
〈a〉0

( t

εα

)
− aeff

]∂2uj
∂x2

+ ε−α/2

J0∑

j=0

J0−j∑

k=1

ε(k+j)δ
[
〈a〉k

( t

εα

)
− ak,eff

]∂2uj
∂x2

,

V ε
1,1(x, 0) = 0,

By construction the strong mixing coefficient of âk remains unchanged and
is equal to γ(·). In exactly the same way as in the proof of [13, Lemma 5.1]
one can show that the solution of problem (21) converges in law, as ε → 0, in
L2(Rd×(0, T )) equipped with strong topology to a solution of (8). Combining
this convergence with (18) and (20) we conclude that V ε converges in law in
the same space to a solution of (8). This completes the proof of Theorem 1.

Remark 1 The regularity assumption on ϕ given in condition c4. can be
weakened. Namely, the statement of Theorem 1 holds if ϕ is J0 + 1 times
continuously differentiable and the corresponding partial derivatives decay
at infinity sufficiently fast.
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5 Diffusive case

In this section we consider the special case of problem (3). Namely, we
assume that the matrix a(z, s) has the form

a(z, s) = a(z, ξs),

where ξs is a stationary diffusion process in Rn with a generator

L = q(y)
∂2

∂y2
+ b(y)

∂

∂y
.

We still assume that Conditions c1 and c4 hold, that is:

c1. the matrix a(z, s) = {aij(z, s)}
d

i,j=1
is symmetric and satisfies uniform

ellipticity conditions

λ|ζ |2 ≤ a(z, s)ζ · ζ ≤ λ−1|ζ |2, ζ ∈ R
d, λ > 0;

c4. ϕ ∈ C∞
0 (Rd) (with Remark 1).

Moreover we suppose that the matrix-functions a(z, y), q(y) and vector-
function b(y) possess the following properties:

a1. a = a(z, y) is periodic in z and smooth in both variables z and y.
Moreover, for each N > 0 there exists CN > 0 such that

‖a‖CN (Td×Rn) ≤ CN .

a2. The matrix q = q(y) satisfies the uniform ellipticity conditions: there
exist λ > 0 such that

λ−1|ζ |2 ≤ q(y)ζ · ζ ≤ λ|ζ |2, y, ζ ∈ R
n.

Moreover there exists a matrix σ = σ(y) such that q(y) = σ∗(y)σ(y).

a3. The matrix function σ and vector-function b are smooth, for eachN > 0
there exists CN > 0 such that

‖σ‖CN (Rn) ≤ CN , ‖b‖CN (Rn) ≤ CN .
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a4. The following inequality holds for some R > 0 and C0 > 0 and p > −1:

b(y) · y ≤ −C0|y|
p for all y ∈ {y ∈ R

n : |y| ≥ R}.

According to [21] under conditions a2. and a4. a diffusion process ξ· with
the generator L has an invariant measure in Rn that has a smooth density
ρ = ρ(y). For any N > 0 it holds

(1 + |y|)Nρ(y) ≤ CN

with some constant CN . The function ρ is the unique up to a multiplicative
constant bounded solution of the equation L∗ρ = 0; here ∗ denotes the
formally adjoint operator. We assume that the process ξt is stationary and
distributed with the density ρ.

Now we introduce the last condition which looks a little bit peculiar.
Indeed this assumption will not directly appear in our next Theorem. We
define

(22) b̃i,j(s) = (∂xj
bi)(ξs), σ̃l

i,j(s) = (∂xj
σi,l)(ξs).

These coefficients will be implied in the dynamic of the Malliavin derivative
of ξ (see Lemma 6.1). The notation S

d−1 stands for the unit sphere of Rd .

a5. For some p > 2, a.s. for any t ≥ 0 and any θ ∈ Sd−1

Q(t, θ) +
p

2

d∑

l=1

(σ̃l(t)θ, θ)2 ≤ 0

where

Q(t, θ) = (̃b(t)θ, θ) +
1

2

d∑

l=1

(σ̃l(t)θ, σ̃l(t)θ)−

d∑

l=1

(σ̃l(t)θ, θ)2.

This hypothesis is used to obtain upper bounds for the Malliavin derivative
of ξ (see Lemma 6.2).

We introduce a number of corrector. The first one χ0 = χ0(z, y) is a
periodic solution of the equation

(23) divz
(
a(z, y)∇zχ

0(z, y)
)
= −divza(z, y);

11



here y ∈ Rn is a parameter. We choose an additive constant in such a
way that

∫
Td χ

0(z, y) dz = 0. Higher order correctors are defined as periodic
solutions of the equations

(24) divz
(
a(z, y)∇zχ

j(z, y)
)
= −Lyχ

j−1(z, y), j = 1, 2, . . . , J0.

Notice that
∫
Td χ

j−1(z, y) dz = 0 for all j = 1, 2, . . . , J0, thus the compati-
bility condition is satisfied and the equations are solvable. Moreover, by the
classical Schauder estimates, for any N > 0 there exists CN such that

‖χj‖CN (Td×Rn) ≤ CN .

Remark 2 It is interesting to compare the correctors defined in (23) and
(24) with the correctors used in the proof of Theorem 1. It follows from (4)
and (23) that the zero order correctors coincide. Observe however that the
higher order correctors need not coincide.

The effective matrix is given by

aeff =

∫

Rn

∫

Td

(
a(z, y) + a(z, y)

∂

∂z
χ0(z, y)

)
ρ(y) dzdy.

We also introduce the matrices

ak,eff =

∫

Rn

∫

Td

[
a(z, y)∇zχ

k(z, y)+∇z

(
a(z, y)χk(z, y)

)]
ρ(y) dzdy, k = 1, 2, . . . ,

and matrix valued functions

â0(z, y) = a(z, y) + a(z, y)∇zχ
0(z, y) +∇z

(
a(z, y)χ0(z, y)

)
,

âk(z, y) = a(z, y)∇zχ
k(z, y) +∇z

(
a(z, y)χk(z, y)

)
, k = 1, 2, . . . ,

〈a〉0(y) =

∫

Td

(
â0(z, y)− aeff

)
dz,

〈a〉k(y) =

∫

Td

(
âk(z, y)− ak,eff

)
dz, k = 1, 2, . . .

The functions uj = uj(x, t) are defined as solutions of problems

(25)

∂

∂t
uj = div(aeff∇uj) +

j∑

k=1

ak,eff
∂2

∂x2
uj−k

uj(x, 0) = 0

12



Since for each j = 1, 2, . . . problem (7) has a unique solution, the functions
uj are uniquely defined.

Finally, we consider the equations

(26) LQj(y) = 〈a〉j(y), j = 0, 1, . . . .

According to [21], for each j this equation has a unique up to an additive
constant solution of at most polynomial growth. Denote
(27)

Λ2 = {(Λ2)ijml} =

∫

Rn

[ ∂

∂yr1
(Q0)ij(y)

]
qr1r2(y)

[ ∂

∂yr2
(Q0)ml(y)

]
ρ(y) dy.

The matrix Λ2 is non-negative. Consequently its square root Λ is well defined.
In the diffusive case the following result holds:

Theorem 2 Under conditions c1., c4. and a1. – a5. the normalized func-
tions

Uε = ε−α/2
(
uε − u0 −

J0∑

j=0

εj(2−α)uj
)

converge in law, as ε → 0, in L2(Rd × (0, T )) to a solution of (8) with the
standard d2-dimensional Brownian motion W· and Λ defined in (27)

Proof. Consider the following expression:

V ε(x, t) = ε−α/2
{
uε(x, t)−

J0∑

k=0

εkδ
(
uk(x, t)+

J0−k∑

j=0

ε(jδ+1)χj
(x
ε
, ξ t

εα

)
∇uk(x, t)

)}
,

where χ(z, y) and uk(x, t) are defined in (24) and (25), respectively. Consider-
ing equations (23)–(25) and the definitions of ak,eff and âk(z, y), and applying

13



Ito’s formula to V ε, after straightforward rearrangements we obtain

(28)

dV ε (x, t)− div
[
a
(x
ε
, ξ t

εα

)
∇V ε

]
dt

= ε−α/2

( J0∑

j=0

εjδ
[
â0
(x
ε
, ξ t

εα

)
− aeff

] ∂2
∂x2

uj
)
dt

+
(
ε−α/2

J0∑

j=0

J0−j∑

k=1

ε(k+j)δ
[
âk
(x
ε
, ξ t

εα

)
− ak,eff

] ∂2
∂x2

uj
)
dt

+

J0∑

k=0

J0−k∑

j=0

ε(1−α+(k+j)δ)σ(ξ t
εα
)∇yχ

j
(x
ε
, ξ t

εα

)
∇uk(x, t) dBt

+ Rε(x, t) dt,

with the initial condition

V ε(x, 0) =

J0∑

k=0

J0−k∑

j=0

ε(jδ+1−α/2)χj
(x
ε
, ξ0

)
∇uk(x, 0);

here the n× n matrix σ(y) is such that σ(y)σ∗(y) = 2q(y), B. is a standard
n-dimensional Brownian motion, and

(29) Rε(x, t) = ε−α/2
N0∑

j=0

ε1+jδϑj
(x
ε
, ξ t

εα

)
Φj(x, t)

with periodic in z smooth functions ϑj = ϑj(z, y) of at most polynomial
growth in y, and Φj satisfying (15).

We have

E‖Rε‖2L2(Rd×(0,T )) ≤ Cε1−α/2

∫ T

0

∫

Rd

∫

Rn

(1 + |y|)N1(1 + |x|)−2nρ(y) dydxdt

≤ Cε1−α/2.

Similarly, E‖V ε(·, 0)‖2
L2(Rd ≤ Cε1−α/2. Therefore, the function Rε on the

right-hand side of (28) and the initial condition do not contribute to the
limit equation.

14



In order to estimate the contribution of the stochastic term on the right-
hand side of (28), let V ε

F be a solution of

(30)

dV ε
F (x, t)− div

[
a
(x
ε
, ξ t

εα

)
∇V ε

F

]
dt

=

J0∑

k=0

J0−k∑

j=0

ε(1−α+(k+j)δ)σ(ξ t
εα
)∇yχ

j
(x
ε
, ξ t

εα

)
∇uk(x, t) dBt

with initial condition V ε
F (x, 0) = 0. The following crucial statement is ad-

mitted for the moment and will be proved in the next section.

Lemma 5.1 For a solution of problem (30) the following estimate holds:

(31) E‖V ε
F‖

2
L2(Rd×(0,T )) ≤ Cε4−2α| log ε|.

It is straightforward to check that the function

Hε(x, t) = ε−α/2
J0∑

j=0

εjδ
[
â0
(x
ε
, ξ t

εα

)
− aeff − 〈a〉0

(
ξ t

εα

)] ∂2
∂x2

uj

+ε−α/2
J0∑

j=0

J0−j∑

k=1

ε(k+j)δ
[
âk
(x
ε
, ξ t

εα

)
− ak,eff − 〈a〉k

(
ξ t

εα

)] ∂2
∂x2

uj

admits the estimate

(32) E‖Hε‖
2

L2(0,T ;H−1(Rd))
≤ Cε2−α.

Therefore, it is sufficient to characterize the limit behaviour of a solution of
the following equation

(33)

∂tV
ε
3 (x, t)− div

[
a
(x
ε
, ξ t

εα

)
∇V ε

3

]

= ε−α/2

( J0∑

j=0

εjδ〈a〉0
(
ξ t

εα

) ∂2
∂x2

uj
)

+ ε−α/2

J0∑

j=0

J0−j∑

k=1

ε(k+j)δ〈a〉k
(
ξ t

εα

) ∂2
∂x2

uj

15



with initial condition V ε
3 (x, 0) = 0.

According to [21] the processes

Ak(t) =

∫ t

0

〈a〉k(ξs)ds

satisfy the functional central limit theorem (invariance principle), that is the
process

Aε,k(t) = ε
α
2

∫ ε−αt

0

〈a〉k(ξs)ds

converges in law in (C[0, T ])d
2

to a d2-dimensional Brownian motion with
covariance matrix

(Λk)
2 = {(Λ2

k)
ijml} =

∫

Rn

[ ∂

∂yr1
(Qk)ij(y)

]
qr1r2(y)

[ ∂

∂yr2
(Qk)ml(y)

]
ρ(y) dy.

with matrix-function Qk defined in (26). It was proven in [13, Lemma 5.1]
that, given the fact that Aε,k(·) satisfies the invariance principle, a solution
V ε
3 of problem (33) converges in law in L2(Rd × (0, T )) towards a solution of

problem (8) with Λ = Λ0 defined in (27). Combining this convergence results
with estimate (32) and the statement of Lemma 5.1 completes the proof of
Theorem 2. �

6 Proof of Lemma 5.1

In order to prove Lemma 5.1 we consider first the following problem:

dV ε
B(x, t)− div

[
a
(x
ε
, ξ t

εα

)
∇V ε

B

]
dt(34)

= ε(1−α)σ(ξ t
εα
)∇yχ

0
(x
ε
, ξ t

εα

)
∇u0(x, t) dBt

with initial condition V ε
B(x, 0) = 0. In fact we keep only the smallest power

of ε in the right-hand side of (30) (since δ = 2−α > 0). Our goal is to prove
the following estimate:

(35) E‖V ε
B‖

2
L2(Rd×(0,T )) ≤ Cε4−2α| log ε|.

Then the statement of Lemma 5.1 can be proven in exactly the same way as
the previous estimate.
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The stationary process ξ satisfies the following SDE:

(36) dξt = b(ξt)dt+ σ(ξt)dBt.

It is well known that under the assumption a3, ξ satisfies for any T ≥ 0 and
any p ≥ 2

E

(
sup

t∈[0,T ]

|ξt|
p

)
≤ C

where C is a positive constant depending on p, T , Kb,σ.
For the Malliavin calculus we borrow some notations from Nualart [18]

(see the details inside). D is the Malliavin derivative defined on smooth
random variables F (see Definition 1.2.1 in [18]). Since B is a d-dimensional
Brownian motion, Dj

t (F ), t ∈ [0, T ], j = 1, . . . , d, is the derivative of a
random variable F as an element of L2([0, T ] × Ω;Rd). Hence Dt(F ) is a
d-dimensional vector. The space D

1,p, p ≥ 1, is the closure of the class of
smooth random variables with respect to the norm

‖F‖1,p =
[
E(|F |p) + E

(
‖DF‖pL2

)]1/p
.

For p = 2, D1,2 is a Hilbert space. Then by induction we can define D
k,p the

space of k-times differentiable random variables where the k derivatives are
in Lp(Ω). Finally

D
k,∞ =

⋂

p≥1

D
k,p, D

∞ =
⋂

k∈N

D
k,∞.

The next result can be found in [18], Theorems 2.2.1 and 2.2.2.

Lemma 6.1 Under a3, the coordinate ξit belongs to D1,∞ for any t ∈ [0, T ]
and i = 1, . . . , d. Moreover

(37) sup
0≤r≤T

E

(
sup

r≤t≤T
|Dj

rξ
i
t|
p

)
< +∞.

The derivative Dj
rξ

i
t satisfies the following linear equation:

Dj
rξ

i
t = σi,j(ξr) +

∑

1≤k,l≤d

∫ t

r

σ̃l
i,k(s)D

j
r(ξ

k
s )dB

l
s +

d∑

k=1

∫ t

r

b̃i,k(s)D
j
r(ξ

k
s )ds

17



for r ≤ t a.e. and Dj
rξt = 0 for r > t a.e., where σj is the column number j

of the matrix σ and where for 1 ≤ i, j ≤ d and 1 ≤ l ≤ d, b̃i,j(s) and σ̃
l
i,j(s)

are given by (22):

b̃i,j(s) = (∂xj
bi)(ξs), σ̃l

i,j(s) = (∂xj
σi,l)(ξs).

In the rest of this section for two positive constants c and C, the function
gc,C(x, t) is defined for t > 0 and x ∈ Rd as follows:

gc,C(x, t) =
c

t
d
2

exp

(
−
C|x|2

t

)
.

We also define

(38) ψε(r) = sup
t∈[0,T ]

‖Drξt/εα‖

and

(39) Gε (y, t) = G
(y
ε
, ξ t

εα
, y, t

)
= ε1−ασ(ξt/εα)∇χ

0
(y
ε
, ξ t

εα

)
∇u0(y, t).

Note that the latter function is bounded by ε1−αKG. The Malliavin derivative
of Gε can be computed by a chain rule argument:

DrG
ε (y, s) = ε1−α∇u0(y, s)Drξs/εα[

σ̃(s)∇χ0
(y
ε
, ξ s

εα

)
+ σ(ξs/εα)∇z∇χ

0
(y
ε
, ξ s

εα

)]
.

Hence
‖DrG

ε (y, s) ‖ ≤ ε1−αKG‖Drξs/εα‖ ≤ ε1−αKGψ
ε(r).

6.1 Uniform estimates of the Malliavin derivative

In this section we consider the quantity

ψε(r) = sup
t∈[0,T ]

‖Drξt/εα‖ = sup
τ∈[r,T/εα]

‖Drξτ‖

and show that under our standing conditions it admits uniform in ε estimates.

Lemma 6.2 Under Condition a5., there exists a constant Cp such that for
any T and ε > 0

E (|ψε(r)|p) ≤ Cp.

18



Proof. Recall that if Z(t) = Drξt is the matrix-valued process defined by:

Z(t) = σ(ξr) +

∫ t

r

b̃(s)Z(s)ds+
∑

1≤l≤d

∫ t

r

σ̃l(s)Z(s)dBl
s

and σ is bounded as specified in Condition a2. Each column Zj of Z satisfies
the linear d-dimensional SDE

Zj
t = σj(ξr) +

∫ t

r

b̃(s)Zj(s)ds+
∑

1≤l≤d

∫ t

r

σ̃l(s)Zj(s)dBl
s

where σj is the j-th column of σ. We apply the results contained in Appendix
B (see also Section 6.7) of [11], more precisely Equation (B.11). For any
p′ < p, the process Xt = |Zj

t |
p′ satisfies the scalar linear equation:

dXt =

(
p′Q(t,Θt) +

(p′)2

2

d∑

l=1

(σ̃l(t)Θt,Θt)
2

)
Xtdt

+ p′Xt

d∑

l=1

(σ̃l(t)Θt,Θt)dB
l
t

where Θt = Zt/|Zt| belongs to Sd−1. Hence

Xt = |σj(ξr)| exp

[∫ t

r

(
p′Q(s,Θs) +

(p′)2

2

d∑

l=1

(σ̃l(s)Θs,Θs)
2

)
ds

+p′
∫ t

r

d∑

l=1

(σ̃l(s)Θs,Θs)dB
l
s −

(p′)2

2

∫ t

r

d∑

l=1

(σ̃l(s)Θs,Θs)
2ds

]
.

From our assumption a5., Xt ≤Mt where M is the martingale:

Mt = λ−1 exp

[
p′
∫ t

r

d∑

l=1

(σ̃l(s)Θs,Θs)dB
l
s −

(p′)2

2

∫ t

r

d∑

l=1

(σ̃l(s)Θs,Θs)
2ds

]
.

Since σ̃l(s) is bounded (condition a2.), M is a true martingale. By Doob’s
inequality,

E

(
sup
t≥r

|Z(t)|p
)

= E

(
sup
t≥r

(Xt)
p/(p′)

)
≤

(
p

p− p′

)p′/p

= Cp.
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This achieves the proof. �

Note that in dimension one (d = 1), Condition a5. becomes

∂xb(ξt) +
p− 1

2
(∂xσ(ξt))

2 ≤ 0.

This assumption can be easily deduced since ζt = Drξt satisfies the linear
SDE:

ζt = σ(ξr) +

∫ t

r

∂xσ(ξu)ζudBu +

∫ t

r

∂xb(ξu)ζudu,

which can be solved explicitly. Hence

|ζt|
p = |σ(ξr)|

p exp

[∫ t

r

p∂xσ(ξu)dBu −
1

2

∫ t

r

p2(∂xσ(ξu))
2du

]

exp

[
p

∫ t

r

(
∂xb(ξu) +

p− 1

2
(∂xσ(ξu))

2

)
du

]
.

The condition a5. is here also necessary.
As an example, let us consider the multidimensional Ornstein-Uhlenbeck

process:
dξt = Bξtdt + ΣdBt,

where B and Σ are two d × d matrices. Here b̃(t) = B and σ̃l(t) = 0.
Therefore, condition a5. is reduced to (Bθ, θ) ≤ 0.

6.2 Construction of a mild solution

Our aim is to prove that the solution V ε
B of (34) is given by:

V ε
B(x, t) =

∫ t

0

∫Rd

Γε(x, t, y, s)G
(y
ε
, ξ s

εα
, y, s

)
dydBs,(40)

where Γε is the fundamental solution of the PDE:

(41)
∂uε

∂t
(x, t) = div

[
a
(x
ε
, ξ t

εα

)
∇uε

]
.

The stochastic integral in (40) has to be defined properly since Γε(x, t, y, s)
is measurable w.r.t. the σ-field Ft/εα generated by the random variables Bu

with u ≤ t/εα.
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It is well known (see among other [6], Chapter 9, [2] or [23]) that there
exist two constants ς and ̟ such that if 2i+ j ≤ 2 and t > s then

(42) |∂it∂
j
xΓ

ε(x, t, y, s)| ≤
1

(t− s)
2i+j

2

gς,̟(x− y, t− s).

These inequalities are called Aronson’s estimates. These constants ς and
̟ depend in fact only on the constant λ of c1. The key result of the Malliavin
derivative of Γε is the following.

Proposition 6.1 The fundamental solution Γε of (41) and its spatial deriva-
tives belong to D1,∞ for every (t, s) ∈ [0, T ]2, s < t and (x, y) ∈ (Rn)2.
Moreover it satisfies the following inequalities:

(43) |DrΓ
ε(x, t, y, s)| ≤ ψε(r)gς,̟(x− y, t− s),

(44) |Dr∂xΓ
ε(x, t, y, s)| ≤

ψε(r)

(t− s)1/2
gς,̟(x− y, t− s),

and

(45) |Dr∂
2
xΓ

ε(x, t, y, s)| ≤
ψε(r)

(t− s)
gς,̟(x− y, t− s).

Here the constants ς and ̟ just depend on the uniform ellipticity constant λ
and ψε depends only on ξ and is defined by (38).

The proof of this result is quite long and is based on the construction of Γ.
For a more pleasant reading, we postpone it in the Appendix.

As a consequence of [1, Theorem 5.10] and [1, Theorem 5.11] one can
easily deduce that the right-hand side of Equation (40) is well defined and is
the unique classical solution of (34).

6.3 Proof of Lemma 5.1

Recalling (39), since the mean value of ∇yχ
0(z, y) in z is equal to zero,

there exists a periodic in z function X0 = X0(z, y) such that divzX
0(z, y) =

σ(y)∇yχ
0(z, y). Moreover, X0 is smooth and has at most polynomial growth

in y.
The statement of Lemma 5.1 is now an immediate consequence of Lemma

6.2 (with p > 2) and the next result.

21



Lemma 6.3 The following estimate holds: for any p > 1

(46) E‖V ε
B‖

2
L2(Rd×(0,T )) ≤ Cε4−2α| log ε|

[
1 +

[
E

∫ T

0

(ψε(r))2pdr

]1/p]
.

Proof. We know that

V ε
B(x, t) =

∫ t

0

∫Rd

Γε(x, t, x′, s)Gε(x′, s)dx′dBs

=

∫ t

t−ε2

∫Rd

Γε(x, t, x′, s)Gε(x′, s)dx′dBs

+

∫ t−ε2

0

∫Rd

Γε(x, t, x′, s)Gε(x′, s)dx′dBs

= Jε
1(x, t) + Jε

2(x, t).(47)

We will denote by tε the time t− ε2 and we begin with Jε
1

Jε
1(x, t) =

∫ t

tε

∫Rd

Γε(x, t, x′, s)Gε(x′, s)dx′dBs

= ε1−α

∫ t

tε

∫Rd

Γε(x, t, x′, s)σ
(
ξ s

εα

)
∇yχ

0
(x′
ε
, ξ s

εα

)
∇u0(x′, s)dx′dBs

= ε1−α

∫ t

tε

jε(x, t, s)dBs.

Using isometric property of the anticipating Ito integral (see Eq. (3.5) in
[17]) we get

E((Jε
1(x, t))

2) = ε2−2αE

∫ t

tε

|jε(x, t, s)|2ds(48)

+ ε2−2αE

∫ t

tε

∫ t

tε

|Drj
ε(x, t, s)|2dsdr.

By the Aronson estimate (42), Γε(x, t, x′, s) ≤ gς,̟(x − x′, t − s). Moreover
for any k = (k0, k1, . . . , kd) and N > 0 there exists a constant Ck,N such that

(49) |∂ku0| ≤ Ck,N(1 + |x|)−N ,
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where ∂ku0(x, t) =
∂k0

∂tk0
∂k1

∂xk11
. . .

∂kd

∂xkdd
u0(x, t). The matrix σ is bounded and

χ0 is at most of polynomial growth w.r.t. y. This yields

|jε(x, t, s)| =
∣∣∣
∫Rd

Γε(x, t, x′, s)σ
(
ξ s

εα

)
∇yχ

0
(x′
ε
, ξ s

εα

)
∇u0(x′, s)dx′

∣∣∣

≤ CN

∫Rd

gς,̟(x− x′, t− s)
(
1 +

∣∣ξ s
εα

∣∣)K(1 + |x′|)−Ndx′

≤ CN

(
1 +

∣∣ξ s
εα

∣∣)K(1 + |x|)−N .

for all t, s such that 0 ≤ s < t ≤ T and for all N > 0. Therefore,

ε2−2αE

∫ t

tε

|jε(x, t, s)|2ds ≤ CNε
2−2α

∫ t

tε

(1 + |x|)−2NE
(
1 +

∣∣ξ s
εα

∣∣)2Kds

≤ CNε
4−2α(1 + |x|)−2N .

The Malliavin derivative of jε is given by a chain rule argument and the
estimates (42) and (43) leads to

|Drj
ε(x, t, s)| ≤

∫Rd

∣∣∣∣DrΓ
ε(x, t, x′, s)σ

(
ξ s

εα

)
∇yχ

0
(x′
ε
, ξ s

εα

)
∇u0(x′, s)

∣∣∣∣ dx
′

+

∫Rd

Γε(x, t, x′, s)

∣∣∣∣Dr

[
σ
(
ξ s

εα

)
∇yχ

0
(x′
ε
, ξ s

εα

)]∣∣∣∣
∣∣∇u0(x′, s)

∣∣ dx′

≤ ψε(r)

∫Rd

gς,̟(x− x′, t− s)θ

(
x′

ε
, ξ s

εα

) ∣∣∇u0(x′, s)
∣∣ dx′

with

θ (z, y) =
∣∣∣σ
(
y
)
∇yχ

0
(
z, y
)∣∣∣ +

∣∣∣∇yσ(y)∇yχ
0
(
z, y
)
+ σ(y)∂2yχ

0
(
z, y
)∣∣∣ .

Hence

|Drj
ε(x, t, s)| ≤ Cψε(r)

∫Rd

gς,̟(x− x′, t− s)
(
1 +

∣∣ξ s
εα

∣∣)K(1 + |x′|)−Ndx′

≤ Cψε(r)
(
1 +

∣∣ξ s
εα

∣∣)K(1 + |x|)−N .
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Thereby for any p > 1 and for q the Hölder conjugate of p

E

∫ t

tε

∫ t

tε

|Drj
ε(x, t, s)|2drds

≤ C2E

∫ t

tε

∫ t

tε

(ψε(r))2
(
1 +

∣∣ξ s
εα

∣∣)2K(1 + |x|)−2Ndsdr

≤ C2

[
E

∫ t

tε

(ψε(r))2pdr

]1/p [
E

∫ t

tε

(
1 +

∣∣ξ s
εα

∣∣)2qKds
]1/q

(1 + |x|)−2N

≤ C2ε

[
E

∫ t

tε

(ψε(r))2pdr

]1/p
(1 + |x|)−2N .

Coming back to (48) we obtain

E((Jε
1(x, t))

2) ≤ Cε3−2α

[
ε+

[
E

∫ t

tε

(ψε(r))2pdr

]1/p]
(1 + |x|)−2N

and finally

(50) E
(
‖Jε

1‖
2
L2(Rd×[0,T ])

)
≤ Cε4−2α

[
1 +

[
E

∫ T

0

(ψε(r))2pdr

]1/p]
.

For Jε
2 , we use an integration by parts:

Jε
2(x, t) = ε1−α

∫ tε

0

∫Rd

Γε(x, t, x′, s)σ
(
ξ s

εα

)
∇yχ

0
(x′
ε
, ξ s

εα

)
∇u0(x′, s)dx′dBs

= ε2−α

∫ tε

0

∫Rd

Γε(x, t, x′, s)X0
(x′
ε
, ξ s

εα

) ∂2
∂x2

u0(x′, s)dx′dBs

+ ε2−α

∫ tε

0

∫Rd

∇yΓ
ε(x, t, x′, s)X0

(x′
ε
, ξ s

εα

)
∇u0(x′, s)dx′dBs

= ε2−α

∫ tε

0

wε
1(x, t, s)dBs + ε2−α

∫ tε

0

wε
2(x, t, s)dBs

= Iε1(x, t) + Iε2(x, t).(51)

Using again isometric property of the anticipating Ito integral we have
for j = 1 or 2

E((Iεj )
2) = ε4−2αE

∫ tε

0

|wε
j(x, t, s)|

2ds+ ε4−2αE

∫ tε

0

∫ tε

0

|Drw
ε
j(x, t, s)|

2dsdr.
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Using (42), (43) and (49), by the same arguments as in the proof of (50) we
have

(52) E‖Iε1‖
2
L2(Rd×(0,T )) ≤ Cε4−2α

[
1 +

(
E

∫ T

0

(ψε(r))2pdr

)1/p
]
.

In order to obtain an upper bound for Iε2 we use Aronson’s estimate for the
derivative of Γε:

|wε
2(x, t, s)| =

∣∣∣
∫Rd

∇x′Γε(x, x′, t, s)X0
(x′
ε
, ξ s

εα

)
∇u0(x′, s)dx′

∣∣∣

≤

∫Rd

1

|t− s|1/2
gς,̟(x− x′, t− s)

∣∣∣∣X
0
(x′
ε
, ξ s

εα

)
∇u0(x′, s)

∣∣∣∣ dx
′

≤
C

|t− s|1/2

∫Rd

gς,̟(x− x′, t− s)
(
1 +

∣∣ξ s
εα

∣∣)K (1 + |x′|)−Ndx′

≤
C

|t− s|1/2
(
1 +

∣∣ξ s
εα

∣∣)K (1 + |x|)−N .

Hence

E

∫ tε

0

|wε
2(x, t, s)|

2ds ≤ C| log(ε)|(1 + |x|)−2N .

For the Malliavin derivative we proceed as before with (44):

|Drw
ε
2(x, t, s)| ≤ ψε(r)

∫Rd

1

|t− s|1/2
gς,̟(x− x′, t− s)θ

(x′
ε
, ξ s

εα

) ∣∣∇u0(x′, s)
∣∣ dx′

with

θ (z, y) =
∣∣∣X0

(
z, y
)∣∣∣+

∣∣∣∇yX
0
(
z, y
)∣∣∣ .

Again

E

∫ tε

0

∫ tε

0

|Drw
ε
2(x, t, s)|

2 drds

≤ C(1 + |x|)−2N

∫ tε

0

∫ tε

0

1

|t− s|
E
[
(ψε(r))2

(
1 +

∣∣ξ s
εα

∣∣)2K
]
dsdr

≤ C(1 + |x|)−2N

∫ tε

0

∫ tε

0

1

|t− s|
E
[
(ψε(r))2p

]1/p
dsdr

≤ C| log(ε)|(1 + |x|)−2N

∫ T

0

E
[
(ψε(r))2p

]1/p
dr.
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From the last two inequalities we deduce that

E‖Iε2‖
2
L2(Rd×(0,T )) ≤ Cε4−2α| log(ε)|

[
1 +

∫ T

0

E
[
(ψε(r))2p

]1/p
dr

]
.

The last estimate combined with (50) and (52) yields the desired inequality
(46). This completes the proof. �

Appendix: construction and properties of the

fundamental solution

Here we develop the required arguments in order to prove Proposition
6.1. In other words we want to prove that the fundamental solution Γε of
the PDE (41)

∂uε

∂t
(x, t) = div

[
a
(x
ε
, ξ t

εα

)
∇uε

]
.

is in D1,2 (Malliavin differentiability) and that the Aronson estimates for the
Malliavin derivative (Inequalities (43), (44) and (45)) hold.

To simplify the notations, we assume that ε = 1 and thus Γ is the funda-
mental solution of the PDE:

(53)
∂u

∂t
(x, t) = div

[
a
(
x, ξt

)
∇u
]
.

Let T be a fixed positive constant. We assume that the time variables belong
to the interval [0, T ]. For any r ∈ [0, T ] we define

(54) ψ(r) = sup
t∈[r,T ]

|Drξt|.

From Lemma 6.1 we have for any p ≥ 2

sup
r∈[0,T ]

E (ψ(r)p) < +∞.

We denote by L and a(x, t) the operator and the matrix:

L = div
[
a
(
x, ξt

)
∇
]
, a(x, t) = a

(
x, ξt

)
.
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The fundamental solution can be defined by the parametrix method:

(55) Γ(x, t, y, s) = Z(x, t, y, s) +

∫ t

s

∫Rd

Z(x, t, ζ, r)Φ(ζ, r, y, s)dζdr.

One construction of the fundamental solution Γ can be found in [16], Chapter
IV, sections 11 to 13 (or [6], Chapter I). For the Malliavin differentiability
property of Γ, we use the approach developed in Alòs et al. [1].

For a fixed ε the solution V ε
B is well defined and satisfies all required prop-

erties. But ε > 0 is a parameter of the equation and thus it will appear in all
estimates (43),(44) and (45) on Γε, and therefore on vε. Indeed, following the
proof in [1] we might have extra negative powers of ε in the estimates of the
Malliavin derivative of Γε. Even the constants ς and ̟ may depend on ε and
may go to ∞ as ε goes to zero. In other words for the initial homogenization
problem, we need more accurate estimates on Γε as in Proposition 6.1.

In order to obtain this property and thus to prove Proposition 6.1 com-
pletely, another construction of the fundamental solution Γε can be done ([6],
Chapter 9, or [23]). We denote by aε(x, t) the matrix:

aε(x, t) = a
(x
ε
, ξ t

εα

)
.

First assume that aε just depends on t. Hence the fundamental solution Γε

is given by the formula:

(56) Γε(x, t, y, s) =
1

(2π)d/2

∫Rd

eiζ(x−y)V ε(t, ζ, s)dζ,

where V ε(t, ζ, s) is the following function:

V ε(t, ζ, s) = exp

(
−

∫ t

s

〈aε(u)ζ, ζ〉du

)
.

From this expression of Γε, the Aronson estimates (42) can be derived (see
Theorem 1, Chapter 9 in [6] for the details). Hence the Malliavin derivative
of Γε is:

DrΓ
ε(x, t, y, s) =

1

(2π)d/2

∫Rd

eiζ(x−y)DrV
ε(t, ζ, s)dζ

= −
1

(2π)d/2

∫Rd

eiζ(x−y)V ε(t, ζ, s)

(∫ t

s

〈
∂a

∂yk
(ξu/εα)ζ, ζ〉(Drξ

k
u/εα)du

)
dζ.
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Since we assume that the derivative of a is bounded (condition a2), we obtain:

|DrΓ(x, t, y, s)| ≤ Kaψ
ε(r)(t− s)

1

(2π)d/2

∫Rd

eiζ(x−y)V ε(t, ζ, s)|ζ |2dζ.

Once again using Theorem 1, Chapter 9 in [6] to control

∣∣∣∣
∫Rd

eiζ(x−y)V ε(t, ζ, s)|ζ |2dζ

∣∣∣∣ ≤
1

(t− s)
gς,̟(x− y, t− s),

we deduce (43). The same inequalities (44) and (45) hold for the spatial
derivatives of Γ.

For the general case, that is, if a depends also on x, let us begin by the
following remark. If a just depends on x, then the fundamental solution Γε

for aε(x) = a(x/ε) satisfies:

(57) Γε(x, t, y, s) =
1

εd
Γ1(x/ε, t/ε2, y/ε, s/ε2).

Therefore if Γ1 satisfies Estimate (42) with some constants ς and ̟, then Γε

satisfies the same inequality with the same constants. Similar property holds
for aε: if Γ1 (resp. Γε) is the fundamental solution for:

(58)
∂u

∂t
(x, t) = div

[
a
(
x, ξ t

εα−2

)
∇u
]
.

(resp. for (41)), then (57) holds. Hence if we can have uniform estimates
w.r.t. ε for Γ1, then the same estimates hold for Γε. Let us recall how to
construct the solution Γ1:

Γ1(x, t, y, s) = Z(x, t, y, s) +

∫ t

s

∫Rd

Z(x, t, ζ, r)Φ(ζ, r, y, s)dζdr.

where for a fixed y, Z is given by (56) with:

V (t, ζ, s) = exp

(
−

∫ t

s

〈a(y, ξu/εα−2)ζ, ζ〉du

)
.

The function Φ is again the sum of iterated kernels

Φ(x, t, y, s) =
∞∑

m=1

Km(x, t, y, s)
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where Km is an iterated kernel:

Km(x, t, y, s) =

∫ t

s

∫Rn

K(x, t, ζ, r)Km−1(ζ, r, y, s)dζdr,

with

K(x, t, y, s) =
[
a
(
x, ξ t

εα−2

)
− a
(
y, ξ t

εα−2

)]
∂2xZ(x, t, y, s)

+ ∂xa
(
x, ξ t

εα−2

)
∇xZ(x, t, y, s).

Notice that in the expression a
(
x, ξ t

εα−2

)
− a
(
y, ξ t

εα−2

)
the matrix a is eval-

uated two times at the same point ξ t

εα−2
. Then the properties of K, Φ and

thus Γ1 can be obtained similarly to [1]. The Malliavin derivatives of K,
Φ and thus Γ1 only involve the Malliavin derivative of ξt/εα−2 , the Aronson
estimates of Z, and the Lipschitz constant of a w.r.t. x. In other words all
bounds (42), (43), (44) and (45) hold. The constants ς and ̟ do not depend
on ε, and the random variable ψε(r) depends only on the Malliavin derivative
of ξt/εα.
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