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This paper aims at the formulation of a computational model in order to simulate the adhesion phenomena in micro-electro-mechanical systems (MEMS) for various environmental conditions. The present approach is based on Finite Element (FE) simulations on a representative part of the surface. The micro-scale analyses include the contact behavior of the asperities and the mechanical deformation of the bulk material. The model validation has been based on a simple sphere-on-flat simulation.

Introduction

The reliability of micro-electro-mechanical systems (MEMS), namely micro-engines and miniaturized sensors, is often limited by phenomena of spontaneous adhesion between parts which should maintain the capability of relative motion (see the review paper [START_REF] Zhao | Mechanics of adhesion in MEMS -a review[END_REF]). The issues of catastrophic adhesion, but also of dangerous increments of friction, are often referred to in the literature with the term "stiction", contraction of "static friction".

Many research efforts have been (and currently are) devoted to stiction phenomena. A large part of the available literature is dedicated to experimental problems ( [START_REF] De Boer | Accurate method for determining adhesion of cantilever beams[END_REF], [START_REF] Yu | In situ characterization of induced stiction in a MEMS[END_REF]). The experiments confirm that the main sources of adhesion, as better explained in what follows, are represented by the capillary tension and by the short-range intermolecular Van der Waals interactions [START_REF] Israelachvili | Intermolecular and Surface Forces[END_REF]. On the basis of these considerations, several models have been proposed so far in order to predict the amount of adhesive energy in contacting surface. Some Authors [START_REF] Hariri | Modeling of wet stiction in microelectro-mechanical systems (MEMS)[END_REF] adopted more or less refined tribological models (the so called JKR or DMT models, see [START_REF] Israelachvili | Intermolecular and Surface Forces[END_REF]) in order to include the effect of surface roughness, intermolecular forces and capillary forces. A somewhat simpler model has been adopted by van Spengen et al. [START_REF] Van Spengen | A physical model to predict stiction in MEMS[END_REF], who considered that the surface asperities behave in a rigid-plastic manner and estimated the capillary and van der Waals forces on the basis of the average surface separation.

The method, proposed in this paper, is based on the concepts of fracture mechanics, see e.g. [START_REF] De Boer | Accurate method for determining adhesion of cantilever beams[END_REF]. Hence, when considering the FE model, the adhesive behaviour is simulated by introducing some cohesive interface elements on the contacting surfaces. The fracture energy connected to the chosen interface model must equal the surface energy.

The cohesive law must be able to interpret the basic features of adhesion, which is basically controlled by what happens at the micro-scale. For this reason, a sort of multi-scale procedure has been devised, in the sense that the macro-scale interface model is tuned on the basis of detailed computations carried out at the micro-scale, on a representative part of the surface. In this way, it is possible to catch some essential aspects of stiction, most of which are related to the microscopic roughness.

The geometric model of the rough surface can be either artificially generated on the basis of a priori known statistical properties [START_REF] Bhushan | Methodology for roughness measurements and contact analysis for optimization of interface roughness[END_REF] or reconstructed after some direct experimental measurements, for instance by means of the Atomic Force Microscope (AFM). The micro-scale analyses include the contact behavior of the asperities and the mechanical deformation of the bulk material, which is modeled as elastic-plastic. The effect of capillary tension and van der Waals forces are properly introduced. The microscopic analyses are carried out many times, changing some significant environmental parameters, namely the relative humidity and the temperature.

Description of the micro-scale FE model

The mechanical analyses at the micro-scale are based on a representative portion of the adhered surfaces. For the sake of simplicity, a square shape is considered. The size of the representative area must be chosen in order to include a certain number of asperities.

The computational burden is enhanced by the strongly non-linear mechanical model. A frictionless contact model is introduced, including a hard pressure-overclosure relationship.The contact constraint is enforced with a Lagrange multiplier, representing the contact pressure in a mixed formulation.

The constitutive model for silicon at the micro-scale is assumed to be elastic-perfectly plastic. This could be rather astonishing for a material which, at the macro-scale, exhibits a fragile behaviour. Nevertheless, the plastic deformation is customarily considered in order to explain the silicon response to nano-indentation tests ( [START_REF] Hariri | Modeling of wet stiction in microelectro-mechanical systems (MEMS)[END_REF], [START_REF] Van Spengen | A physical model to predict stiction in MEMS[END_REF]). In this case, the synthetic indicator of plastic deformation is the hardness H, which for silicon can be assumed equal to 12GPa. The material hardness can be correlated to the yield stress σ 0 by means of empirical formulas, such as the one proposed by Tabor [START_REF] Tabor | The Hardness and Strength of Metals[END_REF]:

0 H c σ = (1)
where c is a parameter whose value could lie in the interval 2÷3. The yield stress value has been used in order to tune the elastic-plastic model. The most simple choice is to consider an associative Mises' model By assuming that the elastic strains are always small one obtains that, even in the case of geometrically non-linear analyses, the additive decomposition of the time rate of the deformation tensor can be adopted. The elastic-plastic model is numerically integrated by the backward Euler method. The choice of the Mises' model could appear somewhat arbitrary. Nevertheless, it represent the simplest form for a first approach to the problem. Further improvement of the elastic-plastic model could be obtained by the critical comparison with the results of nano-indentation tests on silicon.

The FE model is completed by the adhesive forces, which are introduced as distributed pressure on the adhered surface. The proximity force approximation is introduced, in the sense that each material point on one surface interacts only with the corresponding point on the other surface. It is therefore necessary to perform a pre-processing step in order to identify the couples of paired points. As better explained in the next section, the adhesive force depend on the relative distance between the interacting points. At each time increment, a scan of the current geometric configuration is executed and the force magnitude is computed. Strictly speaking, this approach is in contrast with the backward difference scheme, since the force are computed at the beginning of the time step and the constitutive model is enforced at the end. However, is the time increment is sufficiently small, the effect of such inconsistency can be neglected.

Models for the adhesive forces

Van der Waals interactions

In spite of its non-additivity property, the van der Waals force is usually computed by integrating the energies of all the atoms in one body with all the atoms in the other one, thus obtaining the "two-body" potential. The resulting interaction laws for some common geometries have been expressed in terms of the conventional Hamaker constant A. For silicon, it has been reported the following value [START_REF] Israelachvili | Intermolecular and Surface Forces[END_REF]:
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Van der Waals forces could be of great importance in MEMS adhesion, particularly if capillary forces are absent. It has been proposed to adopt analytical formulas, obtained for special geometries such as two spheres, sphere on surface, two surfaces, in order to evaluate the overall forces between rough surfaces.

The evaluation of the surface interaction due to intermolecular forces is a very difficult task. In order to obtain a reasonable estimate, it is common to describe the interaction by means of some "surface energy potentials", which typically depend on the distance D between contacting surfaces. The pressure consequent to van der Waals interactions is computed on the basis of the Lennard-Jones potential [START_REF] Israelachvili | Intermolecular and Surface Forces[END_REF]. The expression is slightly modified in order to avoid the presence of infinite forces in the numerical model:
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In the previous equation, r is the lateral position on the surface and z 0 is the equilibrium separation, which for silicon reads:
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The formula reported in Eq. ( 3) allows the FE code to compute the proximity force as a function of the separation D between the paired nodes.

Capillary attraction

The evaluation of fluid-solid surface energy is of great importance even in the absence of liquid water. In fact, microscopic structures are very sensitive to the presence of trace amounts of vapors in the atmosphere. The adhesion energy which appears in such cases is mainly due to capillary condensation of water around surface contact sites (for instance, in cracks, pores or around asperities).

Fluids that show a small value of the contact angle θ (i.e. fluids that "wet" the solid substance) will spontaneously condense from vapor into bulk liquid. At equilibrium, the meniscus curvature is related to the relative humidity (RH) by the Kelvin equation, see [START_REF] Israelachvili | Intermolecular and Surface Forces[END_REF]:
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where V = 18 10 -6 m3 is the molar volume of water, R = 8.3143J/mol/K the gas constant and T the absolute temperature, γ L the surface tension of water, which linearly decreases with temperature [6]:
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The total energy can be computed, as it has been done in [START_REF] De Boer | Accurate method for determining adhesion of cantilever beams[END_REF], by considering that the Laplace pressure acts on an area which can be approximately computed as follows:
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where R is now the asperity radius. The total energy for a single asperity is therefore:
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The corresponding adhesion force can be approximated as:
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By performing a more refined computation, it is possible to demonstrate that the adhesion force is not constant but decreases as the distance D between the contact surface increases. A simplified approach has been suggested in [START_REF] Van Spengen | A physical model to predict stiction in MEMS[END_REF]: the adhesion force is kept constant and equal to the value in Eq. ( 9) until a critical separation is reached, after which the force is suddenly dropped to zero. The surface pressure is computed in the FE code by considering the overall force [START_REF] Attard | Interaction and deformation of elastic bodies: origin of adhesion hysteresis[END_REF] and the area of application [START_REF] Bhushan | Methodology for roughness measurements and contact analysis for optimization of interface roughness[END_REF]. One finally obtains:
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Numerical results

The computational procedure has been tested with reference to a simple problem, namely the adhesive contact of a silicon sphere over a silicon flat surface. The FE model is depicted in Fig. 1. The radius of the sphere is equal to 340nm and the minimum initial separation is 10nm. A displacement time-history is applied to the upper surface of the half-sphere. The displacement is progressively increased up to 30nm (that means a penetration depth of 20nm) and afterwards is set back to zero. The constitutive model of silicon is elastic-plastic, with elastic constants E = 150GPa, ν = 0.2, and yield limit: σ 0 = 6GPa.

In the first approach to the problem, only the van der Waals attraction is considered. The applied pressure is computed on the basis of Eq. ( 3), account taken of the material parameters introduced in Eqs. ( 2) and ( 4). A first glance at the force-displacement curve reveals the typical behaviour for an elasticplastic indentation problem. A zoom into the region around the origin (Figure 2) shows the adhesive phenomena. Adhesion is particularly evident in the unloading branch. The elastic and plastic deformations of the two bodies give rise to a large contact surface, in which the adhesive forces attain a significant value. The overall adhesive energy can be easily computed as the integral of the shaded area in Fig. 2: 

This value can be compared to the theoretical result, obtained by means of the analytical formula (for rigid parts):
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By introducing the minimum spacing, i.e. the equilibrium separation z 0 , the following results is obtained 10 1.03 10
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The two adhesive energies have the same order of magnitude, but the theoretical value appear to be smaller than the numerical counterparts. This could be easily explained by considering that the deformation of the parts (not included in Eq. ( 12)) plays an important role in the adhesive behaviour. This conclusion is confirmed also by considering the maximum force computed via the JKR and the DMT approaches [START_REF] Attard | Interaction and deformation of elastic bodies: origin of adhesion hysteresis[END_REF]:
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The numerical value is in satisfactory agreement with the DMT value, which is somewhat smaller in view of the fact that the theoretical approach disregards the presence of plastic deformation. The latter has a strong influence on the adhesive energy, as it can be easily demonstrated by considering the next numerical example.

The same sphere-on-flat problem is considered, but now the yield limit is set to σ 0 = 4GPa.

The lower the yield limit, the higher the amount of plastic deformation. As expected, a higher residual deformation can be highlighted when the force returns back to zero in the unloading branch. The contact zone is wider and by far larger force and adhesion energy is achieved.

The same model depicted in Figure 1 has been used in order to check the performance of the method in the presence of capillary pressure. The following parameters have been adopted in the analysis: perfectly hydrophilic surfaces (i.e. contact angle of water θ = 0); relative humidity RH = 20%; temperature T = 300K; yield limit σ 0 = 6GPa; absence of van der Waals attraction; same displacement time history as in the previous case. The force-displacement curve is shown in Figure 3. The numerical value of the adhesion energy turns out to be: 

A different analysis has been carried out in order to evaluate the effect of relative humidity. As previously stated, the increase of RH yields an increase of overall energy. The numerical results for RH = 70% reads W ad = 10.3 10 -10 µJ. On the other hand, the peak force remains more or less constant. This could be explained by the fact that the deformation entails the flattening of the adhered surface. In fact, Eq. ( 9) states that, for perfectly flat surfaces, the global attractive force due to capillary effect is independent of the relative humidity.

Conclusion

The adhesive phenomena for micro-devices can be conveniently modeled by means of a cohesive interface, essentially characterized by the fracture energy. In view of the complex nature of adhesion, a multi-scale method is proposed, in the sense that the specific energy is computed by FE analyses on a representative part of the surface. The first step in the development of the proposed method is represented by the implementation of a FE code which is able to represent the microscopic adhesive forces in different environmental conditions. This paper has described the main features of the computational model and its validation with reference to some simple examples.

The next step, to be fully illustrated in a forthcoming paper, consists of the application of the computational procedure to the actual rough surface. The geometric model of the rough surface is artificially generated, by means of a Digital Filter Technique, on the basis of a priori known statistical properties. The preliminary results, in case of 70% relative humidity, evidence reasonable values for the "average" specific energy on the representative surface.
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 1 Figure 1 -FE model for the sphere-on-flat problem.
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 2 Figure 2 -Zoom into the adhesive part of the force-displacement curve.
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 3 Figure 3 -Force-displacement curve in the presence of capillary attraction for RH = 0.2.
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