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Abstract. This note presents our implementation in the PARI/GP system
of the various arithmetic invariants attached to logarithmic classes and units of
number fields. Our algorithms simplify and improve on works of Diaz y Diaz,
Pauli, Pohst, Soriano and the second author.
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1. Introduction

Classically the class group and unit group of a number field F are defined using
the canonical factorization of principal fractional ideals into prime ideals of the
ring of integers ZF :

(x) =
∏
p

pvp(x), x ∈ F×.

The family of valuations (vp)p determines a natural morphism from the multi-
plicative group F× into the free abelian group generated by the prime ideals
IF = ⊕p Z p whose kernel and cokernel are respectively the units EF = Z×F and
the ideal class group ClF attached to F ; this yields the standard exact sequence

1 −−−→ EF −−−→ F×
div−−−→ IF = ⊕p Z p −−−→ ClF −−−→ 1,

1
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where div(x) =
(
vp(x)

)
p
. Geometry of numbers then shows on the one hand that

the ideal class group is finite and on the other hand that the unit group EF is
the direct product of the cyclic subgroup µF of roots of unity contained in F and
a free Z-module of rank rF + cF − 1, where rF are cF denote respectively the
number of real and complex places of F .

The logarithmic class group and units are defined in an analogous way, by
replacing the classical valuations (vp)p by an ad hoc family (ṽp)p taking other
arithmetic parameters into account. Before introducing them, let us fix an arbi-
trary prime number ` and tensor the above sequence by Z`, which is flat over Z:

1 −−−→ Z` ⊗Z EF −−−→ Z` ⊗Z F
× div−−−→ ⊕p Z` p −−−→ Z` ⊗Z ClF −−−→ 1,

where Z`⊗Z ClF is nothing else than the `-Sylow subgroup of the class group and
the kernel Z` ⊗EF is the direct product of the `-group µ(`)

F of `-primary roots of
unity in F and a free Z`-module of rank rF + cF − 1.

We now define the `-adic logarithmic valuations by keeping the ordinary defi-
nition ṽp = vp at places p - `, but we modify them at places p above ` [16]:

ṽp(x) = −
Log`

(
NKp/Q`

(x)
)

deg p ,

where Log` is the Iwasawa logarithm, NKp/Q`
is the norm operator attached to

the local field extension Kp/Q` and deg p is a normalization factor chosen so as
to yield the local Hilbert symbol [14]:(

ζ, x

p

)
= ζ ṽp(x)

for ζ ∈ µ(`)
F and x ∈ F×, for all finite places p of F . (We shall give an explicit

definition for deg p in the next section together with an algorithm to approxi-
mate it.) We finally replace in the last exact sequence the classical valuations vp
and the div map by a new d̃iv = (ṽp)p, thereby defining the group of logarithmic
units ẼF and the logarithmic class group C̃lF for the prime `:

1 −−−→ ẼF −−−→ Z` ⊗Z F
× d̃iv−−−→ ⊕p Z` p −−−→ C̃lF −−−→ 1.

Just as the image PF = div(F×) in IF yields the subgroup of principal ideals, the
image PF of d̃iv defines the subgroup of principal logarithmic divisors.

At this point appears an essential difference compared to the classical case,
akin to what happens in the function field case: if we define the degree of a
logarithmic divisor d = ∑

p αpp in ⊕p Z` p additively,

deg
(∑

p

αp p

)
=
∑
p

αp deg p,
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then the product formula for absolute values shows that principal logarithmic
divisors have degree 0; in other words,

PF ⊂ {d ∈ ⊕p Z` p : deg d = 0} .

It is then natural to consider the quotient group, i.e. the subgroup C̃l 0
F ⊂ C̃lF

formed by the classes of degree 0.
By `-adic class field theory (cf. [15, 9]), the group C̃l 0

F appears as a canonical
quotient of a standard Iwasawa module and the group of logarithmic units ẼF as
the subgroup of norms in the cyclotomic Z`-extension of F . It would follow from
a conjecture of Kuz’min (also known as “generalized Gross conjecture”) that the
group C̃l 0

F is finite, or equivalently that the group ẼF of logarithmic units is the
direct product of the cyclic `-group µ

(`)
F and a free Z`-module of rank rF + cF ;

and the Gross-Kuz’min conjecture is equivalent to these statements. The Baker-
Brumer independence theorem shows that those assertions are true when the
number field F is abelian over Q. More generally, they hold when there exist a
subfield K of F , abelian over Q, such that there is a single place pF of F above
each `-adic place pK of K, see [10].

Moreover, as suggested by the explicit expression of the Hilbert symbol above,
the group C̃l 0

F is closely related to the wild kernels of K-theory. Precisely, if
s > 1 is such that the field F contains the 2`s-th roots of unity, then the finite
group WK2(F ) and the quotient C̃l 0

F ⊗Z Z/`sZ have the same `s-rank (cf. [19]).
A similar result holds for the higher étale kernels WK2i(K), i > 1 (cf. [17]).

Last, as for ideals, transition morphisms (norm and extension) attached to a
number field extension K/F lead to the definition of logarithmic inertia degrees
f̃(pK/pF ) and ramification indices ẽ(pK/pF ) for pK ⊂ ZK dividing pF ⊂ ZF ,
with formal properties analogous to the classical indices e(pK/pF ) and f(pK/pF ),
without coinciding with them. These local indices are multiplicative and satisfy
the product formula

ẽ(pK/pF )f̃(pK/pF ) = e(pK/pF )f(pK/pF ) = [Kp : Fp].

They are introduced as follows: by multiplicativity, it suffices to define f̃(pF/p)
since f̃(pK/pF ) = f̃(pK/p) / f̃(pF/p). Now let F ab

p be the maximal subextension
of the local field Fp which is abelian over Qp. The classical inertia degree f(p/p)
is the degree [F ab

p ∩ Qunr
p : Qp], where Qunr

p denotes the unramified Ẑ-extension
of Qp. The logarithmic inertia degree is the degree [F ab

p ∩ Qc
p : Qp], where Qc

p is
the cyclotomic Ẑ-extension of Qp. In particular the logarithmic indices do not
depend on the choice of the prime `.

One says that the extension K/F ramifies logarithmically at a finite prime pF
whenever ẽ(pK/pF ) > 1 for some pK | pF . As in the classical case, an extension of
number fields is unramified (in the logarithmic sense) except at a finite number
of primes. However a logarithmically unramified extension may ramify in the
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ordinary sense. Such extensions play a crucial role in the capitulation for the
Bertrandias-Payan module studied in the present volume (cf. [8, 11, 20]).

This note presents our implementation in the PARI/GP system of the various
arithmetic invariants attached to logarithmic classes and units. The algorithms
do not depend on any conjecture: if the program stops, its output is correct,
and it in fact proves that the Gross-Kuz’min conjecture holds for that particular
prime ` and number field F .
Acknowledgements: we thank Sebastian Pauli for sharing his Magma implemen-
tation, José Villanueva-Gutiérrez for feedback and examples, and Bill Allombert
for many useful discussions. This study has been carried out with financial sup-
port from the French State, managed by the French National Research Agency
(ANR) in the frame of the “Investments for the future” Programme IdEx Bor-
deaux - CPU (ANR-10-IDEX-03-02). This research was partially funded by ERC
Starting Grant ANTICS 278537.

2. Algorithmic preliminaries

We recall in this section well known facts from computational number theory,
to fix notations. The next section will deal with the main algorithms, germane
to the computation of logarithmic objects.

2.1. The Smith Normal Form. We say that a Z-module of finite type G is
known if

• we have a Smith Normal Form description (SNF)

G =
⊕

16i6s
Z/(di) · gi,

for some generators gi, where ds | · · · | d1 are the elementary divisors
of G; if G has a free part of rank r, then d1 = · · · = dr = 0. If r = 0,
then G is finite and its exponent e(G) is d1.
• we can solve discrete logarithm problems in G, i.e. decompose elements
x ∈ G as x = ∑

i6s xi · gi, where xi ∈ Z/(di).
More generally, let R be a matrix in Ms×t(Z). A Z-module of finite type G is

given by generators (g1, . . . , gs) and relations R when (g1, . . . , gs) ·X = 0G holds
for some X ∈ Zs if and only if X = MY for some Y ∈ Zt. In that case, there
exist matrices U ∈ GLs(Z) and V ∈ GLt(Z) such that UMV is in Smith Normal
Form (SNF), i.e.

UMV =
(
D | 0

)
when t > s or

(
D
0

)
when t 6 s,

where D is the diagonal matrix diag(d1, . . . , ds). In both cases, (g1, . . . , gs) · U−1

are SNF generators of order ds | · · · | d1. The SNF algorithm applied to R
produces U and V in polynomial time (in s, t and log ‖R‖2).
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The same technique allows to handle Z`-modules: when R ∈ Ms×t(Z`), there
exist U ∈ GLs(Z`) and V ∈ GLt(Z`) such that UMV is in SNF. Given MN =
M mod `N , the above algorithm applied to (MN | `N Ids) produces U and V
modulo `N and the matrix U−1 modulo `N describing SNF generators for G ⊗Z
Z/(`N), the running time is now polynomial in s, t and N log `.

2.2. Computational algebraic number theory. The number field F of degree
n is given by the minimal polynomial T ∈ Z[X] of an integral generating element,
in other words F = Q[X]/(T ). We write X for the class of X modT ; an element
α ∈ F is given by a rational polynomial A ∈ Q[X] such that α = A(X). For
any α ∈ F we let ‖α‖ = ∏

v max(1, |α|v) where v runs through all places of F
and |α|v is the attached normalized absolute value. We assume given a Z-basis
of its maximal order ZF . This is in general an expensive invariant, not necessary
for all our algorithms, for instance Algorithm 1 and Corollary 3.5; on the other
hand current algorithms to compute the class group of F and the unit group Z×F
require it.

We further assume that the class group ClF and unit group EF are known in
the sense of 2.1. In the context of the class group ClF , the discrete logarithm
problem is solved in IF in the following extended sense. The generators classes
are represented by integral ideals gi; given a fractional ideal a in IF , we can find
α ∈ F× so that our ideal decomposes as a product of the generators gi multiplied
by the principal ideal (α). We refer to [3] for how to handle these standard
tasks. Practical algorithms to compute ClF and EF require assuming the truth
of the Generalized Riemann Hypothesis for the unramified Hecke L-functions
LF (χ, s), χ ∈ ĈlF , and for the Riemann ζ function. But this assumption can be
lifted provided the discriminant discF is not too large. (The certification process
requires time proportional to

√
|discF |.)

To each maximal ideal p ⊂ ZF above a rational prime p we attach the completed
local field Fp. There exist an irreducible monic divisor Tp ∈ Zp[X] of T , of degree
np = [Kp : Qp] = e(p/p)f(p/p), such that Kp = Qp[X]/(Tp). Given T and a
prime p, and for any given p-adic accuracy k, we can produce in polynomial time
O(k log p · n log ‖T‖∞)C

• the prime ideals pi = pZF + πiZF dividing p, together with their ramifi-
cation indices and residue degrees, where vpi

(πi) = 1 (this is automatic
if e(pi/p) > 1 and one of πi or πi + p satisfy this condition in any case);
• for each pi, a p-adic approximation Tpi,k ∈ Z[X] such that Tpi,k ≡ Tpi

(mod pk);
see for instance the Round 4 algorithm as finalized in [7]. The older (and
much simpler) Round 2 algorithm and Buchmann-Lenstra factorization would
also achieve this result, see [2].

2.3. Local norms. We shall need to compute local norms and their Iwasawa
logarithms. We can write any α ∈ F× as A(X)/a for a ∈ Z>0 and A ∈ Z[X]
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and the representation is unique if a and the content of A are coprime. Since
NFp/Qp(a) = anp , we may focus on α ∈ Z[X].

Lemma 2.1. Let α = A(X), α 6= 0, where A ∈ Z[X]. For each integer k >

vp
(
NFp/Qp(α)

)
, let Nk = Res(A, Tp,k) mod pk ∈ Z then

NFp/Qp(α) ≡ Nk (mod pk).

In particular, vp(Nk) = vp
(
NFp/Qp(α)

)
does not depend on k and

Logp NFp/Qp(α) ≡ LogpNk (mod pk−vp(Nk)).

Note that if the size ‖α‖ of α is controlled, so is
∣∣∣NF/Q(α)

∣∣∣ 6 ‖α‖n. Thus
vp(Nk) 6 vp

(
NF/Q(α)

)
is controlled and finally, any k > vp

(
NF/Q(α)

)
satisfies

the condition in the lemma. This allows to approximate ṽp(α) to any given
accuracy from a sufficiently precise approximation Tp,k of Tp.

3. The main algorithm

We follow the general strategy of [6], while introducing numerous improvements
and simplifications along the way. Let ` be a fixed prime number and denote
S = {p1, . . . , pl} the set of places of F above `. We rely on the obvious exact
sequence of pro-` groups

0 −−−→ C̃l(`) −−−→ C̃l ψ−−−→ Cl′ −−−→ 0

where C̃l(`) is the subgroup generated by the logarithmic classes of the pi, the
group Cl′ is the `-Sylow subgroup of the quotient of the ideal class group by the
subgroup generated by the ideal classes of the pi, and where

ψ :
∑
p

mpp 7−→
∏
p-`

pmp .

We shall compute the groups C̃l(`) and Cl′ independently, by generators and
relations, then build up C̃l using the exact sequence.
Remark 3.1. We depart here from [5, 6] which use θ : ∑pmpp 7→

∏
p-` p

(f̃p/fp)mp .
The latter has good properties in extensions, which we will not need. When
the field is fixed, it makes no difference: for p - `, the factor f̃p/fp belongs to
Z×` so the kernel and cokernel of θ and ψ are the same. More substantially, we
do not restrict to degree 0 divisors C̃l(`)0 and C̃l 0 at this stage, which would
introduce a nontrivial cokernel (as some ideal classes might not be representable
by degree 0 divisors). This avoids the technical difficulty of having to modify
natural generators so that their degree become zero as in [6, Corollary 18]. This
is not obvious and Corollary 18 is incorrect as stated.
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3.1. Computing ẽ(p/p), f̃(p/p) and ṽp(·). We first explain how to compute
the logarithmic inertia and residue degrees. The algorithm is a straightforward
consequence of the following two lemmas:

Lemma 3.2. Let p be a maximal ideal above a rational prime p. We write e, f ,
ẽ, f̃ respectively for e(p/p) f(p/p), ẽ(p/p) and f̃(p/p).

(1) We have ẽf̃ = np = ef .
(2) The prime to p part of ẽ and e coincide, i.e. vq(e) = vq(ẽ) for all primes

q 6= p.
(3) The logarithmic ramification index ẽ and [hp(F×p ) : Zp] have the same

valuation at p, where

hp(α) =
Logp NFp/Qp(α)

np · (2p)
.

Note that hp(Q×p ) = Zp.
(4) We have vp(f̃) 6 vp(e). In particular if p - e, then vp(ẽ) = vp(f) and

vp(f̃) = 0.

Proof. The first three points are proved in [13]. The final one follows from a di-
rect calculation using hp or using the abstract definition f̃(p/p) = [F ab

p ∩ Q̂c
p : Qp],

where Q̂c
p is the compositum of all cyclotomic Zq extensions of Qp on all prime

numbers q. Thus the p-primary part of f̃ is the degree over Qp of the inter-
section L of F ab

p with the cyclotomic Zp-extension of Qp. The claim follows by
multiplicativity of ramification indices in Fp/L/Qp. �

Lemma 3.3. Let p be a maximal ideal above the prime p with ramification index
e = e(p/p). Let D = DFp/Qp denote the local different and let k > e/(p−1). Then
Logp NFp/Qp(1 + pk) = pbv/ecZp, where v = k + vp(D).

Proof. For k > e/(p − 1), we have 1 + pk = exp(pk) and Logp NFp/Qp(1 + pk) =
TrFp/Qp(pk). We then use the equivalence TrFp/Qp p

k ⊂ a ⇔ pkD ⊂ a for any
fractional ideal a ⊂ Qp. �
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Algorithm 1 Compute ẽ(p/p), f̃(p/p)
Input: A maximal ideal p = pZF + πZF , vp(π) = 1 above some prime p of

ramification index e = e(p/p) and residue degree f = f(p/p).
Output: ẽ = ẽ(p/p) and f̃ = f̃(p/p).
1: If vp(e) = 0, set ẽ← e · pvp(f), f̃ ← f · p−vp(f) and stop.
2: Let np ← ef and let k ← 1 + be/(p− 1)c > 1.
3: Let g0 ← π and let (g1, . . . , gs) be independent generators for the finite abelian

group (1 + p)/(1 + pk); see [4, §4.2.3].
4: Let v ← min

06i6s
vp
(
Logp NFp/Qp(gi)

)
, computed using Lemma 2.1.

5: Let v∞ =
⌊(
k + vp(DFp/Qp)

)
/e
⌋
. If v∞ < v, let v ← v∞.

6: Let v ← v − vp(f · 2p). Set ẽ← e · p−v and f̃ ← f · pv.

Proof. The problem boils down to computing the valuation at p of ẽ(p/p). Using
statement (3) in the lemma, this is the non-negative integer w such that hp(F×p ) =
p−wZp. We decompose F×p = πZ × µFp × (1 + pZFp); since hp is additive and
hp(µFp) = 0, it is enough to determine the valuation of hp evaluated at π and on
multiplicative generators of 1 + pZFp , i.e. on generators of (1 + p)/(1 + pk) and
1 + pk; the latter are handled by Lemma 3.3 yielding the v∞ contribution. �

Remark 3.4. By Lemma 3.3, if generator g = gi of the p-group (1 + p)/(1 + pk)
has order d = di, then Logp N(gd) has valuation > v∞. So, when we compute
the minimum of the valuations incrementally for g1, g2, . . . , by decreasing order,
we can stop as soon the lower bound v∞ − vp(di) for the valuation of Logp N(gi)
becomes larger than the current minimum. We can also restrict to the generators
of (1+p)/(1+pk) modulo the p-primary roots of unity in Fp. Finally, we compute
vp
(
Logp NFp/Qp(gi)

)
as vp

(
NFp/Qp(gi)− 1

)
for i > 0.

In comparison, the algorithms of [6, §3.1] need the full set of multiplicative
generators of 1 + pZFp , whose description is complicated and uses the principal
unit filtration up to k = pe/(p − 1). Introducing v∞ thus reduces the size of
the generator system by a rough factor p; and we in fact expect to consider only
g0 and g1 due to the a priori lower bound v∞ − vp(di). The early abort when
vp(e) = 0 also skips the non-trivial part of the algorithm unless p belongs to the
tiny set of (wildly ramified) prime divisors of [F : Q].
Corollary 3.5. Let ` be our fixed prime and p be a maximal ideal above some
prime p. Lemma 2.1 and Algorithm 1 allow to compute the following quantities
to any desired `-adic accuracy in time polynomial in log `, log p, n, log ‖T‖∞ and
log ‖x‖

(1) deg p = f̃(p/p) deg` p, where deg` p =


Log` p if p 6= `,

` if p = ` 6= 2,
4 if p = ` = 2.



THE LOGARITHMIC CLASS GROUP PACKAGE IN PARI/GP 9

(2) For x ∈ F×, ṽp(x) =


vp(x) if p 6= `,

−
Logp

(
NFp/Qp(x)

)
deg p if p = `.

Remark 3.6. The logarithmic degree deg` ` may be multiplied by an `-adic unit
without changing the structure of C̃l. In other contexts, defining respectively

deg` ` = Log`(1 + `) and Log2(1 + 4)
will be more convenient. Indeed, with the latter definition, the exponential of
deg p would always be a natural number.

3.2. The group Cl′. Let S be the set of places above `. We compute the S-class
group

ClF/ 〈S〉 =
⊕

16i6s
(Z/diZ) · gi,

where each gi has order di and ds | · · · | d1, using the obvious definition by gen-
erators (the gi generating the class group) and relations (the subgroup generated
by the classes of elements of S) and computing the attached SNF, see [4, §7.4.2].
We obtain its `-Sylow subgroup Cl′ by raising each SNF generator gi to the power
di`
−v`(di). Alternatively, we can first read off the exponent e = `v`(d1) of Cl′ from

the SNF description of ClF/ 〈S〉, then compute its `-adic SNF by adding gei = 1,
i 6 s, to the relations. The latter method is likely to yield smaller base change
matrices, hence smaller generators. In any case, the generators of Cl′ are repre-
sented by integral ideals in ZF , which we may assume to be coprime to `. Indeed,
if g ⊂ ZF is an arbitrary generator and (gZ) = g ∩ Z, we can replace g by

g +
(
gZ · `−v`(gZ)

)
ZF = g ·

∏
p|`

p−vp(g).

Solving the discrete logarithm problem is a standard extension, see [4, §4.1.3].
The only thing to note is that as described the algorithm will produce huge
generators, as the initial class group generators are raised to huge powers through
the necessary linear algebra. We use the “group ring representation” from [1, §7]
keeping principal ideals in factored form, i.e. as elements in Z[ZF ], and LLL-
reducing general ideals along the way; in this manner the principal parts, in class
groups or S-class groups discrete logarithm decompositions, are obtained in the
form α = ∏

i6r α
ei
i , where the αi are small elements in F (‖αi‖ is controlled) and

the ei are possibly large integers.

Definition 3.7. For any α ∈ Z[ZF ] given in factored representation we write
x ∈ Suppα when x belongs to the support of α, i.e. is one of the αi ∈ ZF
occuring in the factored representation.

This factored representation of elements is quite suitable to compute multi-
plicative or additive functions such as local norms and their `-adic logarithms, or
standard and logarithmic valuations vp and ṽp.
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3.3. The group C̃l(`). We describe C̃l(`) by generators (the classes of the `-adic
places S = {p1, . . . , pl}) and relations (derived from d̃iv(u) = 0, u an S-unit).
Thus the group is given by the `-adic SNF of the matrix M =

(
ṽpi

(uj)
)
, where

the (uj), 1 6 j 6 J = rF + cF + l− 1, generate the free part of the S-unit group.
The (uj) are computed as in [4, §7.4.2], again taking care to use factored

representations. Let

δ(u1, . . . , uJ) = max
i

(
v`(deg pi) + max

j, α∈Suppuj

v`(NFpi/Q`
(α))

)
,

where Suppuj was defined in the previous paragraph. This quantity accounts for
the maximal loss of accuracy when approximating the ṽpi

(uj) by Lemma 2.1 and
Corollary 3.5. For increasing N > log2 δ, we approximate the ṽpi

modulo `2N
> δ

and compute the SNF of M modulo LN = `2N−δ. We may stop as soon as the
computed SNF has a single elementary divisor of largest valuation:

Lemma 3.8. If the computed SNF of the finite `-group

C̃l(`) / C̃l(`)LN =
⊕
i6s

Z/(`vi) · gi

has a single elementary divisor of largest valuation v1 > v2, then the Gross-
Kuz’min conjecture for the field F and the prime ` holds. Indeed, in this case, we
have C̃l(`) = Z` · g1 ⊕ C̃l(`)0, where C̃l(`)0 = ⊕i>1(Z/`vi) · gi has exponent `v2.

Proof. C̃l(`) has Z`-rank bigger than 1 due to the product formula:∑
i6l

deg pi · ṽpi
(x) = 0,

for any S-unit x. The Gross-Kuz’min conjecture states that this rank is exactly 1.
�

Concretely, we apply the SNF algorithm to obtain matrices U ∈ GLl(Z) and
V ∈ GLrF +cF +2l−1(Z) such that

U
(
M mod `LN | `LN · Idl

)
V =

(
diag(di) | 0

)
is in rectangular Smith Normal Form, and stop when LN = v`(d1) > v`(d2). The
gi are given in terms of the logarithmic classes of the pi by

(g1, . . . , gl) = (p1, . . . , pl) · U−1.

We then delete the trivial gi, s < i 6 l, such that di = 1. Of course, the algorithm
will not stop if the conjecture is false and rkZ`

C̃l(`) > 1.
Remark 3.9. This is the equivalent of Algorithm 14 and Theorem 16 in [6], sim-
plified by the fact that we do not need the generators to have degree 0. The
system of `-adic αj ∈ F× ⊗Z Z` such that ṽpi

(αj) = δi,j are no longer needed.
(Note that the construction given before [6, Algorithm 19] must be modified so
that it guarantees that (αj, `) = 1.)
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3.4. The logarithmic class group. We use [4, §4.1.4] to describe C̃l by gen-
erators and relations. The logarithmic classes of the `-adic places {p1, . . . , pl}
generate C̃l(`), with relations computed above. Let ⊕i6s(Z/di) · ai be the SNF of
Cl′ where we chose integral ideal representatives ai coprime to ` for the generating
ideal classes. Those generators lift naturally to divisors, still denoted ai, in C̃l via∏
pep → ∑

epp. Then di · ai belongs to Kerψ, hence to C̃l(`) and we can write
(d1 · a1, . . . , ds · as) = (p1, . . . , pl) · (−P )

in C̃l for some matrix P ∈ Ml×s(Z`), from which we derive the `-adic matrix of
relations between the generators (p1, . . . , pl, a1, . . . , as):(

M P
0 diag(d1, . . . , ds)

)
We now need to determine the matrix P .

Lemma 3.10. For each 1 6 i 6 s, write
adi
i = (αi)

∏
j6l

p
∗i,j

j

for some principal ideal (αi) and integral exponents ∗i,j. Let P ∈Ms×l(Z`) be the
matrix

(
ṽpj

(αi)
)
. In the group C̃l, it holds

(d1 · a1, . . . , ds · as) = (p1, . . . , pl) · (−P ).

Proof. Since the ideal ai is coprime to `, it follows that ∏p-` p
vp(αi) = adi

i and that,
in C̃l, we have

0 = d̃iv(αi) =
∑
p-`
vp(αi) · p +

∑
j6l

ṽpj
(αi) · pj = di · ai +

∑
j6l

ṽpj
(αi) · pj.

�

Concretely, the decomposition
adi
i = (αi)

∏
j

p
∗i,j

j

is computed by solving a discrete logarithm problem in ClF where, as usual, the
(αi)i6s are given in factored representation. As in §3.3, we bound the loss of
accuracy when estimating the ṽpj

(αi) and set

L := max
(
δ(α1, . . . , αl), v`(e(Cl′)) + v`(e(C̃l(`))) + 1

)
.

Then we compute the SNF of(
M mod `L `L · Idl P mod `L

0 0 diag(d1, . . . , ds)

)
.

Including the kernel and image exponents in the maximum guarantees that the
SNF has a unique maximal elementary divisor, allowing to split off the rank 1
Z`-free part and the finite C̃l 0

F .



12 KARIM BELABAS AND JEAN-FRANÇOIS JAULENT

4. The bnflog package

4.1. The PARI/GP interface. In PARI/GP [21] version 2.8.1, the above algo-
rithms are implemented as functions bnflogef and bnflog. All examples below
are written in the GP scripting language.
• The function bnflogef takes as input a number field F and a prime ideal

p and returns the logarithmic indices ẽ(p/p) and f̃(p/p). This is an elementary
function requiring only basic arithmetic invariants of F , hence the use of the
simple nfinit to define the number field structure:

? T = x^6 - 3*x^5 + 5*x^3 - 3*x + 1;
? F = nfinit(T); \\ the number field Q[x]/(T)
? P2 = idealprimedec(F,2)[1]; \\ a prime above 2
? [P2.e, P2.f] \\ ramification index and residue degree
%3 = [3, 2] \\ e(P/p) = 3, f(P,p) = 2
? bnflogef(F, P2)
%4 = [6, 1] \\ etilde(P/p) = 6, ftilde(P/p) = 1

• The function bnflog takes as input a prime ` and a number field F . It
returns a vector of three group structures, given by their elementary divisors:
(C̃l 0

F , C̃l 0
F (`), Cl′). This function requires the class group and units of F , hence

the more involved initialization using bnfinit:
? T = x^4 + 13*x^2 - 12*x + 52;
? F = bnfinit(T); \\ F = Q[x]/(T), together with class group
? F.cyc
%3 = [14] \\ Cl_F ~ Z/(14)]
? bnflog(F, 2)
%4 = [[], [], []] \\ all 3 groups are trivial
? bnflog(F, 3)
%5 = [[3], [3], []] \\ Cl^0 = Cl^0(3) ~ Z/(3)
? bnflog(F, 7)
%6 = [[7], [], [7]] \\ Cl^0 ~ Cl’ ~ Z/(7)

4.2. Examples.
• The following two examples exhibit pathologies expected from the exact

sequence relating C̃l 0
F , C̃l 0

F (`) and Cl′:
? T = x^4 - 511*x^2 + 65536;
? bnflog(bnfinit(T),2)
%2 = [[128, 4], [64], [8]] \\ the sequence doesn’t split

? T = x^4 - 26*x^2 + 225;
? bnflog(bnfinit(T),2)
%4 = [[], [], [2]] \\ coker(psi) = Z/2

• This program fixes a misprint in [6, p. 12], which reports C̃l 0 for F =
Q(
√

1234577,
√
−3) to be Z/4Z× Z/4Z (it is cyclic of order 4):
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? T = polcompositum(x^2+3, x^2-1234577, 2);
? bnflog(bnfinit(T,1),2)
%2 = [[4], [4], []]
• The following program proves [12, Proposition 3.4]; the locally cyclotomic

2-tower of F = Q(√−p) is infinite:
? {

forprime(p = 2, 5000,
if (p%64 != 63, next);
F = bnfinit(x^2+p);
G = bnflog(F,2); Cl = G[1]; if(!Cl || Cl[1] % 16,next);
print([p,G]))

}
[3967, [[16], [16], []]]
[4159, [[32], [32], []]]

• The following program proves [12, Proposition 3.5]; the locally cyclotomic
2-tower of F = Q(√pq) is infinite:

? {
forprime(p = 2, 2000,

if (p % 64 != 1 && p % 64 != 63, next);
forprime(q = p+1, 2000, if ((p*q)%64 != 1, next);
F = bnfinit(x^2-p*q, 1);
G = bnflog(F,2); C = G[1]; if (!C || C[1] % 16, next);
print([p,q,G])))

}
[127, 1151, [[32], [32], []]]
[193, 257, [[32], [8], [4]]]
[193, 1217, [[16], [4], [4]]]
[449, 577, [[256], [128], [2]]]
[577, 1601, [[64, 2], [16], [8]]]
[641, 769, [[16, 2], [16], [2]]]
[1151, 1663, [[16], [16], []]]

•We now give two examples with large 3-rank (and large class group); factored
representations must be used throughout to avoid catastrophic cancellation:

? F = bnfinit(x^2 + 5393946914743);
? bnflog(F, 3)
%2 = [[3, 3, 3, 3, 3], [], [3, 3, 3, 3, 3]]

\\ This assumes the truth of the GRH:
? F = bnfinit(x^2 + 14138863693162613823739799380212181908);
? F.cyc
%4 = [693468857222922, 6, 6, 6, 3]
? bnflog(F, 3)
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%5 = [[3, 3, 3, 3, 3], [9], [3, 3, 3, 3]]

The final computation is conditional on the truth of the GRH, since it is not
practical to certify the class group of a field F with such a large discriminant.
The total running time for all the above computations is about 4 minutes, 99%
of which are spent in the final example.
• This program prints the smallest real quadratic field whose C̃l 0 has 2-rank

equal to 5 (and its locally cyclotomic 2-tower is infinite). This fixes a misprint in
[18] which erroneously reports F = Q(

√
3 · 5 · 7 · 11 · 13 · 17) as the real quadratic

field with smallest discriminant with this property (but its 2-rank is 4). This
computation requires about 5 hours.

? D = 3*5*7*11*13*17*19;
? {

for(d=2, D,
if (!issquarefree(d),next);
F = bnfinit(x^2-d, 1);
G = bnflog(F,2); if (#G[1] >= 5, print([d,G])))

}
[4849845, [[4, 2, 2, 2, 2], [], [4, 2, 2, 2, 2]]]

? bnflog(bnfinit(x^2-3*5*7*11*13*17), 2);
%3 = [[2, 2, 2, 2], [], [2, 2, 2, 2]]
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