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Abstract

We propose a reproducible variant of the unblocked LU factorization for graphics proces-
sor units (GPUs). For this purpose, we build upon Level-1/2 BLAS kernels that deliver
correctly-rounded and reproducible results for the dot (inner) product, vector scaling, and
the matrix-vector product. In addition, we draw a strategy to enhance the accuracy of the
triangular solve via iterative refinement. Following a bottom-up approach, we finally con-
struct a reproducible unblocked implementation of the LU factorization for GPUs, which
accommodates partial pivoting for stability and can be eventually integrated into a (blocked)
high performance and stable algorithm for the LU factorization.

Keywords: LU factorization, BLAS, reproducibility, accuracy, long accumulator, error-free
transformation, GPUs.

1. Introduction

The IEEE 754 standard, created in 1985 and then revised in 2008, has led to a consider-
able enhancement in the reliability of numerical computations by rigorously specifying the
properties of floating-point arithmetic. This standard is now adopted by most processors,
thus leading to a much better portability of numerical applications.

Exascale computing (1018 operations per second) is likely to be reached within a decade.
For the type of systems yielding such formidable performance rate, getting accurate and
reproducible1 results in floating-point arithmetic will represent two considerable challenges [9,
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david.defour@univ-perp.fr (David Defour), erwinl@pdc.kth.se (Erwin Laure), quintana@uji.es
(Enrique S. Quintana-Ort́ı)

1By accuracy, we mean the relative error between the exact result and the computed result. We define
reproducibility as the ability to obtain a bit-wise identical floating-point result from multiple runs of the
code on the same input data.
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28]. Reproducibility is also an important and useful property when debugging and checking
the correctness of codes as well as for legal issues.

The solution of a linear system of equations is often at the core of many scientific ap-
plications. Usually, this process relies upon the LU factorization, which is also its most
compute-intensive component. Although there exist implementations of this factorization
that deliver high performance on a variety of processor architectures –including general-
puropose multicore processors, Intel Xeon Phi, and graphics processors (GPUs)– their re-
producibility and, even more, accuracy cannot be guaranteed. This problem is mainly due
to the non-associativity of floating-point operations, combined with the concurrent thread-
level execution of independent operations on conventional multi-core processors or the non-
determinism of warp scheduling on many-core GPUs. This last type of architecture is
especially appealing for the acceleration of compute-intensive kernels, as those appearing in
dense linear algebra [13, 21].

In this work, we address the problem of reproducibility of the LU factorization on GPUs
due to cancellations and rounding errors when dealing with floating-point arithmetic. In-
stead of developing a GPU implementation of the LU factorization from scratch, we rely
on the hierarchical and modular structure of linear algebra libraries, and start by creating
and augmenting reproducible OpenCL kernels for the BLAS (Basic Linear Algebra Subpro-
grams [10]) that serve as building blocks in the LU factorization. In addition, we enhance
the accuracy (in case of non-correctly-rounded results) of these underlying BLAS kernels for
graphics accelerators.

We consider the unblocked left-looking algorithm for the LU factorization (also know as
jik or jki variant [32]). The unblocked version is important for the solution of “batched”
linear systems [14], where the goal is to solve a large sequence of independent small-size
problems, and also as a building block to assemble high performance algorithms for the
factorization. In addition, the left-looking version is especially appealing for fault tolerance,
out-of-core computing, and the solution of linear systems when the coefficient matrix does
not fit into the GPU memory. The unblocked left-looking algorithm can be formulated in
terms of the Level-1 and Level-2 BLAS kernels for the dot product (dot), vector scaling
(scal), matrix-vector product (gemv), and triangular system solve (trsv). We prevent
cancellations and rounding errors in these kernels by applying the following techniques:

• We leverage a long accumulator and error-free transformations (EFTs) designed for
the exact, i.e. reproducible and correctly-rounded, parallel reduction (exsum) [6] in
order to derive an exact dot product (exdot). For this purpose, we combine the
multi-level parallel reduction algorithm with the traditional EFT, called TwoProd [31],
for the multiplication of two floating-point numbers.

• By its nature, scal is both reproducible and correctly-rounded. However, in the un-
blocked left-looking factorization, scal multiplies a vector by the inverse of a diagonal
element, which causes two rounding errors (one to compute the inverse and one for the
multiplication by the inverse). To address this, we provide an extension of scal (invs-
cal) that performs the division directly, ensuring correctly-rounded and reproducible
results.
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• We develop a reproducible and accurate implementation of gemv by combining to-
gether a high performance GPU kernel of this operation with the exact dot.

• To improve the parallel performance of trsv, we use a blocked variant that relies
upon small trsv involving the diagonal blocks and rectangular gemv with the off-
diagonal blocks. This approach leads to a reproducible, but not yet correctly-rounded,
triangular solve (extrsv) [18]. We tackle the accuracy problem by applying a few
iterations of iterative refinement.

• Finally, we integrate partial pivoting [13] into unblocked left-looking algorithm for the
LU factorization which, as part of future work, will allow us to employ this compo-
nent in the solution of batched linear systems as well as a building block for high
performance blocked factorization algorithms.

The paper is organized as follows. Section 2 reviews several aspects of computer arithmetic,
in particular floating-point expansions and the Kulisch superaccumulator. Section 3 presents
the ExBLAS library with its current set of routines. Section 4 is devoted to the presentation
of a reproducible LU algorithm. We evaluate our implementations in Section 5. Finally, we
discuss related works and draw conclusions in Sections 6 and 7, respectively.

2. Background

In this paper, we consider the double precision format (binary64) as specified in the
IEEE-754 standard. The standard requires correctly-rounded results for the basic arithmetic
operations (+,−, ·, /,√ ), which means that the operations are performed as if the result
was first computed using infinite precision, and then rounded to the floating-point format.
In this work, we assume the rounding-to-nearest mode.

Due to rounding errors, floating-point operations are non-associative and, therefore,
non-reproducible [22]. Hence, the accuracy and reproducibility of floating-point operations
strongly depend on their order [16, 29]. As a consequence, dynamic thread scheduling, which
is often exploited to improve the performance of parallel algorithms, may lead to different
results from one execution to another.

In the remainder of this section we present a brief overview of algorithms that lie at
the foundation of our present work. Concretely, floating-point expansions with EFTs (Sec-
tion 2.1) and a Kulisch superaccumulator (Section 2.2) have been proposed in the past in
order to perform addition/subtraction of floating-point numbers without round-off errors;
and these two algorithms have been efficiently combined to derive the hierarchical scheme
for parallel summation [6] (Section 3.1) and dot product [17] (Section 3.2).

2.1. Floating-Point Expansion

Floating-point expansions (FPE) allows us to recover and track rounding error which
occurs during floating-point additions. FPE represents the result as an unevaluated sum of
p floating-point numbers whose components are ordered in magnitude with minimal overlap
to cover a wide range of exponents. FPEs of sizes p = 2 and 4, based on the EFT, are
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described in [26] and [15], respectively. The conventional EFT for the addition (TwoSum) is
given in Alg. 1 [24] and, for the multiplication (TwoProd), in Alg. 2 [31]. Alg. 1 computes
the addition of two floating-point numbers a and b and returns the result r and the error
e such that r and e do not overlap. Similarly, TwoProd performs the multiplication of two
floating-point numbers a and b. For TwoProd, we use the fused-multiply-and-add (fma)
instruction to track the error that computes a · b− r with only one rounding at the end.

Algorithm 1: EFT for the summation of two floating-point numbers.

Function [r, e] = TwoSum(a, b)
r := a+ b
z := r − a
e := (a− (r − z)) + (b− z)

Algorithm 2: EFT for the product of two floating-point numbers.

Function [r, e] = TwoProd(a, b)
r := a · b
e := fma(a, b,−r)

Adding one floating-point number to an expansion of size p is an iterative process. The
floating-point number is first added to the head of the expansion and the rounding error
is next recovered as a floating-point number using the TwoSum EFT. The error is then
recursively accumulated to the remainder of the expansion. As long as the dynamic range of
the sum is lower than 253×p (for binary64), the FPE approach computes the accumulation
of numbers without loss of accuracy.

The performance advantage of FPEs is that they can be kept in registers (after being
fetched) during the computations. However, their accuracy may be insufficient for large
sums or for floating-point numbers with significantly variations in magnitude. Additionally,
the complexity of FPEs grows linearly with their size.

2.2. Kulisch Superaccumulator

The Kulisch superaccumulator covers the range from the minimum representable floating-
point value to the maximum value in absolute value. For the dot product of two vectors
composed of binary64 elements, Kulisch [25] proposed to use a 4,288-bit accumulator. The
addition of products of binary64 values is performed without loss of information by accu-
mulating every floating-point number in the superaccumulator; see Fig. 1. The superaccu-
mulator can produce the exact sum or dot product of a very large amount of floating-point
numbers with arbitrary dynamic ranges. However, the superaccumulator incurs a large
memory overhead, due to the required storage, and turns vectorization difficult, because of
indirect memory accesses.
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Figure 1: Kulisch Superaccumulator.

3. Exact BLAS Library (ExBLAS) on GPUs

This section briefly reviews the prototype implementation of the Exact BLAS (ExBLAS)
library [19] that underlies our LU factorization. We begin with the parallel reduction and dot
product, as they are two fundamental BLAS kernels, and continue then with the triangular
solver, outlining the improvements in this paper compared with prior work. We also extend
our ideas to scaling a vector by the inverse of a scalar and the matrix-vector product,
contributing novel algorithms and implementations. While presenting these routines, we
also expose how they are used within the discussed unblocked LU factorization.

3.1. Exact Parallel Reduction: exsum

In [6, 19] we introduced a multi-level approach to summation that combines the FPE
and superaccumulator algorithms. The procedure splits the computation into five levels: fil-
tering, private superaccumulation, local superaccumulation, global superaccumulation, and
rounding. This 5-stage decomposition is advantageous for modern parallel architectures such
as GPUs, and it can accommodate nested parallelism.

The first level of this hierarchical summation approach relies on FPEs with EFTs for the
accumulation of floating-point numbers; see Algs. 1 and 2. Each thread maintains its own
FPE. In order to enable expansions of size p, we apply Alg. 3, based on Alg. 1, enhanced
with superaccumulators in case the result of the accumulation cannot be represented with
a FPE of size p.

Algorithm 3: Floating-point expansion of size p.

Function ExpansionAccumulate(x)
for i = 0→ p− 1 do

(ai, x) := TwoSum(ai, x)
end
if x 6= 0 then

Superaccumulate(x)
end

In the second level, if the last rounding error x is non-zero (see Alg. 3), x is forwarded
to the private superaccumulator, the FPE is flushed to the superaccumulator, and the ac-
cumulation process is continued. At the end of the summation, all FPEs are forwarded to
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superaccumulators. Depending on the amount of memory that is available, private super-
accumulators (shared among a small number of threads) are allocated in either fast local
memory, e.g. cache or shared memory, or global memory.

In the third level, k private superaccumulators are merged into a single local superaccu-
mulator, one per group of threads. In the fourth level, all local superaccumulators within
a GPU are combined together into a global superaccumulator. Finally, the global superac-
cumulator is rounded back to the target floating-point format, in the fifth level, in order to
obtain the correctly-rounded result.

We develop hand-tuned variants of a single OpenCL implementation for NVIDIA and
AMD GPUs. These variants use 16 superaccumulators per workgroup of 256 threads and
employ local memory to store these superaccumulators. In order to avoid bank conflicts, su-
peraccumulators are interleaved to spread their digits among different memory banks. Con-
currency between 16 threads that share one superaccumulator is settled thanks to atomic
operations while scattering the input data into the corresponding digits of the superaccu-
mualtor.

3.2. Exact Dot Product: exdot

We apply the multi-level parallel reduction algorithm [6] to the dot product [17] by
additionally utilizing the TwoProd EFT for the exact multiplication of two floating-point
numbers. The GPU implementation of exdot is based on the same concept that under-
lying exsum with an auxiliary function call to TwoProd and the corresponding treatment
of its outputs. The performance results of the exact dot product on GPUs present a small
overhead induced by the summation of two numbers (the result and the error) after each
call to TwoProd. In contrast, for large array sizes, exdot delivers both numerically repro-
ducible and correctly-rounded results with comparable performance to its standard, non-
deterministic version.

3.3. Exact Vector Scaling: exscal and exinvscal

Multiplying a vector x by a scalar α is a rather simple kernel that requires only one
operation to be performed for each element of the vector (xi := α · xi). When the IEEE
754-2008 compliance is ensured, this operation (exscal) is both correctly-rounded and
reproducible. However, in the call to scal from the unblocked LU factorization, see Alg. 7,
the vector is scaled by the inverse of the diagonal element, so that the result is not correctly-
rounded due to the two rounding errors induced by one division and one multiplication.
To ensure correctly-rounded and, therefore, reproducible results in this case, we propose a
version of scal (exinvscal) that directly performs division of the vector elements by the
diagonal element without the intermediate rounding error. Both exscal and exinvscal
are easy to implement on GPUs as an update of the vector elements can be performed in
parallel by a team of threads.

3.4. Exact Matrix-Vector Product: exgemv

The matrix-vector product (gemv) is one of the building blocks for the triangular solver
as well as for the unblocked LU factorization. Therefore, we next present its correctly-
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rounded and reproducible implementation. The gemv kernel computes one of the following
matrix-vector operations:

y := αA · x+ βy, or y := αAT · x+ βy, (1)

where α and β are scalars, x and y are vectors, and A is a matrix.
We derive a reproducible and accurate algorithm for exgemv by combining its two-kernel

algorithmic variants from [3] to render high performance; and the exact dot product, which
is described in Section 3.2, to guarantee both reproducibility and accuracy of the results.
We next provide a detailed explanation of this merge into a GPU kernel.

m

p

:=

mb

A x

+

y

Figure 2: Work distribution in the matrix-vector product.

The proposed OpenCL implementation of the matrix-vector product splits the compu-
tations into blocks, so that each workgroup of threads compute a certain part of the output
vector y. Fig. 2 shows how a part of the vector y is computed using p workgroups of size
mb. Each thread from a workgroup is engaged in pre-loading a part of x (colored in dark
blue) into local memory, making it available to the whole workgroup. Then, each thread
computes its partial dot product using its own FPE, which is kept in private memory; the
computation on the thread-owned FPEs is very fast. The FPEs with the partial results are
flushed to local superaccumulators that are stored in the corresponding cells of the m × p
matrix (dark green). Concerning the superaccumulators, we adhere to one of the following
two scenarios:

1. Hold a matrix of m × p superaccumulators in global memory and then perform a
reduction on them in order to obtain a vector of m superaccumulators that corresponds
to the output vector y;

2. Hold only a vector of m superaccumulators, where each superaccumulator is shared
among p threads, and solve the contention for shared superaccumulators using atomic
operations.

The second scenario reduces the exgemv implementation to one kernel and releases the
pressure on the global memory. That is also beneficial for the n− 1 (n is a matrix size) calls
to exgemv within the unblocked LU factorization. The first scenario is left for future work.
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Each workgroup holds only a part of the vector x in its local memory. This allows that
multiple workgroups per multiprocessor proceed concurrently. This strategy also maximizes
the reuse of cached-shared parts of the vector x as there are 256 or 512 threads per workgroup.

In the current version of ExBLAS, we provide implementations that cover all possible
cases of exgemv as depicted in (1).

3.5. Reproducible Triangular Solver: extrsv

The triangular solve involving a lower triangular coefficient matrix is one of the building
blocks for the unblocked LU factorization. We next provide the multi-level reproducible
approach for triangular systems with a single right-hand side [18] and reveal our strategies
for improving its accuracy.

Let us consider the system Lx = b, where L is a non-singular (square) lower triangular
matrix. This system can be solved using (sequential) forward substitution, as depicted
in Alg. 4, where the elements of x are computed from first to last.

Algorithm 4: Forward substitution.

x1 := b1/l11
for i = 2 : n do

s := bi
for j = 1 : i− 1 do

s := s− lijxj
end
xi := s/lii

end

Alg. 5 represents the blocked algorithm for the reproducible triangular solver with a
lower triangular matrix. Our strategy depicted in this algorithm is the following:

1. Use a blocked version of the triangular solver;

2. Apply the exact dot product (s := s − lijxj) with FPEs and superaccumulators. We
apply this procedure through the blocked extrsv: within the non-blocked (called
local) extrsv and the local blocked exgemv. The array of superaccumulators is
shared between these two routines. Since the computations in the blocked extrsv
are performed in sequential order (local extrsv, local exgemv, local extrsv, etc.)
there is no contention for the array of superaccumulators.

3. Correctly round the accumulated result (ŝ := RNDN(acc(k))). To note, rounding to
double is performed only once – at the end of computing each element of the solution.

4. Perform the division by the corresponding diagonal element (x̂i := ŝ/lii).

Theorem 3.1. The previous strategy yields a reproducible solution for the triangular solve.

Proof. We give a proof by induction. As x1 := b1/l11 and as the division is correctly-
rounded, the latter always returns the same result, and, therefore, it is reproducible. Let us
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Algorithm 5: Blocked extrsv: blsz stands for a block size; acc refers to an array
of superaccumulators of size n; acc(k) corresponds to one superaccumulator at the
position k in this array.

for i = 0 : blsz : n do
Local extrsv

for k = i : i+ blsz do
for j = 1 : k − 1 do

[r, e] := TwoProd(lkj,−xj)
ExpansionAccumulate(r) accumulate r using Alg. 3
ExpansionAccumulate(e) accumulate e using Alg. 3

end
ExpansionAccumulate(bk)
ŝ := RNDN(acc(k)) round to double a superaccumulator
xk := ŝ/lkk

end

Local exgemv
for k = i+ blsz : n do

for j = i : i+ blsz do
[r, e] := TwoProd(lkj,−xj)
ExpansionAccumulate(r)
ExpansionAccumulate(e)

end

end

end

now assume that x1, . . . , xi−1 are reproducible. As the computation s := s − lijxj is done
with a large accumulator, there is no rounding error and the result is exact, independently
of the order of computation and, consequently, reproducible. The operation ŝ := RNDN(s)
is reproducible as it is a correctly-rounded operation. Finally xi := ŝ/lii is reproducible as
it is the result of a correctly-rounded division between two reproducible quantities. �

Our approach is based on partitioning the matrix and both the right-hand side and the
solution vectors into blocks, and then organizing computations on those blocks as in Figs. 3a
and 3b; so that each diagonal block of size blsz× blsz participates in extrsv, and the panel
underneath this block is involved in exgemv. The challenge lies in ensuring a balanced
workload distribution among workgroups on GPUs, and a light synchronization overhead,
as some parts of the algorithm (the local extrsv on the diagonal blocks, see Fig. 3b) still
need to be executed in the sequential order.

Each of the four aforementioned parts of the proposed triangular solver is reproducible
and, therefore, the computed solution is reproducible as well. Compared with our previous
work [18], in the new version of ExBLAS we covered all the four variants of the triangular
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extrsv

extrsv

extrsv

extrsv

exgemv

exgemv

exgemv

blsz

(a) Kernel-wise

blsz

wg1

wg0

wg3

wg2

(b) Work-group-wise.

Figure 3: Partitioning of a lower triangular matrix L, where blsz stands for a block size and WGx
is the number of a workgroup x.

solver as follows
T · x = b, or T T · x = b, (2)

where x and b are n elements vectors, and T is an n × n unit, or non-unit, upper or lower
triangular matrix.

In order to enhance the accuracy of the reproducible trsv, we propose to apply a few
iterations of refinement based on the ExBLAS routines, as described in Alg. 6. The overhead
of the iterative refinement can be diminished by locating the origin of the accuracy problem
and, consequently, applying iterative refinement directly on the diagonal blocks right after
the local extrsv.

Algorithm 6: The reproducible triangular solver with iterative refinement.

x̂ := L−1b (extrsv)
for i = 1 : nbiter do

r := b− Lx̂ (exgemv)
d := L−1r (extrsv)
x̂ := x̂+ d (exaxpy)

end

Theorem 3.2. Algorithm 6, for the triangular solve with iterative refinement, is repro-
ducible.

Proof. The first step uses extrsv to compute x̂ := L−1b, so x̂ is reproducible. Inside the
loop, we sequentially compute r, d and x, with each of them being reproducible due to the
use of extrsv, extrsv and exaxpy, accordingly. As a consequence, the whole algorithm
is reproducible. �
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4. Reproducible LU Factorization

The LU factorization decomposes an m× n matrix A into the product of an m× r unit
lower triangular matrix L, with r = min(m,n); an r×n upper triangular matrix U ; and an r×
r permutation P such that PA = LU . In order to compute this decomposition, we consider
an unblocked left-looking variant, illustrated in Alg. 7 using the FLAME notation [4, 12].
This notation makes it easier to identify which regions of the matrix are updated and used;
see Fig. 4. In Alg. 7, size(A) indicates the number of columns of the matrix A. Before the
computation commences, A is virtually partitioned into four blocks ATL, ATR, ABL, and
ABR, where ATL is a 0 × 0 matrix. The matrix is then traversed from the top-left to the
bottom-right corner. At each iteration of the loop, A is repartitioned from 2×2 to 3×3 form,
where A00, A02, A20, and A22 are matrices; a01, a

T
10, a

T
12, and a21 are vectors; and α11 is a scalar.

The algorithm updates a01, α11, and a21 using trsv, dot, and invscal/gemv, respectively.
At the end of the computation, matrix A is overwritten by the upper triangular matrix U
and the unit lower triangular matrix L. Additionally, the vector p of pivots (representing
the permutations contained in P ) is created.

Alg. 7 shows that, thanks to the modular and hierarchical structure of linear algebra
libraries, computations of more complex algorithms – such as the LU factorization – can be
entirely expressed and built on top of the lower level fundamental routines – in particular,
the BLAS. We benefit from this layered hierarchy to construct a reproducible algorithmic
variant of the unblocked LU factorization, Alg. 7, on top of the underlying ExBLAS routines:
extrsv, exdot, exinvscal, and exgemv.

To enable support for (reproducible) partial pivoting in Alg. 7, we split this process into
two stages:

1. Searching for the maximum element in absolute value within the subdiagonal part of
a matrix column. This operation is always reproducible.

2. Swapping two rows. This operation is also reproducible by nature.

In addition, for this particular variant of the unblocked LU factorization, we apply pivoting
from the previous iteration right before the computations update the current one. In con-
clusion, all computational steps of the proposed unblocked LU factorization rely upon their
reproducible counterparts, such as extrsv, exdot, exinvscal, and exgemv, plus the re-
producible strategy implementing partial pivoting. Therefore, we have successfully removed
all sources of indeterminism, while efficiently exploiting data-parallelism within each basic
block, and the result computed by Alg. 7 is reproducible.

5. Experimental Results

In this section, we evaluate our implementations of the unblocked LU factorization with
partial pivoting and its underlying ExBLAS routines on three NVIDIA architectures; see
Tab. 1.

We develop unique OpenCL implementations of each algorithm on GPUs and tuned
these implementations – e.g. by promoting loop unrolling or changing workgroup size, etc.
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Algorithm 7: The left-looking algorithmic variant
of the unblocked algorithm LU factorization with
partial pivoting.

Partition

A→
(
ATL ATR

ABL ABR

)
, p→

(
pT
pB

)
where ATL is 0× 0, pT has 0 elements

While size(ATL) < size(A) do

Repartition(
ATL ATR

ABL ABR

)
→

A00 a01 A02

aT10 α11 a
T
12

A20 a21 A22

,

(
pT
pB

)
→

p0π1
p2


where α11 and π1 are scalars a01

α11

a21

 := P (p0)

 a01
α11

a21


a01 := L−1

00 a01 (trsv)
α11 := α11 − aT10a01 (dot)
a21 := a21 − A20a01 (gemv)

π1 := PivIndex

(
α11

a21

)
(
aT10 α11

A20 a21

)
:= P (π1)

(
aT10 α11

A20 a21

)
a21 := a21/α11 (scal/invscal)
Continue with(
ATL ATR

ABL ABR

)
←

A00 a01 A02

aT10 α11 a
T
12

A20 a21 A22

,

(
pT
pB

)
←

p0π1
p2


endwhile

A00 a01 A02

aT10 α11 aT12

A20 a21 A22

i

1

m
−
i
−

1

i 1 n− i− 1

Figure 4: Partitioning of ma-
trix A.

– for a particular architecture in order to optimize performance. Moreover, our implemen-
tations strive to deliver the best performance through utilizing all the underlying resources
of the target GPUs: SIMD instructions, fmas, private and local memory, as well as atomic
instructions. We verify the accuracy of our implementations by comparing the computed
results with those produced by the multiple precision sequential library MPFR for CPUs.

As a baseline for comparison purposes, we provide our vectorized, parallelized, and op-
timized non-deterministic double precision implementations of the matrix-vector product,
triangular solver, and the unblocked LU factorization (Alg. 7). We denote these imple-
mentations on figures as “Parallel gemv”, “Parallel trsv”, and “Parallel LU”, accordingly.
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Table 1: Hardware platforms employed in the experimental evaluation.

NVIDIA Quadro K420 192 CUDA cores 0.780 GHz

NVIDIA Tesla K20c 2,496 CUDA cores 0.706 GHz

NVIDIA Tesla K80 4,992 CUDA cores with a dual-GPU design 0.560-0.875 GHz

We use these implementations as starting points for the integration of our reproducible
solutions. Hence, these baseline implementations are very relevant in order to assess the
performance, accuracy, and reproducibility of the results. Despite some performance penal-
ties, we would like to emphasize the importance of obtaining reproducible and, if possible,
correctly-rounded results.

5.1. exgemv Results

While decomposing a matrix into a lower and an upper triangular matrices using the
LU factorization, the matrix-vector product involves matrices of various shapes, starting
from column-panels, through squarish, and then row-panels. In our experiments, we aim to
evaluate these scenarios by considering the following three test cases:

1. gemv with square matrices;

2. gemv with row-panel matrices, where the number of rows is fixed to m = 256 and the
number of columns n varies;

3. gemv with column-panel matrices, where the number of columns is fixed to n = 256
and the number of rows varies.

Fig. 5a presents the performance results achieved by the matrix-vector algorithms for square
matrices m×n (m = n) composed of double precision floating-point numbers. In the caption
of the following plots, “Superacc” corresponds to the accurate and reproducible matrix-
vector algorithm that is solely based on superaccumulators; “exgemv” stands for our exact
implementation, which delivers the best performance, with FPEs of size n (n = 2 : 8) in
conjunction with the TwoProd EFT and superaccumulators when required. The “Superacc”
implementation, which can be classified as a brute force approach to ensure reproducibility,
suffers from its extensive memory usage and is an order of magnitude slower than our
solution.

The performance experiments using the latter two test cases are depicted in Figs. 5b
and 5c, respectively. Fig. 5c shows rather constant execution time for all gemv implemen-
tations. This is due to the use of a column-wide array of threads that performs local dot
products within gemv. Fig. 5b demonstrates the outcome of applying this pool of threads
iteratively over columns of the matrices of size n× 256. This turns to be beneficial from the
perspective of performance, as the overhead decreases with the number of columns. Fig. 5a
and Fig. 5b show very close relative performance results. The best performance among the
exgemv implementations for all the test cases is delivered by “FPE3 + Superacc”. For in-
stance, its overhead is 4.26 times for m = n = 4096 compared to the non-deterministic gemv
implementation. To summarizes, exgemv delivers both reproducible and correctly-rounded
results for different shapes of both transpose and non-transpose matrices.
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(a) gemv (m = n, step = 256) on K80
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Figure 5: Performance and accuracy results of gemv.

In addition, we verify the accuracy of the double precision gemv and the reproducible
exgemv. Fig. 5d demonstrates the relative forward error (‖y∗− ŷ‖/‖y∗‖, where ŷ and y∗ are
the computed and exact vectors, accordingly) against the condition number of the problem.
This condition number is computed with the MPFR library as a ration of norms of the exact
matrix-vector products, when the matrix and the vector are in their absolute and original
values: ‖|A| · |x|‖/‖A · x‖. In order to generate the ill-conditioned matrix-vector, we rely
on the ill-conditioned dot product. So that, the n − 1 rows of the matrix A are created as
random uniformly distributed numbers, e.g. between 0 and 1, while one row and the vector
x correspond to the ill-conditioned dot product. The exact vector y∗ is computed with the
MPFR library and rounded to the double precision vector. For visual representation, we
replaced all the errors that exceed 1 by 1 as there is zero digit of accuracy left. Naturally,
the relative forward error of gemv strongly depends on the condition number and indicates
the incorrectness of the computed results once the condition number reaches 1016. Instead,
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(a) trsv on K20c
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Figure 6: Performance and accuracy results of trsv.

our reproducible exgemv ensures both correctly-rounded and reproducible results as our
approach preserves every bit of the computed result until its final rounding.

5.2. extrsv Results

Fig. 6a shows a performance improvement around 35 %, compared with the results in [18],
delivered by extrsv on K20c. This is achieved thanks to some optimisation strategies,
concretely the optimized handling of errors as one of the two outputs of TwoProd. In [18]
these errors were accumulated to the FPE starting from its head. However, this may not
be practical as the error may have different exponent and, therefore, may not be added to
the head, requiring that it is propagated further in the FPE. Because of that, we decided to
add these errors closer to the tail of the expansion, namely in the last two or three slots of
the expansion. The difference in terms of performance among FPEs of various sizes is less
apparent as they follow the same pattern with respect to the error propagation.
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Figs. 6a to 6c shows that there is still work to do on architecture-specific implementations,
since for large matrices, extrsv on K420 only reports a 4× overhead, while on both K20c
and K80 the overhead reaches 25×. Although OpenCL ensures portability, unfortunately,
it does not come with performance portability. We have already tuned our code on higher
level for various GPU architectures. However, it is clear that, for some kernels as extrsv,
additional architecture specific implementations should to be provided.

Concerning the accuracy of extrsv, Fig. 6d presents the relative forward error (‖x∗ −
x̂‖/‖x∗‖, where x̂ and x∗ are the computed and exact solutions, respectively) of the double
precision, trsv, and our reproducible, extrsv, substitution algorithms versus the condition
number. We use the Skeel formula [34, 16] to calculate the condition number of a linear
system Ax = b with real coefficients as

cond(A, x) =
‖|A−1||A||x|‖

‖x‖
.

For these tests, we write a random generator of ill-conditioned triangular systems using the
algorithm proposed in [27]; the random generator ensures that both the matrix L and the
right-hand side vector b are composed of double precision floating-point numbers. In order
to compute the exact solution x∗, we rely on the MPFR library and rounded the result back
to double precision. For those errors greater than one, we cut them to one as the results are
obviously incorrect. This experiment reveals that the relative forward error is proportional
to the condition number, but even more to the rounding error u = 2−53. Altogether extrsv
delivers the same or often better accuracy as the double precision triangular solver. Indeed,
the accuracy of the classic triangular solver can be improved via double-double precision.
However, this approach is already 9 slower than trsv and, moreover, it does not provide
any guarantees on the reproducibility of the results. Therefore, we propose to apply iterative
refinement, see Alg. 6, in order to improve the accuracy of extrsv.

5.3. exlu Results

During the development of the reproducible LU factorization, we discovered a limitation
of OpenCL and, therefore, the ExBLAS routines. This drawback refers to the possibility of
passing a reference to a location within a matrix (&A[i ∗ (lda + 1)]) as a kernel argument.
We overcame this issue by passing an offset from the beginning of the matrix to the desired
location. That introduces a change in the API of the BLAS to include a few new arguments.

Figs. 7a and 7b report the execution times obtained by the unblocked algorithmic variant
for the LU factorization with partial pivoting as a function of the matrix size (m = n). The
times of the exlu implementations are much larger than those of each ExBLAS routine for
a specific problem size. That is because exlu requires n− 1 executions of each underlying
ExBLAS routine for a matrix of size n. For instance, extrsv finds the solution of a trian-
gular system using matrices of sizes from 1 × 1 till (n − 1) × (n − 1). In order to ensure
reproducibility, our algorithms underlying exlu require more computations to be performed
and utilize a larger amount of memory. The outcome is visible in the form of 11× and 32×
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Figure 7: Performance and accuracy results of the LU factorization.

performance overheads on K420 and K80, respectively, compared to the double precision un-
blocked LU factorization; the latter overhead is the result of the large performance overhead
caused by extrsv.

Furthermore, we study the accuracy of the non-deterministic and reproducible imple-
mentations of the unblocked LU factorization (Alg. 7) on matrices with various condition
numbers, covering a range from 102 to 1041; these results are depicted in Fig. 7c. To produce
these matrices, we modify the ill-conditioned triangular matrix generator to cover a more
general case. We compute the error ‖PA−LU‖ as an infinity norm using the MPFR library.
For those errors that exceed 1, we round them down to 1. As for extrsv, in most cases
exlu delivers better accuracy that the double precision LU factorization. However, due to
the division by the diagonal element in extrsv, the correct rounding of the results is not
guaranteed in exlu. We foresee to study and enhance this by improving the accuracy of
the underlying extrsv using iterative refinement. Nevertheless, the exlu implementations
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always deliver reproducible results.

6. Related Work

There already exist some solutions to ensure numerical producibility, which can be clas-
sified with respect to their implementations into sequential, vectorized, multithreaded on
multicores, and distributed. Those solutions, at first, addressed sequential and parallel sum-
mation. For example, [33, 35] focus on hybrid solutions that store the sum as floating-point
numbers of fixed exponent without completely avoiding the previous drawbacks. Arbitrary
precision libraries – like MPFR [11] – are able to provide correct rounding. However, they are
not designed to achieve acceptable performance for reproducible results. Moreover, MPFR
is also not multi-threaded. As a result, exsum is three orders of magnitude faster than
MPFR.

To ensure reproducibility, Intel introduced a Conditional Numerical Reproducibility
(CNR) option in its MKL library [23], but this does not provide any warranty on the
accuracy. In addition, a CNR-enabled execution of MKL kernels incurs a large performance
overhead compared to the existing alternatives. For instance, MKL’s dasum() with CNR
enabled is roughly 2x slower than both the conventional MKL’s dasum() and exsum.

There are two other academic efforts to guarantee reproducibility. The first [7], which
is built upon [33], proposed a family of algorithms for reproducible summation in FP arith-
metic. Demmel and Nguyen improved their algorithms [8] by passing over the input data
only once. This approach reduces the overhead to roughly 20 %. Arteaga et al. [2] used this
approach with improved communication and obtained the same accuracy with roughly 10 %
overhead. Demmel and Nguyen applied their approach to the absolute value summation,
dot product, and 2-norm in the ReproBLAS library. Recently, they introduced [1] new con-
cepts – such as slice (significant bits in a bin) and indexed type/sum – and reformulated the
algorithms [8] in terms of these concepts. They introduced the conversion algorithm that
leads to improved accuracy of their reproducible summation, handling of exceptions (not
implemented in software), propagation of overflows. ReproBLAS was extended to include
sequential matrix-vector and matrix-matrix products. However, ReproBLAS targets only
CPU and does not exploit the data-parallelism available in BLAS routines.

The approach in [5] ensures reproducibility of both sequential and parallel summations.
Chohra et. al. proposed to use a combination of existing solutions such as FastAccSum [33]
and OnlineExact [35] depending on the size of the input vector. They cover absolute value
summation, 2-norm, dot product and matrix-vector product, provided as the RARE-BLAS
library. RARE-BLAS, which is not publicly available, runs on Intel server CPUs and Intel
Xeon Phi coprocessors. The reproducibility of 2-norm is an open question as the returned
result is faithfully rounded.

Alternatively, Collange et al. [6] proposed a multi-level approach to compute the re-
producible summation. Neal [30] integrated this concept in its scalar superaccumulators
of different sizes for the summation problem in the R package. This approach is based on
FP expansions and Kulisch superaccumulators, discussed in Section 2. We showed that
the numerical reproducibility and bit-perfect (correct rounding) accuracy can be achieved
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without performance degradation for large sums with dynamic ranges of up to 90 orders of
magnitude on variety of computer architectures, including conventional clusters, GPUs, and
co-processors. By tracking every bit of information for a product of two FP numbers, we ex-
tended this approach to the dot product, blocked triangular solver [18], and matrix-matrix
multiplication [20]. The initial release (v0.1) of the Exact BLAS (ExBLAS) library [19]
included implementations of only one algorithmic variant of gemm and trsv. The latest
release (v1.0), which is available at https://exblas.lip6.fr, covers all algorithmic vari-
ants of gemv and trsv. The afore-mentioned unblocked LU factorization is also available
at the same location as a separate package.

7. Conclusions and Future Work

In numerical linear algebra, algorithms accommodate virtual a modular and hierarchical
structure. This property permits to assemble higher-level algorithms on top of fundamen-
tal kernels. We leverage this layered organization of linear algebra algorithms to derive
reproducible algorithmic variants for the LU factorization by building them on top of the
underlying BLAS operations. As a case study, we considered the unblocked jik variant of
the LU factorization that relies upon the Level-1/2 BLAS routines dot, scal, gemv, and
trsv. In particular, we derived the accurate and reproducible matrix-vector product and
provided performance results on NVIDIA GPUs. Additionally, we have improved the per-
formance of extrsv and drew a strategy to enhance its accuracy via iterative refinement,
potentially obtaining correctly-rounded results.

Although some of the performance results can be argued, in some scenarios we should
not trade off numerical stability and reproducibility for performance. Instead, we should
do inverse, when not aiming to attain both goals. The development of reproducible BLAS
kernels, including the enhancement of the extrsv performance, led us to the derivation
of the reproducible unblocked LU factorization that integrates partial pivoting. Finally,
we presented the initial evidence that a class of reproducible higher-level linear algebra
operations can be constructed by following the bottom-up approach.
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[30] R.M. Neal, Fast exact summation using small and large superaccumulators, Technical Report, Univer-

sity of Toronto, 2015.
[31] T. Ogita, S.M. Rump, S. Oishi, Accurate sum and dot product, SIAM J. Sci. Comput 26 (2005).
[32] J.M. Ortega, The ijk forms of factorization methods I. Vector computers, Parallel Computing 7 (1988)

135–147.
[33] S.M. Rump, Ultimately fast accurate summation, SIAM J. Scientific Computing 31 (2009) 3466–3502.
[34] R.D. Skeel, Scaling for numerical stability in Gaussian elimination, J. Assoc. Comput. Mach. 26 (1979)

494–526.
[35] Y.K. Zhu, W.B. Hayes, Algorithm 908: Online Exact Summation of Floating-Point Streams, ACM

Trans. Math. Softw. 37 (2010) 37:1–37:13.

21

https://software.intel.com/en-us/articles/conditional-numerical-reproducibility-cnr-in-intel-mkl-110
https://software.intel.com/en-us/articles/conditional-numerical-reproducibility-cnr-in-intel-mkl-110

