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Abstract

We study the existence and uniqueness of the stochastic viscosity solutions of fully nonlinear,
possibly degenerate, second order stochastic pde with quadratic Hamiltonians associated to a Rie-
mannian geometry. The results are new and extend the class of equations studied so far by the last
two authors.
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1 Introduction

The theory of stochastic viscosity solutions, including existence, uniqueness and stability, developed
by two of the authors (Lions and Souganidis [4, 5, 6, 7, 8, 9]) is concerned with pathwise solutions to
fully nonlinear, possibly degenerate, second order stochastic pde, which, in full generality, have the
form du = F (D2u,Du, u, x, t)dt+

∑d
i=1Hi (Du, u, x) dξi in RN × (0, T ],

u = u0 on RN × {0};
(1)

here F is degenerate elliptic and ξ = (ξ1, · · · , ξd) is a continuous path. A particular example is a
d-dimensional Brownian motion, in which case (1) should be interpreted in the Stratonovich sense.
Typically, u ∈ BUC(RN × [0, T ]), the space of bounded uniformly continuous real-valued functions on
RN × [0, T ].

For the convenience of the reader we present a quick general overview of the theory: The Lions–
Souganidis theory applies to rather general paths when H = H(p) and, as established in [6, 9], there is
a very precise trade off between the regularity of the paths and H. When H = H(p, x) and d = 1, the
results of [9] deal with general continuous, including Brownian paths, and the theory requires certain
global structural conditions on H involving higher order (up to three) derivatives in x and p. Under
similar conditions, Lions and Souganidis [10] have also established the wellposedness of (1) for d > 1
and Brownian paths. For completeness we note that, when ξ is smooth, for example C1, (1) falls
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within the scope of the classical Crandall-Lions viscosity theory – see, for example, Crandall, Ishii and
Lions [2].
The aforementioned conditions are used to control the length of the interval of existence of smooth
solutions of the so-called doubled equation

dw = (H(Dxw, x)−H(−Dyw, y))dξ in RN × (t0 − h∗, t0 + h∗) (2)

with initial datum
w(x, y, t0) = λ|x− y|2 (3)

as λ→∞ and uniformly for |x− y| appropriately bounded.
It was, however, conjectured in [9] that, given a Hamiltonian H, it may be possible to find initial data
other than λ|x− y|2 for the doubled equation, which are better adapted to H, thus avoiding some of
the growth conditions. As a matter of fact this was illustrated by an example when N = 1.

In this note we follow up on the remark above about the structural conditions on H and identify a
better suited initial data for (2) for the special class of quadratic Hamiltonians of the form

H(p, x) := (g−1(x)p, p) =
N∑

i,j=1

gi,j (x) pipj , (4)

which are associated to a Riemannian geometry in RN and do not satisfy the conditions mentioned
earlier, where

g = (gi,j)1≤i,j≤N ∈ C2(RN ;SN ) (5)

is positive definite, that is there exists C > 0 such that, for all w ∈ RN ,

1

C
|w|2 ≤

∑
i,j

gi,j (x)wiwj ≤ C |w|2 . (6)

It follows from (4) and (6) that g is invertible and g−1 = (gi,j)1≤i,j≤N ∈ C2(RN ;SN ) is also positive
definite; here SN is the space of N ×N -symmetric matrices and (p, q) denotes the usual inner product
of the vectors p, q ∈ RN . When dealing with (1) it is necessary to strengthen (5) and we assume that

g, g−1 ∈ C2
b (RN ;SN ), (7)

where C2
b (RN ;SN ) is the set of functions bounded in C2(RN ;SN ). Note that in this case (6) is implied

trivially.

The distance dg (x, y) with respect to g of two points x, y ∈ RN is given by

dg (x, y) := inf

{∫ 1

0

1

2
(g(γt)γ̇t, γ̇t)

1/2dt : γ ∈ C1([0, 1],RN ), γ0 = x, γ1 = y

}
,

and their associated “energy” is

eg(x, y) := d2
g(x, y) = inf

{∫ 1

0

1

4
(g(γt)γ̇t, γ̇t)dt : γ ∈ C1([0, 1],RN ), γ0 = x, γ1 = y

}
. (8)

Note that, if g = I the identity N × N matrix in RN , then dI(x, y) = 1
2 |x − y|, the usual Euclidean

distance, and eI (x, y) = 1
4 |x− y|

2; more generally, (6) implies, with C = c2 and for all x, y ∈ RN ,

1

2c
|x− y| ≤ dg (x, y) ≤ 1

2
c|x− y|.
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In addition, we assume that

there exists Υ > 0 such that eg ∈ C1({(x, y) ∈ RN × RN : dg(x, y) < Υ}); (9)

in the language of differential geometry (9) is the same as to say that the manifold (RN , g) has strictly
positive injectivity radius. We remark that (7) is sufficient for (9) (see, for example, Proposition 4.3),
though (far) from necessary.

We continue with some terminology and notation that we will need in the paper. We write IN for
the identity matrix in RN . A modulus is a nondecreasing, subadditive function ω : [0,∞) → [0,∞)
such that limr→0 ω (r) = ω(0) = 0. We write u ∈ UCg

(
RN
)

if |u (x)− u (y)| ≤ ω (dg (x, y)) for some
modulus ω, and, given u ∈ UCg

(
RN
)
, we denote by ωu its modulus. When u is also bounded, we

write u ∈ BUCg

(
RN
)

and may take its modulus bounded. We denote by USC (resp. LSC) the
set of upper- (resp. lower) semicontinuous functions in RN , and BUSC (resp. BLSC) is the set of
bounded functions in USC (resp. LSC). For a bounded continuous function u : Rk → R, for some
k ∈ N, and A ⊂ Rk, ‖u‖∞,A := supA |u|. If a, b ∈ R, then a ∧ b := min(a, b), a+ := max(a, 0) and
a− := max(−a, 0). Given a modulus ω and λ > 0, we use the function θ : (0,∞)→ (0,∞) defined by

θ(ω, λ) := sup
r≥0
{ω(r)− λr2/2}; (10)

and observe that, in view of the assumed properties of the modulus,

lim
λ→∞

θ(ω;λ) = 0. (11)

Finally, for k ∈ N, Ck0 ([0, T ];R) := {ζ ∈ Ck([0, T ];R) : ζ0 = 0} and, of for any two ζ, ξ ∈ C0([0, T ];R),
we set

∆+
T := max

s≤T
(ξs − ζs) ≥ 0 and ∆−T := max

s≤T
{−(ξs − ζs)} ≥ 0. (12)

We review next the approach taken in [4, 5, 6, 7, 8, 9] to define solutions to (1). The key idea is to
show that the solutions of the initial value problems with smooth paths, which approximate locally
uniformly the given continuous one, form a Cauchy family in BUC(RN× [0, T ]) for all T > 0, and thus
converge to a limit which is independent of the regularization. This limit is considered as the solution
to (1). It follows that the solution operator for (1) is the extension in the class of continuous paths
of the solution operator for smooth paths. Then [4, 5, 6, 7, 8, 9] introduced an intrinsic definition
for a solution, called stochastic viscosity solution, which is satisfied by the uniform limit. Moreover,
it was shown that the stochastic viscosity solutions satisfy a comparison principle and, hence, are
intrinsically unique and can be constructed by the classical Perron’s method (see [9] and [13] for
the complete argument). The assumptions on the Hamiltonians mentioned above were used in these
references to obtain both the Cauchy property and the intrinsic uniqueness.

To prove the Cauchy property the aforementioned references consider the solutions to (1) corresponding
to two different smooth paths ζ1 and ζ2 and establish an upper bound for the sup-norm of their
difference. The classical viscosity theory provides immediately such a bound, which, however, depends
on the L1-norm of ζ̇1 − ζ̇2. Such a bound is, of course, not useful since it blows up, as the paths
approximate the given continuous path ξ. The novelty of the Lions-Souganidis theory is that it is
possible to obtain far better control of the difference of the solutions based on the sup-norm of ζ1− ζ2

at the expense of some structural assumptions on H. In the special case of (1) with F = 0 and H
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independent of x, a sharp estimate was obtained in [9]. It was also remarked there that such bound
cannot be expected to hold for spatially dependent Hamiltonians without additional restrictions.

In this note we take advantage of the very particular quadratic structure of H and obtain a local
in time bound on the difference of two solutions with smooth paths. That the bound is local is due
to the need to deal with smooth solutions of the Hamilton-Jacobi part of the equation. Quadratic
Hamiltonians do not satisfy the assumptions in [9]. Hence, the results here extend the class of (1)
for which there exists a well posed solution. The bound obtained is also used to give an estimate for
the solutions to (1),(4) corresponding to different merely continuous paths as well as a modulus of
continuity.

Next we present the results and begin with the comparison of solutions with smooth and different
paths. Since the assumptions on the metric g are slightly stronger in the presence of the second order
term in (1), we state two theorems. The first is for the first-order problem{

du− (g−1(x)Du,Du)dξ = 0 in RN × (0, T ],

u = u0 on RN × {0},
(13)

and the second for (1) with H given by (4). Then we discuss the extension property and the comparison
for general paths.

We first assume that we have smooth driving signals and estimate the difference of solutions. Since
we are working with “classical” viscosity solutions, we write ut and ξ̇t in place of of du and dξt.

Theorem 1.1. Assume (5), (6) and (9) and let ξ, ζ ∈ C1
0 ([0, T ];R) and u0, v0 ∈ BUCg(RN). If

u ∈ BUSC(RN × [0, T ]) and v ∈ BLSC(RN × [0, T ]) are respectively viscosity sub- and super-solutions
to

ut − (g−1(x)Du,Du)ξ̇ ≤ 0 in RN × (0, T ] u(·, 0) ≤ u0 on RN ,

and

vt − (g−1(x)Dv,Dv)ζ̇ ≥ 0 in RN × (0, T ] v(·, 0) ≥ v0 on RN ,

then, if

∆+
T + ∆−T <

1

2
(
‖u0‖∞;RN + ‖v0‖∞;RN

)Υ2, (14)

sup
RN×[0,T ]

(u− v) ≤ sup
RN

(u0 − v0) + θ(ωu0 ∧ ωv0 ,
1

∆+
T

). (15)

We consider now the second-order fully nonlinear equation (1) with quadratic Hamiltonians, that is
the initial value problem{

du = F
(
D2u,Du, u, x, t

)
dt+ (g−1(x)Du,Du)dξ in RN × 0, T ],

u(·, 0) = u0 ∈ BUC(RN ),
(16)

and introduce assumptions on F in order to have a result similar to Theorem 1.1.

In order to be able to have some checkable structural conditions on F , we find it necessary to replace
(5) and (9) by the stronger conditions (7) and

there exists Υ > 0 such that D2d2
g is bounded on {(x, y) : dg(x, y) < Υ}. (17)
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As far as F ∈ C(SN ×RN ×RN × [0, T ];R) is concerned we assume that it is degenerate elliptic, that
is for all X,Y ∈ SN and (p, r, x, t) ∈ RN × RN × [0, T ],

F (X, p, r, x, t) ≤ F (Y, p, r, x, t) if X ≤ Y ; (18)

Lipschitz continuous in r, that is

there exists L > 0 such that |F (X, p, r, x, t)− F (X, p, s, x, t)| ≤ L|s− r|; (19)

bounded in (x, t), in the sense that

sup
RN×[0,T ]

|F (0, 0, 0, ·, ·)| <∞; (20)

and uniformly continuous for bounded (X, p, r), that is, for any R > 0,

F is uniformly continuous on MR ×BR × [−R,R]× RN × [0, T ], (21)

where MR and BR are respectively the balls of radius R in SN and RN .

Similarly to the classical theory of viscosity solutions, it is also necessary to assume something more
about the joint continuity of F in X, p, x, namely that

for each R > 0 there exists a modulus ωF,R such that, for all α, ε > 0 and uniformly on

t ∈ [0, T ] and r ∈ [−R,R],

F (X,αDxd
2
g(x, y), r, x, t)− F (Y,−αDyd

2
g(x, y), r, y, t) ≤ ωF,R(αd2

g(x, y) + dg(x, y) + ε),

whenever dg(x, y) < Υ and X,Y ∈ SN are such that, for A = D2
(x,y)d

2
g(x, y),

−(α2ε−1 + ‖A‖)

(
I 0

0 I

)
≤

(
X 0

0 −Y

)
≤ αA+ εA2.

(22)

Note that in the deterministic theory the above assumption is stated using the Euclidean distance.
Here it is convenient to use dg and as a result we find it necessary to strengthen the assumptions on
the metric g.

To simplify the arguments below, instead of (19), we will assume that F monotone in r, that is

there exists ρ > 0 such that F (X, p, r, x, t)− F (X, p, s, x, t) ≥ ρ(s− r) whenever s ≥ r; (23)

this is, of course, not a restriction since we can always consider the change u(x, t) = e(L+ρ)tv(x, t),
which yields an equation for v with a new F satisfying (23) and path ξ′ such that ξ̇′t = e(L+ρ)tξ̇t.

To state the result we introduce some additional notation. For γ > 0, we write

θ̃(ω; γ) := sup
r≥0

(ω(r)− γ

2
r), (24)

and, for ξ, ζ ∈ C1([0,∞);R),

∆γ,+
T := sup

t≤T

∫ t

0
eγs(ξ̇s − ζ̇s)ds and ∆γ,−

T := sup
t≤T

[−
∫ t

0
eγs(ξ̇s − ζ̇s)ds.] (25)

Finally, for bounded u0, v0 : RN → R, let

K :=
2

ρ
[ sup
(x,t)∈RN×[0,T ]

F (0, 0, 0, x, t) + ‖u0‖∞;RN + ‖v0‖∞;RN ].

We have:
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Theorem 1.2. Assume (7), (17), (18), (19), (20), (21) and (22), and let ξ, ζ ∈ C1
0 ([0, T ];R) u0, v0 ∈

BUC(RN ) and T > 0. If u ∈ BUSCg(RN× [0, T ]) and v ∈ BLSC(RN× [0, T ]) are respectively viscosity
sub- and super-solutions of

ut − F (D2u,Du, u, x, t)− (g−1(x)Du,Du)ξ̇ ≤ 0 in RN × (0, T ] u(0, ·) ≤ u0 on RN , (26)

and

vt − F (D2v,Dv, v, x, t)− (g−1(x)Dv,Dv)ζ̇ ≥ 0 in RN × (0, T ] v(0, ·) ≥ u0 on RN , (27)

then, if Γ := {γ > 0 : ∆γ,+
T + ∆γ,−

T < Υ2

4K and ∆γ,−
T < 1 },supRN×[0,T ] (u− v) ≤ supRN (u0 − v0)+

+ infγ∈Γ[θ(ωu0 ∧ ωv0 , 1
∆γ,+
T

) + 1
ρ θ̃(ωF,K ; γ) + 1

ρωF,K(2(K(∆γ,+
T + ∆γ;−

T ))1/2].
(28)

Under their respective assumptions, Theorem 1.1 and Theorem 1.2 imply that, for paths ξ ∈ C1([0,∞);R)
and g ∈ BUCg(RN ), the initial value problems (13) and (16) have well-defined solution operators

S : (u0, ξ) 7→ u ≡ Sξ [u0] .

The main interest in the estimates (15) and (28) is that they provide a unique continuous extension
of this solution operator to all ξ ∈ C([0,∞);R). Since the proof is a simple reformulation of (15) and
(28), we omit it.

Theorem 1.3. Under the assumptions of Theorem 1.1 and Theorem 1.2, the solution operator
S : BUC(RN ) × C1([0,∞);R) → BUC(RN × [0, T ]) admits a unique continuous extension to S̄ :
BUC(RN ) × C([0,∞);R) → BUC(RN × [0, T ]). In addition, for each T > 0, there exists a nonde-
creasing Φ : [0,∞) → [0,∞], depending only on T and the moduli and sup-norms of u0, v0 ∈ BUCg,
such that limr→0 Φ (r) = Φ(0) = 0, and, for all ξ, ζ ∈ C([0, T ];R),∥∥∥Sξ [u0]− Sζ [v0]

∥∥∥
∞;RN×[0,T ]

≤ ‖u0 − v0‖∞;RN + Φ
(
‖ξ − ζ‖∞;[0,T ]

)
. (29)

We also remark that for both problems the proofs yield a, uniform in t ∈ [0, T ] and ‖ξ − ζ‖∞;[0,T ],
estimate for u(x, t)− v(y, t). Applied to the solutions of (13) and (16), this yields a (spatial) modulus
of continuity which depends only on the initial datum, g and F but not ξ. This allows to see (as in
[3] and [4, 5, 6, 7, 8, 9]) that S and then S̄ indeed takes values in BUC(RN × [0, T ]).

An example of F that satisfies the assumptions of Theorem 1.2 is the Hamilton-Jacobi-Isaacs operator

F (M,p, r, x, t) = inf
α

sup
β

{
tr
(
σαβσ

T
αβ (p, x)M

)
+ bαβ (p, x)− cαβ(x)r

}
, (30)

with
σ, b, c bounded uniformly in α, β (31)

such that, for some modulus ω and constant C > 0 and uniformly in α, β,

|σαβ(p, x)− σαβ(q, y)| ≤ C(|x− y|+ |p− q|
|p|+ |q|

), (32)

and

|bαβ(p, x)− bαβ(q, y)| ≤ ω((1 + |p|+ |q|)|x− y|+ |p− q|), |cαβ(x)− cαβ(y)| ≤ ω(|x− y|). (33)

The paper is organized as follows. In the next section we prove Theorem 1.1. Section 3 is about the
proof of Theorem 1.2. In the last section we state and prove a result showing that (7) implies (17)
and verify that (30) satisfies the assumptions of Theorem 1.2.
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2 The first order case: The proof of Theorem 1.1

We begin by recalling without proof the basic properties of the Riemannian energy eg which we need
in this paper. For more discussion we refer to, for example, [12] and the references therein.

Proposition 2.1. Assume (5), (6) and (9). The Riemannian energy eg defined by (8) is (locally)
absolutely continuous, almost everywhere differentiable and satisfies the Eikonal equations

(g−1(y)Dyeg, Dyeg) = (g−1(x)Dxeg, Dxeg) = eg (x, y) , (34)

on a subset E of RN × RN of full measure. Moreover,
{

(x, y) ∈ RN × RN : dg(x, y) < Υ
}
⊂ E.

The next lemma, which is based on (34) and the properties of g, is about an observation which plays
a vital role in the proofs.

To this end, for x, y ∈ RN , λ > 0 and ξ, ζ ∈ C1
0([0, T ]), we set

Φλ(x, y, t) :=
λeg(x, y)

1− λ(ξt − ζt)
. (35)

Lemma 2.2. Assume (5), (6) and (9) and choose λ < 1/∆+
T . Then

λeg

1 + λ∆−T
≤ Φλ ≤ λeg

1− λ∆+
T

on RN × RN × [0, T ]. (36)

In addition, in the set {(x, y) ∈ RN × RN : dg(x, y) < Υ}, Φλ is a classical solution of

wt = (g−1(x)Dxw,Dxw)ξ̇ − (g−1(y)Dyw,Dyw)ζ̇. (37)

Proof. The first inequality is immediate from the definition (25) of ∆±T . To prove (37), we observe
that, in view of Proposition 2.1, we have

Φλ
t =

λ2eg(x, y)

(1− λ(ξt − ζt))2
(ξ̇t − ζ̇t),

(g−1(x)DxΦ, DxΦ) =
λ2

(1− λ(ξt − ζt))2
(g−1(x)Dxeg, Dxeg)

=
λ2eg(x, y)

(1− λ(ξt − ζt))2

=
λ2

(1− λ(ξt − ζt))2
(g−1(y)Dyeg, Dyeg) = (g−1(y)DyΦ, DyΦ),

and, hence, whenever dg(x, y) < Υ, the claim follows.

The proof of Theorem 1.1 follows the standard procedure of doubling variables. The key idea intro-
duced in [5] is to use special solutions of the Hamiltonian part of the equation as test functions in all
the comparison type-arguments, instead of the typical λ|x− y|2 used in the “deterministic” viscosity
theory. As already pointed out earlier, in the case of general Hamiltonians, the construction of the test
functions in [5] is tedious and requires structural conditions on H. The special form of the problem
at hand, however, yields easily such tests functions, which are provided by Lemma 2.2.
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Proof of Theorem 1.1. To prove (15) it suffices to show that, for all λ in a left-neighborhood of (∆+
T )−1,

that is for λ ∈ ((∆+
T )−1 − ε, (∆+

T )−1) for some ε > 0, and x, y ∈ RN and t ∈ [0, T ],

u(x, t)− v(y, t) ≤ Φλ(x, y, t) + sup
x′,y′∈RN

(
u0(x′)− v0(y′)− λeg(x′, y′)

)
(38)

≤ Φλ(x, y, t) + sup
RN

(u0 − v0) + sup
x′,y′∈RN

(
v0(x′)− v0(y′)− λeg(x′, y′)

)
.

Indeed taking x = y in (38) we find

u(x, t)− v(x, t) ≤ sup
RN

(u0 − v0) + sup
x′,y′∈RN

(
v0(x′)− v0(y′)− λd2(x′, y′)/2

)
+

≤ sup
RN

(u0 − v0) + sup
r≥0

(
ωv0 (r)− λr2/2

)
+

= sup
RN

(u0 − v0) + θ (ωv0 , λ) ,

and we conclude letting λ→ (∆+
T )−1.

We begin with the observation that, since constants are solutions of (13),

u ≤ ‖u0‖∞;RN and − v ≤ ‖v0‖∞;RN . (39)

Next we fix δ, α > 0 and 0 < λ < (∆+
T )−1 and consider the map

(x, y, t)→ u(x, t)− v(y, t)− Φλ(x, y, t)− δ
(
|x|2 + |y|2)

)
− αt,

which, in view of (39), achieves its maximum at some (x̂, ŷ, t̂) ∈ RN ×RN × [0, T ] –note that below to
keep the notation simple we omit the dependence of (x̂, ŷ, t̂) on λ, δ, α.

Let

Mλ,α,δ := max
RN×RN×[0,T ]

u(x, t)− v(y, t)− Φλ(x, y, t)− δ
(
|x|2 + |y|2)

)
− αt

= u(x̂, t̂)− v(ŷ, t̂)− Φλ(x̂, ŷ, t̂)− δ
(
|x̂|2 + |ŷ|2

)
− αt̂.

The lemma below summarizes a number of important properties of (x̂, ŷ, t̂). Since the arguments in
the proof are classical in the theory of viscosity solutions, see for example [1], [2], we omit the details.

Lemma 2.3. Suppose that the assumptions of Theorem 1.1 hold. Then:

(i) for any fixed λ, α > 0, limδ→0 δ(|x̂|2 + |ŷ|2) = 0,

(ii) eg(x̂, ŷ) ≤ 2(1/λ+ ∆−T )(‖u‖∞ + ‖v‖∞),

(iii) if dg(x̂, ŷ) ≤ Υ, then

(g−1(x̂)DxΦλ(x̂, ŷ, t̂), DxΦλ(x̂, ŷ, t̂))+

(g−1(ŷ)DyΦ
λ(x̂, ŷ, t̂), DyΦ

λ(x̂, ŷ, t̂)) ≤ 2λ(1− λ∆+
T )−1(‖u‖∞ + ‖v‖∞),

(iv) limδ→0Mλ,α,δ = Mλ,α,0.

(40)
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Next we argue that, for any λ in a sufficiently small left-neighborhood of (∆+
T )−1, we have dg(x̂, ŷ) < Υ,

which yields that the eikonal equation for e are valid at these points.
In view of the bound on d2

g(x̂, ŷ) = eg(x̂, ŷ) that follows from part (ii) of Lemma 2.3, it suffices to
choose λ so that

2(1/λ+ ∆−T ) (‖u‖∞ + ‖v‖∞) < Υ2.

Taking into account that we also need ∆+
T < 1/λ, we are led to the condition

∆+
T + ∆−T <

1

λ
+ ∆−T ≤

1

2 (‖u‖∞ + ‖v‖∞)
Υ2;

and finding such λ is possible in view of (14).
If t̂ ∈ (0, T ], we use the inequalities satisfied by u and v in the viscosity sense, noting that to simplify
the notation we omit the explicit dependence of derivatives of Φ on (x̂, ŷ, t̂), and we find, in view of
Lemma 2.2 and the Cauchy-Schwarz’s inequality,

0 ≥ Φλ
t + α− (g−1(x̂)(DxΦλ + 2δx̂), (DxΦλ + 2δx̂))ξ̇t̂ + (g−1(ŷ)(DyΦ

λ − 2δŷ), (DyΦ
λ − 2δŷ))ζ̇t̂

≥ α− ‖ξ̇‖∞;[0,T ]

(
2δ(g−1(x̂)DxΦλ, DxΦλ)1/2(g−1(x̂)x̂, x̂)1/2 + δ2(g−1(x̂)x̂, x̂)

)
− ‖ζ̇‖∞;[0,T ]

(
2δ(g−1(ŷ)DxΦλ, DyΦ

λ)1/2(g−1(ŷ)ŷ, ŷ)1/2 + δ2(g−1(ŷ)ŷ, ŷ)
)
.

Using again Lemma 2.3 (i)-(iii), we can now let δ → 0 to obtain α ≤ 0, which is a contradiction.
It follows that, for all δ small enough, we must have t̂ = 0 and, hence,

Mλ,α,δ ≤ (u0(x̂)− v0(ŷ)− λe(x̂, ŷ)) ≤ sup
RN

(u0 − v0) + θ (ωu0 ∧ ωv0 , λ) .

Letting first δ → 0 and then α→ 0, concludes the proof of (38).

3 The second-order case: The proof of Theorem 1.2

Since the proof of Theorem 1.2 is in many places very similar to that of Theorem 1.1, we omit
arguments that follow along straightforward modifications.
In the next lemma we introduce the modified test functions, which here will depend on an additional
parameter γ corresponding to a time exponential. Since its proof is similar to the one of Lemma 2.2,
we omit it.

Lemma 3.1. Fix T, λ > 0, γ ≥ 0, ξ, ζ ∈ C1([0, T ];RN ) with ξ0 = ζ0 = 0 and assume that λ∆γ;+
T < 1.

Then

Φλ,γ(x, y, t) :=
λeγt

1− λ
∫ t

0 e
γs(ξ̇s − ζ̇s)ds

eg(x, y)

is a classical solution, in
{

(x, y) ∈ RN × RN : d (x, y) < Υ
}
× [0, T ], of

wt − γw − (g−1(x)Dxw,Dxw)ξ̇ + (g−1(y)Dyw,Dyw)ζ̇ = 0.

Next we specify the range of λ’s we will use. We set

λ̄ := (∆γ,+
T )−1 and λ :=

4K

Υ− 4K∆γ,−
T

, (41)
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and observe that, in view of our assumptions, we have λ̄ > λ. We say that λ is admissible for fixed γ
and α, if λ ∈ (λ, λ̄).
Also note that, if u, v, u0, v0, ξ, ζ and F are as in the statement of Theorem 1.2, then

sup
RN×[0,T ]

(u− v) ≤ K. (42)

For fixed δ > 0 and λ admissible we consider the map

(x, y, t)→ u(x, t)− v(y, t)− Φλ,γ(x, y, t)− δ
(
|x|2 + |y|2)

)
,

which, in view of (39), achieves its maximum at some (x̂, ŷ, t̂) ∈ RN × RN × [0, T ] –as before to keep
the notation simple we omit the dependence of (x̂, ŷ, t̂) on λ, δ.
Let

Mλ,γ,δ := max
(x,y,t)∈RN×RN×[0,T ]

u(x, t)− v(y, t)− Φλ,γ(x, y, t)− δ(|x|2 + |y|2) (43)

= u(x̂, t̂)− v(ŷ, t̂)− Φλ,γ(x̂, ŷ, t̂)− δ(|x̂|2 + |ŷ|2).

The following claim is the analogue of Lemma 2.3. As before when writing Φ and its derivatives we
omit their arguments.

Lemma 3.2. Under the assumptions of Theorem 1.2 and for λ admissible we have:{
(i) limδ→0 δ(|x̂|2 + |ŷ|2) = 0, (ii) eg(x̂, ŷ) ≤ 2K( 1

λ + ∆γ,−
T ), (iii) |DxΦλ,γ |2 ≤ 2λeγT

1−λ∆γ;+
T

K

and (iv) limδ→0Mλ,γ,δ = Mλ,γ,0.

Proof of Theorem 1.2. If, for some sequence δ → 0, t̂ = 0, then

Mλ,γ,0 = lim
δ→0

Mλ,γ,δ ≤ u0(x̂)− v0(ŷ)− Φλ,γ(x̂, ŷ, 0) ≤ ‖ (u0 − v0)+ ‖∞ + θ(ωu0 ∧ ωv0 , λ). (44)

We now treat the case where t̂ ∈ (0, T ] for all δ small enough.
Since, in view of Lemma 3.2(ii) and the assumptions (recalling that λ is admissible), the test-function
Φλ,γ is smooth at (x̂, ŷ, t̂), it follows from the theory of viscosity solutions (see, for example, [2]) that

0 ≥ Φλ,γ
t − F (X + 2δI,DxΦλ,γ + 2δx̂, u(x̂, t̂), x̂, t̂)− (g−1(x̂)(DxΦλ,γ + 2δx̂), DxΦλ,γ + 2δx̂)ξ̇t̂

+F (Y − 2δI,−DyΦ
λ,γ − 2δŷ, v(ŷ, t̂), ŷ, t̂) + (g−1(ŷ)(DyΦ

λ,γ + 2δŷ), DyΦ
λ,γ + 2δŷ)ζ̇t̂, (45)

where X,Y ∈ SN are such that for a given ε > 0,

−
(
α̂2

ε
+ α̂|D2eg(x̂, ŷ)|

)(
I 0
0 I

)
≤

(
X 0
0 −Y

)
≤ α̂D2eg(x̂, ŷ) + ε(D2eg(x̂, ŷ))2 (46)

and

α̂ :=
λeγt̂

1− λ
∫ t̂

0 e
γs(ξ̇s − ζ̇s)ds

=
Φλ,γ(x̂, ŷ, t̂)

eg(x̂, ŷ)
. (47)

Then, as in the usual proof of the comparison of viscosity solutions, combining (45) and (23), we get
that

ρ(u(x̂, t̂)− v(ŷ, t̂))+ ≤ (a) + (b) + (c) + (d), (48)
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where

(a) := −F (X,DxΦλ,γ , u(x̂, t̂), x̂, t̂) + F (X + 2δ,DxΦλ,γ + 2δx̂, u(x̂, t̂), x̂, t̂), (49)

(b) := F (Y,−DyΦ
λ,γ , v(ŷ, t̂), x̂, t̂)− F (Y + 2δI,−DyΦ

λ,γ − 2δŷ, v(ŷ, t̂), x̂, t̂), (50)

(c) :=

{
Φλ,γ
t + γΦλ,γ + (g−1(x̂)(DxΦλ,γ + 2δx̂), DxΦλ,γ + 2δx̂)ξ̇t̂

−(g−1(ŷ)(DyΦ
λ,γ − 2δŷ), DyΦ

λ,γ − 2δŷ)ζ̇t̂,
(51)

and

(d) := −γΦλ,γ + F (X,DxΦλ,γ , u(x̂, t̂), x̂, t̂)− F (Y,−DyΦ
λ,γ , v(ŷ, t̂), ŷ, t̂). (52)

Since (17) and (46) imply that X and Y stay bounded, in view of (21), we get lim supδ→0((a)+(b)) = 0.

Moreover, the quadratic form of the equation satisfied by Φλ,γ = α̂eg gives

(c) ≤ Cδ|Dx̂Φλ,γ |(|x̂|+ |ŷ|)
(
‖ξ̇‖∞;[0,T ] + ‖ζ̇‖∞;[0,T ]

)
,

and using Lemma 3.2 (i),(iii) we find limδ→0(c) = 0.

For the last term, note that Lemma 3.2 (ii) and (22) yield, always at the point (x̂, ŷ, t̂),

(d) = −γα̂eg + F (X, α̂Dxeg, u(x̂, t̂), x̂, t̂)− F (Y,−α̂Dyeg, v(ŷ, t̂), ŷ, t̂)

≤ −γα̂
2
d2(x̂, ŷ) + ωF,K

(
d (x̂, ŷ) + α̂d2 (x̂, ŷ) + ε

)
≤ −γα̂

2
d2 (x̂, ŷ) + ωF,K(α̂d2(x̂, ŷ)) + ωF,K(d(x̂, ŷ) + ωF,K (ε)

≤ θ̃ (ωF,K , γ) + ωF,K(2(K(
1

λ
+ ∆γ;−)1/2) + ωF,K (ε) .

Combining the last four estimates and (44) and letting ε→ 0 we find that, for all λ ∈ (λ, λ̄)

u(x, t)− v(x, t) ≤ Mλ,γ,0 = lim
δ→0

Mλ,γ,δ

≤
∥∥(u0 − v0)+

∥∥
∞ + θ (ωu0 ∧ ωv0 , λ) +

1

ρ
θ̃ (ωF,K , γ) +

1

ρ
ωF,K(2(K(

1

λ
+ ∆γ;−

T )1/2).

Letting λ→ λ̄ and using the continuity of θ in the last argument, we finally obtain that, for all γ ∈ Γ,

u− v ≤
∥∥(u0 − v0)+

∥∥
∞ + θ

(
ωu0 ∧ ωv0 , (∆

γ;+
T )−1

)
+

1

ρ
θ̃ (ωF,K ; γ) +

1

ρ
ωF,K(2(K(

1

λ
+ ∆γ;−

T )1/2).

4 The properties of the geodesic energy and the assumptions of
Theorem 1.2

In this section we prove that C2
b -bounds on g and g−1 imply (17) and verify that the F in (30), if (32)

and (33) hold, satisfies the assumptions of Theorem 1.2.

We begin with the former.

11



Proposition 4.1. Assume (7). Then there exists Υ > 0 such that, in the set {(x, y) : dg(x, y) < Υ},
eg is twice continuously differentiable and (17) is satisfied with bounds depending only on appropriate
norms of g, g−1.

Proof. We begin by recalling some basic facts concerning geodesics and distances.

For each fixed point x, there is a unique geodesic with starting velocity v = γ̇ (0) given by γt = Xt,
where (X,P )t≥0 is the solution to the characteristic equations{

Ẋs = 2g−1(Xs)Ps X0 = x,

Ṗs = −(Dg−1(Xs)Ps, Ps) P0 = p = 1
2g(x)v.

(53)

Equivalently (γ)t≥0 satisfies the second order system of ode

γ̈t + Γkij (γt) γ̇
i
t γ̇
j
t = 0 γ0 = x, γ̇0 = v (54)

with

Γkij := gk` (∂ig`j + ∂jg`i − ∂`gij) . (55)

It is easy to see that (53) has a global solution (X,P )t≥0, since, in view of (6) and (7) as well as the
invariance of the flow, we have, for t ≥ 0,

|Pt| ≈ (g−1(Xt)Pt, Pt) = (g−1(X0)P0, P0) ≈ |p|2. (56)

As a consequence, the projected end-point map Ex (p) := X1(x, p) is well-defined for any p.

We note that the energy along a geodesic γ emerging from γ0 = x has a simple expression in terms of
p = P0 or v = γ̇0. Indeed, invariance of the Hamilonian H(x, p) = (g−1(x)p, p) under the flow yields

|γ̇0|2g := (g (x) v, v) = 4H(x, p) = 4

∫ 1

0
H(Xt, Pt)dt =

∫ 1

0
(g (γt) γ̇t, γ̇t)dt. (57)

It is a basic fact that distance minimizing curves (geodesics) are also energy minimizing. Indeed,
given x, y, (53) and equivalently (54), are the first-order optimality necessary conditions for these
minimization problems. Hence, in view of (57),

eg (x, y) = inf

{
1

4
|γ̇0|2g : γ satisfies (54) with γ0 = x and γ1 = y

}
= inf {H(X0, P0) : (X,P ) satisfies (53) with X0 = x and X1 = y} .

A standard compactness argument implies the existence of at least one geodesic connecting two given
points x, y. In general, however, more than one geodesic from x to y may exist, each determined by
its initial velocity γ̇0 = v or equivalently P0 = p = 1

2g(x)v, upon departure from x.

It turns out that, for y close to x, there exists exactly one geodesic. Indeed, if g−1 ∈ C2, it is clear
from (53) that Ex = (p 7→ X1(x, p)) has C1-dependence in p. Since DpEx(p) is non-degenerate in a
neighborhood of p = 0, it follows from the inverse function theorem that, for y close enough to x, one
can solve y = Ex(p) uniquely for p = E−1

x (y) with C1-dependence in y. Hence

eg(x, y) = H(x, p) = H(x,E−1
x (y)). (58)
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The gradient Dxeg (x, y) points in the direction of maximal increase of x 7→ e (x, y). Since E−1
x (y) = p

is precisely the co-velocity of X at X0 = x and X is the geodesic from x to X1 = y, it follows that

Dxeg (x, y) = −E−1
x y = −p. (59)

This easily implies that, for points x, y close enough, the energy has continuous second derivatives.
Indeed, existence of continuous mixed derivatives D2

xyeg follows immediately from the C1-regularity
of E−1

x = E−1
x (y). Concerning D2

xxeg (and by symmetry D2
yyeg) we set p = p0 above and note that by

exchanging the roles of x, y, we have Dyeg (x, y) = −E−1
y (x) = P1 (x, p0) =: p1 and so, from (53),

Dyeg (x, y) +Dxeg (x, y) = p1 − p0 = −
∫ 1

0
Hx (Xs, Ps) ds. (60)

The existence and continuity of D2
xxeg is then clear, since the right-hand side above has C1-dependence

in x as is immediate from (53) and g−1 ∈ C2.
Since all the above considerations have been so far local, it is necessary to address the (global) question
of regularity in a strip around the diagonal {x = y}. For this we need to control α1 := DpEx(p) =
DpX1(x, p). We do this by considering the tangent flow

(αt, βt) := (DpXt(x, p), DpPt(x, p)),

which solves the matrix-valued linear ode{
α̇s = 2Dg−1(Xs)Psαs + 2g−1(Xs)βs, α0 = 0,

β̇s = −(D2g−1(Xs)Ps, Ps)αs − 2Dg−1(Xs)Psβs, β0 = I.
(61)

We now argue that, uniformly in x,

DpEx(p) = α1 ≈ 2 g−1(x).

It follows that DpEx is non-degenerate, again uniformly in x. Indeed if α0 = 0, whenever p is small,
X· ≈ x, β· ≈ I and we have (

α̇

β̇

)
=

(
(small) 2g−1(X·)
(small) (small)

)(
α
β

)
.

Next we prove the above claim. First, it follows from (56) that if p is small, then Pt(x, p) stays small,
over, for example, a unit time interval [0, 1]. Moreover, since Ẋ = 2 g−1(X)P , the boundedness of
g−1 yields that the path X·(x, p) also stays close to X0 = x, again uniformly on [0, 1]. Furthermore,
the C1- and C2-bounds on g−1 yield that the matrices Dg−1(Xs)Ps and (D2g−1(Xs)Ps, Ps) are small
along (Xs, Ps), while 2g−1(Xs) is plainly bounded. This implies that α· and β· will stay bounded.
Then β̇· will be small, and, hence, β· will be close to β0 = I, uniformly on [0, 1]. In turn, α̇s is the
sum of a small term plus 2 g−1(Xs)βs ≈ 2g−1(x). In other words,

α̇s = 2g−1(x) + Θs(x, p),

where
lim
δ→0

sup
|p|≤δ

sup
s∈[0,1]

sup
x∈RN

|Θs(x, p)| = 0.
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Since DpEx(p) = α1 =
∫ 1

0 α̇sds, it follows that, there exists some δ > 0, which can be taken propor-
tional to M−4 where M = 1 + ‖g‖C2 + ‖g−1‖C2 , such that

|DpEx(p)− 2g−1(x)| ≤ ‖g‖−1
∞ for all x, p ∈ RN , |p| ≤ δ.

Note that the choice of the constant ‖g‖−1
∞ > 0 on the right-hand side guarantees that DpEx(p)

remains non-degenerate, uniformly in x.
It follows by the inverse function theorem that p 7→ Ex(p) is a diffeomorphism from Bδ onto a
neighbourhood of x. We claim that this neighbourhood contains a ball of radius Υ > 0, which may
be taken independent of x.
For this we observe that, with p = E−1

x (y), (58) yields

dg(x, y) =
√
eg(x, y) =

√
H(x, p) =

√
(g−1(x)p, p).

Hence it suffices to choose Υ > 0 small enough so that (g−1(x)p, p) ≤ Υ2 implies |p| ≤ δ, an obvious
choice being Υ = δ/c, where c2 is the ellipticity constant of g.
At last, we note that (59), in conjunction with the just obtained quantitative bounds, implies that D2eg
is bounded on

{
(x, y) ∈ RN × RN : dg(x, y) < Υ

}
. Indeed, with p = E−1

x (y), we have −D2
xyeg(x, y) =

DyE
−1
x (y) = (DpEx(p))−1 ≈ 1

2g(x) which readily leads to bounds of the second mixed derivatives,
uniformly over x, y of distance at most Υ. Similar uniform bounds for D2

xxeg (and then D2
yyeg) are

obtained by differentiating (60) with respect to x and estimating the resulting right-hand side.

The comparison proofs in the viscosity theory typically employ quadratic penalty function φ (x, y) =
1
2 |x− y|

2 and make use of (trivial) identities such as

Dxφ+Dyφ = (x− y) + (y − x) = 0

and (
D2
xxφ D2

xyφ

D2
yxφ D2

yyφ

)
=

(
I −I
−I I

)
, (p, q)

(
D2
xxφ D2

xyφ

D2
yxφ D2

yyφ

)(
p
q

)
≤ |p− q|2 .

To see what one can expect in more general settings, consider first the case of g obtained from the
Euclidean metric, written in different coordinates, say x = Ψ−1 (x̃), in which case, we have

eg (x, y) = |Ψ (x)−Ψ (y)|2 .

If Ψ is bounded in C2, it is immediate that

Dxe+Dye = (Ψ (x)−Ψ (y))DΨ (x) + (Ψ (y)−Ψ (x))DΨ (y)

= (Ψ (x)−Ψ (y)) (DΨ (y)−DΨ (y)) ,

and, hence,
|Dxe+Dye| . |x− y|2 (62)

and, similarly,

(p, q)

(
D2
xxe D2

xye

D2
yxe D2

yye

)(
p
q

)
. |p− q|2 + |x− y|2 .

Unfortunately no such arguments work in the case of general Riemannian metric, since, in general,
there is no change of variables of the form |Ψ (x)−Ψ (y)| that reduces dg (x, y) to a Euclidean distance.

The next two propositions provide estimates that can be used in the comparison proofs in place of the
exact identities above.

14



Proposition 4.2. Assume (7). Then there exists Υ > 0 such that whenever dg(x, y) < Υ,

|Dxeg +Dyeg| ≤ L |x− y|2 (63)

with a constant L that depends only on the C1-bounds of g, g−1.

Proof. As pointed out in the proof of Proposition 4.1, for all (x, y) : dg(x, y) < Υ,

Dyeg (x, y) +Dxeg (x, y) = −
∫ 1

0
(Dg−1(Xs)Ps, Ps)ds.

Using that g−1 ∈ C1 and the fact that g is uniformly comparable to the Euclidean metric we get

|Dye (x, y) +Dxe (x, y)| ≤ ‖g−1‖C1

∫ 1

0
|Ps|2 ds

≤ ‖g−1‖C1‖g‖∞
∫ 1

0
(g−1 (Xs)Ps, Ps)ds

and, hence, thanks to invariance of the Hamiltonian under the flow and (58),

|Dye (x, y) +Dxe (x, y)| .
∫ 1

0
H(Xs, Ps)ds = H (X0, P0) = eg (x, y) .

Using again that g is uniformly comparable to the Euclidean metric the proof is finished.

The following claim applies in particular under condition (7), which, in view of Propostion 4.1, implies
C2-regularity of the energy near the diagonal. The proof is based on an argument in a forthcoming
paper by the last two authors [11].

Proposition 4.3. Assume there exists Υ > 0 such that, in the set {(x, y) : dg(x, y) < Υ}, eg is twice
continuously differentiable. Then, whenever dg(x, y) < Υ,(

D2
xxeg D2

xyeg
D2
yxeg D2

yyeg

)
≤ L

(
IN −IN
−IN IN

)
+ L |x− y|2 I2N

with a constant L that only depends on the C2-bounds of g, g−1.

Proof. In view of the assumed C2-regularity of the energy, we find that, as ε→ 0,ε
2

(
(p, q)

(
D2
xxeg D2

xyeg

D2
yxeg D2

yyeg

)(
p

q

))
= eg (x+ εp, y + εq) + eg (x− εp, y − εw)− 2eg (x, y)

We estimate the second-order difference on the right-hand side, keeping v = εp, w = εq fixed.
Let (γt)t∈[0,1] be a geodesic connecting x, y, parametrized at constant speed (in the metric g) so that

|γ̇t| ≤ c (g (γt) γ̇t, γ̇t)
1/2 = 2cdg (x, y) ≤ C |x− y| , (64)

and, for ∆ := w − v, define the paths

γ±t := γt ± (v + t∆)
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which connect x± v to y ± w. Then

e (x+ v, y + w) + e (x− v, y − w)− 2e (x, y)

≤
∫ 1

0

1

4

(
g
(
γ+
t

)
γ̇+
t , γ̇

+
t

)
dt+

∫ 1

0

1

4

(
g
(
γ−t
)
γ̇−t , γ̇

−
t

)
dt− 2

∫ 1

0

1

4
(g (γt) γ̇t, γ̇t) dt

=
1

4

∫ 1

0

[(
g
(
γ+
t

)
(γ̇t + ∆) , γ̇t + ∆

)
+
(
g
(
γ−t
)

(γ̇t −∆) , γ̇t −∆
)
dt− 2 (g (γt) γ̇t, γ̇t)

]
dt

Using the C2-regularity of g, writing δ = v + t∆, and noting that that |δ| ≤ |v|+ |w|, we find

g
(
γ±t
)

= g (γt)± (Dg (γt) , δ) +
1

2

(
D2g (γt) δ, δ

)
+ o

(
|v|2 + |w|2

)
.

Collecting terms (in g,Dg,D2g) then leads to

e (x+ v, y + w) + e (x− v, y − w)− 2e (x, y) ≤ 1

4

∫ 1

0
[(i) + (ii) + (iii) + (E)] dt

where 
(i) := 2 (g (γt) ∆,∆)

(ii) := 4 ((Dg (γt) , δ) γ̇t,∆)

(iii) :=
((
D2g (γt) δ, δ

)
γ̇t, γ̇t

)
+
((
D2g (γt) δ, δ

)
∆,∆

)
It is immediate that,

|(i)| ≤ 2 ‖g‖∞ |w − v|
2

|(ii)| ≤ 4C ‖Dg‖∞ (|v|+ |w|) |x− y| |w − v|

|iii| ≤
∥∥D2g

∥∥
∞

(
|v|2 + |w|2

)(
C2 |x− y|2 + |w − v|2

)
.

Moreover, expanding g, as v, w → 0, we find

(E) = (|γ̇t|2 + |∆|2)o
(
|v|2 + |w|2

)
= (C2 |x− y|2 + |w − v|2)o

(
|v|2 + |w|2

)
.

With v = εp, w = εq all terms above are of order O
(
ε2
)
, with the exception of the second term

contributing to (iii) and the error term (E) which are actually o
(
ε2
)
, and hence negligible as ε→ 0.

Indeed

e(x+ εp, y + εq) + e(x− εp, y − εw)− 2e(x, y)

≤ ε2

4
[2‖g‖∞|p− q|2 + 4C‖Dg‖∞(|p|+ |q|)|x− y||p− q|

+‖D2g‖∞(|p|2 + |q|2)(C2|x− y|2 +O(ε2)) + (|x− y|2 +O(ε2))o(1)].

Using again the Cauchy- Schwarz inequality to handle the middle term in the estimate, we find, for
some K > 0 that only depends on g,

(p, q)

(
D2
xxeg D2

xyeg
D2
yxeg D2

yyeg

)(
p
q

)
≤ [

1

2
‖g‖∞ |p− q|

2 + C ‖Dg‖∞ (|p|+ |q|) |x− y| |p− q|+ C2

4

∥∥D2g
∥∥
∞ (|p|2 + |q|2) |x− y|2]

≤ K |p− q|2 +K |x− y|2
(
|p|2 +

∣∣q2
∣∣) .
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We conclude by checking that the assumptions of Theorem 1.2 are satisfied for F of Hamilton-Jacobi-
Isaacs type. Note that condition (7) is valid, as demanded by that theorem.

Proposition 4.4. Let F be given by (30), satisfying (32) and (33). Then F satisfies (18)-(22).

Proof. Since it is clear that all assumptions are stable under taking sup and inf, we will only treat the
quasilinear case

F (M,p, r, x) = Tr(a(p, x)M) + b(p, x)− c(x)r,

and we concentrate on (22), since the others are obvious.
With t, x, y, r, α,X, Y taken as in the statement of the assumption, we have

F (X,αDxd
2
g(x, y), r, x, t)− F (Y,−αDyd

2
g(x, y), r, x, t)

= b (p, x)− b (q, y) + Tr
(
σσT (p, x)X − σσT (q, y)Y

)
+ (c(x)− c(y))r,

where for simplicity we write p := αDxd
2
g(x, y) and q := −αDyd

2
g(x, y).

Noting that Proposition 4.2 yields
|p− q| ≤ αK|x− y|2,

and using the eikonal equation for eg = d2
g, for some C > 0 we find

αC−1|x− y| ≤ |p|+ |q| ≤ αC|x− y|.

The assumptions on b also give

b (p, x)− b (q, y) ≤ ω ((1 + |p|+ |q|) |x− y|+ |p− q|)
≤ ω

(
(1 + Cα|x− y|) |x− y|+Kα|x− y|2

)
.

For the second order term, we use Proposition 4.3 and get

Tr
(
σσT (p, x)X − σσT (q, y)Y

)
= (σ(p, x), σ(q, y))

(
X 0
0 −Y

)(
σ(p, x)
σ(q, y)

)
≤ α (σ(p, x), σ(q, y))

(
D2
xxe D2

xye

D2
yxe D2

yye

)(
σ(p, x)
σ(q, y)

)
+ ε

∥∥∥∥( D2
xxe D2

xye

D2
yxe D2

yye

)(
σ(p, x)
σ(q, y)

)∥∥∥∥2

≤ Kα(|σ(p, x)− σ(q, y)|2 + |x− y|2) +Kε

≤ K ′α

(
|x− y|2 +

|p− q|2

(|p|+ |q|)2

)
+K ′ε

≤ K ′′
(
α|x− y|2 + ε

)
.
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