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STOCHASTIC CONTROL WITH ROUGH PATHS

JOSCHA DIEHL, PETER K. FRIZ, PAUL GASSIAT

Abstract. We study a class of controlled differential equations driven by rough paths (or rough
path realizations of Brownian motion) in the sense of T. Lyons. It is shown that the value function
satisfies a HJB type equation; we also establish a form of the Pontryagin maximum principle.
Deterministic problems of this type arise in the duality theory for controlled diffusion processes
and typically involve anticipating stochastic analysis. We make the link to old work of M. H. A.
Davis and G. Burstein [A deterministic approach to stochastic optimal control with application
to anticipative optimal control. Stochastics and Stochastics Reports, 40:203–256, 1992] and then
prove a continuous-time generalization of Roger’s duality formula [L. C. G. Rogers, Pathwise
Stochastic Optimal Control. SIAM J. Control Optim. 46, 3, 1116-1132, 2007]. The generic case
of controlled volatility is seen to give trivial duality bounds, and explains the focus in Burstein–
Davis’ (and this) work on controlled drift. Our study of controlled rough differential equations
also relates to work of L. Mazliak and I. Nourdin [Optimal control for rough differential equations.
Stoch. Dyn. 08, 23, 2008].

1. Introduction

In classical works [11, 32] Doss and Sussmann studied the link between ordinary and stochastic
differential equations (ODEs and SDEs, in the sequel). In the simplest setting, consider a nice
vector field σ and a smooth path B : [0, T ] → R, one solves the (random) ordinary differential
equation

Ẋ = σ (X) Ḃ,

so that Xt = eσBtX0, where eσBt denotes flow, for unit time, along the vector field σ (·)Bt. The
point is that the resulting formula for Xt makes sense for any continuous path B, and in fact the
Itô-map B 7→ X is continuous with respect to ‖·‖∞;[0,T ]. In particular, one can use this procedure
for every (continuous) Brownian path; the so-constructed SDE solution then solves the Stratonovich
equation,

dX = σ (X) ◦ dB = σ (X) dB +
1

2
(σσ′) (X) dt.

When B = B (ω) : [0, T ] → Rd is a multidimensional Brownian motion, which we shall assume
from here on, this construction fails and indeed the Itô-map is notorious for its lack of (classical)
continuity properties. Nonetheless, many approximations, Bn → B, examples of which include
the piecewise linear -, mollifier - and Karhunen-Love approximations, have the property that the
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2 JOSCHA DIEHL, PETER K. FRIZ, PAUL GASSIAT

corresponding (random) ODE solutions, say to dXn = b (Xn) dt+σ (Xn) dBn with σ = (σ1, . . . , σd),
converge to the solution of the Stratonovich equation

dX = b (X) dt+ σ (X) ◦ dB.

(At least in the case of piecewise linear approximations, this result is known as Wong-Zakai theo-
rem1). It was a major step forward, due to T. Lyons [24], to realize that the multidimensional SDE
case can also be understood via deterministic differential equations (known as rough differential
equations, short: RDEs); they do, however, require more complicated driving signals (known as
rough paths) which in the present context are of the form

B (ω) : [0, T ]→ Rd ⊕ so (d) ,

and "contain", in addition to the Brownian sample path, Lévy stochastic area, viewed as process
with values in so (d). It is known that B (ω) enjoys p-variation rough path regularity, for any
p ∈ (2, 3). Given the increasing amount of text books on the subject, [25, 23, 15, 14], we shall
keep further background to a minimum. Let us just mention that, among the many applications
of rough paths to stochastic analysis, (i) all Wong–Zakai type results follow from Bn → B in
p-variation rough path metric (essentially thanks to continuity of rough integration with respect
to rough path metrics) and (ii) the (rough)pathwise resolution of SDE can handle immediately
situations with anticipating randomness in the coefficients; consistency with anticipating SDE in
the sense of Nualart, Ocone, Pardoux [27, 28] was established in [7].

Given the deep insights of rough paths analysis to deterministic and stochastic differential equa-
tions, it is a natural question what such a (rough) pathwise point of view can contribute to our
understanding of controlled deterministic, and then stochastic, differential equations.

An obstacle, both technical and conceptual, to overcome is that a pathwise approach to (even-
tually stochastic) control problem naturally leads to anticipating controls (and then potentially to
serious measurability issues, as was seen e.g. in [4]) as well as the question of how to relate such an-
ticipating controls to classical adapted controls. We feel that our results here constitute convincing
evidence that rough path analysis is ideal to formulate and analyze these problems. In particular,
one is able to write down, in a meaningful and direct way, all the quantities that one wants to write
down - without any headache related to measurability and anticipativity technicalities : through-
out, all quantities depend continuously on some abstract rough path η and are then - trivially -
measurable upon substitution η ← B (ω).

Loosely stated, our main results are as follows.

Theorem 1. (cf. Section 3) Let η : [0, T ]→ Rd ⊕ so (d) be a rough path (of p-variation regularity,
p < 3) and µ = (µt) a control.
(i) The controlled rough differential equation

(1.1) dX = b (X,µ) dt+ σ (X) dη, Xt = x

has a unique solution.
(ii) The value function

v (t, x) = sup
µ

{∫ T

t

f (s,Xs, µs) ds+ g (XT )

}

1... although, strictly speaking, the multi-dimensional case is due to M. Clark and Stroock–Varadhan.
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satisfies a non-linear (rough) partial differential equation, in the sense of Caruana et al. [6]. More-
over, a (rough) Pontryagin type maximum principle (based on a controlled, backward RDE) gives a
necessary condition for a pair

(
X̄, µ̄

)
to be optimal.

It should be noted that the controlled rough differential equation in (i) does not immediately
fall into the standard framework of rough path theory. But, as we lay out in the appendix, it can
be easily treated as an infinite dimensional rough differential equation. The required rough PDE
theory [6] is far from the standard setting of rough paths and requires a subtle combination of rough
path analysis with stochastic viscosity solution in the spirit Lions–Souganidis [21, 22].

When applied with η = B (ω), the above theorem provides information about the optimal control
of the following Stratonovich equation2

dX = b (X,µ) dt+ σ (X) ◦ dB,
considered up to time T . On the other hand, any optimal control for the deterministic control
problem in (ii) above is of the form µ∗t = µ∗t (η) = µ∗t (B (ω)), depending on σ (Bt : t ≤ T ), and
thus fails to satisfy the crucial adaptedness condition in stochastic control theory. Moreover, the
ω-wise optimization has (at first glance) little to do with the classical stochastic control problem in
which one maximizes the expected value, i.e. an average over all ω’s, of a payoff function.

Nonetheless, stochastic and pathwise control are intimately connected and we are able to prove
the following duality result.

Theorem 2. (cf. Section 4)
(i) Write Xµ,η for the solution to the controlled RDE (1.1). Let ν be an adapted control. Then

Xν = Xµ,η|µ=ν(ω),η=B(ω) solves the (classical, non-anticipating) Stratonovich equation

dXν = b (Xν , ν) dt+ σ (Xν) ◦ dB.
(ii) The stochastic optimal control problem

V (t, x) = sup
ν adapted

{
E

[∫ T

t

f (s,Xν
s , νs) ds

]
+ g (Xν

T )

}
admits a dual representation, given by

V (t, x) = inf
z
E

sup
µ

{∫ T

t

f (s,Xµ,η
s , νs) ds+ g (Xµ,η

T ) + z (µ,η)

}∣∣∣∣∣
η=B(ω)


where z ranges over suitable classes of penality functionals for non-adapted controls. Special choices
of such classes lead to the Davis–Burstein duality [8] and to an extension of Rogers [30] to continuous
time (as conjectured in that paper).

Readers familiar with [8] will recall a similar setup to ours, with control only in the drift term,
b = b (X, ν) but not in the volatility term, σ = σ (X). On the other hand, time discretization
of general controlled diffusion, i.e. with control in both drift and volatility, leads to the setting of
controlled Markov chains discussed in [30]. One may then wonder (question posed to us by M. Davis)
why the continuous time formulation does not allow for controlled volatility. From a technical point
of view, the problem is that there is no satisfactory extension of (i) to a setting of rough differential
equations with controlled volatility coefficients. (In a sense, there is missing information between

2See e.g. [15, 14] for consistency of rough integration again B (ω) with Stratonovich integration.
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the control, itself a rough signal, and the actual driving signal). If one attempts to bypass this by
considering piecewise constant controls, with vanishing mesh size, one is led to the observation that
(in non-degenerate situations) one simply obtains trivial upper duality bounds. (See the Remarks
13 and 21).

Let us briefly review some past works in the area of pathwise versus stochastic control. Wets [33]
first observed that stochastic optimization problems resemble deterministic optimization problems
up to the nonanticipativity restriction on the choice of the control policy. Davis–Burstein, Davis–
Karatzas, Rogers and then also Brown et al [8, 18, 31, 30, 3] all implement duality type results in
various settings.

At last, we mention Mazliak–Nourdin [26] for a first investigation of controlled rough differential
equations. While this obviously relates to this paper, they stay on “level 1" of rough path theory,
i.e. the case handled by Young integration, and so do not cover any situations with Brownian or
Brownian-like noise. In particular, our paper seems to be the first proper use of rough path analysis
in the important field of (stochastic) optimal control.

2. Notation

For p < 3 denote by C0,p-var = C0,p-var(E) the space of geometric p-variation rough paths in E,
where E is a Banach space chosen according to context. 3 On this space, we denote by ρp-var the
corresponding inhomogenous distance. For p < 2 this is just the p-variation norm ||.||p-var.

Let U be some separable metric space (the control space). Denote byM the class of measurable
controls µ : [0, T ]→ U .

When working on a filtered probability space (Ω,F ,Ft,P), A will denote the class of progressively
measurable controls ν : Ω× [0, T ]→ U .
BUC(Re) denotes the space of bounded, uniformly continuous functions that is usually employed

in viscosity theory for partial differential equations.

3. Deterministic control with rough paths

Let η : [0, T ] → Rd be a smooth path. Write Xt,x,µ for the solution to the controlled ordinary
differential equation

(3.1) dXt,x,µ
s = b

(
Xt,x,µ
s , µs

)
ds+ σ

(
Xt,x,µ
s

)
dηs, s ≥ t, Xt,x,µ

t = x ∈ Re.

Classical control theory allows to maximize
∫ T
t
f (s,Xt,x,µ

s , µs) ds+g (Xµ
T ) over a class of admissible

controls µ. As is well-known,

(3.2) v (t, x) := sup
µ

{∫ T

t

f
(
s,Xt,x,µ

s , µs
)
ds+ g

(
Xt,x,µ
T

)}
is the (under some technical conditions: unique, bounded uniformly continuous) viscosity solution
to the HJB equation

−∂tv −H (t, x,Dv)− 〈σ (x) , Dv〉 η̇ = 0,

v(T, x) = g(x).

3For p < 2 these are just continuous E-valued paths with finite p-variation. For p ∈ [2, 3) additional “area”
information is necessary. We refer to [25] and [15] for background on rough path theory.
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where H acting on v is given by

(3.3) H (t, x, p) = sup
u
{〈b (x, u) , p〉+ f (t, x, u)} .

Now, (3.1) also makes sense for a driving rough path (including a controlled drift terms to the
standard setting of RDEs is fairly straight-forward; for the reader’s convenience proofs are given in
the appendix). This allows to consider the optimization problem (3.2) for controlled RDEs.

3.1. HJB equation. The main result here is that the corresponding value function satisfies a
“rough PDE”. Such equations go back to Lions-Souganidis ([22] considers a pathwise stochastic
control problem and give an associated stochastic HJB equation, see also [4]; these correspond
to η = B(ω) in the present section). However their (non-rough) pathwise setup is restricted
to commuting diffusion vector fields σ1, . . . , σd (actually, [22] considers constant vector fields).
Extensions to more general vector fields via a rough pathwise approach were then obtained in [6]
(see also [10]).

Definition 3. Let η ∈ C0,p-var be a geometric rough path, p-var ≥ 1. Assume F,G, φ to be such
that for every smooth path η there exists a unique BUC viscosity solution to

−∂tvη − F (t, x, vη, Dvη, D2vη)−G(t, x, vη, Dvη)η̇t = 0,

vη(T, x) = φ(x).

We say that v ∈ BUC(Re) solves the rough partial differential equation

−dv − F (t, x, v,Dv,D2v)dt−G(t, x, v,Dv)dηt = 0,

v(T, x) = φ(x),

if for every sequence of smooth paths ηn such that ηn → η in rough path metric we have locally
uniformly

vη
n

→ v.

Remark 4. (1) We remark that uniqueness of a solution, if it exists, is built into the definition
(by demanding uniqueness for the approximating problems).

(2) In special cases (in particular the gradient noise case of the following theorem) it is possible
to define the solution to a rough PDE through a coordinate transformation (if the vector
fields in front of the rough path are smooth enough). This approach is followed in [21].

The two definitions are equivalent, if the coefficients admit enough regularity (see [6]).
In the following theorem the coordinate transformation is not applicable, since σ is only
assumed to be Lipγ instead of Lipγ+2.

Theorem 5. Let η ∈ C0,p-var(Rd) be a rough path, p ∈ [2, 3). Let γ > p. Let b : Re × U → Re
be continuous and let b(·, u) ∈ Lip1(Re) uniformly in u ∈ U . Let σ1, . . . , σd ∈ Lipγ(Re). Let
g ∈ BUC(Re). Let f : [0, T ]×Re×U → R be bounded, continuous and locally uniformly continuous
in t, x, uniformly in u.

For µ ∈M consider the RDE with controlled drift 4 (Theorem 29),

(3.4) dXt,x,µ,η = b
(
Xt,x,µ,η, µ

)
dt+ σ

(
Xt,x,µ,η

)
dη, Xt,x,µ,η

t = x.

4An extension to a time-dependent b is straightforward, as an inspection of the proof of Theorem 29 shows. A
time-dependent σ can be treated immediately by adding a time-component to the rough path, although this leads
to strong regularity assumption in t. For a more nuanced approach one could adopt the ideas from [15, Chapter 12].

It is also possible to consider the controlled hybrid RDE/SDE dX = b(X,µ)dt+ σ̃(X,µ)dW + σ(X)dη, see [9].
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Then

v (t, x) := vη (t, x) := sup
µ∈M

{∫ T

t

f
(
s,Xt,x,µ,η

s , µs
)
ds+ g

(
Xt,x,µ,η
T

)}
is the unique bounded, uniformly continuous viscosity solution to the rough HJ equation

−dv −H (x,Dv) dt− 〈σ (x) , Dv〉 dη = 0,

v(T, x) = g(x).
(3.5)

Proof. The case f = 0, σ ∈ Lipγ+2 appears in [9]. The general case presented here is different, since
we cannot use a coordinate transformation. Let a smooth sequence ηn be given, such that ηn → η
in C0,p-var. Let

vn(t, x) := sup
µ∈M

Ξt,x[ηn, µ],

where Ξt,x[γ, µ] :=
∫ T
t
f (s,Xt,x,µ,γ

s , µs) ds+g
(
Xt,x,µ,γ
T

)
for any (rough) path γ. By classical control

theory (e.g. Corollary III.3.6 in [1]) we have that vn is the unique bounded, continuous viscosity
solution to

−dvn −H (x,Dvn) dt− 〈σ (x) , Dvn〉 dηn = 0,

vn(T, x) = g(x).

Then

|vn(t, x)− v(t, x)| ≤ sup
µ∈M

|Ξt,x[η, µ]− Ξt,x[ηn, µ]| .

Note that Ξ is continuous in γ uniformly in µ (and (t, x)) by Theorem 29. Therefore, vn converges
locally uniformly to v and then, by Definition 3, v solves (3.5). �

Example 6. In the case with additive noise (σ(x) ≡ Id) and state-independent gains / drift
(f(s, x, u) = f(s, u), b(x, u) = b(s, u)), this rough deterministic control problem admits a simple
solution. Indeed, if v0 is the value function to the standard deterministic problem for η ≡ 0, i.e.

v0(t, x) = sup
µ∈M

{∫ T

t

f(s, µs)ds+ g

(
x+

∫ T

t

b(s, µs)ds

)}
,

then one has immediately (since η only appears in the terminal gain)

vη(t, x) = v0(t, x+ ηT − ηt).

When v0 has a nice form, this gives simple explicit solutions. For instance, assuming in addition
f ≡ 0, U convex and b(s, u) = u, v0 is reduced to a static optimization problem and

vη(t, x) = sup
u∈U

g
(
x+ ηT − ηt + (T − t)u

)
.

3.2. Pontryagin maximum principle. If η is smooth, then Theorem 3.2.1 in [34] gives the
following optimality criterium.

Theorem 7. Let η be a smooth path. Assume b, f, g be C1 in x, such that the derivative is Lipschitz
in x, u and bounded and let σ, g be C1 with bounded, Lipschitz first derivative. Let X̄, µ̄ be an optimal
pair for problem (3.2) with t = 0. Let p be the unique solution to the backward ODE

−ṗ(t) = Db(X̄t, µ̄t)p(t) +Dσ(X̄t)η̇tp(t) +Df(X̄t, µ̄t),

p(T ) = Dg(X̄T ).
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Then

b(X̄t, µ̄t)p(t) + f(X̄t, µ̄t) = sup
u∈U

[
b(X̄t, u)p(t) + f(X̄t, u)

]
, a.e. t ∈ [0, T ].

Let now η be rough. We have the following equivalent statement.

Theorem 8. Let η ∈ C0,p-var be a geometric rough path, p ∈ [2, 3). Assume the same regularity
on b, f, g, σ as in Theorem 7. Let X̄, µ̄ be an optimal pair. Let p be the unique solution to the
controlled, backward RDE (Remark 31)

−dp(t) = Db(X̄t, µ̄t)p(t)dt+Dσ(X̄t)p(t)dηt +Df(X̄t, µ̄t)dt,

p(T ) = Dg(X̄T ).

Then

b(X̄t, µ̄t)p(t) + f(X̄t, µ̄t) = sup
u∈U

[
b(X̄t, u)p(t) + f(X̄t, u)

]
, a.e. t.

Remark 9. This is the necessary condition for an admissible pair to be optimal. In the classical
setting there do also exist sufficient conditions (see for example Theorem 3.2.5 in [34]). They rely
on convexity of the Hamiltonian and therefore will in general (unless σ is affine in x) not work in
our setting because, informally, the dη-term switches sign all the time.

Define for µ ∈M

J(µ) :=

∫ T

0

f(r,X0,x0,µ,η
r , µr)dr + g(X0,x0,µ,η

T ),

so that v(0, x0) = infµ∈M J(µ). We prepare the proof with the following Lemma.

Lemma 10. Let X̄, µ̄ be an optimal pair. Let µ be any other control. Let I ⊂ [0, T ] be an interval
with |I| = ε. Define

µε(t) := 1I(t)µ(t) + 1[0,T ]\I(t)µ̄(t).

Let Xε be the solution to the controlled RDE (3.4) corresponding to the control µε. Let Y ε be the
solution to the RDE

Y εt =

∫ t

0

Db(X̄r, µ̄r)Y
ε
r dr +

∫ t

0

Dσ(X̄r)Y
ε
r dηr +

∫ t

0

[
b(X̄r, µr)− b(X̄r, µ̄r)

]
1I(r)dr.

Then

sup
t
|Xε

t − X̄t| = O(ε),

sup
t
|Y εt | = O(ε),

(3.6)

sup
t
|Xε

t − X̄t − Y εt | = O(ε2),

(3.7)

J(µε)− J(µ̄) = 〈Dg(X̄T ), Y εT 〉

+

∫ T

0

[
〈Df(X̄r, µ̄r), Y

ε
r 〉+

{
f(X̄r, µr)− f(X̄r, µ̄r)

}
1I(r)

]
dr +O(ε2).

(3.8)
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Proof. We have ∫ T

0

||b(·, µ̄r)− b(·, µεr)||Lip1dr ≤ cε.

Hence looking at the proof of Theorem 33 (note that Xε and X have the same initial condition),
we get

||Xε −X||∞ ≤ ||Xε −X||p−var ≤ cε,

which proves the first equality in (3.6). The second one follows analogously.
Now Dε

t := Xε
t − X̄t − Y εt satisfies

dDε
t =

[
b(Xε

t , µ
ε
t )− b(X̄t, µ̄t)−Db(X̄t, µ̄t)Y

ε
t −

[
b(X̄t, µt)− b(X̄t, µ̄t)

]
1I(t)

]
dt

+
[
σ(Xε

t )− σ(X̄t)−Dσ(X̄t)Y
ε
t

]
dηt

=
{∫ t

0

Db(X̄t + θ(Xε
t − X̄t), µ

ε
t )−Db(X̄t, µ

ε)dθ(Xε
t − X̄t)

+
[
Db(X̄t, µ

ε
t )−Db(X̄t, µ̄t)

]
(Xε

t − X̄t) +Db(X̄t, µ̄t)D
ε
t

}
dt

+

∫ 1

0

Dσ(X̄t + θ(Xε
t − X̄t))−Dσ(X̄t)dθ(X

ε
t −Xt)dηt +Dσ(X̄t)D

ε
tdηt

= dAεt +Db(X̄t, µ̄t)D
ε
tdt+ dMtD

ε
t

where

dAεt =
{∫ t

0

Db(X̄t + θ(Xε
t − X̄t), µ

ε
t )−Db(X̄t, µ

ε)dθ(Xε
t − X̄t)

+
[
Db(X̄t, µ

ε
t )−Db(X̄t, µ̄t)

]
(Xε

t − X̄t)
}
dt

+

∫ 1

0

Dσ(X̄t + θ(Xε
t − X̄t))−Dσ(X̄t)dθ(X

ε
t −Xt)dηt

dMt = Dσ(X̄t)dηt.

It is straightforward to check that Aε = O(ε2) as a path controlled by η (see Remark 34). The
result then follows from Lemma 35. �

Proof of Theorem 8. We follow the idea of the proof of Theorem 3.2.1 in [34]. Fix x0 ∈ Re.
Since η is geometric, we have

〈Dg(X̄T ), Y εT 〉 = 〈pT , Y εT 〉 − 〈p0, Y ε0 〉

= −
∫ T

0

〈Df(X̄r, µ̄r), Y
ε
r 〉dr +

∫ T

0

〈p(r),
[
b(X̄r, µr)− b(X̄r, µ̄r)

]
1I(r)〉dr.

Here, Y ε and I are given as in Lemma 10.
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Let any u ∈ U be given. Let µ(t) ≡ u. Let t ∈ [0, T ) and let ε > 0 be small enough such that
Iε := [t, t+ ε] ⊂ [0, T ]. Then, combined with Lemma 10 we get

0 ≥ J(µε)− J(µ̄)

= 〈Dg(X̄T ), Y εT 〉+

∫ T

0

[
〈Df(x̄r, µ̄r), Y

ε
r 〉+

{
f(X̄r, µr)− f(X̄r, µ̄r)

}
1I(r)

]
dr + o(ε)

= −
∫ T

0

〈Df(X̄r, µ̄r), Y
ε
r 〉dr +

∫ T

0

〈p(r),
[
b(X̄r, µr)− b(X̄r, µ̄r)

]
1I(r)〉dr

+

∫ T

0

[
〈Df(x̄r, µ̄r), Y

ε
r 〉+

{
f(X̄r, µr)− f(X̄r, µ̄r)

}
1I(r)

]
dr + o(ε)

=

∫ t+ε

t

〈p(r),
[
b(X̄r, u)− b(X̄r, µ̄r)

]
〉+ f(X̄r, u)− f(X̄r, µ̄r)dr + o(ε).

Dividing by ε and sending ε → 0 yields, together with the separability of the metric space, the
desired result. �

3.3. Pathwise stochastic control. We can apply Theorem 5 to enhanced Brownian motion, i.e.
take η = B (ω), Brownian motion enhanced with Lévy’s stochastic area which constitutes for a.e.
ω a geometric rough path. The (rough)pathwise unique solution to the RDE with controlled drift,
Xµ,η|η=B(ω) then becomes a solution to the classical stochastic differential equation (in Stratonovich
sense) (Theorem 29).

Proposition 11. Under the assumptions of Theorem 5, the map

ω 7→ sup
µ∈M

{∫ T

t

f (s,Xµ,η, µs) ds+ g (Xµ,η
T )

}∣∣∣∣∣
η=B(ω)

is measurable. In particular, the expected value of the pathwise optimization problem,

(3.9) v̄ (t, x) = E

 sup
µ∈M

{∫ T

t

f (s,Xµ,η, µs) ds+ g (Xµ,η
T )

}∣∣∣∣∣
η=B(ω)


is well-defined.

Proof. The lift into rough pathspace, ω 7→ B (ω), is measurable. vη as element in BUC space
depends continuously (and hence: measurably) on the rough path η. Conclude by composition. �

Remark 12. Well-definedness of such expressions was a non-trivial technical obstacle in previous
works on pathwise stochastic control; e.g. [8, 4]. The use of rough path theory allows to bypass this
difficulty entirely.

Remark 13. Let us explain why we only consider the case where the coefficient σ(x) in front of
the rough path is not controlled. It would not be too difficult to make sense of RDEs

dX = b(t,X, u)dt+ σ(X,u)dηt,

assuming good regularity for σ and (us)s≥0 chosen in a suitable class (for instance : u piecewise
constant, u controlled by η in the Gubinelli sense,...). However, in most cases of interest the control
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problem would degenerate, in the sense that we would have

vη (t, x) = sup
µ∈M

{∫ T

t

f
(
s,Xt,x,µ,η

s , µs
)
ds+ g

(
Xt,x,µ,η
T

)}

=

∫ T

t

(sup
µ,x

f(s, x, µ))ds+ sup
x
g(x).

The reason is that if σ has enough u-dependence (for instance if d = 1, U is the unit ball in Re and
σ(x, u) = u) and η has unbounded variation on any interval (as is the case for typical Brownian
paths), the system can essentially be driven to reach any point instantly.

In order to obtain nontrivial values for the problem, one would need the admissible control pro-
cesses to be uniformly bounded in some particular sense (see e.g. [26] in the Young case, where the
(µs) need to be bounded in some Hölder space), which is not very natural (for instance, Dynamic
Programming and HJB-type pointwise optimizations are then no longer valid).

4. Duality results for classical stochastic control

We now link the expected value of the pathwise optimization problem, as given in (3.9), to the
value function of the (classical) stochastic control problem as exposed in [19, 13],

(4.1) V (t, x) := sup
ν∈A

E

[∫ T

t

f
(
s,Xt,x,ν

s , νs
)
ds+ g

(
Xt,x,ν
T

)]
.

Her A denotes the class of progressively measurable controls ν : Ω × [t, T ] → U , where we use
notation in not specifying t. There are well-known assumptions under which V is a classical (see
[19]) resp. viscosity (see [13]) solution to the HJB equation, i.e. the non-linear terminal value
problem

−∂tV − F
(
t, x,DV,D2V

)
= 0

V (T, ·) = g;

uniqueness holds in suitable classes. In fact, assume the dynamics

dXs,x,ν
t = b (Xs,x,ν

t , νt) dt+

d∑
i=1

σi (Xs,x,ν
t ) ◦ dBit,

= b̃ (Xs,x,ν
t , νt) dt+

d∑
i=1

σi (Xs,x,ν
t ) dBit, Xs,x,ν

s = x,

(4.2)

where b̃(x, u) = b(x, u) + 1
2

∑d
i=1(σi ·Dσi)(x) is the corrected drift. Then the equation is semilinear

of the form

−∂tV − H̃ (t, x,DV )− LV = 0,

V (T, ·) = g.
(4.3)

where

LV =
1

2
Tr[(σσT )D2V ]

and H̃ is given by H̃ (t, x, p) = supu

{〈
b̃ (x, u) , p

〉
+ f (t, x, u)

}
.
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Let us also write

LuV = b̃ (·, u)DV + LV, u ∈ U.

As beforeM is the class of measurable functions µ : [t, T ]→ U , with the topology of convergence
in measure (with respect to dt), where we abuse notation by not specifying t.

Inspired by results in discrete time [3], we have the following duality result.

Theorem 14. Let ZF be the class of all mappings z : C0,p-var ×M→ R such that
• z is bounded, measurable and continuous in η ∈ C0,p-var uniformly over µ ∈M
• E[z(B, ν)] ≥ 0, if ν is adapted

Let b : Re × U → Re be continuous and let b(·, u) ∈ Lip1(Re) uniformly in u ∈ U and such
that u 7→ b(·, u) is Lipschitz. Let σ1, . . . , σd ∈ Lipγ(Re), for some γ > 2, g ∈ BUC(Re) and
f : [0, T ]×Re × U → R bounded, continuous and locally uniformly continuous in t, x, uniformly in
u. Then we have

V (t, x) = inf
z∈ZF

E

 sup
µ∈M

{∫ T

t

f(r,Xt,x,µ,η
r , µr)dr + g(Xt,x,µ,η

T ) + z(η, µ)

}∣∣∣∣∣
η=B(ω)

 .
Where B denotes the Stratonovich lift of the Brownian motion to a geometric rough path and
Xt,x,µ,η is the solution to the RDE with controlled drift (Theorem 29)

dXt,x,µ,η = b
(
Xt,x,µ,η, µ

)
dt+ σ

(
Xt,x,µ,η

)
dη, Xt,x,µ,η

t = x.

Remark 15. Every choice of admissible control ν ∈ A in (4.1) leads to a lower bound on the value
function (with equality for ν = ν∗, the optimal control). In the same spirit, every choice z leads
to an upper bound. There is great interest in such duality results, as they help to judge how much
room is left for policy improvement. The result is still too general for this purpose and therefore it
is an important question, discussed below, to understand whether duality still holds when restricting
to some concrete (parametrized) subsets of ZF .

Proof. We first note, that the supremum inside the expectation is continuous (and hence measur-
able) in η, which follows by the same argument as in the proof of Theorem 5. Since it is also
bounded, the expectation is well-defined.

Recall thatXt,x,ν is the solution to the (classical) controlled SDE and thatXt,x,µ,η is the solution
to the controlled RDE. Let z ∈ ZF . Then, using Theorem 29 to justify the step from second to
third line,

V (t, x) = sup
ν∈A

E

[∫ T

t

f(s,Xt,x,ν
s , νs)ds+ g(Xt,x,u

T )

]

≤ sup
ν∈A

E

[∫ T

t

f(s,Xt,x,ν
s , νs)ds+ g(Xt,x,ν

T ) + z(B, ν)

]

= sup
ν∈A

E

{∫ T

t

f(s,Xt,x,µ,η
s , µs)ds+ g(Xt,x,µ,η

T ) + z(η, µ)

}
µ=ν,η=B


≤ E

 sup
µ∈M

{∫ T

t

f(s,Xt,x,µ,η
s , µs)ds+ g(Xt,x,µ,η

T ) + z(η, µ)

}
η=B

 ,
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and to show equality, let

z∗(η, µ) := V (t, x)−
∫ T

t

f(s,Xt,x,µ,η
s , µs)ds+ g(Xt,x,µ,η

T ).

Then z∗ ∈ ZF and equality is attained. �

4.1. Example I, inspired by the discrete-time results of Rogers [30]. We now show that
Theorem 14 still holds with penalty terms based on martingale increments.

Theorem 16. Under the (regularity) assumptions of Theorem 14 we have

V (t, x) = inf
h∈C1,2

b

E

 sup
µ∈M

{∫ T

t

f
(
s,Xt,x,µ,η

s , µs
)
ds+ g

(
Xt,x,µ,η
T

)
−M t,x,µ,η,h

t,T

}∣∣∣∣∣
η=B(ω)

 ,
where

M t,x,µ,η,h
t,T := h

(
T,Xt,x,µ,η

T

)
− h

(
t,Xt,x,µ,η

t

)
−
∫ T

t

(∂s + Lµs)h
(
s,Xt,x,µ,η

s

)
ds.

That is, Theorem 14 still holds with ZF replaced by the set {z : z(η, µ) = M t,x,µ,η,h
t,T , h ∈ C1,2

b }.
Moreover, if V ∈ C1,2

b the infimum is achieved at h∗ = V .

Proof. We have

V (t, x)

≤ inf
h∈C1,2

b

E

 sup
µ∈M

{∫ T

t

f(s,Xt,x,µ,η
s , µs)ds+ g(Xt,x,µ,η

T )−M t,x,µ,η,h
t,T

}∣∣∣∣∣
η=B


= inf
h∈C1,2

b

(
h(t, x)

+ E

 sup
µ∈M

{∫ T

t

f(s,Xt,x,µ,η
s , µs) + (∂s + Lµs)h(s,Xt,x,µ,η

s )ds+ g(Xt,x,µ,η
T )− h(T,Xt,x,µ,η

T )

}∣∣∣∣∣
η=B

)

≤ inf
h∈C1,2

b

(
h(t, x) +

∫ T

t

sup
x∈Re,u∈U

[f(s, x, u) + (∂s + Lu)h(s, x)] ds+ sup
x∈Re

[g(x)− h(T, x)]

)

≤ inf
h∈S+

s

(
h(t, x) +

∫ T

t

sup
x∈Re,u∈U

[f(s, x, u) + (∂s + Lu)h(s, x)] ds+ sup
x∈Re

[g(x)− h(T, x)]

)
≤ inf
h∈S+

s

h(t, x).

where the first inequality follows from (the proof of) Theorem 14 and S+
s denotes the class of

smooth bounded super solutions of the HJB equation. Note that S+
s ⊂ C

1,2
b , which yields the third

to last inequality.
But in fact the infimum of smooth supersolutions is equal to the viscosity solution V , all in-

equalities are actually equalities and the result follows. This can be proved via a technique due to
Krylov [20] which he called "shaking the coefficients". For the reader’s convenience let us recall the
argument.
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Recall that b̃ is the corrected drift, see (4.2). Extending by continuity b̃, σ and f to t ∈ (−∞,∞),
define for ε > 0,

F ε(t, x, p,X) := sup
u∈U,|s|,|e|≤ε

[
〈b̃(x+ e, u), p〉+

1

2
Tr(σσT (x+ e)X) + f(t+ s, x+ e, u)

]
,

and consider V ε the unique viscosity solution to{
−∂V

ε

∂t − F
ε(t, x,DV ε, D2V ε) = 0,
V ε(T, ·) = g.

By (local) uniform continuity of b, σ, f one can actually show that V → V ε as ε → 0, locally
uniformly. This can be done for instance by interpreting V ε as the value function of a stochastic
control problem.

Now take some smoothing kernel ρε with
∫
Re+1 ρε = 1 and supp(ρε) ⊂ [−ε, ε]e+1, and define

Vε := V ε ∗ ρε. Clearly by definition of F ε, for each |s|, |e| ≤ ε, V ε(· − s, · − e) is a supersolution to
the HJB equation −∂tV − F ε(t, x,DV,D2V ) = 0. Since F is convex in (DV,D2V ) it follows that

Vε =

∫
[−ε,ε]e+1

V ε(· − s, · − e)ρε(s, e)dsde

is again a (smooth) supersolution (for the details see the appendix in [2]). Finally it only remains
to notice that |V − Vε| ≤ |V − V ∗ ρε|+ |(V − V ε) ∗ ρε| → 0 (locally uniformly). �

Remark 17. Note that

V h(t, x) := E

 sup
µ∈M

{∫ T

t

f
(
s,Xt,x,µ,η, µs

)
ds+ g

(
Xt,x,µ,η
T

)
−M t,x,µ,η,h

t,T

}∣∣∣∣∣
η=B(ω)

 ,
for fixed x, t, is precisely of the form (3.9) with f resp. g replaced by f̃ resp. g̃, given by

f̃ (s, ·, µ) = f (s, ·, µ) + (∂s + Lµ)h (s, ·) ,
g̃ (·) = g (·) + h (T, ·)− h (t, x) .

The point is that the inner pathwise optimization falls directly into the framework of Section 3.

Remark 18. For η a geometric rough path, we may apply the chain rule to h(s,Xs) and obtain

h(T,XT )− h(t, x) =

∫ T

t

〈Dh(s,Xs), b(s,Xs, µs)ds+ σ(Xs)dηs〉.

It follows that the penalization may also be rewritten in a (rough) integral form

M t,x,µ,η,h
t,T =

∫ T

t

〈Dh(s,Xs), σ(Xs)dηs〉+
∫ T

t

{
〈(b− b̃)(s,Xs, µs), Dh(s,Xs)〉 −

1

2
Tr[(σσT )D2h](s,Xs)

}
ds.

Note that for η = B and adapted ν, this is just the Itô integral
∫ T
t
〈Dh(s,Xs), σ(Xs)dBs〉.

Remark 19. If one were to try anticipating stochastic calculus, in the spirit of [8], to implement
Roger’s duality in continuous time, then - leaving aside all other technical (measurability) issues
that have to be dealt with - more regularity on the coefficient will be required. This is in stark
contrast to the usual understanding in SDE theory that rough paths require more regularity than Itô
theory.
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Example 20. From Example 6 we can see that in some special cases this method gives explicit
upper bounds. Assume :

• additive noise (σ ≡ Id),
• state-independent drift b ≡ b(u),
• running gain f(s, x, u) = f0(u)−∇h(x) · b(u), with h superharmonic (∆h ≤ 0).

Then for the penalty corresponding to h(t, x) = h(x), the inner optimization problem is given by

sup
µ∈M

{∫ T

t

(f0 (µs)− 〈∇h(Xt,x,µ,η
s ), b(µs)〉)ds+ (g − h)

(
Xt,x,µ,η
T

)
+ h(x)

+

∫ T

t

(〈∇h(Xt,x,µ,η
s ), b(µs)〉+

1

2
∆h(Xt,x,µ,η

s ))ds

}

≤ sup
µ∈M

{∫ T

t

f0 (µs) ds+ (g − h)
(
Xt,x,µ,η
T + h(x)

)}
= h(x) + V 0,h(t, x+ ηT − ηt),

where V 0,h is the value function to the standard control problem

V 0(t, x) = sup
µ∈M

{∫ T

t

f0(µs)ds+ (g − h)

(
x+

∫ T

t

µsds

)}
.

From Theorem 16, we then have the upper bound

V (t, x) ≤ h(x) + E
[
V 0,h (t, x+BT −Bt)

]
.

Remark 21. As in Remark 13, one can wonder how Theorem 16 could translate in the case where
σ depends on u. As mentioned in that remark, under reasonable conditions on σ the control problem
degenerates so that for any choice of h, say for piecewise-constant controls µ, we can expect that

E

 sup
µ

{∫ T

t

f(s,Xt,x,µ,η
s , µs) + (∂t + Lµs)h(s,Xt,x,µ,η

s )ds+ g(Xt,x,µ,η
T )− h(T,Xt,x,µ,η

T )

}∣∣∣∣∣
η=B

)
=

∫ T

t

sup
x∈Re,u∈U

[f(s, x, u) + (∂t + Lu)h(s, x)] ds+ sup
x∈Re

[g(x)− h(T, x)] .

In other words there is nothing to be gained from considering the (penalized) pathwise optimization
problem, as we always get

V (t, x) ≤ h(t, x) +

∫ T

t

sup
x∈Re,u∈U

[f(s, x, u) + (∂t + Lu)h(s, x)] ds+ sup
x∈Re

[g(x)− h(T, x)]

which is in fact clear from a direct application of Itô’s formula (or viscosity comparison).

4.2. Example II, inspired by Davis–Burstein [8]. We now explore a different penalization,
possible under concavity assumptions.

Theorem 22. Let g be as in Theorem 14 and assume f = 0; furthermore make the (stronger)
assumption that b ∈ C5

b , σ ∈ C5
b , σσ

T > 0, and that (4.1) has a feedback solution u∗5 which is
continuous, C1 in t and C4

b in x, taking values in the interior of U . Assume that U is a compact
convex subset of Rn.

5 That is, the optimal control is given as a deterministic function u∗ of time and the current state of the system.
This is also called a Markovian control.
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Let Zt,x,η be the solution starting from x at time t to (denote bu := ∂ub)

dZ = b (Z, u∗(t, Z)) dt+ σ (Z) dη − bu(Z, u∗(t, Z))u∗(t, Z)dt,(4.4)

let W (t, x) := W (t, x;η) := g(Zt,x,ηT ) and assume that

∀(t, x), u 7→ 〈b(x, u), DW (t, x;B)〉 is strictly concave, a.s.(4.5)

Then

V (t, x) = inf
λ∈A

E[ sup
µ∈M

{
g(Xt,x,µ,η

T ) +

∫ T

t

〈λ(r,Xt,x,µ,η
r ,η), µr〉dr

}∣∣∣∣∣
η=B(ω)

].

Where A is the class of all λ : [0, T ]× Re × C0,p-var → Rd such that
• λ is bounded and uniformly continuous on bounded sets
• λ is future adapted, i.e. for any fixed t, x, λ(t, x,B) ∈ σ(Bs : s ∈ [t, T ])
• E[λ(t, x,B)] = 0 for all t, x.

That is, Theorem 14 still holds with ZF replaced by the set

{z : z(η, µ) =

∫ T

t

〈λ(s,Xt,x,µ,η
r ,η), µs〉ds, λ ∈ A}.

Moreover the infimum is achieved with λ∗(t, x,η) := tbu(t, u∗(t, x))DW (t, x;η).

Remark 23. The concavity assumption is difficult to verify for concrete examples. It holds for the
linear quadratic case, which we treat in Section 4.3.

Remark 24. The case of running cost f is, as usual, easily covered with this formulation. Indeed,
let the optimal control problem be given as

dX = b(X, ν)dt+ σ(X) ◦ dW,

V (t, x) = sup
ν

E[

∫ T

t

f(X, ν)dr + g(XT )].

Define the new component

dXd+1
t = f(X,u)dt, Xd+1

t = x.

Then the theorem yields that the penalty

λ∗(t, x) := (bu, fu) · (Dx1...d
g(ZT ) +Dx1...d

Ze+1
T , Dxe+1

Ze+1
T )

= (bu, fu) · (Dx1...d
g(ZT ) +Dx1...d

Ze+1
T , 1).

is optimal, where

dZ = b(Z, u∗)dt+ σ(Z)dη − bu(Z, u∗)u∗dt,

dZe+1 = f(Z, u∗)dt− fu(Z, u∗)u∗dt.

Proof. From (the proof of) Theorem 14 we know V (t, x) ≤ infλ∈A E[. . . ]. The converse direction is
proven in [8] by using 6

λ∗(t, x,η) = tbu(t, u∗(t, x))DW (t, x).

For the reader’s convenience we provide a sketch of the argument below. �

6The paper of Davis–Burstein predates rough path theory relies heavily on anticipating stochastic calculus.
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Sketch of the Davis-Burstein argument. We have assumed that the optimal control for the stochas-
tic problem (4.1) is given in feedback form by u∗(t, x). Write Xt,x,∗ := Xt,x,u∗ .

Recall that Zt,x,η is the solution starting from x at time t to :

dZ = b (Z, u∗(t, Z)) dt+ σ (Z) dη − bu(Z, u∗(t, Z))u∗(t, Z)dt.

Assume that W (t, x) := W (t, x;η) = g(Zt,x,ηT ) is a (viscosity) solution to the rough PDE

−∂tW − 〈b(x, u∗(t, x))− bu(x, u∗(t, x))u∗(t, x), DW 〉 − 〈σ (x) , DW 〉 η̇ = 0,(4.6)

and assume that W is differentiable in x.
We assumed that

∀(t, x), u 7→ 〈b(x, u), DW (t, x)〉 is strictly concave.

It then follows that

〈b(x, u∗(t, x))− bu(x, u∗(t, x))u∗(t, x), DW 〉 = sup
u∈U
〈b(x, u)− bu(x, u∗(t, x))u,DW 〉 .(4.7)

Because of (4.7) the PDE (4.6) may be rewritten as

−∂tW − 〈b(x, u∗(t, x)), DW 〉 − 〈u∗(t, x), λ∗(t, x;η)〉 − 〈σ (x) , DW 〉 η̇
= −∂tW − sup

u∈U
{〈b(x, u), DW 〉 − 〈u, λ∗(t, x;η)〉} − 〈σ (x) , DW 〉 η̇

= 0.

By verification it follows that actually W is also the value function of the problem with penalty λ∗,
and the optimal control is given by u∗, i.e.

W (t, x) = W (t, x;η) = sup
µ∈M

[
g(Xt,x,µ,η

T )−
∫ T

t

〈
λ∗(s,Xt,x,µ,η

s ;η), µs
〉
ds

]

= g(Xt,x,u∗,η
T )−

∫ T

t

〈
λ∗(s,Xt,x,u∗,η

s ;η), u∗(s,Xt,x,u∗,η
s )

〉
ds

Then, by Theorem 29 we have (if the convexity assumption (4.5) is satisfied a.s. by η = B(ω))

W (t, x;B) = g(Xt,x,∗
T )−

∫ T

t

〈
λ∗(s,Xt,x,∗

s ;B), u∗(s,Xt,x,∗
s )

〉
ds.

It follows in particular that for the original stochastic control problem

V (t, x) = sup
ν∈A

E
[
g(Xt,x,ν

T )
]

= E
[
g(Xt,x,∗

T )
]

= E

[
g(Xt,x,∗

T )−
∫ T

t

〈
λ∗(s,Xt,x,∗

s ;B), u∗(s,Xt,x,∗
s )

〉
ds

]

= E

[
sup
µ∈M

{
g(Xt,x,µ,η

T )−
∫ T

t

〈
λ∗(s,Xt,x,µ,η

s ;η), µs
〉
ds

}
|η=B

]
.

Here we have used that λ∗(t, x,B) is future adapted and E[λ∗(t, x,B)] = 0 ∀t, x, which is shown on
p. 227 in [8]. �
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Remark 25. The two different penalizations presented above are based on verification arguments
for respectively the stochastic HJB equation and the (rough) deterministic HJB equation. One can
then also try to devise an approach based on Pontryagin’s maximum principles (both stochastic and
deterministic). While this is technically possible, the need to use sufficient conditions in the rough
Pontryagin maximum principle means that it can only apply to the very specific case where σ is
affine in x, and in consequence we have chosen not to pursue this here.

4.3. Explicit computations in LQC problems. We will compare the two optimal penalizations
in the case of a linear quadratic control problem (both for additive and multiplicative noise).

4.3.1. LQC with additive noise. The dynamics are given by 7

dX = (MX +Nν)dt+ dBt(4.8)

and the optimization problem is given by

V (t, x) = supν∈A E
[
1
2

∫ T
t

(〈QXs, Xs〉+ 〈Rνs, νs〉)ds+ 1
2 〈GXT , XT 〉

]
.(4.9)

This problem admits the explicit solution (see e.g. Section 6.3 in [34])

V (t, x) =
1

2
〈P (t)x, x〉+

1

2

∫ T

t

Tr(P (s))ds,(4.10)

where P is the solution to the matrix Riccati equation

Ṗ = −P (t)M − tMP (t) + PNR−1tNP (t)−Q
P (T ) = G,

and the optimal control is then given in feedback form by

ν∗(t, x) = −R−1tNP (t)x.

Proposition 26. For this LQ control problem the optimal penalty corresponding to Theorem 22 is
given by

z1(η, µ) = −
∫ T

t

〈λ2(s;η), µs〉ds,

where

λ1(t;η) = −tN
∫ T

t

e
tM(s−t)P (s)dηs.

The optimal penalty corresponding to Theorem 16 is given by

z2(η, µ) = z1(η, µ) + γR(η),

where

γR(η) =

∫ T

t

〈P (s)X0
s , dηs〉 −

1

2

∫ T

t

Tr(P (s))ds,

X0 denoting the solution to the RDE dX = MXdt + dη starting at (t, x). In particular, these
two penalizations are equal modulo a random constant (not depending on the control) with zero
expectation.

7This equation admits an obvious pathwise SDE solution (via the ODE satisfied by X − B) so that, strictly
speaking, there is no need for rough paths here.



18 JOSCHA DIEHL, PETER K. FRIZ, PAUL GASSIAT

Proof. The formula for z1 is in fact already computed in [8, sec. 2.4], so that it only remains to do
the computation for the Rogers penalization.

It follows from Remark 18 that

M t,x,µ,η,V
t,T =

∫ T

t

〈DV (s,Xs), dηs〉 −
1

2

∫ T

t

Tr(D2V (s,Xs))ds

=

∫ T

t

〈P (s)Xµ
s , dηs〉 −

1

2

∫ T

t

Tr(P (s))ds

=

∫ T

t

〈P (s)(X0
s +

∫ s

0

eM(s−r)Nµrdr), dηs〉 −
1

2

∫ T

t

Tr(P (s))ds

=

∫ T

t

〈µr, (tN
∫ T

r

e
tM(s−r)P (s)dηs)〉dr +

∫ T

t

〈P (s)X0
s , dηs〉 −

1

2

∫ T

t

Tr(P (s))ds.

Hence we see that this penalization can be written as z2 = z1 + γR(η), where γR(η) does not
depend on the chosen control. One can check immediately that E[γR(η)|η=B(ω)] = 0.

�

4.3.2. LQC with multiplicative noise. Let the dynamics be given by

dX = (MX +Nν)dt+

n∑
i=1

CiX ◦ dBit(4.11)

= (M̃X +Nν)dt+

n∑
i=1

CiXdB
i
t.(4.12)

Denote by Xt,x,µ,η the solution starting from x at time t to

dXt,x,µ,η
s = (MXt,x,µ,η

s +Nµ)dt+

n∑
i=1

CiX
t,x,µ,η
s dηit

and by Γt,s the (matrix) solution to the RDE

dsΓt,s = MΓt,sds+

n∑
i=1

CiΓt,sdηs, Γt,t = I

Then

Xt,x,µ,η
s = Γt,sx+

∫ s

t

Γr,sNµrdr.(4.13)

For simplicity we now take d = n = 1: the general case is only notationally more involved.
The optimization problem is given by

V (t, x) = supν∈A E
[
1
2

∫ T
t

(QX2
s +Rν2s)ds+ 1

2GX
2
T

]
.(4.14)

By Section 6.6 in [34] the value function is again given as

V (t, x) =
1

2
Ptx

2

and the optimal control as

u∗(t, x) = −R−1NPtx,
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where

Ṗt + 2PtM + 2PtC
2 +Q−N2R−1P 2

t = 0, PT = G.(4.15)

We can then compute explicitely the Davis–Burstein and Rogers penalties :

Proposition 27. For t ≤ r ≤ T , define

Θr =

∫ T

r

PsΓ
2
r,s(dηs − Cds).

Then the optimal penalty corresponding to Theorem 22 is given by

z1(η, µ) = 2CNx

∫ T

t

Γt,sΘsµsds+ CN2

∫ T

t

∫ T

t

Γr∧s,r∨sΘr∨sµrµsdrds,

while the optimal penalty corresponding to Theorem 16 is given by

z2(η, µ) = CΘtx
2 + z1(η, µ).

Proof. The optimal penalty stemming from Theorem 22 (see also Remark 24) is given by
∫ T
t
λ∗(r, x)µrdr,

where

λ∗(r, x) = N
(
GZ1

T∂xZ
1
T + ∂xZ

2
T

)
−NP (r)x,

where

dZ1 = MZ1ds+ CZ1dηt, Z1
r = x;

dZ2 =
1

2

(
Q−N2R−1P (s)2

)
(Z1)2ds, Z2

r = 0.

Since Z1
s = Γr,sx, this is computed to

λ∗(r, x) = Nx

(
GΓ2

r,T +

∫ T

r

(
Q−N2R−1P (s)2

)
Γ2
r,sds− P (r)

)
.

= Nx

([
P (s)Γ2

r,s

]T
s=r

+

∫ T

r

(
−Ṗ (s)− 2MP (s)− 2C2P (s)

)
Γ2
r,sds

)

= 2Nx

(∫ T

r

P (s)Γ2
r,s(Cdηs − C2ds)

)
= 2NCxΘr.

Using the formula (4.13), we immediately obtain

z1(η, µ) =

∫ T

t

λ∗(s,Xt,x,µ,η
s )µsds

= 2CNx

∫ T

t

Γt,sΘsµsds+ CN2

∫ T

t

∫ T

t

Γr∧s,r∨sΘr∨sµrµsdrds.
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For the optimal penalty corresponding to Theorem 16, we apply again Remark 18 to see that
the optimal penalty is given by

M t,x,µ,η,V
t,T =

∫ T

t

〈DV (s,Xs), CXdηs〉 −
∫ T

t

Tr[C2X2D2V (s,Xs)]ds

=

∫ T

t

PrC|Xt,x,µ,η
r |2dηr −

∫ T

t

C2|Xt,x,µ,η
r |2Prdr.

It only remains to perform straightforward computations expanding the quadratic terms and
applying Fubini’s theorem. �

Remark 28. Let us also draw attention to the linear-quadratic Gaussian stochastic control studied
in [12], noting however that the type of penalization proposed in Theorem 16 and Theorem 22 will
not work for this, since they rely on a Markovian setting.

5. Appendix: RDEs with controlled drift

Theorem 29 (RDE with controlled drift). Let p ∈ [2, 3). Let η ∈ C0,p-var a geometric p-variation
rough path. Let γ > p. Let U be the subset of a separable Banach space. Let b : Re × U → Re
such that b(·, u) ∈ Lip1(Re) uniformly in u ∈ U (i.e. supu∈U ||b(·, u)||Lip1(Re) < ∞) and such that
u 7→ b(·, u) is measurable. Let σ1, . . . , σd ∈ Lipγ(Re). Let µ : [0, T ]→ U be measurable, i.e. µ ∈M.

(i) There exists a unique Y ∈ C0,p-var that solves

Yt = y0 +

∫ t

0

b(Yr, µr)dr +

∫ t

0

σ(Y )dηr.

Moreover the mapping

(x0,η) 7→ Y ∈ C0,p-var

is locally Lipschitz continuous, uniformly in µ ∈M.
(ii) Assume that u 7→ b(·, u) is Lipschitz. If we use the topology of convergence in measure on

M, then

M× Re × C0,p-var → C0,p-var

(µ, x0,η) 7→ Y,
(5.1)

is continuous.
(iii) Assume that u 7→ b(·, u) is Lipschitz. If ν : Ω× [0, T ] → U is progressively measurable and

B is the Stratonovich rough path lift of a Brownian motion B, then

Y |µ=ν,η=B = Ỹ , P− a.s.,(5.2)

where Ỹ is the (classical) solution to the controlled SDE

Ỹt = y0 +

∫ t

0

b(Ỹr, νr)dr +

∫ t

0

σ(Ỹ ) ◦ dBr.

(iv) If σ1, . . . , σd ∈ Lipγ+2(Re), we can write Y = φ(t, Ŷt) where φ is the solution flow to the
RDE

φ(t, x) = x+

∫ t

0

σ(φ(r, x))dηr,
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and Ŷ solves the classical ODE

Ŷt = x0 +

∫ t

0

b̂(r, Ŷr, µr)dr,

where we define componentwise

b̂(t, x, u)i =
∑
k

∂xk
(φ−1)i(t, φ(t, x))bk(φ(t, x), u).

Remark 30. In the last case, i.e. point (iv), we can immediately use results in [15] (Theorem
10.53) to also handle linear vector fields.

Remark 31. Given a rough path η on [0, T ], the time-inverted object ←−η t := ηT−t is again a rough
path. We can hence solve controlled, backward RDEs using the previous Theorem by inverting time.

Proof. Denote for µ ∈M

Zµt (·) :=

∫ t

0

b(·, µr)dr,

which is a well defined Bochner integral in the space Lip1(Re) (indeed, by assumption on b,∫ t
0
||b(·, µr)||Lip1(Re)dr <∞). Then Zµ ∈ C1-var([0, T ],Lip1(Re)). Indeed

||Zµ||1-var ≤
∫ T

0

||b(·, µr)||Lip1(Re)dr

≤
∫ T

0

sup
u∈U
||b(·, u)||Lip1(Re)dr,(5.3)

independent of µ ∈M.
By Theorem 33 we get a unique solution to the RDE

dY = f(Y )dZµ + σ(Y )dη,

where f : Re → L(Lip1(Re),Re) is the evaluation operator, i.e. f(y)V := V (y). This gives
existence of the controlled RDE as well as continuity in the starting point and in η. By (5.3), this
is independent of µ ∈M and we hence have shown (i).

Concerning (ii), assume now that U 3 u 7→ b(·, u) ∈ Lip1 is Lipschitz. Using the representation
given in the proof of (i) it is sufficient to realize that if µn → µ ∈ M in measure, then Zµ

n → Zµ

in C1-var([0, T ],Lip1(Re)).
Concerning (iii): First of all, we can regard ν as a measurable mapping from (Ω,F) into the

space of all measurable mappings from [0, T ] → U with the topology of convergence in measure.
Indeed, if U is a compact subset of a separable Banach space, then this follows from the equivalence
of weak and strong measurability for Banach space valued mappings (Pettis Theorem, see Section
V.4 in [35]). If U is a general subset of a separable Banach space, then define νn : Ω → M with
νn(ω)t := Φn(ν(ω)t). Here Φn is a (measurable) nearest-neighbor projection on {x1, . . . , xn}, the
sequence (xk)k≥0 being dense in the Banach space. Then νn is taking values in a compact set and
hence by the previous case, is measurable as a mapping to M. Finally ν is the pointwise limit of
the νn and hence also measurable.

Hence Y |µ=ν,η=B is measurable, as the concatenation of measurable maps (here we use the joint
continuity of RDE solutions in the control and the rough path, i.e. continuity of the mapping (5.1)).

Now, to get the equality (5.2): we can argue as in [14] using the Riemann sum representation of
stochastic integral.
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(iv) This follows from Theorem 1 in [9] or Theorem 2 in [5]. �

Remark 32. One can also prove “by hand” existence of a solution, using a fixpoint argument, like
the one used in [16]. This way one arrives at the same regularity demands on the coefficients. Using
the infinite dimensional setting makes it possible to immediately quote existing results on existence,
which shortens the proof immensely. We thank Terry Lyons for drawing our attention to this fact.

In the proof of the previous theorem we needed the following version of Theorem 6.2.1 in [25].

Theorem 33. Let V,W,Z be some Banach spaces. Let tensor products be endowed with the projec-
tive tensor norm. 8 Let p ∈ [2, 3) η ∈ C0,p-var(W ) and Z ∈ Cq-var([0, T ], V ) for some 1/q > 1−1/p.
Let f : Z → L(V,Z) be Lip1, let g : Z → L(W,Z) be Lipγ , γ > p. Then there exists a unique
solution Y ∈ C0,p-var(Z) to the RDE

dY = f(Y )dZ + g(Y )dη,

in the sense of Lyons. 9

Moreover for every R > 0 there exists C = C(R) such that

ρp-var(Y, Ȳ ) ≤ C||Z − Z̄||q-var.

whenever (Z,X) and (Z̄,X) are two driving paths with ||Z||q-var, ||Z̄||q-var, ||X||p-var ≤ R.

Proof. Since Z and X have complementary Young regularity (i.e. 1/p+1/q > 1) there is a canonical
joint rough path λ over (Z,X), where the missing integrals of Z and the cross-integrals of Z and
X are defined via Young integration. So we have

λs,t = 1 +

(
Zs,t
Xs,t

)
+

( ∫ t
s
Zs,r ⊗ dZr

∫ t
s
Zs,r ⊗ dηr∫ t

s
ηs,r ⊗ dZr

∫ t
s
ηs,r ⊗ dηr

)
Then, by Theorem 6.2.1 in [25], there exists a unique solution to the RDE

dY = h(Y )dλ,

where h = (f, g).
We calculate how λ depends on Z. For the first level we have of course ||λ(1) − λ̄(1)||p-var ≤

||Z − Z̄||q-var. For the second level we have, by Young’s inequality,

|
∫ t

s

Zs,rdZr −
∫ t

s

Z̄s,rdZ̄r| ≤ |
∫ t

s

Zs,rd
[
Zr − Z̄r

]
|+ |

∫ t

s

Zs,r − Z̄s,rdZ̄r|

≤ c||Z||q-var;[s,t]||Z − Z̄||q-var;[s,t] + c||Z − Z̄||q-var;[s,t]||Z||q-var;[s,t].

and similarily

|
∫ t

s

Xs,rdZr −
∫ t

s

Xs,rdZ̄r| ≤ c||X||p-var;[s,t]||Z||q-var;[s,t].

Together this gives

ρp-var(λ, λ̄) ≤ c||Z − Z̄||q-var.

8 See [23] p. 18 for more on the choice of tensor norms which, of course, only matter in an infinite dimensional
setting.

9See e.g. Definition 5.1 in [23].
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Plugging this into the continuity estimate of Theorem 6.2.1 in [25] we get

ρp-var(Y, Ȳ ) ≤ C||Z − Z̄||q-var
as desired. �

Remark 34. The following Lemma as well as the proof the Pontryagin principle use the concept
of controlled rough paths in the sense of Gubinelli [16]. Even though it is usually set up in Hölder
spaces, the modification to variation spaces poses no problem (see [29, Section 4.1]). In particular
we define for a path Y controlled by η with derivative Y ′

||Y, Y ′||η,p-var := ||Y ′||p-var + ||R||p/2-var,

where Rs,t := Ys,t − Y ′sηs,t.

Lemma 35. Let η be a geometric p-variation rough path, p ∈ (2, 3). Let M be controlled by η and
for ε ∈ (0, 1] let (Aε, (A′)ε) be controlled by η with

||Aε, (A′)ε||η,p-var = O(ε).

Let Xε solve
dXε

t = dAεt +Atdηt

Xε
0 = 0.

(5.4)

Then

ρp-var(X
ε, 0) = O(ε).

Proof. For every ε there exists a unique solution solution to (5.4), and it is uniformly bounded in
ε ∈ (0, 1]. This follows from [15, Theorem 10.53], by considering (Aε,η) as a joint rough path.

We can hence, uniformly in ε, replace the linear vector field by a bounded one. We then get
from [14, Theorem 8.5]

ρp-var(X
ε, X0) ≤ c ρp-var((Aε,η), (0,η)).

where X0 denotes the unique solution to (5.4) with Aε replaced by the constant 0-path. Obviously
X0 ≡ 0 and it easy to see that

ρp-var((A
ε,η), (0,η)) = O(ε),

which yields the desired result. �
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